UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Xhafa, F. [et al.] (2016) A web interface for satellite scheduling
problems. /EEE 30th International Conference on Advanced
Information Networking and Applications, IEEE AINA 2016, 23-25
March 2016, Crans-Montana, Switzerland. proceedings. [S.l.]: IEEE,
2016. Pp. 821-828. Doi: http://dx.doi.org/10.1109/AINA.2016.21.

© 2016 IEEE. Es permet I'Us personal d'aquest material. S’ha de
demanar permis a I'lEEE per a qualsevol altre Us, incloent la
reimpressid/reedicio amb fins publicitaris o promocionals, la creacio
de noves obres col-lectives per a la revenda o redistribucio en
servidors o llistes o la reutilitzacié de parts d’aquest treball amb drets
d'autor en altres treballs.

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
ttp://dx.doi.org/10.1109/AINA.2016.21

i

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Xhafa, F. [et al.] (2016) A web interface for satellite scheduling
problems. /EEE 30th International Conference on Advanced
Information Networking and Applications, IEEE AINA 2016, 23-25
March 2016, Crans-Montana, Switzerland. proceedings. [S.l.]: IEEE,
2016. Pp. 821-828. Doi: http://dx.doi.org/10.1109/AINA.2016.21.

(c) 2016 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes,
creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted components of this work in other

works.

ttp://dx.doi.org/10.1109/AINA.2016.21

A Web Interface for Satellite Scheduling Problems

Fatos Xhafa, Carlos Garcia
Department of Computer Science
Technical University of Catalonia, Spain
Email: {fatos,cgarcia} @cs.upc.edu

Admir Barolli
Department of Applied Informatics
Logos University, Albania
Email: admir.barolli@gmail.com

Makoto Takizawa
Department of Advanced Sciences
Hosei University, Japan
Email: makoto.takizawa @ computer.org

Abstract—Mission planning plays an important role in
satellite control systems, especially with increase of number
of satellites and more complex missions to be planned. In
a general setting, the satellite mission scheduling consists in
allocating tasks such as observation, communication, etc. to
resources (spacecrafts (SCs), satellites, ground stations). For
instance, in ground station scheduling the aim is to compute
an optimal planning of communications between satellites
and operations teams of Ground Station (GS). Because the
communication between SCs and GSs can be done during
specific window times, this problem can also be seen as a
window time scheduling problem. The required communication
time is usually quite smaller than the window of visibility
of SCs to GSs, however, clashes are produced, making the
problem highly constrained. In this work we present a web
interface for solving satellite scheduling problems through
various heuristic methods. The web interface enables the users
to remotely solve their problem instances through a selection of
heuristic methods such as local search methods (Hill Climbing,
Simulated Annealing and Tabu Search) and population-based
methods (Genetic Algorithms and variants). The user can
select to solve previously generated instances by the STK
simulation toolkit or generate their own problem instances.
The heuristic methods are easily configurable so that users
can simulate a variety of scenarios, problem sizes, etc. The
execution of the heuristics methods is done at a HPC Cluster
infrastructure supporting efficient execution of various solvers.
Additionally, the web application allows users to keep track of
their executions as well as to share problem instances with
other users.

Keywords-Web Interface; Satellite Scheduling; Ground Sta-
tion; Heuristics; Hill Climbing; Simulated Annealing; Tabu
Search; Genetic Algorithms; Simulation; Meta-heuristics.

I. INTRODUCTION

The design of intelligent mission planning for satellite
systems is a long standing problem in satellite control
systems. Nowadays, developed mission planning systems
is of interest not only to large aerospace agencies such as
ESA (European Space Agency) [1], [S]l, [[6] and NASA [3]
, bu also to many smaller science and technology projects
from research institutions and universities requiring mission
planning [4], [17]]. Indeed, there is a growing number of
small satellites being launched for science and technology

missions. With such increasing number of satellites and of
the missions, the mission planning optimization is crucial not
only to optimize the resource usage but primarily to ensure
mission accomplishment of resource-constrained satellites
that need to communicate with capacity-constrained ground
stations. In fact, there is an emerging trend of launching
constellations of small satellites for scientific studies using
data gathering from remote sensing.

Ground Station Scheduling is one of the most important
problems in the field of Satellite-Scheduling. It consists in
computing feasible planning of communications between
satellites or spacecraft (SC) and operations teams of Ground
Station (GS). The problem arises in many real life applica-
tions and projects, such as hurricane prediction [13]], tele
imagery systems and earth observation [11]], [15], etc.

Ground Station Scheduling is a very complex problem
due to its over-constrained nature.

Constraints and requirements: There is a large set
of constraints. In fact, this is the first major difference
between the problems of conventional scheduling and that
of Ground Station scheduling. First, there are restrictions on
the communication time required for each SC in a period of
time. Secondly, there are restrictions on the visibility of each
window on each Spacecraft Ground Station, i.e. the time at
which each SC can communicate with each GS in a given
time period. Resources are thus not available at all times for
mission allocation.

Communication time requirement: The length of the com-
munication is variable, where it should be at least the
required communication time and at most the maximum time
within which the window visibility ends or the visibility
window of another communication starts.

Visibility requirements and clashes: A ground station
can communicate with a SC only when SC is within the
transmitting angle of the ground station. A spacecraft has
three types of visibility to a ground station, namely: (1)
AOS-VIS: Acquisition of Signal, Visible. This indicates the
time when the SC appears in the line of sight of the GS; (2)
AOS-TC: Acquisition of Signal, Tele-command. This is time

when GS is allowed to send signal to SC. A visibility clash
of two spacecraft happens when the AOS time of second
spacecraft starts before the LOS time of first one.

All scheduling variants, in their general formulations,
are highly constrained problems and have been shown
computationally hard [2], [12f, [14]], [25]. Therefore their
resolution is tackled through heuristics approaches such as
Local Search and Genetic Algorithms [8], [9], [18]-[24] or
specific formulations such as image acquisition [10].

In this work we present a web interface for solving satel-
lite scheduling problems through various heuristic methods.
The aim is to enable users to remotely solve their problem
instances through a selection of heuristic methods such as
local search methods (Hill Climbing, Simulated Annealing
and Tabu Search) and population-based methods (Genetic
Algorithms and variants).

The rest of the paper is organized as follows. In Sec-
tion I} we introduce some main concepts and background
on satellite scheduling problems and its fitness functions in
Section The resolution methods are briefly presented in
Section In Section [V] we present the architecture of the
Web application and its integration with different resolution
methods. The main use cases are shown as well. Finally, we
conclude this work in Section [VII

II. SATELLITE SCHEDULING PROBLEMS

1) Ground stations and spacecrafts/satellites: Ground
Stations are terrestrial terminals designed for extra-planetary
communications with SCs. SCs are extra-planetary crafts,
such as satellites, probes, space stations, orbiters, etc.
Ground stations communicate with a spacecraft by trans-
mitting and receiving radio waves in high frequency bands
(e.g. microwaves). A ground station usually contains more
than one satellite dish. Each dish is usually assigned to a
specific space mission. With the scheduling from control
center, dishes are able to handle and switch among mission
spacecrafts.

2) Problem input instance: The input instance is defined
in Table [

Table 1
PARAMETERS DEFINING THE INPUT INSTANCE
Parameter Description
SC{i} List of Spacecrafts in the planning
GS{g} List of Ground Stations in the planning
N_days Number of days for the schedule

TAOS_VIS(i)(g)
TLOS_VIS(i)(g)
T Req()

Visibility time of GS to SC
Time GS looses signal from SC
Communication time required for spacecrafts

3) Objectives: Different types of objectives can be formu-
lated, namely, maximizing matching of visibility windows
of spacecrafts to communicate with ground stations, min-
imizing the clashes of different spacecrafts to one ground
station, maximizing the communication time of spacecraft

with ground station, and maximizing the usage of ground
stations. The challenge here is to optimize several objectives.
4) Problem output: A solution procedure to the problem

should output the values of the parameters defined in Ta-
ble

Table II
PARAMETERS DEFINING THE PROBLEM OUTPUT
Parameter Description
Tstart(2)(g) Starting time of the communication SC(7) — GS(g)
Tpour()(g) Duration time of the communication SC(i) — GS(g)
SC_GS(3) The GS assigned to every SC (7).

The fitness of minimizing the collision of two or
more SC' to the same GS for a given time period
(measured from 0 to 100).

The fitness value corresponding to time access
window for every pair GS — SC

(measured from 0 to 100).

Fitness value corresponding to satisfying the
requirement on the mission communication time
(measured from 0 to 100).

Fitness value corresponding to maximizing the
usage of all G'S during the planning

(measured from 0 to 100).

FitpessClash

FitTimeWin

Fitgeq

Fitgsu

III. SCHEDULING FITNESS TYPES

One of the major complexities of the mission operations
scheduling comes from the many objectives that can be
sought for the problem. These objectives are related to
visibility window, communication clashes, communication
time and ground station resource usage, among others. The
total fitness function, besides being composed of multiple
objectives, poses the challenge of how to combine them
and in which order to evaluate them. For the combination,
one can adopt a hierarchical optimization approach based on
the priority of the objectives or a simultaneous optimization
approach. In the former, objectives are sorted according to
some priority criteria and are optimized according that or-
dering. In the later, objectives are simultaneously optimized,
e.g. by summing up all fitness functions into one single
fitness function.

We define next the four main objectives that would
compose the fitness function.

A. Access window fitness

Visibility windows are the time periods when a GS has
the possibility to set-up a communication link with a SC.
The objective is that all or the largest possible number of
generated communication links to fall into access windows
and thus achieve as many communications as possible. In
the following equation, W, ;) is the Access Window set for
Ground Station g and Spacecraft i, Tsiqr¢(s) and Trna(s)
are the start and end of each access window.

AW (g,1) = U5_1[Ta0s(9.1)(3): Tros(e.n(s)] (1)

Then, we define the final Access Window fitness of the
scheduling solution (F'it 417) calculated as follows:

1, if [TStart (n), Tsiart (n)+

f(n) = +TDur(n)] g AW(nga ni)a
0, otherwise.
N
Fitay = anﬁf ™), 100,)

where n value corresponds to an event, [V is the total number
of events of an entire schedule, g is a ground station and %
a spacecraft. The fitness of access window is normalized so
that it’s value is within O to 100.

B. Communication clashes fitness

Communications clash represents the event when the
start of one communication task happens before the end of
another one on the same ground station. The objective is to
minimize the clashes of different spacecrafts to one ground
station. To compute the number of clashes, SCs are sorted
by their start time. If, as a result of the sorting:

TStart(n+1) < TStart(n)+TDur(n)a 1 S n S N-1 (3)

where n value corresponds to an event and NV is the total
number of events of an entire schedule, then there is a clash.
The fitness will be reduced, and one of the clashed entries
has to be removed from the solution. The total fitness of
communication clashes is then:

f(n) _ -1, if TSta?“t(n + 1) < TStart(n) + TDur(n);
0 otherwise.

N+ f(n)
N

C. Communication time requirement fitness

Fitcg =

“

The objective is to maximize the communication time
of spacecrafts with ground stations so that every spacecraft
SC(i) will communicate at least T}.,(¢) time. Thus, a suffi-
cient amount of time should be granted for TTC (Telemetry,
Tracking and Command). For example, satellites that need
to download huge amount of image data require more time
for linking with ground stations. These communications,
especially for data download tasks are usually periodical
tasks (e.g. 2 hours communication for SC1 each day, 5 hours
data downlink for SC2 every 2 days, etc.) A matrix is used
to define those requirements, which is used as the input for
the scheduling system.

The fitness is calculated by summing up all the communi-
cation link durations of each spacecraft, and dividing them in
the required period to compare if the scheduled time matches
requirements (see Egs. (3)).

TStart(m) > TFrom(k)
TStaTt(n) + TDuT (n) < TTO(k)
TComm(k) = TDuT(]) (5)
_ 1a if TComm(k) Z TREQ()7
fk) = { 0 otherwise.

FITpg = 2= 7E) 00,

D. Ground station usage fitness

Given that the number of ground stations is usually
smaller than the number of spacecrafts missions, the objec-
tive is to maximize the usage of ground stations, that is, try
to reduce the idle time of a ground station. A maximized
usage would contribute to provide additional time for SC
communications.

This fitness value is calculated as the percentage of ground
stations occupied time by the total amount of the possible
communication time. The more a GS is used, the better is
the corresponding schedule.

N
T ur
Fitey - e Tour(®)

- 100. (6)
Zg:l TTotal (g)

where N is the number of events of an entire schedule, G
is the number of ground stations and Tr7z41(4) is the total
available time of a ground station

E. Combination of fitness objectives

The fitness objectives defined above (FIT aw, FlTcs,
FITrgr, FITgy) are conceived as fitness modules so as
to facilitate the design phase of the scheduler to easily
plug-in other fitness objectives. From the definition of the
fitness objectives, we can observe that some of them can be
applied in serial fashion (due dependencies, denoted serial-
FM), while some others can be applied in parallel (denoted
parallel-FM). We can combine all the fitness modules into
one total fitness function using weights for different fitness
module:

Fit = w;- Fits(i) + »_w; - Fitp(j) ()

i=1 j=1

where w;, w; are the weights of fitness modules, Fitg(¢) and
Fitp(yj) are the fitness values from Serial-FMs and Parallel-
FMs, and n, m are the number of fitness modules, resp. More
precisely, we define the total fitness function as follows:

FitLessClash Fz’tGSU

10 100 -
®)

Fitror = A Fitwin + Fitgeq +

for some A (here set to A = 1.5).

IV. RESOLUTION METHODS

Due to computational intractability of the problem heuris-
tic and meta-heuristic approaches are the de facto approach
to solve the problem for practical purposes).

A. Local Search Methods

1) Hill Climbing: Hill Climbing (HC) is local search
algorithm and is based on incremental improvements of
solutions as follows: it starts with a solution (which may be
randomly generated or ad hoc computed) considered as the
current solution in the search space. The algorithm examines
its neighboring solutions and if a neighbor is better than
current solution then it can become the current solution; the
algorithm keeps moving from one solution to another one in
the search space until no further improvements are possible.
There are several variants of the algorithm depending on
whether a simple climbing, steepest ascent climbing or
stochastic climbing is done:

o Simple climbing: the next neighbor solution is the first
that improves current solution.

o Steepest ascent climbing: all neighbor solutions are
examined and the best one is chosen as next solution.

o Stochastic climbing: a neighbor is selected at random,
and according to yielded improvement of that neighbor
is decided whether to choose it as next solution or to
examine another neighbor. This kind of climbing has
more general forms known as Metropolis and Simulated
Annealing algorithms.

We present the pseudo-code of HC in Alg. [T} The algo-
rithm first generates a solution which serves as starting point
in the search space. Then, the algorithm iteratively selects a
movement based on current solution, evaluates the resulting
movement in terms of possible improvements with respect
to current solution. If the resulting neighbor improves fitness
of current solution, the current solution is moved to the new
neighbor and so on. In the algorithm the function d(s,m)
computes the improvement yielded by applying movement
m to current solution s (as usually, for maximization, a
positive value of ¢ function means improvement with respect
to fitness of current solution).

2) Simulated Annealing: Simulated Annealing (SA) algo-
rithm is inspired by the cooling process of metals in which
a material is heated and then cooled in a controlled way
to increase the size of its crystals and reduce their defects.
SA algorithm is a generalization of the Hill Climbing (HC)
heuristic. Indeed, SA consists of a sequence of executions
of HC with a progressive decrement of the temperature
starting from a an “high” temperature, where almost any
move is accepted, to a low temperature, where the search
resembles HC. In fact, it can be seen as a hill-climber with
an internal mechanism to escape local optima (see pseudo-
code in Alg. . In SA, the solution s’ is accepted as the new
current solution if 6 < 0 holds, where § = f(s') — f(s).

Algorithm 1 Hill Climbing algorithm for maximization. f
is the fitness function.
1: START: Generate an initial solution sg;
20 8 =805 8 =805 [*= f(s0);
3: repeat
4: MOVEMENT SELECTION: Choose a movement
m = select_movement(s);

5 EVALUATE & APPLY MOVEMENT:
6: if (s, m) > 0 then

7: s' = appply(m, s);

8: s=¢';

9: end if

10. UPDATE BEST SOLUTION:
1: if f(s') > f(s*) then

12: =1
13: s* =s;
14: end if

15: return s*, f*;
16: until (stopping condition is met)

Additionally, to allow escaping from a local optimum,
moves that increase the energy function are accepted with
a decreasing probability exp (—d/T) if § > 0, where T is
the temperature parameter (see function Accept in Alg. [2).
The decreasing values of T are controlled by a cooling
schedule, which specifies the temperature values at each
stage of the algorithm, what represents an important decision
for its application (a typical option is to use a proportional
method, like T, = - T—1). SA usually gives better results
in practice, but tends to be rather slow to converge to good
solutions.

Algorithm 2 : Pseudo-code of Simulated Annealing.
t:=0
Initialize T'
s0 := Initial_Solution()
v0 := Evaluate(s0)
while (stopping condition not met) do
while ¢ mod MarkovChainLen = 0 do
t = t+1
s1 := Generate(s0,1")
v1 := Evaluate(s1)
if Accept(v0,v1,T") then
s0 = sl
v0 = vl
end if
end while
T := Update(T)
end while
return s0

/IMove

3) Tabu Search: Tabu Search (TS) method was intro-
duced by Glover [7] as a high-level algorithm that uses other

specific heuristics to guide the search; the objective is to
perform an intelligent exploration of the search space that
would eventually allow to avoid getting trapped into local
optima. The objective is thus to remedy one of the main
issues of local search methods, namely the useless search in
neighborhood of local optima without further improvements
due to re-visiting solutions or paths of solutions already
explored. This is achieved by giving the tabu status to
solutions visited in the recent search. TS is also designed to
be a flexible method, so that the tabu status of solutions can
be waived, in case they have been prohibited for a long while
or if they satisfy some aspiration criteria. The classification
of some solutions as tabu is achieved through the intelligent
use of adaptive memory, which is allowed to evolve and
eventually change the status of tabu solutions.

The main features of the TS method are that of adaptive
memory and responsive exploration. Again, the adaptive
memory is the basis to guide the search in taking intelligent
decisions. This gives the TS method advantages with regard
to other memoryless methods, being these local search meth-
ods (Hill Climbing, Simulated Annealing, etc.) or population
based methods (Genetic Algorithms, Memetic Algorithms,
etc.). On the other hand, the responsive exploration enables
the method to select some solutions which though not so
good at the current search iteration might at long run lead
to promising areas of good solutions (see Alg. [3).

Algorithm 3 Tabu Search Algorithm
begin
Compute an initial solution s;
let § < s;
Reset the tabu and aspiration conditions;
while not termination-condition do
Generate a subset N*(s) C N(s) of solutions such that:
(none of the tabu conditions is violated) or (the
aspiration criteria hold)
Choose the best s € N*(s) with respect to the cost
function;
s+ s';
if improvement(s’, §)) then
5§+ g
end if
Update the recency and frequency;
if (intensification condition) then
Perform intensification procedure;
end if
if (diversification condition) then
Perform diversification procedures;
end if
end while
return S;
end;

B. Population-based Methods: Genetic Algorithms

GAs have shown their usefulness for the resolution
of many computationally hard combinatorial optimization
problems. Their main features are briefly described next (see
Alg. |4 for a template). Besides, the web interface offers
variations of GA such as Steady State, Struggle and Struggle
Hash GA implementations.

Population of individuals: Unlike local search techniques
that construct a path in the solution space jumping from
one solution to another one through local perturbations,
GAs use a population of individuals giving thus the search
a larger scope and chances to find better solutions. This
feature is also known as “exploration” process in difference
to “exploitation” process of local search methods.

Fitness: The determination of an appropriate fitness func-
tion, together with the chromosome encoding are crucial
to the performance of GAs. Ideally we would construct
objective functions with “certain regularities”, i.e. objective
functions that verify that for any two individuals which
are close in the search space, their respective values in the
objective functions are similar.

Selection: The selection of individuals to be crossed
is another important aspect in GAs as it impacts on the
convergence of the algorithm. Several selection schemes
have been proposed in the literature for selection operators
trying to cope with premature convergence of GAs.

Crossover operators: Use of crossover operators is one of
the most important characteristics. Crossover operator is the
means of GAs to transmit best genetic features of parents
to offsprings during generations of the evolution process.

Mutation operators: These operators intend to improve
the individuals of a population by small local perturbations.
They aim to provide a component of randomness in the
neighborhood of the individuals of the population.

Escaping from local optima: GAs have the ability to avoid
falling prematurely into local optima and can eventually
escape from them during the search process.

Convergence: The convergence of the algorithm is the
mechanism of GAs to reach to good solutions. A premature
convergence of the algorithm would cause that all individu-
als of the population be similar in their genetic features and
thus the search would result ineffective and the algorithm
getting stuck into local optima. Maintaining the diversity of
the population is therefore very important to this family of
evolutionary algorithms.

V. WEB INTERFACE FOR SATELLITE SCHEDULING
PROBLEMS

A. Architecture

The Web application follows a standard Client-Server
architecture and is implemented using LAMP (Linux +
Apache + MySQL+ PHP) technology (see Fig. [I). Remote
users (clients) submit their requests according to several

Algorithm 4 Genetic Algorithm template

Generate the initial population P° of size u;

Evaluate P°;

while not termination-condition do
Select the parental pool T* of size \; T" := Select(P");
Perform crossover procedure on pairs of individuals in T
with probability p.; P! := Cross(T");
Perform mutation procedure on individuals in P! with prob-
ability pm; PY, := Mutate(P});
Evaluate P!, ;
Create a new population Pt of size y from individuals in
Pt and/or P, ;
P'! .= Replace(P*; PL,)
t:=t+1;

end while

return Best found individual as solution;

use cases (problem creation/selection, resolution method
selection and configuration, solver execution and solution
reception and visualisation).

Web
Controler
y .
Show Get)
Remests o c Data Data |
> ontrol " v |
|
l Controllers L Mailing
H
Response 1
P Kernel A A A i
HTML [Symfony2 Exeoite Create . i
o s Problem
Srlaseninlode
I v N
Asynchronous [|
—> op Operator : Solvers Problem
! Generator
i

Oracle Grid

Figure 1. The architecture of the web application.

In this architecture we can distinguish:

o The web application is implemented according to
Model-View-Controller paradigm (using Symfony?2 in
Controller layer, the Doctrine2 in the Model layer for
data persistence with MySQL and Twig in the View
layer).

o The Satellite Scheduling Tools include the existing
solvers, creation of new solvers as well as using ex-
isting problem instances and creation of new problem
instances.

o The Asynchronous Job Operator is a module im-
plemented at RDLalﬂ for submitting executions to

Uhttp://rdlab.cs.upc.edu/index.php/en/

the HPC Cluster via the Oracle Grid Engine queuing
system.

o The Mailing server is used to notify the user about the
executions and other warning services.

B. Main Use Cases

To apply the main use cases of the web applicatimﬂ prior
registration in the site is required.

1) Problem instance creation and selection procedure:
The user can select a problem instance (see Fig. [2) either
from a general list of problems (see Fig. [3) or can create his
own problem instance (see Fig.). In the former case the
list of problems include default instanceﬂ generated using
the Satellite Tool Kit [16] of small, medium and large sizes.
All instances are coded in XML.

=]

my problems

[select a problem instance]

Figure 2. A snapshot of problem selection procedure.

Create new problem
General Problems
1-10
Name Creator Creation

o

Default Small Poblem 1 satsched@cs upe. 09/03/2015 13:09:26

w

Defauit Small Poblem 1 satsched@cs.upc.. 09/03/2015 13:09:26

Default Small Poblem 1

s

satsched UpC. 09/03/2015 13:09:28

Defauit Small Poblem 13 satsched@cs.upc.. 09/03/2015 13:09:26

Default sSmall Poblem 12 satsched@cs upe. 09/03/2015 13:09:26

Defauit Small Foblem 11 safsched UPC.. 09/03/2015 13:09:26

Default Small Poblem 10 satsched@cs.upc. 09/03/2015 13:09:26

Default Small P-oblem 09 satiched@cs.upe.. 09/03/2015 13:09:26

Defoult Small Poblem 08 satsched@cs.upc. 09/03/2015 13:09:26

Defoult Small Problem 07 satsched@cs.upc. 09/03/2015 13:09:26

Figure 3.
list.

A snapshot of selecting a problem instance from an existing

2) Resolution method selection procedure: The user can
select a resolution method from a set of existing solvers,
which include local search solvers (Hill Climbing, Simulated
Annealing and Tabu Search) and population based solvers
(GA base, GA Steady State, GA Struggle and GA Struggle
Hash) (see Fig. E[) First, the user can choose to execute an
existing solver again (see Fig. [6) from a list or to create a
new execution (see Fig. [7).

Zhttp://weboptserv.cs.upc.edu/satsched/web/
3The XML problem instance files can be downloaded from
http://www.cs.upc.edu/~fatos/GSSchedulingInputs.zip

http://rdlab.cs.upc.edu/index.php/en/
http://weboptserv.cs.upc.edu/satsched/web/
http://www.cs.upc.edu/~fatos/GSSchedulingInputs.zip

p

My problem
o 5
10
10
accept . crocte

ersion="1.0" sncoding="ut-8"¢>

Figure 4. A snapshot of parameter specification for creating a new problem
instance.

My Solutions f H Create new solution E

Name Creation Stolus © Lostexecufion

Figure 5. A snapshot of solving a problem instance procedure.

Solver selection and configuration: Once a solver is
selected from the top down list, the corresponding parameter
configuration formulaire is presented (see Fig. [8) where
the user can specify the desired parameter values (checking
procedures are also implemented to control the valid values
of parameters).

Reception and visualisation of the results: The results
of the solution can be both downloaded as a file and
visualised (see Fig. [0). The user is also informed about
the ground station usage and the communication of ground
stations with the satellites.

Archive of executions: The user can maintain in his
account the archive of his previous executions and their
status (see a snapshot in Fig. [I0). For every execution, the
problem instance, parameter setting and the best solution
found are kept.

New solution

cancel ‘ create create & exec.

Figure 6. A snapshot of selecting a solver execution from an existing list.

SiC e
=
Ready ‘| execuie [l disable | close

Figure 7. A snapshot of the procedure for creating a new solver instance.

5

Steady State Genstic Algorithm

Figure 8. A snapshot of the procedure for selecting and configuring a

concrete solver.

100%
100%

ground stations usage:

26.7%

view solution raw output
download soluticn output

[B
15
10 (14400 min,)
20% C
5.7% s 47% 1075 67%
— = — —

67%

Figure 9. A snapshot of the procedure for downloading and visualising

the solution.

My Sclufions

Create new sclufion

Name:
Big problem wih 50 satelites

Small GS availchiy 13 v 15)

4 days scheduing
105C vs 5 GS In a week

Small test, 10 days

Figure 10.

Creation Status Lost execution

16/03/2015 12:50:44

114032015 150709

0A/NA/Z015 171440

24/02/2015 09:43:13

18/02/2015 11:06:51 Salved 18/02/2015 16:40:24

15/02/2015 16:24:29 Solved 16/02/2015 10:45:11

A snapshot of archive of “My Solutions”.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have presented a Web interface for
solving satellite scheduling problems through various heuris-
tic methods. The satellite mission scheduling consists in
allocating tasks such as observation, communication, etc.
to resources (spacecrafts (SCs), satellites, ground stations)
and is known to be highly constrained problem and hard
to solve to optimality. The web interface enables the users
to remotely solve their problem instances through a se-
lection of heuristic methods such as local search methods
(Hill Climbing, Simulated Annealing and Tabu Search)
and population-based methods (Genetic Algorithms). The
user can select to solve previously generated instances by
the STK simulation toolkit or generate their own problem
instances. The heuristic methods are easily configurable so
that users can simulate a variety of scenarios, problem sizes,
etc. The execution of the heuristics methods is done at a
HPC Cluster infrastructure supporting efficient execution of
various solvers. Additionally, the web applications allows
user to keep track of their executions as well as share
instance problems with other users.

In our future work, we would like to add new features to
the web interface such as sharing the configurations for the
best found solutions by different users.

REFERENCES

[1] L. Barbulescu, A. Howe, J. Watson, L. Whitley. Satellite range
scheduling: a comparison of Genetic, Heuristic and Local
Search. PPSN, VII: 611-620, 2002.

[2] L. Barbulescu, J.-P. Watson, L. D. Whitley and A. E. Schedul-
ing space-ground communications for the air force satellite
control network. Journal of Scheduling, 7(1), 7-34, 2004.

[3] L. Barbulescu, A.E. Howe, D. Whitley. AFSCN scheduling:
How the problem and solution have evolved. Mathematical
and Computer Modelling, 43(9-10): 1023-1037, 2006.

[4] D.N. Baker and S.P. Worden. The large benefits of Small-
Satellite missions. Transactions American Geophysical Union,
89(33):301, 2008.

[5] S. Damiani, H. Dreihahn, J. Noll, M. Nizette, and G.P. Cal-
zolari. A Planning and Scheduling System to Allocate ESA
Ground Station Network Services. The Int’l Conference on
Automated Planning and Scheduling, USA, 2007.

[6] European Space Agency: http://www.esa.int/

[7]1 F. Glover. Future Paths for Integer Programming and Links to
Artificial Intelligence. Computers and Op. Res., S, 533-549,
1986.

[8] V. Kolici, X. Herrero, F. Xhafa, L. Barolli: Local Search
and Genetic Algorithms for Satellite Scheduling Problems.
BWCCA 2013: 328-335, IEEE CPS, 2013.

[9] A. Lala, V. Kolici, F. Xhafa, X. Herrero, A. Barolli: On
Local vs. Population-Based Heuristics for Ground Station
Scheduling. CISIS 2015: 267-275, IEEE CPS, 2015.

[10] J. Lee, S. Wang, D. Chung, K. Ko, S. Choi, H. Ahn, O.
Jung, Scheduling optimization for image acquisition missions
for multi-satellites via genetic algorithms, The Korean Society
For Aeronautical And Space Sciences, 951-957, 2012.

[11] J. Noguero, G. Garcia Julian, T.W. Beech, Mission control
system for Earth observation missions based on SCOS-2000,
IEEE Aerospace Conference, 4088-4099, 2005.

[12] J. C. Pemberton, F. Galiber. A constraint-based approach to
satellite scheduling. DIMACS workshop on Constraint pro-
gramming and large scale discrete optimization, 101-114,

2000.

[13] C. Ruf, M. Unwin, J. Dickinson, R. Rose, D. Rose, M.
Vincent, A. Lyons, CYGNSS: Enabling the Future of Hurricane

Prediction, Geoscience and Remote Sensing Magazine, IEEE
1, 52-67, 2013.

[14] W. T. Scherer, F. Rotman. Combinatorial optimization tech-
niques for spacecraft scheduling automation. Annals of Oper-
ations Research, 50(1):525-556, 1994.

[15] T.J. Schmit, M.M. Gunshor, W.P. Menzel, J.J. Gurka, J. Li,
A.S. Bachmeier, Introducing the next-generation Advanced
Baseline Imager on GOES-R, Bulletin of the American Me-
teorological Society, 86, 1079-1096, 2005.

[16] Satellite Tool Kit: http://www.agi.com/products/by-product-
type/applications/stk/

[17] K. Woellert, P. Ehrenfreund, A.J. Ricco, and H. Hertzfeld.
Cubesats: Cost-effective science and technology platforms for
emerging and developing nations. Advances in Space Research,
47(4):663-684, 2011.

[18] E. Xhafa, J. Sun, A. Barolli, A. Biberaj, L. Barolli, Genetic al-
gorithms for satellite scheduling problems, Mobile Information
Systems, 8(4), 351-377, 2012.

[19] E. Xhafa, X. Herrero, A. Barolli, M. Takizawa: Using STK
Toolkit for Evaluating a GA Base Algorithm for Ground
Station Scheduling. CISIS 2013: 265-273, IEEE CPS, 2013.

[20] F. Xhafa, A. Barolli, M. Takizawa: Steady State Genetic Al-
gorithm for Ground Station Scheduling Problem. AINA 2013:
153-160, IEEE CPS, 2013.

[21] E. Xhafa, X. Herrero, A. Barolli, M. Takizawa: A Simulated
Annealing Algorithm for Ground Station Scheduling Problem.
NBiS 2013: 24-30, IEEE CPS, 2013.

[22] F. Xhafa, X. Herrero, A. Barolli, L. Barolli, M. Takizawa:
Evaluation of struggle strategy in Genetic Algorithms for
ground stations scheduling problem. J. Comput. Syst. Sci.
79(7): 1086-1100, 2013.

[23] F. Xhafa, X. Herrero, A. Barolli, M. Takizawa: A Tabu
Search Algorithm for Ground Station Scheduling Problem.
AINA 2014: 1033-1040, IEEE CPS, 2014.

[24] F. Xhafa, X. Herrero, A. Barolli, M. Takizawa: A Compari-
son Study on Meta-Heuristics for Ground Station Scheduling
Problem. NBiS 2014: 172-179, IEEE CPS, 2014.

[25] N. Zufferey, P. Amstutz, P. Giaccari. Graph Colouring Ap-
proaches for a Satellite Range Scheduling Problem. Journal of
Scheduling, 11(4):263-277, 2008.

http://www.esa.int/
http://www.agi.com/products/by-product-type/applications/stk/
http://www.agi.com/products/by-product-type/applications/stk/

	Introduction
	Satellite Scheduling Problems
	Ground stations and spacecrafts/satellites
	Problem input instance
	Objectives
	Problem output

	Scheduling fitness types
	Access window fitness
	Communication clashes fitness
	Communication time requirement fitness
	Ground station usage fitness
	Combination of fitness objectives

	Resolution Methods
	Local Search Methods
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Population-based Methods: Genetic Algorithms

	Web Interface for Satellite Scheduling Problems
	Architecture
	Main Use Cases
	Problem instance creation and selection procedure
	Resolution method selection procedure

	Conclusions and Future Work
	References
	caratulaIEEE12.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints

