
Human Pose Estimation with
CNNs and LSTMs

Huseyin Coskun

Master’s Thesis

Computer Aided Medical Procedures & Augmented Reality

Department of Informatics

Technische Universität München

Human Pose Estimation with
CNNs and LSTMs

Automatische Schätzung der
Körperpose mit CNNs und

LSTMs

Author : Huseyin Coskun

Advisor : Prof. Dr. Nassir Navab

Supervisors: M.Sc. Felix Achilles

Asst. Prof. Dr. Federico Tombari

Submission Date : August 15th, 2016

Computer Aided Medical Procedures & Augmented Reality

Department of Informatics

Technische Universität München
Germany

Declaration

The work in this thesis is based on research carried out at the Chair of Computer

Aided Medical Procedures & Augmented Reality, the Department of Informatics,

Technische Universität München. No part of this thesis has been submitted else-

where for any other degree or qualification and it is all my own work unless referenced

to the contrary in the text. Copyright © 2016 by HUSEYIN COSKUN.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Dedicated to
Eylul Gur

Abstract

Human pose estimation from images and videos has been a very important research

field in computer vision. In this thesis, we present an end-to-end approach to human

pose estimation task that based on a deep hybrid architecture that combines con-

volutional neural network (CNNs) and recurrent neural networks (RNNs). CNNs

used to map the input image to feature space (fixed dimensionality), and then deep

RNNs to decode the target sequence pose from the feature space. We experimented

different RNNs architectures and we found out that deep bidirectional LSTM out-

performed other architectures. Additionally, we tested different training strategies

and influence of temporal information. Our final model is trained to minimize the

average Euclidean distance between the ground-truth 3D joint coordinates and those

predicted by our method.

To validate our approaches, we experimented on several datasets. Our experi-

ments on Patient MoCap dataset outperformed algorithm, which is deemed state-

of-art. We also evaluated on Human3.6M dataset, we achieved 19 cm. These results

show the accuracy of the model and the integrity of the estimated pose that learned

from the training data. Our quantitative and qualitative observations verify that

our method makes significantly accurate. To the best of our knowledge, we are the

first to show that CNNs+RNNs models can make accurate 3D joint coordinates

estimation from depth images.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors M.Sc. Felix

Achilles and Asst. Prof. Dr. Federico Tombari for the continuous support of my

master thesis and related research, for their patience, motivation, and immense

knowledge. I could not have imagined having better supervisors and mentors for

my master thesis research.

Besides my supervisors, I would like to thank my tutor, Dr. Llus A. Belanche

from Universitat Politcnica de Catalunya for his insightful encouragement to do

research.

My sincere thanks also go to Prof. Dr. Nassir Navab, who provided me an oppor-

tunity to join his team, and who gave access to the laboratory and research facilities.

Without his precious support, it would not be possible to conduct this research.

I would also like to thank PhD students M.Sc. Leslie Casas and M.Sc. David Tan

from Technische Universität München for their support.

Last but not the least, I would like to thank my family: my parents, my sisters,

and my girlfriend for supporting me spiritually throughout writing this thesis and

my life in general.

vi

Contents

Declaration iii

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Related Work . 4

1.4 Overview of Thesis . 5

2 Methods 6

2.1 Basic Concepts of Neural Networks 6

2.1.1 Activation Functions . 6

2.1.2 Objective Functions . 9

2.1.3 Regularizations . 10

2.1.4 Optimization Strategies . 11

2.2 Convolutional Neural Networks . 12

2.2.1 Building Blocks of the CNN 13

2.2.2 Training CNN . 17

2.3 Recurrent Neural Networks . 18

2.3.1 Vanilla RNNs . 19

2.3.2 Long Short Term Memory (LSTM) 22

2.3.3 Gated Recurrent Units (GRU) 27

vii

Contents viii

3 CNN+RNN Architectures for Human Pose Estimation 29

3.1 Motivation . 29

3.2 CNN+RNN Architectures . 30

3.3 CNN+BiRNN Architectures . 32

3.3.1 Bidirectional RNNs . 32

3.4 Forward and Backward Pass . 34

3.5 Computational Complexity . 37

3.6 Output Layer . 37

3.7 Training Strategies . 38

3.7.1 Persistent and Non-persistent Training 40

3.7.2 Training with Sliding Window 40

4 Experiments 42

4.1 Implementation and Hardware . 42

4.2 Tuning of Hyperparameters . 42

4.3 Data Sets . 43

4.3.1 Patient MoCap Dataset . 43

4.3.2 Human3.6M Dataset . 47

5 Conclusions 53

5.1 Summary . 53

5.2 Future Work . 54

Bibliography 55

List of Figures

1 Single neural network node . 7

2 Activation functions . 7

3 LeNet . 13

4 Pooling . 15

5 AlexNet . 15

6 AlexNet learned filters . 16

7 Recurrent neural network . 20

8 Unrollded RNN . 21

9 Vanishing gradient . 23

10 Working memory model (WMM) . 23

11 LSTM cell . 24

12 Unrolled Deep LSTM . 26

13 Gated Recurrent Units (GRU) . 28

14 CNN+LSTM architecture . 31

15 Bidirectional RNN . 33

16 CNN+LSTM workflow . 38

17 Blanket occlusion . 45

18 Average per joint error on the on Patient MoCap dataset 47

19 Patient joint estimation . 48

20 Human3.6M dataset recording laboratory setup 49

21 Sample depth from Human3.6M . 49

22 Human3.6M dataset joint estimation 51

23 Human3.6M best model accuracy . 52

ix

List of Tables

4.1 Patient MoCap dataset results . 46

4.2 Patient MoCap dataset persistent state comparison 46

4.3 Patient MoCap dataset training strategy comparison 46

4.4 Human3.6M dataset results . 50

x

Chapter 1

Introduction

General environment reliable human pose estimation from images and videos has

always been a very important research field in computer vision. It has a wide range

of applications from gaming over human-computer interaction, to security, and even

health-care, therefore human pose estimation is one the most fascinating research

fields. Over the last couple of decades, computer vision has made significant progress

in pose estimation, which is fuelled by new optimization and feature engineering

strategies. In the early period of human pose estimation research, pictorial struc-

ture (PS) models [36,37] were the state of art. PS models estimate the human pose

by building the human body with collections of parts arranged in a deformable set-

ting. The launch of Microsoft’s Kinect depth sensor cameras in 2010 made dramatic

changes in this field. It opened a new door to human pose estimation researchers

by providing depth data. Plenty of recent academic works use depth data for pose

estimation. Girshick et al. [30] used depth information and made a big step towards

a reliable solution with a regression forest algorithm. Even though the depth stream

is quite useful for this task, there are still only a handful of large depth datasets,

therefore monocular approaches (from RGB to 3D or 2D) still dominate at the pose

estimation task.

Pose estimation is still a largely unfinished task. There are various problems

that are either not solved or partially solved. The most important problems are:

(a) clothing, subject size, and gender differences, (b) partial occlusions by body

parts or other objects in the scene (c) variability of human pose, (d) loss of depth

1

1.1. Motivation 2

information. Until now, there has not been a single approach that provides solutions

for a general environment human pose estimating task.

In this thesis, we thus address the problems (a,b,c,d) for general environment

pose estimation. Similar to [30], we used depth data in this research, however,

we took advantage of recent developments in deep learning. Hence, this thesis

proposes a novel method based on CNNs and recurrent neural networks (RNNs).

Our approach is different from state-of-the-art methods [33–35, 38] in many ways.

Even though were inspired by these approaches, our idea relies on a completely new

hybrid model(CNNs+RNNs).

To validate our approaches, we evaluated our models on two different datasets,

containing challenging poses from different subjects. We examined the influence

of different training strategies and temporal information. Furthermore, we show

the accurate and stable results on both datasets. Preliminary results on the Pa-

tient MoCap dataset [31] suggest applicability of our approach in heavily occluded

scenarios. The outcome of our approach is a compact CNNs+RNNs model that

reaches comparable performance on standard benchmark dataset [32] and the best

result on the Patient MoCap dataset, but does not employ a complicated network

architecture [33] nor pre-training on different task [34].

1.1 Motivation

Recently, CNNs have achieved great success in many computer vision applications,

and CNNs have been shown to be good at disentangling factors in data. They

are currently the most popular architectures for vision problems, since they learn

features automatically from datasets, which makes them appealing for a variety

of tasks. In addition, while the convolutional and max-pooling structure reduces

the number of parameters, it also enables the network to extract translation and

illumination invariant features.

We have seen similar success with RNNs. They have achieved unprecedented

performance in tasks on sequential data. RNNs have several properties that make

them an attractive choice for those tasks. They are able to incorporate contextual

1.2. Problem Statement 3

information from past frames (and future frames too, in the case of bidirectional

RNNs), which allows them to map a wide range of frames to a sequence of estimated

joints. Furthermore, they are robust to temporal ”noise”, i.e. disturbances of the

scene along the time axis. This allows them to handle heavily occluded scenarios.

Vanilla RNNs are bad at leveraging long term temporal dependencies. This is why

in our models, we choose Long Short-Term Memory (LSTM) RNNs, which are

designed to solve this problem. It is proven that LSTMs have the power to map

very long sequences between relevant input and target events for various real world

and synthetic tasks [15].

In this thesis, we combine the power of CNNs and RNNs to learn human pose

estimation. To the best of our knowledge, we are the first to show that CNN+RNN

models can be applied to 3D human pose estimation from depth images.

1.2 Problem Statement

Human pose estimation task can be defined as the problem of localizing human

joint coordinates in either 2D or 3D. This task includes subtasks as well, which are

detecting the subject(s) in the image, and the segmentation of human body parts.

Recent deep learning models can handle these tasks with a single procedure. We are

interested in finding a posterior distribution of the pose parameters that explains

the current pose, given previous and current frames.

Pose parameters in 3D:

yit ∈ R3, i = 1 : K K is the number of joints. (1.2.1)

Current depth frame:

xt ∈ RN×M Note that a depth frame has single channel. (1.2.2)

We are interested in finding posterior distribution that explains the current pose

parameters.

K∏
i=1

p(yit | x1:t) This formulation can change in case RNNs. (1.2.3)

1.3. Related Work 4

yt is an N -dimensional vector that hold each body part’s position, orientation

and scale. It represents an articulated 3D human body that is observed in the input

frame xt.

1.3 Related Work

There is plenty of research in human pose estimation. In the early stage of research,

most of the works used pictorial structures [39, 52]. These approaches aim at de-

tecting the subject and then determine its upper body pose. In these algorithms,

the human pose estimation task is modelled as a graph labelling problem. They suf-

fered problem complexity since inference on graph labelling problem was intractable:

with n labels and h relevant discrete locations for each part, its complexity is O(hn).

Felzenszwalb and Huttenlocher [39] bring the solution with assuming the model as

a tree and using distance transformation. As an outcome, a great amount of PS

based algorithms were developed [40–42] and proved to be a powerful solution for

2D pose estimation. Belagiannis et al. [44] proposed a PS based method for 3D

pose estimation using multiple views. Despite the polynomial complexity and great

successes, tree-structured models suffer from the problem of confusing left and right

joints, which often happens to limbs. This problem became more dramatic at 3D

joint coordinates pose estimation.

To overcome these problems of PS based models, there has been a lot of effort

that focused on making more powerful models, particularly by solving this left-right

confusion [45,46] by modelling the problem as a non-tree structure. These methods

achieved better results by using Branch and Bound (BB) [47] to search for the

globally optimal solution. Despite their success, they only brought an approximate

solution to the problem. Moreover, such approaches were based on hand-crafted

features (e.g., HOG and SIFT), and they were hence limited by the representation

ability of these features.

Recently, CNNs have made great success in computer vision tasks, hence many

researchers applied CNNs to the human pose estimation task. Toshev et al. [38]

used CNNs to estimate the direct human joint coordinates. Ouyang et al. [48]

1.4. Overview of Thesis 5

have proposed a multi-source (visual appearance score, deformation and appearance

mixture type) deep model for pose estimation. However, these approaches suffered

from inaccuracy especially for the limbs. Tompson et al. [49] overcame this problem

by using translation invariant CNNs. Tekin et al. [37] used structured prediction

models that combine auto-encoders and CNNs yielding state-of-art results on the

Human3.6M dataset [32]. The closest work to ours uses CNNs together with RNNs

to regress joint coordinates [50]. However, this work does not employ bidirectional

RNNs, infers 2D pose only, and uses traditional RGB frames. Furthermore, the

authors formulate the 2D pose estimation as a classification task, which only allows

a coarse estimation of each joint position on a predefined grid. By contrast, here we

exploit bidirectional RNNs to learn the temporal patterns from depth data for real

valued regression task.

1.4 Overview of Thesis

In the rest of this thesis, we present the details of our approach to human pose

estimation. Chapter 2 reviews basic concepts used in neural networks, focused on

their use in our models. It also provides a formal CNNs and RNNs definition, and

presents equations for the CNN and RNN error gradients. Chapter 3 describes the

CNN+RNN architectures, and intuition behind the hybrid models. It also presents

learning strategies and computational complexity for these models. Chapter 4

gives the implementation details and hardware. Moreover, it presents the publicly

available datasets, namely Patient MoCap and Human3.6M. It also shows our results

on these datasets and discusses them. Chapter 5 provides a conclusion and presents

possible future directions.

Chapter 2

Methods

In this chapter, we will explain the methods used in our model. Section 1 focuses

on basic concepts of neural networks, section 2 explains CNNs, and finally section

3 describes RNNs.

2.1 Basic Concepts of Neural Networks

In this part, we will explain basic concepts of neural networks, namely, activation

functions, objective functions, regularizations, and optimization strategies. We will

focus on the concepts which are used in our model. The aim of this section is to give

the reader a sufficient understanding of the matter, so that the Methods chapter is

relatively self-contained. For a more complete introduction, the works by LeCun et

al. [6] and Bengio et al. [12] are recommended.

2.1.1 Activation Functions

In neural networks, the activation function refers to a nonlinear function that con-

verts the input value to the node's output value (see figure 1). During training we

need to compute the gradient of output w.r.t weights and input. Because, gradi-

ent of the function becomes important. For this reason, the logistic type functions

are the most used functions as an activation function, since it is easy to calculate

its gradient. However, theoretically any differentiable function can be used. Most

commonly used functions are: sigmoid, tanh, and rectified linear units [1]. We will

6

2.1. Basic Concepts of Neural Networks 7

Figure 1: Figure illustrates the single neural network node. While x represents the

input, wi represents the weights. Output (y) is activation function applied dot

product of x and w. Biases are omitted for simplicity.

Figure 2: Left: Sigmoid squashes input to range between [0,1], Middle: ReLu

function, which is zero when x <0 and then linear with slope 1 when x >0. Right:

The tanh squashes input to range between [-1,1].

briefly explain these functions here.

Sigmoid

Sigmoid function mathematical form:

sigmoid(x) = 1/(1− ex) (2.1.1)

Properties of sigmoid function:

• High negative values converge 0 and high positive values converge 1.

• Sigmoid is a strictly increasing function between 0 and 1.

+ Sigmoid function squashes the input into range between 0 and 1.

+ It exhibits a balance between nonlinear and linear behavior.

− The popularity of sigmoid function decreased with development of deep mod-

els, since it saturates and kills gradients. When neurons output converges

2.1. Basic Concepts of Neural Networks 8

either 0 or 1, the local gradient at these regions become almost zero and this

will prevent the higher level layers training, hence local gradient is very crucial

for back propagation.

− Neurons at the higher layers of the neural network will receive the data that

is not zero-centered, since sigmoid function output is not zero-centered which

is very harmful for the performance of network. These neurons will get the

data that always positive, then the gradient on that neurons will be either all

positive or all negative at backward pass which can cause jittering for updates

of weights during training with small batch sizes.

Tangent hyperbolic

The mathematical formulation of a tangent hyperbolic activation function is:

tanh(x) = sin(x)/cos(x) = (ex − e−x)/(ex + e−x) (2.1.2)

Properties of tanh function:

• Tanh function squashes input to between -1 and 1.

• Tanh function is a strictly increasing function between 0 and 1.

+ Tanh function out is zero-centered, because of this, tanh performs better than

sigmoid in practice.

− Similar to the sigmoid functions, it also has the output saturation problem.

ReLu

The mathematical formulation of a rectifier linear unit activation function is:

ReLu(x) = max(0, x) (2.1.3)

Properties of tanh function:

• ReLu function output can range [0,∞).

+ Not facing gradient vanishing problem is the main reason of ReLus popularity

increase together with the rise of deep networks.

2.1. Basic Concepts of Neural Networks 9

+ It can greatly accelerate the convergence of stochastic gradient descent com-

pared to the sigmoid/tanh functions.

+ ReLu can be computed efficiently. Because, unlike sigmoid and tanh functions,

ReLu does not require any exponential computation.

− ReLu can produce the same output, and when turns out to be in this state, it

is unlikely rescued from this state.

2.1.2 Objective Functions

Human pose estimation is a task of estimating joint locations. For this task, it is

common to compute the loss between the predicted joint locations and the ground

truth and then measure the L2 norm or L1 norm of the difference. During training,

we need to compute the gradient of objective function w.r.t the network parameters.

There are many different objective functions in literature, but in this thesis, we will

be using the L2 and L1 objective functions.

L2 loss

L2 loss can be formulated with this form:

L2loss =
n∑

i=0

(yi − h(xi))
2 (2.1.4)

∇L2loss = 2 ∗
n∑

i=0

(yi − h(xi))∇h(xi) (2.1.5)

While x represents the input, y represents the output of the network which is rep-

resented with h. L2 loss sums the squared difference between target value and

prediction for all outputs. As it can be seen from the equation 2.1.5, L2 loss has

a simple gradient. Because of this, it is widely used. Unlike L1 loss, L2 loss has a

single solution, since taking square does not change the optimal parameters.

L1 loss

We can formulate L1 loss with that form

L1loss =
n∑

i=0

(|yi − h(xi)|) (2.1.6)

2.1. Basic Concepts of Neural Networks 10

∇L1loss =
n∑

i=0

(
yi − h(xi)

|yi − h(xi)|
)∇h(xi) (2.1.7)

Here we sum the absolute value of the difference between target value and our

prediction. As can be seen from equation 2.1.4, the L2 error will be much larger

for outliers compared to L1, as the difference between a wrong prediction and an

original target value will already be quite big and squaring it will make it even

bigger. As a result, L1 loss is more robust to outliers.

2.1.3 Regularizations

Regularization plays an important role to increase test time accuracy. Most of

the time, the models are designed very complex and nonlinear, therefore we need to

decrease the capacity of the model so that while it can learn patterns in the data, we

can prevent the model from overfitting on training data. There are many different

ways of doing regularization, but in our model we used 3 types of regularization

strategies, namely L2 and L1 parameter regularizations and dropout.

L2 parameter regularization

L2 parameter regularization is a very simple form of regularization.

L2reg =
n∑

i=0

w2 (2.1.8)

regularizedL2loss =
n∑

i=0

(yi − h(xi))
2 +

n∑
i=0

w2 (2.1.9)

L2 regularization is adding equation 2.1.8 to the objective function, for instance

equation 2.1.9 shows the regularized L2 loss. Adding this term enforces the param-

eters to be close to the origin. Another consequence of L2 regularization is that the

model perceives the input as having a higher variance, hence the model parameters

will shrink on features whose covariance with the output target is lower compared

to this added variance.

2.1. Basic Concepts of Neural Networks 11

L1 parameter regularization

Formally, L1 regularization is defined as:

L1reg =
n∑

i=0

|w| (2.1.10)

L1 regularization is adding equation 2.1.10 to the objective function. L1 regular-

ization enforces the model to be sparse which is very important for network per-

formance, by means of its role for simplifying the problem via feature selection

mechanism.

Dropout

Dropout [3] is another way of doing regularization. Dropout is different than L2

and L1. In the case of L2 and L1, we modify the objective function, but here we

modify the model and train the modified network over different batches. The idea of

training different models on different data comes from bagging, which means training

multiple models, and evaluating multiple models on each test example. This is

impractical when each model is a large neural network, since training and evaluating

such networks is costly in terms of runtime and memory. Dropout provides us with

a way to do an inexpensive approximation to training and evaluating a bagged

ensemble of exponentially many neural networks.

Let l represents the layer index of the network. yl is the l-th layer input and p is

the probability. We can define dropout such a way:

rlj ∼ Bernoulli(p)

ŷl = rl ∗ yl

2.1.4 Optimization Strategies

Optimization is the main task in dealing with machine learning problems, hence a

good optimization strategy yields better results. While working on the human pose

estimation problem, even though we tried different types optimization methods,

2.2. Convolutional Neural Networks 12

because of space constraints I’ll mention ADAM [4] that we used in our final model

and stochastic gradient descent which is the basis of ADAM.

Stochastic gradient descent (SGD)

Stochastic gradient descent is a gradient based learning algorithm. SGD is very

commonly used an algorithm in machine learning. With SGD, we can obtain an un-

biased estimate of the gradient by taking the average gradient on a mini-batch of m

examples which is independent and identically distributed with the data generating

distribution (See algorithm 2 for more details).

Adaptive moment estimation (ADAM)

Adaptive moment estimation (ADAM) [4] is a gradient based learning method that

computes adaptive learning rates for each parameter. During learning, exponentially

decaying average of past gradients and its square are stored. This helps to better

converge to the minimum point. Even though we explain the ADAM algorithm

more detailed at section 3.7, the ADAM update rule is shown below:

mt+1 = γ1mt + (1− γ1)∇L(Wt) (2.1.11)

gt+1 = γ2gt + (1− γ2)∇L(Wt)
2 (2.1.12)

m̂t+1 =
mt+1

1− γt+1
1

(2.1.13)

ĝt+1 =
gt+1

1− γt+1
2

(2.1.14)

wt+1 = wt −
ηm̂t+1√
ĝt+1 + ε

(2.1.15)

+γ1, γ2, and η are hyperparameters that can be changed for different models.

We initialize m0 = 0 and m1 = 0.

2.2 Convolutional Neural Networks

CNNs were first introduced by LeCun et al. in [6]. We can consider CNNs as

biologically-inspired versions of multilayer perceptrons (MLPs) for vision tasks. Re-

searchers revealed that the visual cortex contains a complex arrangement of receptive

2.2. Convolutional Neural Networks 13

Figure 3: Convolutional Neural Networks (CNNs). The LeNet has a convolution

layer followed by a pooling layer, and then another convolution followed by a pooling

layer. After that, two densely connected layers are added. Taken from [5]

neurons and each of those neurons are sensitive to a specific part of the visual field

which is called receptive field. Those neurons act like local filters over the input

space and are well-suited to exploit the strong spatially local correlation that exists

in the information coming from eyes. There are two distinct cell types. These are

simple neurons that focus on edge-like patterns within their receptive area and com-

plex neurons that focus on patterns that are locally invariant to the exact position

of the information.

2.2.1 Building Blocks of the CNN

Even though there are many different architectures for CNNs in the literature, the

majority of them can be built by stacking three main type of layers in different com-

binations. Namely, the convolutional layer, the pooling layer and the fully connected

layer. In this section, we will explain those layers.

Convolutional layer

The convolutional layer aims to learn a feature representations of the inputs. As

shown in Figure 3, a convolutional layer is composed of several feature maps. All

neurons in the feature map are connected to the neurons in the previous layer. Such

a connection is referred to as the neurons receptive field in the previous layer. A

forward pass through a convolutional layer means to compute feature maps from

2.2. Convolutional Neural Networks 14

the input. This process can be done in such a way: Initially, we convolve input

feature maps with learned filters and then we apply the activation function to these

outputs. Usually, filters are spatially small, but they have the same depth as the

input. Such a filter on a first layer of a CNN may have size 9× 9× 1 (i.e. 9 pixels

width and height, and 1, because depth images have one channel) for depth images.

We compute the feature maps by sliding the filters over input data (or map). This

process will produce an activation map that gives the responses of those filters at

any spatial position. Ideally, the network will learn filters that fire when they see

specific visual patterns such as a blotch of some color on the first layer or an edge of

some orientation, or wheel similar shapes on last layers of the network. A converged

network will have a set of filters in each layer (e.g. 128 filters), and every filter will

produce an activation map.

Pooling layer

Pooling is an important concept of CNNs. As it can be seen from figure 3, it lowers

the computational burden by reducing the number of connections between convolu-

tional layers. The pooling layer aims to achieve spatial invariance by reducing the

resolution of the feature maps. It is usually placed between two convolutional layers.

Each feature map of the pooling layer is connected to its corresponding feature map

of the preceding convolutional layer. Thus, they have the same number of feature

maps. The typical pooling operations are average pooling and max pooling. Max

pooling is the most commonly used type of pooling. It controls the image weather

given feature exist or not. If exist, it then returns the precise position. The intu-

ition is that when a feature has been detected, its exact location isn’t as critical as,

since its approximate position relative to other features. Since there are many fewer

pooled features, required number of parameters will decrease in the lower layers.

Fully connected layer

Fully connected layers are responsible for high level reasoning in the neural net-

works.Fully connected layers are usually last layer of the neural networks. A fully

2.2. Convolutional Neural Networks 15

Figure 4: Pooling operation down samples the volume spatially, independently in

each depth slice of the input volume. Left: Max poling applied to the input volume

of size [4 × 4] with filter size 2, stride 2 and output volume of size [2 × 2]. Right:

Average pooling applied to the input volume of size [4× 4] with filter size 2, stride

2 and output volume of size [2× 2]. Best viewed in color.

Figure 5: AlexNet is a revolutionary model for image classification and it is consid-

ered first successful deep CNNs. AlexNet that trained on ImageNet dataset achieved

the best results. It dropped the state-of-the-art error percentage from 47.1% to

37.5% (for top-1 classification). Taken from [2]

connected layer takes all nodes in the previous layer (can be pooling or convolu-

tional) and connects it to every single neuron it has. After fully connected layers,

network looses the spatial information in the data(you can visualize them as one

dimensional), hence there can not be the convolutional layers after a fully connected

layer. Output of the last fully-connected layer will be fed to loss layer. For classi-

fication tasks, softmax is commonly used as it generates a well-formed probability

distribution of the outputs, but for regression tasks, regression layer is used.

2.2. Convolutional Neural Networks 16

Figure 6: Figure illustrates the AlexNet filters at the first layer. There are 96

filters with 11× 11× 3 size. They are learned at the first convolutional layer on the

224×224×3 input images with using two different GPUs. From figure it can be seen

that there are many different kernels which focus on frequency, edges of different

orientations, phase, and colors. First 48 filters learned on GPU 1 and the last 48

filters learned on GPU 2. Filters that learned on GPU 1 are largely color-agnostic

and others are largely color-specific. Best viewed in color. Taken from [25]

2.2. Convolutional Neural Networks 17

2.2.2 Training CNN

Training the CNNs is quite similar to the ordinary neural networks. We train the

CNNs with forward passing the input and then backward passing the gradient.

Forward propagation

During training CNNs, we should pass input data in the forward direction. Let us

assume that we have input size N ×N . Our CNN has an m×m filter with depth

d, convolutional layer output will be of size [(N − m + 1), (N − m + 1), d]. Unit

input pre-nonlinearity computed, after all the contributions that weighted by the

filter components aggregated.

Applying convolution operation:

X l
ij =

m∑
a=0

m∑
b=0

Wabγ
l−1
(i+a)(j+b) (2.2.16)

After we perform the convolution operation, we can apply the activation function:

γl(i)(j) = f(X l
ij) (2.2.17)

Most times, convolution layer is followed by pooling layer. In case of max pooling,

our output dimensionality will be like that: [(N −m+ 1)/2, (N −m+ 1)/2, d]. Max

pooling does not change the depth of an input. Each 2× 2 block is reduced to just

a single value via the max function (see figure 4).

Backward propagation

We will use backpropagation algorithm for backward pass. Backpropagation [6] is

simply a layer-wise application of chain rule for partial gradients. The backprop-

agation algorithm tries to find the best parameters, which yields minimum error,

using the method of gradient descent. The combination of parameters, which gives

the minimum error, is accepted as solution of the learning problem. We must use a

continuous and differentiable the error function for gradient descent method. First

step of the backpropagation is calculating the gradient of the objective function with

respect to the output layer parameters. Let us assume that we have an error func-

tion, and we know the error values at our convolutional layer. What, then, are the

2.3. Recurrent Neural Networks 18

error values at the previous layer of it, and what is the gradient for each parameter

in that layer?

Let δl+1 be the error term for the (l+1)-st layer in the network with an objective

function J .

δlk = upsample((W l
k)T δl+1

k).f ′(zlk) (2.2.18)

Where k is the index for the filters and f ′(zlk) is the gradient of the activation

function. The upsample operation has to send error back through the layers by

computing the error with respect to each item incoming to that layer. For instance,

in the case of the max pooling the weights, which were selected as the max receives

all the error because any changes in input would change the output only from that

unit. For the mean pooling then upsample equally distributes the error for a that

pooling unit to the units which feed into it in the previous layer.

Finally, we compute the gradient w.r.t to the filter maps by flipping the error

matrix δlk similar to the filters in the convolutional layer. Let assume that ail is the

i th input for l th layer.

∆W l
k
J =

m∑
i=0

ali ∗ δl+1
k (2.2.19)

∆blk
J =

m∑
a,b=0

(ali)a,b (2.2.20)

After we compute the gradient for each weight, we can update weights with

equation 2.2.19 and 2.2.20. We used ADAM [4] optimisation strategy for updating

weights. Details of this method can be seen in section 2.1.4

2.3 Recurrent Neural Networks

In computational neuroscience, there are different methods, which attempt to imi-

tate human intelligence and connectionism is one of the most successful approaches.

Connectionism is modelling the cognitive processes using interconnected networks of

simplified neuronlike computational units, they used the recursively connected mod-

els. This idea has been applied to a diverse range of cognitive abilities, including

2.3. Recurrent Neural Networks 19

models of memory, attention, perception, action, language, concept formation, and

reasoning. After seeing the importance of memory, particularly in working memory,

many computational scientists tried to imitate it. First attempt to model memory

was made by Geoff Hinton and Jim Anderson in 1986. Hinton and Anderson used

parallel associative models to model memory, which presented an alternative compu-

tational framework for understanding cognitive processes [16]. In 1997, Hochreiter

& Schmidhuber proposed a different method by modeling the working memory with

a dynamic gating architecture [17], which adjusted the influence of the input on

the system. In 2001,Frank, Michael J., B. Loughry, and Randall proposed a more

biologically plausible model [18]. Their work relied on the selective gating architec-

ture, but they did not use back propagation for the learning procedure. In 2006,

Hazy, Thomas E., Michael J. Frank, and Randall C proposed a method in which

basal ganglia dynamically update the representations in the prefrontal cortex, this

method alike the Long ShortTerm Memory architecture [20]. In 2011, Oberauer,

Klaus, and Stephan Lewandowsky tried to model working memory with using time

based on resource sharing theory [19]. In other works [16–20] models were built on

the idea that dopamine act like a gating mechanism, which controls influence of the

other cortical input impact on frontal cortex. Even though methods [16,18–20] were

biologically more plausible, unfortunately they were not successful on benchmarks.

On the other hand, LSTM networks are state of art at many sequential tasks with

some variants.

2.3.1 Vanilla RNNs

Recurrent neural network is a network that has at least one feed back connection.

RNNs differ from feed forward neural networks (FFNs) with cyclic connections.

These cyclic connections enable the activations flow round in a loop, therefore net-

works can do temporal processing and learn sequences, e.g., perform sequence recog-

nition/reproduction or temporal association/prediction. This makes RNNs more

powerful than FFNs for sequential tasks. They have been successfully used for

sequence labeling and sequence prediction tasks, such as handwriting recognition,

language modeling, and phonetic labeling of acoustic frames. First RNN model pro-

2.3. Recurrent Neural Networks 20

Figure 7: A recurrent neural network with a single unit. W indicates the network

parameters. Best viewed in color.

posed in the 80s [7–9] were for modeling sequential data. In this part, we focus on

a vanilla RNN containing a single self connected hidden layer. Figure 7 illustrates

the single cell RNN.

As it can be seen from Figure 7, there are many differences between RNN and mul-

tilayer perceptron. The most striking difference is: An MLP can only use limited

number of input during prediction, whereas an RNN can in principle use the entire

history of previous inputs to each prediction.

Let inputs and outputs are vectors are xt and yt, the three connections weight ma-

trices are Wih, Whh, and Who and the hidden and output unit activation functions

are fh and fo. We can formulate RNN such a way that:

ath = Wihx
t +Whhh

t−1 (2.3.21)

ht = fh(ath) (2.3.22)

yt = fo(Whoh
t) (2.3.23)

2.3. Recurrent Neural Networks 21

Figure 8: Unrolled version of RNN. Each cell indicates one step in time. The wih,

whh, and who are representing the gates from the input to hidden and hidden to

hidden, and hidden to output respectively. Note, same weights are used for each

time step. Best viewed in color.

Forward pass

We can see from Figure 8, unrolled version of RNN is same as the MLP, since forward

pass of an RNN is quite similar to the multilayer perceptron. The only difference is

that activations arrive at the hidden layer from both the current external input and

the hidden layer activations from the previous time step.

Matrix form of the equation 2.3.21 will be like that:

ath =
I∑

i=1

Wihx
t
i +

H∑
h′=1

Wh′hh
t−1
h′ (2.3.24)

H denotes the number of units, while I is referring the number of input units.

Equation 2.3.22 will be same and we can write equation 2.3.23 similarly in matrix

form:

yt = fo(
H∑

h=1

Whoh
t
h) (2.3.25)

Equation 2.3.25 shows the output calculation of the network. After calculation

network output we must compute the error.

2.3. Recurrent Neural Networks 22

Backward pass

Let us assume that we have an objective function J which is continuous and differ-

entiable. We can not apply ordinary backpropagation algorithm to backward pass,

since network uses same weights again and again for recursive connections. There

are two different algorithms that we can use to train RNNs: real time recurrent

learning [10], and backpropagation through time (BPTT) [9, 11]. We used BPTT

algorithm to train RNNs.

BPTT algorithm is also recursive application of chain rule, similar to the backprop-

agation algorithm. The difference is that, for RNNs, the objective function depends

on the activation of the hidden layer for both through its influence on the next layer

and same hidden layer at the next time step.

δth = W ′(ath)(
K∑
k=0

δtkwhk +
H∑

h′=0

δt+1
h′ wh′h) (2.3.26)

Therefore, we can compute the δ for full sequence just repeatedly applying the

equation 2.3.26. Finally, since we used the same weights at each time step we

should sum all the sequence of δ.

Exploding and vanishing gradients problem

BPTT algorithm comes with the problems. We need to repeatedly apply equation

2.3.26 to compute gradient. This causes problems called exploding and vanishing

gradients. Exploding gradients problem introduced in [12], it refers to the exponen-

tial increase of the gradient during training. Vanishing gradients problem considered

to be opposite of the exploding gradients problem, which occurs when gradients go

to zero during training.

2.3.2 Long Short Term Memory (LSTM)

LSTM is a type of RNN architecture which was proposed as a solution for the van-

ishing and exploding gradient problems of RNNs. A vanilla LSTM network consists

of input units, output units, and a hidden unit which has a set of memory blocks,

each of which includes one or more memory cells. These blocks are connected to

2.3. Recurrent Neural Networks 23

Figure 9: Vanishing gradient problem. Sensitivity to the inputs illustrated with

different gray scales, darker shade means greater sensitivity. As it can be seen from

the figure, sensitivity decays with the time, when new inputs come to the activations

of the hidden layer, and the network forgets the earlier inputs. Taken from [15].

Figure 10: Working Memory Model (WMM) proposed by Baddeley In 2003 [21].

Central executive is assumed to be an attentional-controlling system, which is

important in skills such as chess playing. Phonological loop, stores and rehearses

speech based information and is necessary for the acquisition of language vocabulary.

Episodic buffer acts as a mental workspace for conscious awareness. Visuospatial

sketchpad manipulates the visual images. Taken from [53]

2.3. Recurrent Neural Networks 24

Figure 11: LSTM Memory block with one cell. There are three main gates which get

activation from inside and outside the block. These gates control the activation of the

cell via dot products. Forget gates control the previous cell state value while input

and output gates control the input and output of the cell. There is no activation

function within the cell. The line over the cell illustrates the peephole (weighted)

connections from the cell to the gates. Input, forget, and output gate activation

functions are usually sigmoid. The cell input activation functions are usually tanh.

Taken from [14].

each other recurrently. The basic unit in the hidden layer of an LSTM network is

the memory block, which contains one or more memory cells and a pair of adaptive,

multiplicative gating units. The input and output gates multiply the input and the

output of the cell while the forget gate multiplies the cells previous state. The gate

activation function is usually the logistic sigmoid, so that the gate activations are

between 0 and 1. No activation function is applied within the cell, and ’peephole’

connections from the cell to the gates. Forget gates [13] and peephole [14] connec-

tions are more recent contributions to the structure, and the initial form of LSTM

only contains input and output gates. The purpose of the forget gates is resetting

memory cells. Peephole connections are introduced to increase LSTM accuracy for

tasks that require the accurate measurements.

2.3. Recurrent Neural Networks 25

Biological motivation of LSTM

Gating mechanism in the brain is managed by basal ganglia as Cohen and his team

research revealed how gating mechanism works in [22]. As they stated basal ganglia

does this while mediating dopamine release. Basal ganglia can be considered as

a dynamic gating mechanism at LSTM networks. Another similarity with gating

mechanism is that LSTM does not instantly forget information, but the information

is forgotten within time. This is quite similar to working memory forgetting strat-

egy, since in human brain release of dopamine does not directly lead to forgetting.

Information is lost within time at prefrontal cortex (PFC). Another similarity is that

forgetting accomplished by a combination of effects on local inhibitory neurons, sim-

ilarly at LSTM forgetting occurs through close cells. We want to mention that idea

of learning to forget is similar at both structures, with LSTM locally learns when to

open or close, this is very similar to gating mechanism of basal ganglia where neu-

rons act locally. Another similarity is the connection structure, as growing evidence

suggests that the PFC is organized layer by layer and it has recursive connections.

This organization supports cognitive control and the rapid discovery of abstract

action rules. LSTM also has recursive connections and can be considered layered.

Lastly, we want to mention similarities between information encoding strategies.

As we know from the working memory model, information is encoded semantically,

similarly, LSTM network also learn internal structure of a dynamic input.

LSTM Cell

Figure 11 illustrates the single LSTM cell. We can formulate LSTM with composi-

tion of functions:

input gate

it = fi(Wxixt +Whiht−1 +Wcict−1 + bi) (2.3.27)

forget gate

ft = ff (Wxfxt +Whfht−1 +Wcfct−1 + bf) (2.3.28)

cell state

ct = ftct−1 + tanh(Whcxt +Whcht−1 + bc) (2.3.29)

2.3. Recurrent Neural Networks 26

Figure 12: Unrolled Deep LSTM Network for 5 time steps. Three layer LSTM

stacked each other, all the LSTM cells have same functions but different weights for

each layer.

output gate

ot = fi(Wxoxt +Whoht−1 +Wcoct + bo) (2.3.30)

cell output(prediction)

ht = ottanh(ct) (2.3.31)

Function: fi, ff , and ft are the sigmoid functions. Gates: i, f , o and c are

respectively the input gate, forget gate, output gate and cell activation vectors, all

of which are the same size as the hidden vector h. Elements in each gate vector

should take input from the same location of cell vector, this can be done by making

weight matrices diagonal for the cell gates.

Forget gates are crucial for learning. Original form of LSTM suffers from automat-

ically resetting itself to a neutral state once a new training sequence starts, even

though in theory network should use other cells to reset, but it is not the case.

Consequently, Gers(2000) proposed the reset cell. Another important property of

forget gates is their capability to adapt changes, as they reset memory blocks once

2.3. Recurrent Neural Networks 27

their contents are out of date and hence useless.

Stack of LSTM cell layers

Deep architectures play an important role in the success of recent models, it enables

higher level representations of sequential data. A deep LSTM architectures can be

designed by stacking multiple LSTM cell layers. As shown in figure 12, we feed

previous layer output sequence to next layer input. Model can use same functions

with in LSTM cell, but different weights. Similar to the LeNet model we can use

dropout between layers of LSTM.

2.3.3 Gated Recurrent Units (GRU)

RNNs can theoretically capture long-term relations within data, but they are very

hard to train to perform this task. GRU modelled to tackle this problem by having

more persistent memory by Cho et al. in [23]. Similar to the LSTM, the GRU also

control the information flow with gates, GRU does not use memory cell.

GRU cell

Figure 13 illustrates the single GRU cell. We can formulate GRU with a composition

of functions:

Memory transferring from previous state controlled by update gate. As it can be

seen from the equation 2.3.32, zt controls how much information will flow from h′t

to ht. For example, when zt = 1 , then ht−1 will be copied to ht. Conversely, when

zt = 0, ht will be initialized newly. Formula of update gate:

zt = fz(Wxzxt +Whzht−1 + bz) (2.3.32)

The rt represents the reset gate and it is responsible for measuring the importance

of the ht−1 for the summarization of h′t. The reset gate can completely erase the

previous hidden state, when ht−1is not relevant to the calculation memory. Formula

of the reset gate:

rt = fr(Wxrxt +Whrht−1br) (2.3.33)

2.3. Recurrent Neural Networks 28

The h′t represent the cell state and it is responsible for merging input data xt with

the previous cell state ht−1. Theoretically, this gate merges the input and cell state

with using past information from h’. Cell state formula:

h′t = tanh(rt �Whhht−1 +Wxh′xt + bh′) (2.3.34)

The ht represents the hidden state. This state is generated with using update gate,

cell state, and previous hidden state. Hidden state formula:

ht = (1− zt)� h′t + zt � ht−1 (2.3.35)

Figure 13: Gated Recurrent Units (GRU). r and z are the reset and the update

gates, and h and h’ are the activation and the candidate activation. It can be seen

the input and forget gates combined to update gate, and also the cell state and

hidden state combined to hidden state. Taken from [24]

Chapter 3

CNN+RNN Architectures for

Human Pose Estimation

The main aim of this chapter is to give information about the network architectures,

training strategies of models, and computational cost of algorithms. Section 3.1 gives

information about motivation of combined models, section 3.2 explains network

architectures and shows computational costs, and section 3.3 describes how they are

trained.

3.1 Motivation

In 2012, AlexNet [25] success on ImageNet competition made revolutionary changes

at computer vision research. The idea of learning a representation from very complex

data has its basis in CNNs. With the rise of computational power and GPU based

implementation of algorithms, the research on that direction accelerated. We can

see similar advances in RNNs, especially LSTM [13]. Recurrent models became

state-of-art at sequential tasks. Other advances on neural networks such as weight

initialisation strategies [27, 28] and new optimisation [4] algorithms helped these

models to get the better results. At our implementation, we try to use state-of-art

strategies in our networks. Combining CNN and RNN enables us to use the CNN’s

power to learn compact representations of image data and the RNN’s power to learn

temporal patterns for the human pose estimation task.

29

3.2. CNN+RNN Architectures 30

3.2 CNN+RNN Architectures

We found the model architectures layer count, activation function and some other

properties with doing grid search on a sub-sampled dataset.

CNN+LSTM

Figure 2 shows the CNN+LSTM architecture for predicting 42 real target data.

We found the architecture of the CNN by doing grid search on the task of direct

joint estimation. In a nutshell, CNN network consists of 3 convolutional layers,

while each convolutional layer is followed by a pooling layer. After these, 2 fully

connected layers used. An LSTM network is then attached as a single layer. Only

convolutional layers, fully connected layers, and LSTM network contain learnable

parameters, while the rest of them are parameter free. Both convolutional layers

and fully connected layers consist of a linear transformation followed by a rectified

linear unit. In the case of LSTM, we follow section 2.3.2 for implementation. For

CNN, we can show the size of the each layer with this notation: width × height ×

depth, where the first two values show the spatial dimensions while depth refers to

the channels count (or number of filters). Conv1(9×9×64)−Pool1(2×2)−Drop−

Conv2(3×3×128)−Pool2(2×2)−Conv3(3×3×128)−Pool3(2×2)−FC(1024).

The total number of the CNN parameters in the above model is about 8M. For

LSTM, we use 128 units. The number of parameters in the model roughly are 0.5M.

CNN+GRU

CNN+GRU model is quite similar to the model which was described in the section

above. We used the same CNN architecture with the section above mode, but in

this model instead of LSTM, we used GRU (See Section 2.3.3). CNN have about

8M parameters and GRU network have roughly 0.2M.

3.2. CNN+RNN Architectures 31

Figure 14: CNN+LSTM architecture illustration. We show the network layers with

their name abbreviation. Conv: Convolutional layer, Pool: Pooling layer, Drop:

Dropout operation, FC: Fully connected layer. Best viewed in color.

3.3. CNN+BiRNN Architectures 32

3.3 CNN+BiRNN Architectures

3.3.1 Bidirectional RNNs

Before describing bidirectional hybrid models, we will explain the bidirectional

RNNs. Bidirectional RNNs rely on a simple idea. It uses recurrent model in back-

ward and forward directions in time. First bidirectional RNNs were introduced

in [26]. In this work, LSTM architectures were used for predicting a subcellular

localization of eukaryotic proteins.

Bidirectional Vanilla RNN

This part provides the formulation for the bidirectional Vanilla RNN. As is clear

from figure 15, the model makes the prediction using bidirectional way. Forward and

backward prediction can be combined just simply by taking the average or in with

trainable parameters. There are different combining approaches in the literature.

We can formulate figure 15 in vector multiplication. Let us assume that we have T

time step, then forward calculation will be the forward layer from t = 1 to T and

backward from t = T to 1, and then we will average both prediction or we can use

other weights to merge these results.

Forward hidden state activation computation:

−→a t
h =
−→
W ihx

t +
−→
W hh

−→
h t−1 (3.3.1)

Backward hidden state activation computation:

←−a t
h =
←−
W ihx

t +
←−
W hh

←−
h t−1 (3.3.2)

Forward hidden state computation:

−→
h t = fh(−→a t

h) (3.3.3)

Backward hidden state computation:

←−
h t = fh(←−a t

h) (3.3.4)

3.3. CNN+BiRNN Architectures 33

Figure 15: Bidirectional RNN with a single cell. It can be seen that the prediction

is done using information from the past and future data. Best viewed in color.

3.4. Forward and Backward Pass 34

We can combine forward and backward predictions in many different ways, now

we are only taking average.

yt = (fo(
−→
W ho

−→
h t) + fo(

←−
W ho

←−
h t))/2 (3.3.5)

CNN+BiLSTM

CNN+BiLSTM model is same with CNN+LSTM except that we used bidirectional

LSTM, instead of ordinary LSTM. CNN parameters stay the same, but bidirectional

LSTM has two times more parameters than ordinary LSTM, meaning roughly 1M.

CNN+DeepBiLSTM

CNN+DeepBiLSTM model has the same CNN architecture as above and has three

bidirectional LSTM layers. After first bidirectional LSTM layer, we use a dropout

layer during training, which randomly drops features with a probability of 0.5.

3.4 Forward and Backward Pass

In this section, we will show the forward and backward pass equations for our

CNN+RNN model. For simplicity, we will show the CNN equations for only the l-th

layer, which consists of convolutional, max-pooling, and dropout layers. Since CNN

is stacked of these three main layers, it is straightforward to build more advanced

architectures similar to the one used in this thesis.

Let us assume that we have an input: X = {x(1)(1), ..., x(20)(1)}, which consists of

20 consecutive depth frame. Let xl−1(i)(j) represent the j-th channel of the i-th input

(i ∈ {1, ..., 20}) for l-th layer of the network. The l-th layer has a m×m sized filter

with depth d.

Forward pass

Applying convolution operation:

zl(i)(j) =
m−1∑
a=0

m−1∑
b=0

wabx
l−1
(i+a)(j+b) (3.4.6)

3.4. Forward and Backward Pass 35

Applying activation function:

al(i)(j) = f(zl(i)(j)) (3.4.7)

Applying max pooling to non-overlapping regions S:

ŝk = max
s∈S

(s)

S =
K⋃
k

sk = al(i)(j)

xlij =
K⋃
k

ŝk

(3.4.8)

Applying Dropout with probability p:

rlj ∼ Bernoulli(p)

x̂lij = rl ∗ xl(i)(j)
(3.4.9)

We repeat the 3.4.6, 3.4.7, and 3.4.8 equations as the number of layers.

After several convolutional and pooling layers, we apply the RNN. As can be seen

from equation 3.4.10, we need to initialise the hidden state b0. In this thesis, we

initialise b0 to zero. wih, whh, and who refer to the input to hidden state weights,

hidden state to hidden state weights, and hidden state to output weights respectively.

vli denotes the input vector for RNN, which is equal to flatten(xlij), where flatten()

denotes the function that reorders an N-D image to a row vector.

ath = wihv
t + whhb

t−1

bt = fh(ath)

ato = whob
t

yt = ato

(3.4.10)

Backward pass

Firstly, we need to compute L2 loss. ŷtd denotes the ground truth pose in D which

a vector with joints× 3 elements. Note that we omitted L2 and L1 regularizers for

simplicity.

Et =
D∑

d=0

(ŷtd − y
t
d)

2, ŷtd = netw(X) (3.4.11)

3.4. Forward and Backward Pass 36

Our backward pass will update the parameters (w) of the network with the opposite

direction of the gradient of the loss function w.r.t network parameters.

∂

∂w
E(w) =

∂

∂w
(ŷtd − y

t
d)

2

= 2(ŷtd − y
t
d)
∂

∂w
(ŷtd − y

t
d)

= 2(ŷtd − y
t
d)
∂

∂w
(netw(xt))

netw(xt) = ŷtd

(3.4.12)

Equation 3.4.12 shows the compact form of gradient computing for each parameter.

We will show the gradient computing for each unit of RNN with slightly different

notations. δt defined as the error at the time step t, t = [1,, T]:

δt = f ′h(ath)
(
δtwho + δt+1whh

)
(3.4.13)

Note that we set the δT+1 = 0, since we don’t have an error at the beginning of the

sequence.

Update rule for whh:

∂E(w)

∂whh

=
T∑
t=1

∂E(w)

∂ah

∂ah
∂whh

=
T∑
t=1

δtbth (3.4.14)

Update rule for wih:

∂E(w)

∂wih

=
T∑
t=1

∂E(w)

∂ah

∂ah
∂wih

=
T∑
t=1

δtxth (3.4.15)

Update rule for who:

∂E(w)

∂who

=
T∑
t=1

∂E(w)

∂ah

∂ah
∂who

= 2
T∑
t=1

(yt − ŷt)bth (3.4.16)

Note that we sum the gradient in 3.4.14, 3.4.15, and 3.4.16, since we use the same

weights at all the steps.

After recurrent network weights updates, we need to send gradient to the upper

layers. As we saw at equation 3.4.10, RNN get the input from CNN with whh, hence

gradient will flow from this unit. Let δtih be value of the error at the input to hidden

at time t. We must sum the gradient for all the sequence.

δih =
T∑
t=1

δtih (3.4.17)

3.5. Computational Complexity 37

Gradient pass from Dropout: We will apply the same mask that we used during

forward pass, to the error term.
⊙

denotes the element wise product.

δ̂ih
l
= rlj

⊙
δih (3.4.18)

Gradient pass from max-pooling: We will not update the weights respect to non

maximum values, because any change in these units will not affect the output.

δl−1 = i∗
⊙

δl (3.4.19)

where

i∗d =

1, if x[d] > x[:]

0, otherwise
(3.4.20)

Update rule for wl: al−2i denotes the input to (l − 2)-th layer of the network.

∂E(w)

∂wl−2 =
m∑
i=0

al−2i ∗ δl−1k (3.4.21)

Given these equations, the use of CNN+RNN for pose estimation is straightforward.

We just need to feed a frame to hybrid model and do forward and backward pass.

3.5 Computational Complexity

Computational complexity of models are for all models above. In case of, bidi-

rectional models computational complexity will change linearly by the number of

parameters, therefore still stays same.

3.6 Output Layer

We used L2 loss (See at 2.1.4) for the objective function and the linear activation

function at the last layer. The linear activation function gives the network flexibility

to produce every real number. We decided to use L2 loss since its advantages which

we mention in section 2.1.2, however, there are many error functions in literature

that can be used for this task.

3.7. Training Strategies 38

Figure 16: CNN+LSTM workflow visualisation. After LSTM, we compute the cost

and send back the gradient. Best viewed in color.

3.7 Training Strategies

Training the combined architectures is the hardest part of the task, since vanish-

ing gradient problem prevents the gradient flow from output layer to upper lay-

ers(especially CNN layers). We tested different training strategies to tackle this

problem. We observed that training combined models (CNNs + RNNs) with pre-

trained CNN yields better results than training from the zero. At joint training

similarly, we can use the backpropagation and BPTT algorithm as we describe in

section 2.2 and 2.3.2.

Gradient clipping

To tackle LSTM gradient exploding problem during training, we clip the gradient.

ADAM [4] algorithm with gradient clipping can be seen at algorithm 1.

Algorithm 2 shows our final training algorithm with modified ADAM updating

rule.

3.7. Training Strategies 39

Algorithm 1 ADAM with gradient clipping

Require: a : Stepsize

Require: β1, β2 ∈ [0, 1) Exponential decay rates for the moment estimates. Ideally,

we should set 0.1 and 0.001 respectively.

Require: J(w) : Objective function.

Require: w : Initialise parameters.

Require: lr : Learning rate.

Require: ε : Epsilon value to numerical consistency

Require: m0, v0 : Moment vectors. Initial values must be 0.

Require: t : Timestep. Initial value must be 0,

1: procedure GetUpdates(J, w, lr, β1, β2,m0, v0, t, ε)

2: t← t+ 1

3: gt ← ∇wftwt−1 . Gradient values of parameters.

4: if ‖gt‖ ≥ threshold then

5: gt ← threshold
(‖gt‖) gt . We shouldn’t update CNN parameters, since CNN

don’t have exploding gradient problem.

6: mt ← β1.mt−1 + (1− β1) ∗ gt
7: vt ← β2.vt−1 + (1− β2) ∗ gt
8: m̂t ← mt/(1− βt

1))

9: v̂t ← vt/(1− βt
2))

10: wt ← wt−1 − lr ∗ m̂t ÷
(√

v̂t + ε
)

11: return wt . Theano [25] can handle parameters updating.

3.7. Training Strategies 40

Algorithm 2 Gradient Descent

1: Initialize:

w0
CNN ← load,

Require: n inl, n outl : l-th layer weight matrix shape sizes

sl ←
√

2
n inl+n outl

w0
RNNl

← Gauss(sl) . Gaussian distribution with variance sl
Require: max epoch : Maximum number of epoch

Require: batchset : load data Batches. Preparing batches

2: max batch← size(batchset) . Number of batches

3: for epoch = 0 to max epoch do

4: for batch index = 0 to max batch do

5: batch← get batch(batch index)

6: ForwardPropagate

7: w ← GetUpdates . Details of method can be seen at Algorithm 1

3.7.1 Persistent and Non-persistent Training

We consider each human action as a sequence and one sequence can contains long or

short range regularities, such as walking, turning around, or drinking water which

can span many thousand frames. We tested different strategies to reset the network

internal state. We try to balance network ability to capture long range dependencies

and error propagation because of state caring during batches. Since we carry network

internal state, we did not shuffle the order of the sequences, as it is general practice

for neural networks.

3.7.2 Training with Sliding Window

Training data consists of batches and each batch consists of sequences, these se-

quences are can be loaded differently. For instance, let us assume that we have an

action which consists of 2000 frames. We can not feed LSTM with 2000 length se-

quence, since gradient vanishing and exploding problems. Because of this, we divide

each action to sequences with 20 frames and feed LSTM with these 20 frames length

sequences. In normal setting, we divide an action from starting zero and split it to

3.7. Training Strategies 41

20 frames parts and use data set for full training. For the sliding window training,

we split the an action with overlapping.

Chapter 4

Experiments

In this chapter we test our CNNs+RNNs architectures on human pose estimation

task. We used depth data, but model can be applied to the RGB data as well.

4.1 Implementation and Hardware

We implemented algorithm with theano [29], which is a Python library that enables

programmer to define, optimize, and efficiently compute mathematical expressions

including N×D matrices. Code and pre-trained models parameters will be available

at GitHub. Our the biggest model roughly has 11M parameters, hence it is very

hard to train on CPU based machines, therefore we used an ubuntu OS machine

that has 16 cores, 60gb RAM and NVIDIA Tesla K40 Graphic Card - 1 GPUs -

745 MHz Core - 12 GB GDDR5 SDRAM. Single frame pass took roughly 12ms at

testing phase. Regression forest algorithm implemented in C++ and we train this

algorithm on a machine that has 8 core and 60gb ram on Windows OS.

4.2 Tuning of Hyperparameters

Models have many hyper parameters, and these parameters optimized to minimize

our mean average joins error on a sub set that randomly sampled from the training

data. We used with grid and manual search to optimize parameters. Parameters

that optimized with grid search include learning rate(between 10−2 and 10−6) and

42

4.3. Data Sets 43

momentum coefficient(between 10−1 and 10−2). Parameters that optimized with

manual search include the dropout rate, number of CNN layer, number of features

at each CNN layers, number of hidden units at RNNs. Regression forest parameters

found by manual search, we selected values that close to the given values at original

paper [30].

4.3 Data Sets

We used two different datasets to test validity of our approaches, namely Patient

MoCap [32] and Human3.6m [32]. In this section, we will briefly explain these

datasets and show our results.

4.3.1 Patient MoCap Dataset

This dataset focused on patients in the hospital bed. It includes 10 subjects(5 fe-

male, 5 male), each subject performed 10 different actions and each action roughly

1 minute. Subjects are chosen from different body mass index, therefore dataset

contains plenty amount of shape variations. During recording, subjects wear daily

clothes. Actions are selected specifically, we consider actual sick person actions that

can happen in the hospital bed. Actions include getting out / in the bed, sleeping

on a horizontal / elevated bed, eating with / without clutter, using objects, reading,

clonic movement and a calibration sequence . Each action is a single video sequence

consisting of multiple depth frames. Depth frames recorded with Kinect V2 cam-

eras, since it has much more higher resolution capability, comparing to the Kinect

V1. Human joints locations are recorded with marker based motion capture sys-

tem which is consist of five calibrated motion capture cameras and fusing software.

We recorded 14 3D joint coordinates (head, neck, shoulders, elbows, wrists, hips,

knees and ankles), though system able to capture more. Frame and joint coor-

dinates acquisition times recorded, to maintain synchronization. Total number of

video frames for the entire dataset is roughly 180,000. During training, we fed the

model with the images which are cropped with a bounding box that around the bed

and resized to 120× 60. We rendered all images from same camera viewpoint which

4.3. Data Sets 44

is 2 meters away from the bed center with an angle of 70 degrees.

Blanket occlusion

Motion capture systems use marker based tracking to make accurate tracking, hence

it is impossible to capture human joint coordinates in case of occlusion. Therefore,

we simulated the blanket occlusion for the subjects that laying in the bed. This

enables us to train our models on frames that subject under occlusion.

Regression forest (RF)

We compare our models with the regression forest method that introduced by Gir-

shick et al. [30]. As described in [30], regression forests work as follows: At the

training phase, tree structure and a set of relative votes to each joint at each leaf are

estimated. While tree structure is estimated by using a standard greedy decision

tree training algorithm, leaf votes are estimated at four steps:

1 Compute each input pixel offset to all joints.

2 Descend computed joints until leafs at the tree.

3 Cluster offsets with mean shift and select K centroids.

4 Store selected centroids as votes.

At test time inference, the location of the body joints is inferred through a local

mode-finding approach based on mean shift.

Evaluation settings

We use 8 subjects (4 female and 4 male) for training, and 2 subjects (1 female and 1

male) for testing. Hyperparameters of the model found, as described in section 4.2.

We found out that for CNN best parameters are: learning rate= 3 ∗ 102, batch size:

= 50, for RNN learning rate =104, sequence length=20. We train the regression

forest with a sub-sampled dataset. We used 10.000 images per tree, we did not

observe noticeable improvement after training 5 trees with maximum depth of 15.

Training regression forest took roughly 2 days. Table 4.1 shows the average joint

4.3. Data Sets 45

Figure 17: Blanket occluded example frames. We can see that library formed re-

alistic bending and folding of the simulated blanket. Best viewed in color. Taken

from [31]

error in CM. We observe that we get the best accuracy with CNN + DeepBiLSTM

architecture, while the RF get the worst error. We also compare different training

strategies for our best model. Table 4.2 shows the comparison for persistent and non

persistent training. As it can be seen, persistent state training improves results. We

also compare CNN+RNN joint training with other strategies. Table 4.3 shows the

different training strategies and their influence on the results. These results show

us that, model perform better with joint training from pre-trained CNN.

Results

Table 4.1 shows that CNN + DeepBiLSTM got the highest accuracy. It also shows

that deep models (CNN + DeepBiLSTM and CNN + DeepLSTM), outperformed

single layer models with the same CNN architecture, similarly we can see the im-

provement of bidirectional models. Overall, it can be seen that the test error decrease

with deeper architecture and bidirectional models.

As is presented in the table 4.2, training the recurrent model with persistent state

improves the results. This implies that our model manages to learn long term de-

pendencies from the data.

4.3. Data Sets 46

Patient MoCap dataset comparisons

Model Name Test accuracy

RF 28.0

CNN 12.6

CNN + LSTM 11.36

CNN + GRU 11.46

CNN + BiLSTM 11.12

CNN + DeepLSTM 10.08

CNN + DeepBiLSTM 10.01

Table 4.1: Average Euclidean distance in cm between the ground-truth 3D joint

locations and those predicted using RF, CNN(no RNN at all), or CNN + RNNs

models. CNN + DeepBiLSTM approach yields the most accurate predictions

Patient MoCap dataset comparisons for CNN + DeepBiLSTM

Training Strategy Test Accuracy

Non Persistent State 10.06

Persistent State 10.01

Table 4.2: CNN + DeepBiLSTM persistent state yields the most accurate results.

Patient MoCap dataset comparisons for CNN + DeepBiLSTM

Training Strategy Test accuracy

Joint training from scratch 16.2

Separate training 12.18

Training CNN and LSTM jointly from pretrained CNN 10.01

Table 4.3: Jointly training CNN + DeepBiLSTM yields the most accurate results.

Table 4.3 gives information about the influence of joint training. As is observed,

joint training from scratch performs the worst, while joint training from pre-trained

CNN performing the best. This indicates us, we couldn’t train the CNN to learn

the features during join training from scratch. One reason can be that we still have

4.3. Data Sets 47

gradient vanishing problem.

The bar chart (see figure 18) illustrates the average per joint error for CNN, CNN+RNN,

and RF. We can see that RF fall behind CNN and CNN+RNN model for estima-

tion of limps joint coordinates, on the other hand, CNN+RNN got the best results.

Models considerably perform better estimation for the right part of the body than

left part of body joints.

Figure 18: Average per joint error on the on Patient MoCap dataset. Taken from [31]

4.3.2 Human3.6M Dataset

Human3.6M dataset consists of 3.6 million different human poses collected with

4 digital cameras. 11 professional subjects (5 female and 6 male) were selected.

Subjects wore daily clothes during performing actions. Subjects body mass index

varies from 17 to 29, hence it provides great amount of body shape variability. Sub-

jects were performed 15 actions which are Directions, Discussion, Eating, Activities

while seated, Greeting, Taking photo, Posing, Making purchases, Smoking, Waiting,

Walking, Sitting on chair, Talking on the phone, Walking dog, Walking together .

Since subjects were professional, actions were realistic. Depth sequences were ac-

quired with MESA Imaging SR4000 from SwissRanger camera at 25Hz frame(640480

resolution) rate. Pose data acquired with 10 motion capture cameras. 32 joint co-

ordinates are recorded and we use only 17 joints location.

4.3. Data Sets 48

Figure 19: Examples of pose estimation on Patient MoCap dataset. The joints for

ground truth are represented by blue lines, while the estimations are represented by

yellow lines. Best viewed in color.

Evaluation settings

We used the same partition protocol that used in earlier works [33–35] for training

and test splits. The data from 2 subjects (S9, S11) was used for testing and the

other 5 subjects (S1, S5, S6, S7, S8) was used for training. We compute the 3D

human pose estimation error in terms of average Euclidean distance between the

predicted and ground-truth 3D joint positions as at Eqn. 4.3.1. We used only depth

frames, however, the earlier works used [33–35].

Mean per joint position error. N denotes the number of joints in the skeleton

4.3. Data Sets 49

Figure 20: Human3.6M dataset recording laboratory is around 6m×5m, and about

4m× 3m part of the laboratory can be seen in all cameras, therefore subjects per-

formed actions in this part of the laboratory. While 10 motion capture cameras are

tracking markers, a time-of-flight sensor (TOF) recorded depth data. Best viewed

in color. Taken from [32]

Figure 21: A sample frame from depth recordings. Best viewed in color.

(N=17).

Error =
1

N

N∑
i=1

‖f(x)i − yi‖2 (4.3.1)

Results

Table 4.4 shows that our model fall behind the other models, however, we should

consider that we used only depth frames which are roughly 250K, while the other

4.3. Data Sets 50

model used RGB frames which are 3.6M. If we compare only our models, namely

CNN and CNN + DeepBiLSTM, we can see that RNN considerably drops the error

for repetitive tasks such as walking, eating etc.

Human3.6M results

Action Walking Discussion Eating Taking Photo Walking Dog Greeting All

StructNet-Max [33] 69.97 136.88 96.94 168.68 132.17 124.74 122.9

Auto-Encoder CNN [34] 65.75 129.06 91.43 162.17 130.53 121.68 116.8

Deep CNN [35] 77.60 148.79 104.01 189.08 146.59 127.17 132.2

CNN (Ours) 120.2 166.12 145.22 193.7 166.34 167.27 213.9

CNN + DeepBiLSTM (Ours) 100.8 158.23 138.13 188.01 148.54 158.63 190.5

Table 4.4: Average Euclidean distance in mm between the ground-truth 3D joint

locations and those predicted by competing methods [33–35](Note that RGB frames

are used) and ours(Note that depth frames are used).

4.3. Data Sets 51

Figure 22: Examples of pose estimation on Human3.6m dataset from depth stream.

Estimated joints on the left-side are represented by green lines, estimated joints on

the right-side represented by red, and other estimated joints are represented by blue

lines. Gray lines represent the ground truth. Best viewed in color.

4.3. Data Sets 52

Figure 23: Figure illustrates the CNN + DeepBiLSTM model accuracy change in

terms of error threshold (mm). We can see that model hardly gives error more that

300 (mm). This shows us that model capture the human skeleton structure, hence

there is integrity at skeleton.

Chapter 5

Conclusions

5.1 Summary

The aim of this thesis is to bring new approaches to 3D human pose estimation from

depth stream. In this direction, we proposed a novel CNNs+RNNs architecture and

evaluated our approaches by using different datasets. The depth frame datasets

are composed of Human3.6M and Patient MoCap databases. This research was

inspired by the problems and limitations of the current models, such as failing to

predict under occlusion and not considering temporal information. An ideal human

pose estimation method need to satisfy the following criteria:

1 It should be robust to occlusion.

2 It should make a reliable estimation in general environment.

3 It should make the estimation while considering human skeleton integrity.

In this thesis we focus on providing solutions for to the first and second prob-

lems. The main novelty of the CNNs+RNNs models reside in consolidating the pose

estimation alongside bidirectional temporal information. Although it might seems

hard to train such a model, using best practices such as ADAM, gradient clipping,

and pre-training to train the joint model results in a model that robust to occlusion

and environmental changes. In our mode, while CNNs help us to deal with environ-

mental changes, RNNs achieve pose estimation under occlusion with using temporal

information. Furthermore, the combination of CNNs with RNNs resulted in a more

53

5.2. Future Work 54

realistic estimation, but still this is an open problem. Additionally, the method is

able to estimate pose in a great diversity. The lastly and most importantly, we

demonstrated that a simple, straightforward and a relatively easy to train method

can outperform a mature RF [30] algorithm, so further work will likely lead to even

better results. These results suggest that our model will likely perform well on other

challenging human pose datasets.

5.2 Future Work

Even though we considered various approaches to human pose estimation, there are

many problems to be solved. A major limitation of CNN+RNN model is not con-

sidering structural information of the pose. In future work, we plan to incorporate

structured prediction to improve the structure preservation and accuracy of the es-

timated pose. Tompson et al. [49] used CNN+MRF approach to learn structural

domain dynamics such as geometric relationships between body joint coordinates.

Similar approach can be applied to our model as well. Alex et al. [49] showed that

RNNs can perform better at real-valued data through the use of a mixture density

output layer, since our prediction also real valued data this approach can improve

our results. Finally, we would like to explore the unsupervised training of RNNs.

One straightforward strategy would be to use RNNs to estimate future pose for

videos.

Bibliography

[1] Nair, Vinod, and Geoffrey E. Hinton. ”Rectified linear units improve restricted

boltzmann machines.”, Proceedings of the 27th International Conference on

Machine Learning (ICML-10). 2010.

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet classifica-

tion with deep convolutional neural networks.” Advances in neural information

processing systems. 2012.

[3] Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks

from overfitting.” Journal of Machine Learning Research 15.1 (2014): 1929-

1958.

[4] Kingma, Diederik, and Jimmy Ba. ”Adam: A method for stochastic optimiza-

tion.” arXiv preprint arXiv:1412.6980 (2014).

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning

applied to document recognition, Proceedings of the IEEE , vol. 86, no. 11,

pp. 22782324, 1998.

[6] LeCun, Yann, et al. ”Backpropagation applied to handwritten zip code recog-

nition.” Neural computation 1.4 (1989): 541-551.

[7] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning

internal representations by error propagation. No. ICS-8506. CALIFORNIA

UNIV SAN DIEGO LA JOLLA INST FOR COGNITIVE SCIENCE, 1985.

[8] Elman, Jeffrey L. ”Finding structure in time.” Cognitive science 14.2 (1990):

179-211.

55

Bibliography 56

[9] Werbos, Paul J. ”Generalization of backpropagation with application to a

recurrent gas market model.” Neural Networks 1.4 (1988): 339-356.

[10] Robinson, A. J., and Frank Fallside. The utility driven dynamic error propa-

gation network. University of Cambridge Department of Engineering, 1987.

[11] Williams, Ronald J., and David Zipser. ”Gradient-based learning algo-

rithms for recurrent networks and their computational complexity.” Back-

propagation: Theory, architectures and applications (1995): 433-486.

[12] Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. ”Learning long-term

dependencies with gradient descent is difficult.” IEEE transactions on neural

networks 5.2 (1994): 157-166.

[13] Gers, Felix A., Jrgen Schmidhuber, and Fred Cummins. ”Learning to forget:

Continual prediction with LSTM.” Neural computation 12.10 (2000): 2451-

2471.

[14] Gers, Felix A., Nicol N. Schraudolph, and Jrgen Schmidhuber. ”Learning pre-

cise timing with LSTM recurrent networks.” Journal of machine learning re-

search 3.Aug (2002): 115-143.

[15] Graves, Alex. ”Neural Networks.” Supervised Sequence Labelling with Recur-

rent Neural Networks. Springer Berlin Heidelberg, 2012. 15-35.

[16] Hinton, Geoffrey E., and James A. Anderson. Parallel models of associative

memory: updated edition. Psychology press, 2014.

[17] Hochreiter, Sepp, and Jrgen Schmidhuber. ”Long short-term memory.” Neural

computation 9.8 (1997): 1735-1780.

[18] Frank, Michael J., Bryan Loughry, and Randall C. O’Reilly. ”Interactions

between frontal cortex and basal ganglia in working memory: a computational

model.” Cognitive, Affective, & Behavioral Neuroscience1.2 (2001): 137-160.

Bibliography 57

[19] Oberauer, Klaus, and Stephan Lewandowsky. ”Modeling working memory: A

computational implementation of the Time-Based Resource-Sharing theory.”

Psychonomic Bulletin & Review 18.1 (2011): 10-45.

[20] Hazy, Thomas E., Michael J. Frank, and Randall C. O’Reilly. ”Banishing

the homunculus: making working memory work.” Neuroscience 139.1 (2006):

105-118.

[21] Baddeley, Alan. ”Working memory: looking back and looking forward.” Nature

reviews neuroscience 4.10 (2003): 829-839.

[22] Baddeley, Alan. ”Working memory: looking back and looking forward.” Na-

ture reviews neuroscience 4.10 (2003): 829-839. Cohen, Jonathan D., Todd

S. Braver, and Randall C. O’Reilly. ”A computational approach to prefrontal

cortex, cognitive control and schizophrenia: recent developments and current

challenges.” Philosophical Transactions of the Royal Society of London B: Bi-

ological Sciences 351.1346 (1996): 1515-1527.

[23] Cho, Kyunghyun, et al. ”On the properties of neural machine translation:

Encoder-decoder approaches.” arXiv preprint arXiv:1409.1259 (2014).

[24] Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural net-

works on sequence modeling.” arXiv preprint arXiv:1412.3555 (2014).

[25] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet classifica-

tion with deep convolutional neural networks.” Advances in neural information

processing systems. 2012.

[26] Thireou, Trias, and Martin Reczko. ”Bidirectional Long Short-Term Mem-

ory Networks for predicting the subcellular localization of eukaryotic pro-

teins.”IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics (TCBB) 4.3 (2007): 441-446.

[27] Glorot, Xavier, and Yoshua Bengio. ”Understanding the difficulty of training

deep feedforward neural networks.” Aistats. Vol. 9. 2010.

Bibliography 58

[28] He, Kaiming, et al. ”Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification.” Proceedings of the IEEE International

Conference on Computer Vision. 2015.

[29] Bergstra, James, et al. ”Theano: A CPU and GPU math compiler in Python.”

Proc. 9th Python in Science Conf. 2010.

[30] Girshick, Ross, et al. ”Efficient regression of general-activity human poses from

depth images.” 2011 International Conference on Computer Vision. IEEE,

2011.

[31] Achilles, Felix, et al. ”Patient MoCap: Human Pose Estimation under Blanket

Occlusion for Hospital Monitoring Applications.”

[32] Ionescu, Catalin, et al. ”Human3. 6m: Large scale datasets and predictive

methods for 3d human sensing in natural environments.” IEEE transactions

on pattern analysis and machine intelligence 36.7 (2014): 1325-1339.

[33] Li, Sijin, Weichen Zhang, and Antoni B. Chan. ”Maximum-margin structured

learning with deep networks for 3d human pose estimation.” Proceedings of

the IEEE International Conference on Computer Vision. 2015.

[34] Tekin, Bugra, et al. ”Structured Prediction of 3D Human Pose with Deep

Neural Networks.” arXiv preprint arXiv:1605.05180 (2016).

[35] Li, Sijin, and Antoni B. Chan. ”3d human pose estimation from monocular im-

ages with deep convolutional neural network.” Asian Conference on Computer

Vision. Springer International Publishing, 2014.

[36] Buehler, Patrick, et al. ”Upper body detection and tracking in extended sign-

ing sequences.”International journal of computer vision 95.2 (2011): 180-197.

[37] Sapp, Benjamin, David Weiss, and Ben Taskar. ”Parsing human motion with

stretchable models.”Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on. IEEE, 2011.

Bibliography 59

[38] Toshev, Alexander, and Christian Szegedy. ”Deeppose: Human pose estima-

tion via deep neural networks.” Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 2014.

[39] Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. ”Pictorial structures for

object recognition.” International Journal of Computer Vision 61.1 (2005):

55-79.

[40] Buehler, Patrick, et al. ”Upper body detection and tracking in extended sign-

ing sequences.” International journal of computer vision 95.2 (2011): 180-197.

[41] Eichner, Marcin, et al. ”2d articulated human pose estimation and retrieval in

(almost) unconstrained still images.” International journal of computer vision

99.2 (2012): 190-214.

[42] Sapp, Benjamin, Alexander Toshev, and Ben Taskar. ”Cascaded models for ar-

ticulated pose estimation.” European conference on computer vision. Springer

Berlin Heidelberg, 2010.

[43] Tian, Tai-Peng, and Stan Sclaroff. ”Fast globally optimal 2d human detec-

tion with loopy graph models.” Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on. IEEE, 2010.

[44] Belagiannis, Vasileios, et al. ”Multiple human pose estimation with temporally

consistent 3D pictorial structures.” Workshop at the European Conference on

Computer Vision. Springer International Publishing, 2014.

[45] Jiang, Hao, and David R. Martin. ”Global pose estimation using non-tree

models.” Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE

Conference on. IEEE, 2008.

[46] Cherian, Anoop, et al. ”Mixing body-part sequences for human pose estima-

tion.” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2014.

Bibliography 60

[47] Marinescu, Radu, and Rina Dechter. ”AND/OR branch-and-bound search for

combinatorial optimization in graphical models.” Artificial Intelligence 173.16

(2009): 1457-1491.

[48] Ouyang, Wanli, Xiao Chu, and Xiaogang Wang. ”Multi-source deep learning

for human pose estimation.” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2014.

[49] Tompson, Jonathan J., et al. ”Joint training of a convolutional network and a

graphical model for human pose estimation.” Advances in neural information

processing systems. 2014.

[50] Fragkiadaki, Katerina, et al. ”Recurrent network models for human dynam-

ics.” Proceedings of the IEEE International Conference on Computer Vision.

2015.

[51] Graves, Alex. ”Generating sequences with recurrent neural networks.”arXiv

preprint arXiv:1308.0850 (2013).

[52] Andriluka, Mykhaylo, Stefan Roth, and Bernt Schiele. ”Pictorial structures

revisited: People detection and articulated pose estimation.” Computer Vi-

sion and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,

2009.

[53] Woodall, G. (2016). Working Memory Model (WMM). [online] Cognitive

Psychology. Available at: http://cognitivepsychologygrace.weebly.com/

blog/working-memory-model-wmm [Accessed 1 Aug. 2016].

http://cognitivepsychologygrace.weebly.com/blog/working-memory-model-wmm
http://cognitivepsychologygrace.weebly.com/blog/working-memory-model-wmm

	Declaration
	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Related Work
	Overview of Thesis

	Methods
	Basic Concepts of Neural Networks
	Activation Functions
	Objective Functions
	Regularizations
	Optimization Strategies

	Convolutional Neural Networks
	Building Blocks of the CNN
	Training CNN

	Recurrent Neural Networks
	Vanilla RNNs
	Long Short Term Memory (LSTM)
	Gated Recurrent Units (GRU)

	CNN+RNN Architectures for Human Pose Estimation
	Motivation
	CNN+RNN Architectures
	CNN+BiRNN Architectures
	Bidirectional RNNs

	Forward and Backward Pass
	Computational Complexity
	Output Layer
	Training Strategies
	Persistent and Non-persistent Training
	Training with Sliding Window

	Experiments
	Implementation and Hardware
	Tuning of Hyperparameters
	Data Sets
	Patient MoCap Dataset
	Human3.6M Dataset

	Conclusions
	Summary
	Future Work

	Bibliography

