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Abstract 

This paper presents and clarifies the treatments included in EN 1993-1-1 [1], relating to 

checking the resistance of the steel cross-sections under torsion and its interaction with 

other internal forces. Specifically, the origin of the formulations for shear-torsion 

interaction, which was not found in the literature, is presented. Furthermore, a very 

simple formulation based on the expressions used for shear-torsion interaction is 

developed, in order to take into account bending-warping torsion interaction for 

symmetrical double T cross-sections (IP and HE steel profiles). Such formulation 



overcomes the overly conservative approach stated in EN 1993-1-1 [1], for Class 1 and 

Class 2 cross-sections (plastic and compact cross-sections). Finally, a rigorous method 

for the determination of the bending resistance of cross-sections is proposed, 

considering the interaction with shear and torsion. The proposal is well suited to the 

concept of cross-sectional class and it is perfectly consistent with the approaches set out 

to consider the bending-shear and bending-warping torsion interactions. 

 

1. Introduction 

After a thorough analysis of the specifications contained in EN 1993-1-1 [1] some 

doubts may arise about the conceptual basis of the specifications laid down in that 

document, related to the consideration of torsion effects for the design of steel structures 

(Bordallo, J. [2]). This paper develops some aspects aimed at understanding the 

treatment of torsion in EN 1993-1-1 [1] and improving such treatment, taking into 

account its interaction with bending and shear. 

 

2. Origin of the formulations for shear-torsion interaction 

The origin of the expressions stated in EN 1993-1-1 for determining the resistance of 

Class 1 and Class 2 cross-sections, under combined shear force and torsion is now 

presented. 

 

2.1. Current content in EN 1993-1-1 

Under the combined effects of shear force and torsion, in accordance with the 

specifications contained in EN 1993-1-1 [1], the plastic shear resistance accounting for 

torsional effects should be reduced and the following expression should be verified  

RdTplEd VV ,,                  (1) 



where 

EdV   is the design value of the shear force 

RdTplV ,,   is the design plastic shear resistance accounting for torsional effects 

Such resistance RdTplV ,, is given by the following expressions, depending on the type of 

cross-section: 

For I and H cross-sections: 
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For channel cross-sections: 
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For hollow cross-sections: 
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In these expressions, Edt , is the shear stress due to St. Venant torsion, Edw, is the shear 

stress due to warping torsion, yf is the yield strength, 0M is the partial safety factor and 

RdplV , is the design plastic shear resistance in the absence of torsion. 

 

2.2. Justification of the current expressions 

2.2.1. Doubly symmetric I cross-sections 

A symmetrical double T cross-section is subjected to torsional moment EdT  and shear 

force EdV . Linear shear stresses Edt ,  due to St. Venant torsion (uniform torsion) and 

uniform shear stresses Edz ,  due to shear force are induced in the web. Shear stresses 

due to warping torsion are null in the web (see Fig. 1). 



 

 

Figure 1. Representation of the shear stresses in the web due to shear force EdV  and 

torsional moment EdT  (St. Venant torsion). 

 

It is possible to analyse the interaction of both shear stress distributions as an analogy 

with the normal stress distributions induced in a rectangular cross-section by axial force 

and bending moment. Then, for a rectangular cross-section of differential thickness d 

and width wt - the web thickness of the double T cross-section-, the bending moment 


A

Edt dAyM ··,  produced by the shear stresses acting on the web due to uniform 

torsion and the axial force 
A

Edz dAN ·,  produced by the shear stress acting on the 

web due to shear force may be determined (see Fig. 2). Without diminishing generality 

to the analysis, a uniform shear stress distribution through the shear area may be 

assumed as vEdEdz AV /,  , being vA  the shear area. 
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Figure 2. Representation of the shear stresses due to shear force and uniform torsion and 

the equivalent internal forces (bending and axial force) acting on a rectangular cross-

section of differential thickness and width  wt  

 

The current expressions in EN 1993-1-1 [1] for determining the reduced plastic shear 

resistance accounting for torsional effects can be obtained by checking a rectangular 

cross-section subjected to bending and axial force, considering shear stresses. 

Therefore, the von Mises stress should be less than the design value of yield strength of 

the steel, 
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cross-section is only resisting the bending moment -the shear stresses due to uniform 

torsion- (see Fig. 3). 

 

Figure 3. Plastic shear stress distribution in the web due to shear force and torsional 

moment (St. Venant torsion) 

 

The value of the induced bending moment can be obtained by the integration of the 

shear stresses due to uniform torsion: 
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From the above formula the resistant half-width a for axial force can be obtained as 
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It can be seen that depending on the magnitude of the moment induced by the shear 

stresses due to uniform torsion, the resistant half-width a for axial force will be greater 

or less. Thus, the value of the reduced design plastic resistance to axial force, RdTplN ,, , 

i.e., the axial force resisted by the portion of the rectangular cross-section not exhausted 

by the effect of the bending caused by the shear stresses due to uniform torsion is: 
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Introducing in this expression the value of the resistant half-width a to axial force 

previously found (see Eq. (6)), it is obtained that 
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Recalling that the value of the plastic resistance of a cross-section subjected to pure 

axial force is 
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 , i.e. the area of the differential cross-section 

multiplied by the yield strength of steel, then the plastic resistance to axial force, 

reduced by uniform torsion, can be written as 
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product of the area of the resistant differential cross-section to axial force and the yield 



strength of the steel; or put another way, this resistance can be obtained as a product of 

the area of the differential cross-section by a reduced yield strength. 
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where dA  is the area of the differential section )·( dtA wd  and Tyf , is the design yield 

strength, reduced by the effect of torsion. It can therefore be written that: 
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Thus, to determine the resistance of a rectangular cross-section subjected to bending and 

axial force, it can be assumed that the whole cross-section is resistant but the stress that 

can be achieved in it must be reduced by the ratio: 
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Recall now the analogy made according to which the axial force is obtained from the 

integration of the shear stresses produced by the shear force at a differential cross-



section. Then, the design shear resistance accounting for torsional effects is obtained by 

performing the integration on the shear area vA . 
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Moreover, by adopting linear elastic shear stress distribution due to uniform torsion 

through the thickness of the web (
2

·
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1
wel tdWW  ), it is obtained that: 
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However, if a plastic shear stress distribution due to uniform torsion through the web 

thickness is adopted, (
2
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1
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Now adopting an elastic-plastic shear stress distribution due to uniform torsion through 

the web thickness, a new resistant modulus would be obtained such that 2··
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When considering a stress distribution between the elastic and the plastic stress 

distributions, a value of coefficient  comprised between 4 and 6 may be adopted, or 

what is the same, a value in the ratio 4/  between 1 and 1,5. Taking the mean value of 

1,25 for this ratio, the expression of EN 1993-1-1 [1] that allows for the design plastic 

shear resistance accounting for torsional effects for doubly symmetric I cross-sections is 

achieved. 
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2.2.2. Channel cross-sections 

For channel cross-sections, the expression contained in EN 1993-1-1 to determine the 

design plastic shear resistance accounting for torsional effects is 
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This expression can be similarly obtained to the above one, taking into account the 

existence of the uniform shear stress distribution across the web thickness, Edw, , due to 

warping torsion. 

 

2.2.3. Hollow cross-sections 

For hollow cross-sections the design plastic resistance for shear and torsion is 
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It is easily obtained if one takes into account that warping torsion in hollow sections is 

negligible and noting that the shear stress distribution due to uniform torsion is constant 

through the thickness of the hollow section. 

 

3. Bending-warping torsion interaction 

The application rules stated in EN 1993-1-1 [1] to check the resistance of a cross-

section subjected to bending moment and warping torsion are presented in the next 

section. As will be discussed later, these rules are correct but excessively conservative 

in the presence of cross-sections capable of developing plastic resistance (Class 1 and 

Class 2 cross-sections).  

 

3.1 The current approach in EN 1993-1-1 

According to EN 1993-1-1 [1], for the elastic verification the following well-known 

yield criterion may be applied 
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In addition, EN 1993-1-1 [1] states in the same section that for determining the plastic 

moment resistance of a cross-section due to bending and torsion, only torsion effects 

BEd should be derived from elastic analysis. EN 1993-1-1 [1] informs about how the 

structural analysis should be performed to determine the internal warping torsion and 

consequently the bimoment BEd. However, EN 1993-1-1 [1] does not offer any 

information about possible formulations to consider bending-warping torsion interaction 

in plastic design. 

As a first approximation, the interaction between bending and warping torsion could be 

made from the following equation 
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where the maximum longitudinal normal warping stress max,,Edw  can be obtained by the 

following equation (Kollbrunner and Basler, [3]) 
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being max  the maximum value of the normalized sectorial coordinate and AI  the 

warping section constant ( linear elastic warping normal stress distribution is assumed). 

This expression is perfectly consistent for Class 3 and Class 4 cross-sections in which 

the stress in the extreme compressed fibre of the steel member assuming an elastic 

distribution of stresses can reach the yield strength. Obviously in Class 4 cross-sections 

effective widths should be used to make necessary allowances for reductions in 

resistance due to the effects of local buckling. Then, adding the normal stresses due to 

bending and warping torsion at the cross-section relevant point, the expression proposed 

in EN 1993-1-1 [1], although not explicitly, is achieved. 
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The expression is clearly conservative for Class 1 or Class 2 cross-sections because 

those sections can develop their plastic moment resistance. In order to calculate the 

bending resistance, taking into account interaction with warping torsion, EN 1993-1-1 

[1] implicitly suggests the above expression by which the design yield strength of the 

steel is reduced for the whole cross-section by an amount equal to
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it is assuming that at every point of the cross-section the normal warping stress is equal 

to the maximum normal warping stress max,,Edw , which is not true; in addition, it is 

assumed that the sign of the stress (compressive or tensile) induced by bending and 

warping torsion is the same at any point of the cross-section, which is not true either. 

 

3.2 Proposal for the determination of the plastic bending resistance for doubly 

symmetric I Class 1 and Class 2 cross-sections subjected to bending and warping 

torsion 

Due to the overly conservative formulation of EN 1993-1-1 [1], in this section an 

alternative, less conservative and more accurate and realistic, formulation for the 

determination of the plastic bending resistance of doubly symmetric I cross-sections 

subjected to bending about its major principal axis of inertia and warping torsion is 

proposed. 

Figure 4 shows the direct stress distribution Edw, due to the bimoment moment EdB and 

the direct stress distribution Edx,  due to the bending moment for a doubly symmetric I 



cross-section. Now, the bending resistance accounting for torsional effects will be 

determined. 

 

 

 

Figure 4. Normal stress distributions due to warping torsion BEd and bending moment 

MEd 

 

The flanges of such doubly symmetric I cross-sections can be understood as rectangular 

cross-sections subjected to a vertical axis bending moment 
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produced by the normal warping stresses (
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EdxEd dAN ·,  produced by the normal bending stresses (
W

M Ed
Edx , ) (W is the 

section bending resistant modulus) (see Fig. 5). 
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Figure 5. Representation of bending moments and axial forces on the flanges induced 

by normal warping stresses and normal bending stresses 

 

The plastic bending moment resistance for doubly symmetric I sections Class 1 and 2 

cross-sections subjected to bending and warping torsion can be obtained by checking a 

rectangular cross-section of thickness ft and width b subjected to bending and axial 

force. The dimensions ft and b are the thickness and the width of the flange, 

respectively. For Class 1 and Class 2 cross-sections, where an axial force is present, 

allowance should be made for its effect on the plastic moment resistance. In the case of 

rectangular cross-sections (the flanges of doubly symmetric I cross-sections) subjected 

to combined loading (bending and axial force) only a part of the cross-section is 

resisting the axial force (the normal stresses due to bending) whilst the other part only 

resists the bending moment (the normal warping stresses) (see Fig. 6). 
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Figure 6. Plastic distribution of the normal stresses on the flanges due to axial force and 

bending 

 

The value of the moment induced by the normal warping stresses is obtained by 

integrating the warping stress distribution over the area of the flange: 
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From the above formula the resistant half-width a for axial force can be obtained as 
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Depending on the magnitude of the moment induced by the normal warping stresses, 

the resistant half-width a to axial force will be greater or less. Thus, the value of the 
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reduced design plastic resistance to axial force, RdTplN ,, , i.e., the axial force resisted by 

the portion of the rectangular cross-section not exhausted by the effect of the bending 

caused by the normal warping stresses is 









 a

b
t

f
NN f

M

y

RdplRdTpl
2

···2
0

,,,


            (25) 

Introducing in this expression the value of the resistant half-width a to axial force 

previously found (see Eq. (24)), it is obtained that 
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Knowing the value of the plastic resistance of a cross-section subjected to pure axial 

force is 
0

, ·
M

y

fRdpl

f
AN


 , being in this case Af the flange area multiplied by the yield 

strength of steel, then the plastic resistance to axial force, reduced by warping torsion, 

can be written as 
0

,, ···2
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f
taN
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 , that is, the product of the resistant area of the 

flange to axial force and the yield strength of the steel. Or put another way, this 

resistance could be obtained as the product of the flange area and a reduced yield 

strength fy,T due to warping torsion; then, the following equation is reached 
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where fA is the flange area )·( ff tbA  and Tyf , is the design yield strength, reduced by 

the warping torsion. It can therefore be written that 
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Thus, to determine the resistance of a rectangular cross-section subjected to bending and 

axial force, it can be assumed that the whole cross-section is resistant but the stress that 

can be achieved in it must be reduced by the ratio: 
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Therefore, for combined bending moment and warping torsion the plastic bending 

moment resistance accounting for torsional effects (the bimoment EdB ) should be 

reduced from RdcM , to W
f

M
M
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RdBc ··
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,, 


  
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Adopting a linear elastic normal warping stress distribution, the resistant modulus of the 

flange is 2·
6

1
btWW fel   , therefore 
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However, if a plastic normal warping stress distribution is adopted on the flange, the 

resistant modulus is 2·
4
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Adopting now an elastic-plastic normal warping stress distribution on the flange, a new 

resistant modulus would be obtained such that 2··
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When considering a normal stress distribution between the elastic and the plastic stress 

distributions, a value of coefficient  comprised between 4 and 6 may be adopted, or 

what is the same, a value in the ratio 4/  between 1 and 1,5. Taking the mean value of 

1,25 for this ratio, the proposed expression that allows for the design plastic bending 

moment resistance accounting for torsional effects for doubly symmetric I cross-

sections is achieved. 
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3.3 Comparison between the implicit elastic current approach of EN 1993-1-1 and 

the proposed formula 

A comparative analysis between the reduction coefficient assumed in the implicit elastic 

approach of EN 1993-1-1 [1] (see Eq. (20)) and the reduction coefficient proposed in 

this work (see Eq. (34)) is carried out. Both reduction coefficients are used to take into 

account bending moment-torsion interaction. This is done through the graphical 

representation of the reduction coefficient in function of the maximum normal warping 

stress. Warping stresses are obtained according to the classic formula of the warping 

torsion (Kollbrunner and Basler [3]). The value of the maximum normal warping stress 

is shown as a percentage of the design yield strength of the steel.  

 

 



 

Figure 7. Comparative analysis of the reduction coefficient for the design bending 

moment resistance accounting for torsional effects, considering the EN 1993-1-1 [1] 

implicit approach and the proposed formula 

 

Observing the curves shown in Figure 7 it is concluded that the formulation contained 

in EN 1993-1-1 [1] is very conservative. The curves apply to the case of doubly 

symmetric I cross-sections in bending around the major principal axis and warping 

torsion. It can be observed that the bending moment resistance considering its 

interaction with warping torsion for Class 1 and Class 2 cross-sections by means of the 

proposed formula in this work can be 40% higher than that obtained using the implicit 

current EN 1993-1-1 approach [1]. Moreover, the limitation that the resistance to 

bending moment considering interaction with torsion becomes zero for values of 

warping stress very close to the design yield strength is solved. 
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In summary, in this work a new formula for determining the resistance to bending 

moment, taking into account the interaction with torsion, is presented. This new 

approach is realistic and absolutely consistent with the concept of cross-sectional class, 

clearly improving the current approach of EN 1993-1-1 [1]. The presented formulation 

applies to the case of doubly symmetric I Class 1 and Class 2 cross-sections subjected to 

torsion and bending around the major principal axis. Following a similar methodology 

to the one presented herein for bending-torsion interaction or shear-torsion interaction, 

specific formulations for other types of cross-section may be developed. 

 

4. Bending moment-shear-torsion interaction 

The specifications stated in EN 1993-1-1 [1] for determining the resistance of a cross-

section in bending when subjected to bending moment, torsion and shear force are not 

consistent with the formulation presented for bending moment-torsion interaction in this 

work. 

 

4.1 Current specifications in EN 1993-1-1 

For bending moment-torsion-shear force interaction, EN 1993-1-1 [1] states that when 

the design shear force EdV exceeds half the plastic shear resistance considering torsion 

effects RdTplV ,, , the reduced moment resistance should be taken as the design resistance 

of the cross-section, calculated using a reduced yield strength yf)·1(  for the shear 

area where  
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Considering exclusively the reduction in yield strength, associated with the shear area of 

the cross-section, it is only taken into account the interaction due to shear stresses 



caused by torsion. But the interaction due to normal warping stresses Edw, is not taken 

into account to determine the reduced moment resistance. According to this approach, 

when the design shear force, EdV , exceeds half the plastic shear resistance considering 

torsion effects, RdTplV ,, , as EN 1993-1-1 proposes [1], the reduced yield strength caused 

by bending-torsion interaction is not taken into account. A discontinuity in the 

interaction diagram next to shear force values equal to half the plastic shear resistance to 

be produced, being on the unsafe side when the design shear force exceeds 50% the 

plastic shear resistance. Based on this interpretation the bending-shear-torsion 

interaction diagram would be 

 

 

Figure 8. Bending-shear-torsion interaction diagram. Discontinuity at RdTplEd VV ,,5,0   
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4.2 New proposed bending-shear-torsion interaction diagram 

To solve this inconsistency, the following method for the determination of the plastic 

resistance to bending is proposed, considering its interaction with torsion and shear. In 

the case of being in the presence of a cross-section subjected to bending, shear and 

torsion, when the design shear force EdV is less than 50% the reduced plastic shear 

resistance of the cross-section RdTplV ,, , the reduced yield strength y

Rdc

RdBc
f

M

M
·

,

,,
 due to 

bending-torsion interaction will be assigned to the whole cross-section. The influence of 

the shear stresses due to shear force and torsion is not considered, but the influence of 

the normal warping stresses is considered. The reduced design plastic resistant moment 

is then RdBcM ,, . 

On the other hand, when the design shear force EdV is greater than 50% the reduced 

plastic shear resistance of the cross-section RdTplV ,, , the reduced yield strength due to 

shear stresses should be considered for the shear area of the cross-section to determine 

the reduced design plastic resistant moment. Therefore, the reduced yield strength equal 

to y
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RdBc
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M
·)·1(
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,,  will be taken for the shear area and, other than the above, the 

reduced yield strength equal to y
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 will be taken for the rest of the cross-section 
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RdTplV ,, is obtained in accordance with EN 1993-1-1 [1] and RdBcM ,, is obtained in 

accordance with the proposed expression in this work (see Eq. (34)). Thus, a bending-

shear-torsion interaction diagram without any discontinuity and perfectly consistent 

with the concept of cross-sectional class is obtained. 



 

 

 

Figure 9. Proposed bending-shear-torsion interaction diagram 

 

In this diagram RdBfM ,,  represents the moment resisted by the cross section, excluding 

the shear area (it may be assumed that the web of the cross section is exhausted). As a 

good and easy approximation, RdBfM ,,  is the moment resisted by the flanges of the 

cross-section when subjected to bending about the major axis, but considering the 

interaction with the normal warping stresses. Normal stress distributions in the cross-

section, as a function of the different branches of the proposed interaction diagram (see 

Fig. 9), are shown in Figure 10. 
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Figure 10. Normal stress distributions in the branches of the proposed bending-shear-

torsion interaction diagram 

 

5. Conclusions 

In summary, in this paper a general formulation is provided to determine the design 

plastic resistant bending moment for plastic and compact cross-sections (Class 1 and 

Class 2), taking into account the interaction with shear force and torsion. Furthermore, 

the paper provides new information about the ambiguous specifications of EN 1993-1-

1[1] on how to consider the effects of torsion and its interaction with bending and shear 

force for the verification of the ultimate limit state of the resistance of the cross-

sections. The formulations proposed in this paper to consider the bending-shear-torsion 

interaction are consistent with the concept of cross-sectional class. In addition, the new 

formulations solve rigorously, efficiently and easily the verification of the resistance of 

the cross-sections subjected to combined internal forces. 
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