UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Algorithms for Energy Disaggregation

Albert Fiol

Master in Innovation and Research in Informatics
Director: Josep Carmona
Co-director: Jorge Castro

Barcelona, 2016

Facultat d'Informatica de Barcelona
Barcelona School of Informatics

Contents

1 Abstract

2 Introduction
2.1 Energy disaggregationo L oo
2.1.1 Aconcreteexampleo Lo
2.2 Benefits of appliance monitoring L.
2.3 Goalsof thisthesis.

3 State of the art
3.1 Hardware requirements for energy disaggregation.

4 Definitions
4.1 Markov chains e
4.2 Hidden Markov models
4.3 Factorial hidden Markov models
4.3.1 Additive factorial hidden Markov models

5 Disaggregation algorithms

5.1 Technology overview L

5.2 DDSC: Discriminative Disaggregation Sparse Coding
5.2.1 Basic algorithm o oL

5.3 EDPF: Energy Disaggregation via Particle Filtering
5.3.1 Particlefilters o
5.3.2 Basic algorithm o oL
5.3.3 Learning device HMMs from data
5.3.4 Signal denoising approacho

5.4 AFAMAP: Additive Factorial Approximate Maximum A Posteriori
5.4.1 Basicalgorithm 00000
5.4.2 AFAMAP as an unsupervised energy disaggregation algorithm

5.5 NILMTK algorithms: COOP and FHMM

5.6 Implementation

6 Datasets
6.1 REDD
6.2 GREEND e

7 Methodology

8 Results and discussion
8.1 Exploratory tests: REDD
8.2 Testing all disaggregators
8.3 Testing EDPF with more particles
8.4 Testing DDSC with lower sampling rates
8.5 Testing AFAMAP: reduced datasets
8.6 Conclusions. L

9 Visualizing results
10 Future work

11 Conclusion

T Ot W W N

=}

10
11
12

14
14
14
15
17
18
18
20
21
22
22
25
26
27

28
28
28

30

31
31
32
33
35
36
37

39

41

42

1 Abstract

Energy disaggregation is the problem of separating an aggregate energy signal into the
consumption of individual appliances in a household. This is useful because having
a breakdown of the consumption of all the devices encourages users to consume less
energy and gives them indications on how to do so. We focus on the problem of non-
intrusive load monitoring, which attempts to perform energy disaggregation without
using individual meters for every device.

In this project we compare three different solutions to the energy disaggregation
problem: one based on sparse coding, another based on particle filters, and another
based on quadratic programming. We test all three algorithms on a reference dataset,
and finally we present Endivia, a program designed to easily visualize the disaggregate
information.

We hope that this project will help us understand better the problem of energy
disaggregation, giving us insights on the hardware and software requirements for po-
tential commercial solutions.

2 Introduction

2.1 Energy disaggregation

Energy saving has been a concern for years and is now more important than ever. It
is highly desirable for reasons such as saving money or being environmentally friendly,
but no matter the reason, it has a big impact on our lives, from a personal to a national
level.

While energy saving concerns us more and more as time goes by, we have reached a
point in which energy consumption data is widely available, and machine learning has
advanced up to a point in which we can build robust models of energy consumption.

Between these two ideas lays energy disaggregation. Energy disaggregation is, in
essence, a signal processing and machine learning problem. It consists in taking the
“aggregate” energy consumption signal (the power consumed by all the devices in a
household) and extracting finer-grained readings, ideally corresponding to individual
appliances in a single home. Figure 1 shows how different devices may contribute to
an aggregate power signal.

Power (KW)

Time (min)

Figure 1: Disaggregation attempts to identify the individual contribution of ap-
pliances in the overall energy signal. Original figure from Hart, 1992.

This process is also known as Non-intrusive Load Monitoring (NILM) or Non-
intrusive Appliance Load Monitoring (NIALM, also NALM). It was first proposed by
George W. Hart, Ed Kern and Fred Schweppe of MIT in the 80s and further developed
by Hart in the 90s [, The idea behind NILM is to measure only the voltage and current
that go inside a household, and to use only that data to deduce the individual states
of the appliances. In our case we use the power consumption of the household, which
is commonly used to measure device usage and it is measured in watts (W). However,
disaggregation can be done using various other features like the voltage waveform and
its harmonics.

2.1.1 A concrete example

Let us go through a small disaggregation example. Training data comes to us as a list
of power readings for every device in a household. In a hypothetical house with four
devices, this would look as follows:

Oven TV Dishwasher Laptop
to |0 120 300 20
t1 |0 120 300 60
ta |0 120 300 50
ts |0 80 300 50
ts | 450 80 300 20
ts | 450 120 300 20

Table 1: Ezxample of training data for an energy disaggregation problem. For
each device, its power consumption in watts (W) is given at every time sample.

For the sake of the example, timesteps in the table are around 10 minute intervals.
Now, once the system is trained, a disaggregation problem is presented as the following:
P = (440, 440, 400, 450, 750, 750, 750, 830, 850, 750, 570, 570, 570, 590)

The vector P represents a sequence of power readings (in W) which have to be
disaggregated. A possible solution is the following;:

Total consumption | Oven TV Dishwasher Laptop Other
to | 440 0 120 300 20 0
t; | 440 0 120 300 20 0
ta | 400 0 0 300 50 50
ts | 450 80 120 300 50 0
ty | 750 450 0 300 0 0
ts | 750 450 0 300 0 0
te | 750 450 0 300 0 0
t7 | 830 450 80 300 0 0
ts | 850 450 80 300 20 0
tg | 750 450 0 300 0 0

Table 2: A possible solution for the disaggregation example problem.

There are a few interesting things to note here. First, the fact that solutions are
not unique: one can have two different solutions that minimize the disaggregation
error: to discriminate between the solutions, domain knowledge or other methods
must be used to select the best one. Another interesting problem is the occasional
“lost power” which is not explained by the system, corresponding to either devices
working in unexpected ways, or to unseen devices in the household.

2.2 Benefits of appliance monitoring

There have been several studies on the behaviour of consumers once they are presented
with a detailed view of their energy consumption habits? Bl. Overall, the conclusion
is that having feedback affects the users, and it can lead to energy saving behavior.
In fact, according to these reports, detailed energy consumption information in house-
holds is almost invisible to the end user: energy companies tend to show the user a
basic overview of the power consumed during a certain period of time.

The main idea behind appliance monitoring is that as users gain information on
how their habits affect the energy consumption from any form of feedback, they have a
“starting point” from which they can change their behaviour. This change is measured
and provides the users with more knowledge on how the energy system works and how
they can affect it. After a period of learning and adapting, users finally adopt new
patterns of use resulting in a net saving of energy.

There are several types of feedback to consider, but the most important ones are
direct and indirect feedback. Direct feedback consists in having direct displays, or
reading the energy meters themselves. It is basically energy feedback on demand.
Contrary to direct feedback, indirect feedback consists on data that is being processed
by the energy company and later sent to the users. Indirect feedback can come in form
of more frequent bills, or bills with disaggregated values.

While the effectiveness of feedback is known, recent studies have focused on what
is the best kind of feedback and what is the best way of putting it in a user-friendly
context. Direct feedback is instantaneous, but might be hard to understand for some
people. On the other hand, indirect feedback may be presented in a more user-friendly
way, but since it is less frequent it makes positive changes harder to notice and act
upon.

A synthesis of common themes in past researches is provided in[?; according to it,
feedback is more useful if it is provided frequently, over an extended period of time,
and presented in a simple, meaningful way (among other requirements). These are all
achievable using energy disaggregation algorithms, even if they do not reach perfect
accuracy. According tol®!, direct feedback results in savings in the 5%-15% region,
and similarly, indirect feedback results in savings in the 0%-10% region.

In a time where saving energy and money is one of the most important aspects in
our daily life, achieving savings of only 5% in every household at a low price can have
a huge impact at a global scale.

2.3 Goals of this thesis

The goal of this project is to overview recent advances in energy disaggregation, and to
provide a starting point from which further research can be done. We will first survey
the literature for candidate algorithms that can perform non-intrusive load monitoring,
possibly in different sampling environments. We will implement them, trying to verify
the original results.

More importantly, we want to compare all the algorithms on the same data, exper-
imenting with them to figure out which algorithms perform better in which situations:
we want to extract practical knowledge about their requirements, accuracy, or scalabil-
ity. In the future, this practical knowledge can translate to a commercial application.

3 State of the art

As we have seen, energy disaggregation was first introduced by Hart in 1992, His
proposal was to look at the power changes and cluster together the ones that appeared
to be caused by the same device (or set of devices).

His work, and following disaggregation efforts, all worked on a set of assumptions
that are common across literature. Before reviewing current work on this field we will
first list these assumptions.

One of these assumptions is the one-at-a-time assumption, which assumes that
appliances switch on and off one at a time. In other words, there are no events in
which two appliances change state at the same time. It is easy to see that the strength
of the assumption is related to the sampling rate: data sampled at, for example, 100 Hz
has very low probability of having multiple state changes at the same time. However,
data sampled at 1 per minute may have two devices turning on at the same data point.
In our case, this assumption is needed for AFAMAP.

The second assumption is the steady state load assumption. It states that most
appliances consume a constant amount of power while they stay in the same state. In
practice the amount of power is not exactly constant, but with denoising techniques
we can approximate the signal to a piecewise constant one.

The combination of these two assumptions is present in the first algorithms for
energy disaggregation: changes in power are caused by some device changing state;
the same change of state of the same device will always produce a similar change in the
power demand, and this can be identified and used to disaggregate the whole signal.

In 1998, Cole and Albicki proposed their solution that took into account power
spikes [4], which typically occur when a device is switched on or off. These spikes and
slopes happen at the instant a device is turned on due to reactions in the electrical
grid, an can be used as a “signature” to identify devices. These events are also known
as transtents.

In the early 2000s, algorithms went beyond just consumed power and added other
features. As the technology behind the meters and recorders improved, new features
became available such as the signal waveform and its harmonics. Signal processing
solutions, such as Fourier’s transform, were used to further detect “power signatures”
of devices based on the transients and harmonics of the signal. !} 6,

In the recent years we have seen a boom in machine learning approaches due to
advances in both algorithms and networking, and also due to the sheer volume of
data these algorithms can work with. Because of this, the last generation of energy
disaggregation algorithms take advantage of big training sets and high performance
computing.

One of these algorithms was introduced by Kolter, Batra and Ng in 20101, Their
algorithm, called DDSC, will be tested in this project along two other algorithms.
DDSC poses the disaggregation problem as a machine learning sparse coding problem.
It does not take into account power spikes or transients, but it assumes that the learned
model will capture these behaviours well. Another very recent paper treating energy
disaggregation as a purely machine learning problem is 8 which tries to disaggregate
a signal using neural networks.

Finally, some recent solutions move away from pure machine learning tasks and try
to apply more complex inference techniques on the data, without necessarily taking
transients or power spikes into account. Among these algorithms we can find particle
filtering solutions such as PALDi Ol or optimization approaches such as AFAMAP [0,

Energy disaggregation has become a hot topic in the last years. Initiatives such as
the NILM workshop® and a focus from big companies such as IBM? show a growing
field with potential effects on our daily lives and wallets. One interesting initiative is

Thttp://nilmworkshop.org/
2http://researcher.watson.ibm.com /researcher/view_group_pubs.php?grp=4989

the NILM Toolkit (NILMTK) ™! which is an attempt to standardize the various NILM
algorithms and datasets. NILMTK is interesting to us because it is open for extension:
it allows us the integration of dataset converters, or disaggregation algorithms. In the
experiments section we will adapt our algorithms to work with the NILMTK data
format, in order to be able to compare them against other existing algorithms.

3.1 Hardware requirements for energy disaggregation

In this work we have mostly focused on the algorithmic side of energy disaggrega-
tion. However, for these solutions to be implemented we need some basic hardware
infrastructure to provide us with data on which to train and run our algorithms.

The easiest way to obtain appliance-specific data for training is to use special plugs
to which the appliances connect *?. These plugs can be inconvenient to operate, and
they present an additional cost for the consumers. Even more so, if consumers buy a
special plug to read energy data from a device, they can obtain that data without the
need for a disaggregation algorithm.

Some whole-house monitoring solutions already perform energy disaggregation for
some devices, but the installation can cost up to hundreds of dollars, and once installed,
the performance may not be as good as desired 2.

Finally, smart meters may present us with the solution to the data acquisition
problem. These smart meters are currently replacing the old, analog power meters
which we used to measure the power drawn by a house. Smart meters seem to be the
first step towards a useful disaggregation infrastructure, as they are installed by the
electrical companies. However, they currently send readings at very low sampling rates
(between 15 minutes and 1 hour), which seems incompatible with most disaggregation
algorithms.

As smart meters increase in complexity, we will start to see off-the-shelf solutions
based on higher-frequency data, without the need to buy special plugs to gather train-
ing data for the algorithm. Until then, we can use algorithms designed for low sampling
frequencies.

4 Definitions

In this section we will lay out the terms used in the following sections.

4.1 Markov chains

Markov chains are stochastic, memory-less processes that have a finite number of
states. A process is a system whose state is represented by a set of variables. These
variables are indexed, usually by time, and together form a series that represents the
overall evolution of the process. A stochastic process is a process in which the state
changes are random. The memory-less property (known as Markov property) states
that the state of a system at any time ¢ is only dependant on the state of the system
at the previous timestep t — 1. From now on we will assume that the Markov chains
work at discrete timesteps.

Markov chains can be represented as a directed graph, in which each node cor-
responds to one of the n possible states, which form a state space that we call
S ={1,2,...,n}. At each timestep, the model has one state in S, and then it changes
through what we call a transition. As we mentioned earlier, Markov chains are stochas-
tic processes, and thus, given the state of the model, the possible transitions follow a
certain probability distribution. Each transition P;; corresponds to one of the edges
in the graph and it is defined as the probability of having a transition from state 7 to
state j given that the model is found at state i. Note that transitions to the same
state (self-loops in the directed graph) are possible. Since transitions are probabilities,
it must hold true that, for all i:

Y Pyj=1
J

Transition probabilities are usually grouped in a transition matriz P, which is an
n X n matrix that holds each transition probability P;;. Finally, the Markov chain
definition also includes an initial state distribution, which is the prior belief over the
state of the system at initial time ¢ = 1, and we will denote p(X1). This is usually
represented as a vector of probabilities. With this, we can formally represent a Markov
chain as the tuple (S, P,p(X1)).

Given the initial state 1 and P, we can compute a distribution of states at time
t = 2 by just multiplying z; P, and in fact we can compute the distribution of states
at time t = k by multiplying 1 P*. With this, we can now formalize the memory-less
property of the Markov chain at any time t:

P(Xt+1:a?‘thxt):P(Xt+1I$‘X():a)o,Xlle, ,Xt:.Tt)

A graphical representation of a Markov chain as a directed graph with § = {1, 2, 3}
and transitions represented as edge labels can be seen in Figure 2.

Figure 2: Basic Markov chain represented in graph form.

In this case, the transition matrix is the following:

0.25 0.25 0.5
P = 0 0 1
0.4 0.25 0.35

Now, if we imagine that the initial state is 1 = (0.5,0.5,0), we can see that the
distribution over the states at time ¢ = 1 is z1 P = (0.125,0.125,0.75). We can also
compute the probability distribution over the states of the system at any time t, as
we said before.

Markov chains are a specific case of Markov processes, which are defined as any
process that satisfies the memory-less property. Markov chains satisfy it, but they also
have additional constraints like a finite state space and a discrete timestep. Markov
chains are very useful to model time series, and they have been used for many different
applications such as ranking websites in a popular search engine[lg]7 defining the en-
tropy of a language via modelling it as a Markov process ™, or generating sequences
of numbers that follow a desired distribution %), However, in many situations, the
true state of the model cannot be measured, and Markov chains fall short - in those
cases we need a more powerful model which is the hidden Markov model.

4.2 Hidden Markov models

A hidden Markov model (HMM) is a specific case of a Markov process, in which the
system that follows the Markov property is hidden from the observer. Instead, we can
only measure output values whose probability distribution depends on the state the
hidden Markov process is in.

Formally, we represent the hidden Markov process as we did with the Markov
chain: they can be represented as a directed graph, where each node corresponds to
one state from § = {1,2, ... ,n}, and where each edge corresponds to one transition.
The HMM also has a random variable X that takes values from S, using X; to denote
the value of X at time ¢. However, remember that this variable is hidden; what we,
as observers, can measure, is a random variable Y, the output or emission of the
HMM, with Y; representing the value of Y at time ¢. In the general case, we say that
Y: = f(X¢); f can be any function: a simple probability distribution, a constant value,
a more complex function... A graphical example of the evolution of a hidden Markov
model can be found in Figure 3.

Figure 3: Fwvolution of a hidden Markov model. In the top row, the states of
the system at every time. In the bottom row, the emissions of each one of these
states.

In the picture, the states z¢—1,x¢, i1, ... are generated from a Markov chain,
but observers only have access to the values yi—1, Y+, yt+1, It is worth to note that
the outputs also follow the Markov property with respect to the states in the hidden
process: if we know X1, Xs, ... , X}, then it is true that:

PYi=y | Xie=2))=PYi=wye | (X1i =21, Xo =22, ... , X = 14)

Hidden Markov models are also a generalization of Markov chains: a HMM with
identity as the emission function is essentially a Markov chain. However, hidden
Markov models are much more powerful, and in fact they involve many inference
problems. For example, computing the most probable sequence of states given the
sequence of emissions, learning the parameters (transition probabilities and emission
functions) of a HMM given a sequence of observations, or computing the most probable
sequence of emissions given a HMM.

10

Because of the high expressive power of hidden Markov models, many problems
can be modelled as HMM inference problems. For example, speech recognition[m],
part-of-speech ‘cagging[m7 or even predicting protein topology[ls]. Even so, there are
still some problems that cannot be easily modelled as an inference problem on a single
HMM. For those kinds of problems we need to combine multiple HMMs in what is
known as a factorial hidden Markov model.

4.3 Factorial hidden Markov models

Even though HMMs are very useful for solving a whole family of inference problems,
they lack in terms of representational capacity. For example, if we want to model a
time series with 20 bits of information (as we would do to model the evolution of a
household composed by 20 on/of devices), a HMM can only represent that state space
with 220 states, which is an scaling that makes many instances of problems unfeasible
to be solved with HMM.

Factorial hidden Markov models (FHMMSs) are a general type of HMM that has
more than one variable to encode the state. This means, that while a HMM before had
only X, a FHMM has k different state variables X(O),X(l), s X5 Now, the same
time series with 20 bits of information can be modelled with a FHMM that has only 20
binary variables. In fact, a FHMM with k£ models with n states each is equivalent to a
HMM with n” states. However, this higher expressive power comes with an increased
computing cost, especially for inference algorithms.

Formally, we can represent a FHMM as a set of K HMMs that evolve simultaneously
and independently over time, where we use X () as the variable that represents the
state of the ith HMM. Then, at each timestep, there is a sequence of variables for each
HMM in the FHMM: X7, x® .. X for any time t. Each HMM in the model
has its own number of states, and we let n; be the number of states of the ith HMM.
Each HMM has its own emission functions, as well, which we will denote as f;l) to
refer to the emission function of HMM ¢ for state j.

Each HMM in the factorial model has its own output, but this output is not visible
to the observer. Now, the visible output at time ¢, Y%, is a combination of the outputs
of each one of the HMMs in the model, Xt(o)7 ,Xt““). For example, a FHMM
equivalent of Figure 3 (a representation of the evolution of a HMM) is given in Figure
4.

11

y1-1 yt y1+ 1

Figure 4: A representation of a FHMM. The top three rows correspond to three
independent Markov chains, whose states condition the output at every point in
time.

In this case, we have k HMMs that change state independently. Each one of them
satisfies the Markov property. Their outputs at every time ¢ Yt(l) are combined to form
the output of the FHMM, which is found in the bottom row as Y.

FHMMs were first introduced in the 90s, with Ghahramani and Jordan proposing
a tractable algorithm to learn the parameters of a FHMM [Since then, FHMMs
have been used to solve various problems which were not easily tractable with HMMs,
including again more robust speech recognition 2%, bioinformatics?!!, or source sepa-
ration of audio signals (22 which is closely related to energy disaggregation.

4.3.1 Additive factorial hidden Markov models

In the following sections we will refer to a special type of FHMM which we will call
additive factorial hidden Markov model, following Kolter and Jaakola’s terminology (101
These FHMMs output a value that is the sum of all the values outputted by the
individual HMMSs, hence the name additive. In other words, the output of an additive
FHMM at time ¢ is

where Yt(i) is the output of the ith HMM.

12

Additive FHMMs are of special interest to us, because they offer a very intuitive
way of modelling a household. As we will see later, we can model each device as
a single HMM in which the different states correspond to the different states of the
device (which might be just ’on’ and ’off’, but also maybe a low-power state, or an
‘on’ with several power levels). Each state has an emission corresponding to a power
consumption, and the transitions depend on the device usage pattern.

If we are modelling a household, we can group several devices, each modelled
with a HMM, into a single FHMM that models the entire house. This has to be an
additive FHMM, since the ”aggregate” signal that we see is just the sum of all the
power consumptions of all the devices in the house. For this reason, in the rest of this
document, we will refer to additive FHMMSs just as FHMMSs, making a clear distinction
only if necessary.

13

5 Disaggregation algorithms

In this section we will explain the three disaggregation algorithms, mentioning any
necessary implementation details.

5.1 Technology overview

All three algorithms have been implemented mainly in Python® using the necessary
libraries for linear algebra and plotting (mainly NumPy* 231 and SciPy® [24]). In the
case of AFAMAP, the quadratic program is solved using Gurobi®. The first two al-
gorithms, which only require Python (and NumPy and SciPy) have been adapted to
work under NILMTK".

One of the most important differences between the algorithms is that DDSC and
EDPF are both supervised learning algorithms, while AFAMAP is unsupervised. This
is a key difference, and in the realm of practical energy disaggregation it is very
important because supervised learning requires training data, and to obtain power
consumption data for training we need special meters attached to every device that
we want monitored in a household. Because of this, a good disaggregation algorithm
may fail to reach out to consumers if they find the data acquisition step to be tedious
or expensive. In contrast, AFAMAP works as a “plug and play” algorithm, which does
not require extra hardware or cost.

5.2 DDSC: Discriminative Disaggregation Sparse Coding

The first algorithm we will consider is called DDSC. It was introduced by Kolter, Batra,
and Ngin 2010 7], 1t is based on sparse coding, which is a class of unsupervised learning
methods that try to learn succinct representations of data (251 It is an algorithm that
is designed to work with data measured at a low sample rate (around one lecture per
hour).

The low-sampling rate feature of DDSC makes it hard to compare to the other
algorithms meaningfully, but we will compare them anyway to see if DDSC is also
good in environments with a high sampling rate. If it is not, we can now that we have
an alternative to the rest of algorithms when data comes in hourly measurements.

Sparse coding (also known as sparse dictionary learning) consists in given a vector
x, trying to learn a set of k over-complete bases 6 such that:

k
T = E aiGi
=1

where a; is the ith coefficient for the base 6;. This is similar to Principal Component
Analysis (PCA) [26], which tries to learn a mutually linearly independent, complete set
of bases that represent the data. Essentially, it transforms the data to a new system of
coordinates, so that the bases of this system (called principal components) are aligned
with the directions in which the dataset projects more variability.

In other words, the first principal component “’explains” the highest percentage
of the data, the second one explains the second highest, etc. If the first few principal
components explain a high enough percentage of the data, the rest of them can be
dropped to have a compact representation of the input.

Unlike PCA, which learns a complete set of bases, sparse coding tries to learn
an over-complete set of bases. If PCA can represent an n-dimensional vector with k

Shttp://www.python.org/
4http://www.numpy.org/
Shttp://www.scipy.org/
Shttp://www.gurobi.com/
Thttp://github.com /nilmtk/nilmtk

14

bases, with n > k, sparse coding tries to represent it with k > n. The reason for this is
that an over-complete set of bases allows it to better capture patterns that are found
in the input data (in the case of energy disaggregation, these patterns are the device
use patterns).

However, learning an over-complete set of bases leads to the problem that the set
of coefficients a1,az2, ... ,ar is no longer uniquely determined by the input and the
bases. In order to solve this, sparse coding enforces a criterion of sparsity over the
coefficients, penalizing those that are far from zero. The problem of sparse coding a
set of m vectors, then, is fully defined as:

k
29 =3 o,
i=1

k
+A>°S@?)
i=1

m
mzmmzzeag_,») o E
=1

where) is the j-th vector in the set, a is the vector of coefficients that represent
the j-th vector in the set, 6; is the ith basis, and aij) is the ¢th coefficient that is used
to represent the jth vector. S(a) is a function that returns a cost based on the sparsity
of a, and \ is a parameter used to vary the degree in which the sparsity criterion is
enforced. This is an optimization problem which needs to optimize in two dimensions
at the same time. One of them is finding the appropriate coefficients for every vector
of the input set, and the second one is finding the appropriate set of basis, common
for all the vectors in the input set.

5.2.1 Basic algorithm

DDSC is a supervised learning method. Let m be the number of houses (1 in our tests,
since we test each house separately), and let T be the number of data points we have
for each house, which should be sampled with a low sampling rate, according to the
source paper. Finally, let £ be the number of different classes of devices we want to
disaggregate.

The input to DDSC is a T' X m matrix of power readings, where each column
contains the power readings for each house. The input also contains X1, Xo, ... , Xk,
which are also T' X m matrices representing the separate signals for each class of
device. Now, DDSC applies sparse coding on all the training matrices X; to be able
to approximate X; = B;A;, where B; are the bases and A; are the coefficients (also
called activations).

Once the base B; and the activations A; have been learned for each class, disag-
gregating an input signal X becomes a matter of solving the optimization problem

A, kfargmmHX Bi. L A: ’CH +>\Z q_F(X Bi.k,A1.k)
1

4D,q

where A;. 1 is used to denote A1, A, ... , A, and Apq is the element in the pth row
and gth column of A. Note how we abbreviate this optimization function in the right
side, since we will use this notation later. This is again an optimization problem that
assumes that the bases B; have learned to capture device use patterns. These bases
are now used to find suitable activations that are sparse, enforced with the second
term in the formula with the)\ parameter. These activations A1, As, ... , Ay are then
used to disaggregate the signal X the following way:

X; = Bi A,
where X; is the signal corresponding to the ith class of devices.

The intuition behind this method is that the bases B; are trained to learn the use
patterns of every device, so they are better suited to represent the ith portion of the
signal than any other basis. This is the desired behaviour, but unfortunately in practice

15

this first part does not produce good results, because the bases are trained to learn the
device use patterns with the hope that they will produce a small disaggregation error,
but they are not built explicitly to minimize this error. To fix this, DDSC introduces
a method to improve the bases, which is based in structured prediction (271,

The second step is based in the intuition that the best optimal activations of 121,
called Ax, are the ones obtained from the sparse coding step. The idea, then, is to
optimize the bases Bi. . so that when performing the optimization over Ay j, the
value of A is as close as Ax as possible. However, changing the bases B;. . also affects
the optimal A, so the bases that are being optimized, now called B (referred to as
the disaggregation bases) need to be different to the ones obtained in the sparse coding
step (referred to as the reconstruction bases). The problem is formulated as finding
bases Bl_,k such that:

_ ~ 2
Axq = argmin HX — BlukAL.kH + A Z(Ai)pq

A1 20 i,p,q

To find this optimal bases, the authors of DDSC use a method based on the
structured perceptron (28] The process is done iteratively, first computing the value of
Ay 1, and then doing an update on the bases Bi.j, repeating this until convergence.

The training phase of the DDSC algorithm ends here. Now, with the reconstruction
bases Bi. .k, given an aggregated test example X', we can compute A'llw and predict
X! = B; A). The complete DDSC method is shown in Figure 5.

Algorithm 1 Discriminative disaggregation sparse coding

Input: data points for each individual source X; € RT*™ i =1,..., k, regularization parameter
A € Ry, gradient step size v € Ry

Sparse coding pre-training:
1. Initialize B; and A; with positive values and scale columns of B; such that Hbgj) |l = 1.
2. Foreach:=1,..., k, iterate until convergence:
(@) A; « argmina>o | X; — B;A[% + A2 e A
(b) By + argming g o<1 [X — BAi%
Discriminative disaggregation training:
3. Set A%, « Ay, Big ¢ By
4. Tterate until convergence:
(a) Aqg argmina, , >o F(X, Bis, Aqk)
0 B [B-o((X-BA)AT - (X - BA")(AYT)]
(©) Foralli, j, b « b /b |,.
Given aggregated test examples X':
5. Al < argmina,, >0 F(X'.B1.x, A1:1)
6. Predict X! = B;A!.

Figure 5: Detailed DDSC algorithm. Figure taken from!".

The algorithm has been implemented in Python following the original paper’s
methods. However, we have not succeeded in implementing the extensions that are
presented in the original paper (total energy priors, group lasso, etc.).

16

5.3 EDPF: Energy Disaggregation via Particle Filtering

EDPF is a supervised algorithm that is based on particle filters, which are a common
name for Sequential Monte Carlo methods®?!. The name comes from the fact that
they are used to solve the filtering problem.

Contrary to DDSC, EDPF needs data that is sampled at a high rate (around 1
Hz). The reason for this, as we will see later, is that EDPF needs lots of data in order
to build a model that represents each device accurately. With a granularity of hours
it is not possible to know certainly how often does a device turn on and off.

The filtering problem is, in essence, a problem of inference on hidden Markov
models: it consists in finding the current state of a hidden Markov model (or the
whole series of states since time ¢t = 0) based on only the observations of the model
up to the present®%!. Several algorithms try to solve the filtering problem, given the
nature of the model. The most basic on is the Bayesian filter (311,

Formally, we have a Markov process with states S = {1,2, ... ,n}, with a random
variable X; € S that is the state of the process at time ¢t. The process follows the
Markov property, and we denote the output at time ¢ as Y:. The filtering problem
consists in estimating X1, X2, ... , X¢—1 given Y1,Ys, ... ,Y;. In order to do this, we
need to know the posterior distribution

p(Xe|Y1=y1,Yo =92, ... Vi =)

to know which state is the most likely at time ¢t.

From now on we will use Xi.; as shorthand for X1, X2, ... , X¢. If we apply Bayes’
rule, we have:
p(Y1:4| Xe)p(Xe)

p(Yie)

If we know the parameters of the model (transition probabilities, emission func-
tions, initial state distribution), then we can compute this distribution recursively in
two steps. First, the prediction step:

p(Xie|Y1) =

p(X¢|Y1ie-1) = ZP(Xt|Xt71)p(Xt71\Y1:t71)

This corresponds to calculating the prior probability of the next state, having seen
all the observations until time ¢. After this comes the update step, in which after we
make a new measurement, we refine our beliefs by computing the estimate a posteriori
using Bayes’ rule:

p(Ye| X, Y1:e—1)p(Xe|Yiie—1)
p(YilY1:e-1)

In the fraction, the first factor is a parameter of the model (probability of an
observation given a state), the second factor is the prior, and the denominator acts as
a normalization constant. For this reason, we can omit the denominator and normalize
the probabilities at a later step.

This is the general layout of a recursive Bayesian filter. At each step, it makes a
new prediction a priori, and then updates its beliefs after seeing the evidence. The
advantage of this approach is that it can be done online, without need to store all the
learned distributions at every timestep.

There are other methods to solve the filtering problem, and other kinds of filters
such as the Kalman filter, that can analytically compute the distributions if the shape
of the posterior is Gaussian *? 3], However, these methods are based on assumptions
over the shape of the distribution, or the linearity of the emission functions.

In our case, energy disaggregation is not necessarily gaussian nor linear, given the
power signature of some devices - these are not on/off devices with very clear power
consumptions, but they may be devices such as a drill, that have a continuous range
of power activity. However, as the model increases in complexity, inference becomes

p(Xe|Y1:) = p(X¢|Yiie—1,Ye) =

17

computationally expensive. For these cases we use approximate methods to solve the
filtering problem, and particle filters are one of them.

5.3.1 Particle filters

Particle ﬁlters try to implement a recursive Bayesian filter by successive Monte Carlo
simulations 4. They use a number of particles to represent the posterior distribution
of the state given the observations. These particles have weights which intuitively cor-
respond to the likelihood of the state they represent in the target distribution. As the
number of particles increases, we can better approximate the posterior distribution %

The particle filter works as follows: suppose we have a probability distribution =
that we want to approximate. The Sequential Monte Carlo method approach consists
in sampling this distribution independently N times, giving us IV independent variables
(particles) X" fori € [1,2, ... N]. Then, we can approximate the original distribution

by doing;:
N
. 1 ‘
z) = ;5(X1,x)

where §(z,y) is a function that is defined as 1 if z = y, and 0 otherwise. In literature
this is done using the dirac delta function (301 In the end, the empirical approximation
of the density of x is obtained by sampling the original distribution N times, and
counting how many times we sampled x.

This can also be done if the distribution is over a state space with ¢ multiple values;
in other words, the distribution is over states of the form z1.; = (1,2, ... ,x¢). The
previous formula can be applied:

N
xlt = E X1t,«’r1t

This is usually a problem when the original distribution cannot be sampled from
because it is too complex, or it is unknown. In these cases importance sampling
is commonly used [36], which consists in sampling from a separate distribution g¢(x)
which shares some properties with the target distribution, and samples are weighted
according to the ratio between the two distributions:

(1) E wid (X1, T1:t)

where X1.¢+ ~ q(z) and w; is calculated from the ratio ZE;)) .

5.3.2 Basic algorithm

EDPF works by modelling every device as a HMM, fitting each HMM to the training
data for that device, and then using this information to run a particle filter on the
aggregate signal. We can treat the whole household as a FHMM with k discrete
state variables (one for every device), or as a single HMM with n” states (assuming
each device has n states). In order to learn these HMMs, EDPF needs disaggregated
training data corresponding to the power values of every device during a period of
time. EDPF uses this data to fit HMMs to every device, and in the disaggregation
phase it uses these HMMSs to sample states and weights for a particle filter.

In any case, if we have the parameters of each HMM, we can compute the initial
state distribution p(X1), the transition probabilities p(X¢|X¢—1), and the emission
probabilities p(Y:|X:) of the whole system. For this last term, we assign probability
very close to 1 to a power value Y; that is close to the sum of the individual power
consumptions of every device, and 0 otherwise. Now, we have a good approximation

18

of the distribution p(X;|Y1:+) (using Bayes’ rule), and since it follows the Markov
property, we can easily sample values from it.

Specifically, EDPF runs a bootstrap filter B7]. Particles are represented as a tuple
{z1:4,w¢}, where x1,; is the sequence of states from the beginning of the algorithm,
and w; is the weight of each particle at time ¢. The algorithm is the following:

Algorithm 1 Bootstrap filter

1: P = {af” ~ p(X1),wi” = £},i € [1.N]
2: for every t > 1 do
for every particle p; do

3
4 Sample next state: :cgi) ~ p(Xe| Xe1)

5 Compute particle weight: wgi) =p(X; = x,(f)|Yt)
6: Normalize all weights: wgi) = wgi)/z ng).

7 for every particle p; do

8 p; = resample(P)

9:

return predict(P)

The algorithm works intuitively by having many simulations of the model, each
one corresponding to one particle, with the weights corresponding to the likelihood
of this simulation. At every step in time, we generate our prior belief over the state
of the system, and weight that prediction based on the probability of it happening
once we have made the observation. After having done this for all particles, we do a
resampling step.

Resampling is done to discard very unlikely hypotheses and replace them for more
likely ones. The function resample(P) selects one particle p; € P with probability w;,
since those are normalized weights, and they define a probability distribution. This
results in more likely particles being resampled more times, increasing the chances of
approximating the desired distribution of the model.

At the end, we select a winner explanation which corresponds to the most likely
sequence of states given the observations on the model. The function predict(P)
selects, in the case of EDPF, the particle with the highest weight, but this prediction
can be made in many different forms: we could combine several of the particles with the
highest weights into a single explanation, or even further process the winner particle
given some other information.

The whole bootstrap filtering process is shown in Figure 6.

19

® Drawn Particles

Compute Importance
Weight

o ¢+—o ¢+ \¢——o

Resampling

Move Particles

e e-9 -
p—l o D
o<
00— 40 ¢

o 4———N\t—o

<) Prediction Result

Figure 6: Visualization of the bootstrap algorithm.

5.3.3 Learning device HMMs from data

In order for EDPF to work, we need to know each device’s HMM parameters to
compute the joint probability distributions. As we said before, we need trainin% data
for every device, which corresponds to sequences of values Yl(k)7 YQ(k)7 LY,) for
every device k. EDPF greatly benefits of high sampling rates, as HMMs are fitted by
counting methods, and we need transitions to happen in a very fine way.

Once we have data for every device, we are faced with the problem of fitting a HMM
to that data. There are several ways of doing so, for example using the expectation-
maximization algorithm (EM)®® or the Baum-Welch algorithm % 1% in our case, we
will take a simpler approach. First, we preprocess the signal and approximate it to a
piecewise constant signal, and then we build a HMM with as many states as different
power levels we have observed, with transition probabilities computed by counting
how many timesteps the device was found in each state, and emissions of each state
being that same power value. We have tried two ways of approximating the signal to a
piecewise constant signal: the clustering approach, and the signal denoising approach.

The clustering approach uses k-means 1] ¢ identify k£ important “power levels” for
the device. The most basic clustering is a one-dimensional clustering and corresponds
to an on/off device, but often devices have several power levels (for example, TVs
have a stand-by mode, or microwave ovens work at different powers). In this case, it
is required to fine-tune the k parameter.

A possible option is to include some heuristics during this process to make the
clustering automatic: if with a certain k there are clusters that have very few observa-
tions (for example, less than 2%), then the whole process is repeated with a smaller k
until groups are representative enough. Once all observations are clustered, each point
in the signal is replaced by the representative of its group (computed as the mean or
median).

20

5.3.4 Signal denoising approach

The signal denoising approach uses total variation denoising (TV-denoising) 42 o
achieve a piecewise constant signal. This method tries to minimize the total variation
of a signal y, which is defined as:

TV(y) =D lyn = yn1l
n>0
Informally, it corresponds to the sum of the changes in the signal’s magnitude.
This function is interesting because signals with higher noise tend to have higher total
variation, so if we reduce the total variation while still being close to the original
signal, we will have removed some undesired noise. This idea is very useful for image
processing, and in fact TV-denoising can be used to enhance and remove noise in

Total variation denoising is basically an optimization problem. The TV-denoised
signal x for a given signal y is defined as:

T = argming <Z(yn — xn)Q + A TV(JZ) >

The A parameter controls the degree of smoothing. The bigger A is, the less
fluctuation will be in the resulting signal. It is easy to see that for every signal there
exists a value Apqz in which performing TV-denoising with A > Ajpnqq results in the
trivial solution = mean(y) (a solution with no fluctuation that minimizes the square
erTor).

TVL1 filtering

original
°

Noisy

Filtered
Lo oo
-8 &

L
F

0 200 400 600 800 1000

Figure 7: Total variation denoising allows us to reduce the total variation of a
stgnal while keeping close to the original signal. Top: original signal. Middle:
notsy signal. Bottom: denoised signal using TV denoising.

Once the signal has been denoised, a second pass over the signal transforms it to
a true piecewise constant signal by greedily assigning the non-constant values to the
closest constant power level.

21

5.4 AFAMAP: Additive Factorial Approximate Maximum
A Posteriori

AFAMAP is an algorithm introduced by Kolter and Jaakkola that performs Maximum
A Posteriori inference in additive FHMMs™. A key advantage of AFAMAP over
the rest of algorithms in this report is that AFAMAP is an unsupervised algorithm:
it works over the aggregated signal without the need of a priori knowledge of the
devices of the house. However, it also benefits from having a detailed model of the
house appliances. In this project we will work with a priori information on the house
appliances.

For this reason (and the one-at-a-time assumption, which states that at every data
point, at most one device is changing state), AFAMAP needs a high sampling rate (of
around 1 Hz) to ensure optimal results.

AFAMAP works with two simultaneous models: the additive model and the dif-
ference model. The additive model corresponds to the individual contribution of each
device to the aggregate signal. On the other hand, the difference model corresponds
to changes in the overall power consumption at each timestep: under some assump-
tions, changes in the aggregate signal value can be explained by a single device turning
on/off.

5.4.1 Basic algorithm

In this section we will formalize both the additive and the inference factorial models
which are the base of AFAMAP. Then we will develop the MAP inference problem as
a quadratic programming problem.

The additive factorial model is modelled as follows:

2l ~ Mult(¢™)
a("af?) ~ Mult(P),)
@

1
N

_ 1:N 7

yt|x§) NN(ZF";&)’U),
i=1 !

where N is the number of devices (and thus, the number of HMMs in the model), and
m; is the number of states in the ith HMM, which corresponds to the different number
of states a device can be in. Also, T is the number of timesteps; mgi) is the state of the
ith HMM at time ¢; g; is the observed output at time t, and ,u;i) is the mean of the
ith HMM for state j. Finally, ¢(*) is the initial state distribution for the ith HMM, o
is the observation variance, and P is the transition matrix for the sth HMM.

As one can see, this model follows the Markov property: the first formula represents
the state of the model at the first timestep. Then, the state at successive timesteps
only depends on the previous one, and the probabilities are derived from the transition
matrix. Finally, the output at any time t only depends on the state of the system at
that time, and it corresponds to the sum of individual outputs.

The difference factorial model is modelled similarly. It is still a FHMM, and thus
the HMMs inside it follow the Markov property, and we use the same parameters to
describe it. However, the output at time ¢, which is denoted Ay, is defined as:

N

_ N i]
Agelz" ™ ~ NG () = ul),0)
t

(@)
i=1 Ti-1

22

This means that the output of the difference factorial model at every time ¢ is the
total increase in power with respect to the previous timestep. A comparison between
the two models is shown in Figure 8.

Figure 8: On the left, the additive factorial model. On the right, the difference
factorial model. Original figures from Kolter and Jaakkola’s paper!!?/.

Now, both systems are used together, because the additive model captures the
total aggregate output very well, and at the same time the difference model encodes
the changes in the power signal at every timestep.

Apart from this, a separate third component is added to both additive and dif-
ference models to make the model more robust against outliers. It is a component
than can take any value but that is regularized via total variation. In the additive
model, it is denoted by z:, while in the difference model it is denoted by Az;. This
extra signal will be used to represent the “unexplained” power which is not assigned to
any device, and the total variation regularizer encourages it to take piecewise constant
values, which will represent the unexplained power coming from other devices.

Now, let us model the disaggregation problem as a MAP inference problem. We
will first model the exact MAP inference problem, but afterwards we will relax it using
some key observations in order to develop the final AFAMAP algorithm. The exact
MAP inference is an optimization problem over the variables

Q= {Qz(") e R™, Q(a(,,2(") € R™ <™}
which are indicator variables that satisfy that Q(xgi))y =1 <= mgi) = j, and
Q2 =1 = 2, = j,zl’ = k. These variables are subject to the
following set of constraints L:

Z%Q(wgi))j = 1

p=

Lo ZQEan = Q)
e .
2 Q@lieMes = Q)
Qe QM 2"k = 0

The first constraint imposes that every device must be in exactly one state at all
times. The second and third constraints enforce the relationship between the two types
of indicator variables: if Q(xgi)l, x&i))j,k is true, then both Q(ac,(i)l)J and Q(mﬁ”)k must
also be true.

Now, exact MAP inference can be expressed as optimizing the likelihood of the
models subject to the constraints in £, using binary variables (enforcing Q € {0,1}).

23

This results in a mixed-integer quadratic program, which is hard to solve [44], so the
authors of AFAMAP have relaxed it using some key observations.

The first observation is the one-at-a-time condition, which is reasonable to accept
under high sampling rates (e.g. 1 Hz). The one-at-a-time condition is used to further
limit the set of distributions that could explain the observation. Formally, this can be
represented with this additional constraint:

0= 3 Qna)k<1
0,J,k#j

This constraint simplifies the math, allowing the quadratic component in the prob-
lem to be replaced by a linear component.

The second observation is that we can drop the integer constraint on the variables,
since the nature of the problem encourages integer solutions anyway. Dropping this
constraint turns the problem into a convex linear program which can be solved much
more easily.

The final AFAMAP algorithm is shown in Figure 9:

Input: ¢, € R", aggregate output signal;
,ull,,fx) € R™, state means for N HMMs; ¥£,,%; €
R™*" A1, Ay € Ry, covariance and regularization

parameters

minimize over {Q € LNO, z1.7}

2
1 _ 1/2 i i
52 Yt — El/ 2t — Zﬂj)Q(-"‘«"g))
t ij ot
1 _ @ || (i) ()
T3 HAyz — A ’2*1 Q@ 2y, 2)jik
ti, g k#j 2

+ = ZD ;2 A, A2) I—ZQ o),)))jJ
+ 3 Q). ") k(~log P,ﬁfj)

t,i,j.k

+ M Z ||z — 2t—1H1
t
Output: g}ﬂ}m, predicted individual HMM output

i = Q)
J

Figure 9: The AFAMAP algorithm. Original figure from Kolter and
Jaakkola!1%.

The first term is optimizing the likelihood of the additive factorial model; the
second term corresponds to the difference model. The third component includes the

24

Huber loss function [45], which corresponds to the error the the signal Az in the differ-
ence FHMM model, and intuitively is the error of the signal Az if there has been no
change in the devices, and 0 otherwise. The Huber loss function is the result of an-
alytically optimising the error of Az using the one-at-a-time assumption. The fourth
component is penalizing unlikely transitions, and finally the fifth component is the
regularization term on the “unexplained” signal z;, which encourages it to take on
piece-wise constant values.

The problem can be solved with commercial solvers (such as Gurobi), but in prac-
tice, the total variation term (the fifth term in the AFAMAP problem) is not handled
very well by the software. For this reason, AFAMAP first fixes z, solves the remaining
problem with a commercial solver, and then fixes Q and solves the remaining problem,
which is a total variation regularization problem that can be solved efficiently [46] " This
process is repeated until convergence.

5.4.2 AFAMAP as an unsupervised energy disaggregation algorithm

We mentioned that AFAMARP is an unsupervised algorithm, which is a clear advantage
compared to the other algorithms presented. However, it still needs information about
the devices in a house: specifically, the state means for the devices (i.e. the mean power
consumed in each state) and also the transition matrix for every device (i.e. the usage
pattern of each device).

Kolter and Jaakola %! propose to use total variation regularization to approximate
the signal as a piecewise constant series, which makes the data easier to work with. The
next step consists on finding all the cases in which a device was turned on (making the
power consumption go up by a certain amount) and eventually went back to the original
value. If the sampling is fast enough some individual device power consumptions can
be captured this way, and these are modelled as HMMs. The means of the states
correspond to the observed power change, and the transition probabilities can be
obtained by counting how much time each device spends in each state.

After this, AFAMAP runs spectral clustering to group some of the similar HMMs
together, and the result is fed to the quadratic program that does the MAP inference.
This results in a very powerful algorithm that does not need any training data.

This results in an algorithm that can run in an unsupervised fashion, while at
the same time greatly benefiting of accurate training data and powerful modelling
algorithms.

25

5.5 NILMTK algorithms: COOP and FHMM

We also consider some of the algorithms in NILMTK in our tests, to have a better
insight on how our implementations are working, and how do they compare to others.
Specifically, we will run tests with two of the algorithms in NILMTK.

The first one (abbreviated as CO in the original paper, and COOP here) is based
on combinatorial optimisation*!l. At training time, it clusters each device’s power
consumption values in order to have a set of power states. For example, if the power
consumption of the kth device is (0,0,0,0, 30, 35, 33, 35,28, 35,0,0), COOP clusters
the values and finds two power states: (0, 30).

It then builds a 2d matrix in which each column represents a device, and each
row represents every possible combination of the power values of the devices (in other
words, the Cartesian product of all the device power values). For example, the next
matrix corresponds to a set of 3 on/off devices, with power consumptions 20W, 100W,
and 50W respectively:

0 0 0 0
0 0 50 50
0 100 0 100
0 100 50| _ |150
20 0 0 20
20 0 50 70
20 100 0 120
20 100 50| |170]

At disaggregation time, COOP just finds the row whose sum is nearest to the
aggregated signal. For example, if the signal to be disaggregated is y = (55, 115, 120),
then we can now that at time ¢t = 1 we had only the 3rd device on; at time ¢ = 2 and
t = 3, we had the first one and the second, etc.

The second algorithm, abbreviated as FHMM [11], is very similar to EDPF. In
the training phase, it fits a HMM to every device given the disaggregated training
data; then combines all the HMMSs into a single one. At runtime, it runs the Viterbi
algorithm 7] to find the most likely sequence of states given the observations. FHMM
works with the hmmlearn Python library®, which includes many methods to build and
perform inference on HMMs.

8https://github.com/hmmlearn/hmmlearn

26

5.6 Implementation

As we said in the beginning of this section, we have implemented all three algorithms
DDSC, EDPF and AFAMAP in Python, using libraries such as NumPy and SciPy.
However, our implementation differs from the source material in a few ways.

In the case of DDSC, we have implemented the basic algorithm using the same
methods shown in the original paper ["l. However, I was not able to successfully im-
plement and test the proposed extensions. One of particular interest is the Group
Lasso 48] extension, which tries to group the activations of a device through the set of
houses, but unfortunately this extension had to be dropped from the final algorithm
due to it performing poorly, and also because of the testing environment using only
one house.

In the case of EDPF, the implementation of the bootstrap filter is straightforward.
To compute the updated weights given an observation, I assumed that every state of the
HMM outputs a constant value (the steady state load assumption), but for practical
purposes I modelled them as a normal distribution N ~ (p, 02) with p equal to the
state’s power value, and o set to a small constant. Then, the weight can be computed
as the probability of the observation being sampled from a normal distribution N
which is a sum of normal distributions:

k k
Ni ~ (ZM@ZU?)
1 =1

1=

In the case of AFAMAP, I implemented the quadratic program as seen in the
original paper . However, I used®” to solve the TV regularization problem to
compute the new z for a fixed Q.

Also, I departed from the proposed approach by running a supervised version of
AFAMAP, applying the same method we used in EDPF to build the HMMs. Once
we have the HMMs for the devices, we pass them to the MAP inference quadratic
program. The main reasons behind this choice are simplicity and ease of comparison
with the other algorithms, as now they are all trained and tested using the same data.

27

6 Datasets

The initial scope for this project considered working on different datasets, but due
to time constraints I have reduced the testing to only one of them, REDD. This is
so because it is the most commonly used dataset for energy disaggregation: both
the AFAMAP authors and the NILMTK developers use it for benchmarks. However,
for reference, I will also include in this section GREEND, which is another potential
dataset for testing our algorithms.

6.1 REDD

REDD (Reference Energy Disaggregation Dataset) is a dataset built for the purpose
of energy disaggregation, using readings from 6 different houses (59 The frequency of
the readings is around 1 Hz, but in some cases the readings are done every 3 seconds.

The dataset includes power readings as well as high frequency voltage data that
can be also used for disaggregation. However, since our algorithms only deal with
power consumption, we will ignore the high frequency data.

REDD is the dataset on which tests are run on the original AFAMAP paper.
However, as we mentioned earlier, they do not use the training data; they only take
the aggregate signal and try to disaggregate from there. In our case we will use
the original disaggregate data to build the device HMMs and from there we will run
AFAMAP.

We will access the dataset through NILMTK, as it provides a converter to its file
format. In the experiments, we will run the disaggregation with & = 5 devices, which
are selected as the top 5 consuming devices in each household.

6.2 GREEND

GREEND (GREEND Electrical ENergy Dataset) is a dataset built with energy read-
ings from houses in Italy and Austria®!. It features readings from 8 different houses.
Readings are done with a frequency of 1 per second.

To gather the data, a small computer and storage device was introduced in each
house, along with a series of sensing outlets that would read the appliance energy
consumption at fixed intervals. For more information, the introductory paper to the
dataset contains more details on the setup and case studies. [51]

GREEND: Energy consumption over a 24-hour period

2000
L
-
+—

1500
L

1000
L

Time (n)

Figure 10: Aggregate energy consumption of GREEND’s building0 over the
course of a 24-hour period. Different chunks with very different behaviours can
be identified looking at the aggregate signal.

28

Apart from energy disaggregation (which is tested by the authors with a particle-
filter-based disaggregator), the GREEND paper introduces more problems such as
occupancy detection or appliance usage modelling. The first problem, although inter-
esting, is of less use to us as the second one. Appliance usage modelling consists on
mining the patterns in which devices are used by residents, which can be later used as
extra information for the disaggregation process.

Since GREEND contains fairly consistent 1 Hz readings, there is little preprocess-
ing concerning this issue. However, there are some instances in which the devices failed
to report any power consumption, producing lots of NA values. NILMTK allows to
easily parse the GREEND dataset and read the data while applying a desired function
on the NA values (for example, drop them, but also copy the last non-NA value seen,
for example).

29

7 Methodology

In this section we outline the main experimentation procedure. We have designed
these experiments with the following goals in mind:

e Find out if disaggregation is possible, and if it can be done producing useful
results. We also want the experiments to give us insights on the requirements
of energy disaggregation algorithms and their feasibility.

e Compare the algorithms with respect to three criteria: accuracy, running time,
and scalability.

To do this, we will train and test the algorithms with different power series from
REDD. First, we will train and test the algorithms with the same data. We will com-
pare runtime and accuracy. This serves as a baseline, to see how good the algorithms
are at just running on learned data.

Second, we will train the algorithms on a dataset representing a household’s con-
sumption over a day or a week, and we will test the models the same house, but during
a different period of time.

Third, we will run different tests on very short amounts of time in order to test
AFAMAP against other algorithms.

The specific metrics we will use to compare the algorithms are:
e Run time. Measured in seconds to train, and seconds to disaggregate.

e F-score (F1). Introduced by NILMTK, it is defined as the harmonic mean of
precision and recall of properly classifying devices as on/off (higher F1-scores

are better):
P-R
P=2_-—
! P+R
e Average RMSE (per device). The average of the mean square errors between
the prediction and the real value of each device. This is a continuous value, and
is defined as follows, where § denotes the prediction and y denotes the ground

truth value (lower errors are better):

RMSE =

The majority of the experiments have run on a machine with 16 GB of memory
and a i7-6700k CPU running at 4.00 GHz. The AFAMAP experiments have been run
on a machine with 8 GB of memory and a i5-3230M CPU running at 2.60 GHz, due to
AFAMAP requiring 3rd party software that I was unable to get working on the first
machine.

30

8 Results and discussion

8.1 Exploratory tests: REDD

We will run an exploratory test on the first building of REDD in order to have an idea of
how the disaggregators perform. To do this, we will first train and test the algorithms
on a day worth of data of the first building of REDD, sampling at 1 Hz. Then we will
redo the test with 8 days worth of data, sampling once every 30 seconds, to see how
they scale. The disaggregation here attempts to predict the power consumption of the
top 5 devices in the building.

As we mentioned in section 5, these algorithms are designed to work in environ-
ments with different sampling rates: DDSC works with hourly readings, while the rest
of the algorithms work with a sampling frequency of 1 Hz. For this reason, we expect
DDSC to perform poorly in the following experiments, as they are ran on datasets
with high sampling rate.

The data looks like this:

1400

Fridge
Microwave
Sockets
Light

Dish washer

1200

1000

800

Power (W)

600

; mﬁmmmm

W e

¥ P W

Figure 11: Data for REDD’s building 1. Data for the top 5 appliances is shown
between 19th and 30th of April, 2011.

Training time Prediction time Average Fl-score Average RMSE

FHMM 43.2 9.53 0.84 66.79
COOoP 1.45 0.811 0.37 72.34
EDPF 47.96 121.95 0.67 102.48
DDSC 62.25 2.3 0.54 78.78

Table 3: Results on training and testing on one same day (sampling at 1 s).

Training time Prediction time Average Fl-score Average RMSE

FHMM 16.06 5.21 0.58 136.40
COOP 1.46 2.56 0.45 121.00
EDPF 15.95 33.73 0.45 176.50
DDSC 13.37 1.44 0.33 134.76

Table 4: Results on training and testing on 8 days (sampling at 30 s)

31

We can get an idea of how the disaggregators behave from this short summary.
First, we can see that both FHMM and EDPF take roughly the same amount of time
to train, because they both fit HMMSs to the data. Combinatorial optimization seems
to train pretty quickly, and this is so because it just does some clustering on the input
chunks. DDSC is the algorithm that takes most time to train, probably due to the
size of the matrices it deals with.

In case of disaggregating, all the algorithms run fairly quickly except EDPF, which
for every data point needs to iterate over all the particles. It takes roughly 10x the
time of FHMM, since it is using 10 particles. On the results, we can see how FHMM
performs best, with the least error and the highest average F1-score. EDPF and DDSC
do okay in Fl-score, but EDPF gets the highest error. In following experiments it may
be useful to reduce the sample period for EDPF and increase the number of particles,
to be able to explore more state space.

8.2 Testing all disaggregators

In this section we will expand the testing to other buildings in REDD. The training
has been done on 60% of the data, and disaggregators will be tested on the remaining

40%. Here are the results for each house:

Training time

Prediction time

Average Fl-score

Average RMSE

House 1 FHMM 167.54 5.69 0.45 176.66
CcOooPrP 2.82 1.48 0.36 197.81
EDPF 182.31 61.14 0.5 240.39
DDSC 297.62 10.05 0.2 147.57
House 3 FHMM 86.4 13.87 0.59 124.89
CcOooP 2.62 3.16 0.45 132.72
EDPF 93.49 158.57 0.6 266.44
DDSC 144.0 5.4 0.2 198.98
House 4 FHMM 111.06 15.38 0.43 72.37
CcOooP 2.1 3.71 0.31 71.49
EDPF 117.72 169.65 0.38 91.53
DDSC 173.53 6.14 0.2 48.86
House 5 FHMM 20.51 2.59 0.5 91.15
COOoP 1.82 1.42 0.26 114.32
EDPF 22.72 16.53 0.42 291.46
DDSC 24.46 1.52 0.2 83.61
House 6 FHMM 77.55 13.95 0.44 100.68
COOoP 2.51 3.83 0.44 104.00
EDPF 83.95 149.13 0.46 211.94
DDSC 120.94 5.10 0.33 158.98

Table 5: Results on all the REDD houses with sampling time 5 seconds.

32

Average Fl-score Average RMSE

FHMM 0.48 113.15
COOP 0.36 124.07
EDPF 0.47 220.352
DDSC 0.23 127.6

Table 6: Performance summary of the four algorithms: values are computed by
averaging each house’s results from Table 5.

In these results we can see that even though results tend to be quite different from
house to house, FHMM consistently reports better scores than the other algorithms in
terms of Fl-score and RMSE. The performance of the whole set of algorithms is quite
variable across houses, probably due to the density of the data we have for each one.

An interesting result we can notice here is that EDPF usually achieves an average
Fl-score which is higher than the others, but on the other hand its average RMSE
error is the worst of the whole set. In practice, this means that EDPF identifies better
than the others when is a device on, but it fails to assign it a proper power value.
This is probably due to how EDPF models the power states of each device: a normal
distribution centered at all the potential power state centers, with a constant standard
deviation.

Conversely, DDSC reports consistently bad F1 scores, but surprisingly, the average
RMSE error is better than other algorithms. This means that DDSC has many false
positives/negatives (probably due to the fact that it does not know about each device’s
power), but DDSC on average catches the power value of the devices more effectively.
F1 scores of DDSC could be improved by providing it with more information about
the devices, or simply by cutting off low power values returned by the algorithm. It
may be that there may be many instances in which devices are assigned a very low
value (maybe just a few watts) due to the nature of the matrix computations, so in
this next experiment we will re-run the same tests, but now only with DDSC with a
slight modification so it cuts off power values lesser than 30W.

Average Fl-score Average RMSE

House 1 0.2 147.72
House 3 0.2 199.16
House 4 0.2 48.78
House 5 0.2 83.26
House 6 0.33 160.98

Table 7: Results for DDSC when we cut off the appliance power whenever it’s
less than 30W.

Results for the 30W cutoff can be found in Table 7. Unfortunately, the very-low
power values are not the cause of the low F1 scores. After looking into the results
more in detail, these F1 scores correspond to results in which one or two devices are
not disaggregated properly, while the rest are. These 1 or 2 failing devices have a very
low F1l-score that drives the average result down.

8.3 Testing EDPF with more particles

Now, let’s see how EDPF scales with the number of particles. The hypotheses is that
runtime will scale linearly with the number of particles, but the results may not even
improve: we need to have enough particles to be “lucky” and explore the right part of

33

the solution space. We will re-run EDPF with the same data as before, now with 20,

30, 50, and 100 particles. Here are the results:

Training time Prediction time Average F1-score

Average RMSE

House 1 182.63 112.08 0.49
House 3 96.50 291.44 0.63
House 4 116.92 313.41 0.39
House 5 21.11 29.11 0.42
House 6 82.48 276.93 0.47

Table 8: Results of running EDPF with 20 particles.

242.56
265.11
85.66
291.31
214.72

Training time Prediction time Average Fl-score

Average RMSE

House 1 180.14 166.80 0.49
House 3 93.74 443.60 0.63
House 4 117.47 472.79 0.40
House 5 22.93 44.39 0.42
House 6 86.65 427.35 0.47

Table 9: Results of running EDPF with 30 particles.

231.84
276.78
79.11
286.05
208.24

Training time Prediction time Average F1-score

Average RMSE

House 1 186.85 282.15 0.50
House 3 102.65 743.15 0.60
House 4 125.51 786.23 0.40
House 5 20.98 72.39 0.44
House 6 83.04 694.43 0.49

Table 10: Results of running EDPF with 50 particles.

230.38
265.50
79.10
285.81
205.68

Training time Prediction time Average Fl-score

Average RMSE

House 1 189.63 545.35 0.51
House 3 98.31 1437.31 0.61
House 4 121.56 1540.51 0.40
House 5 21.79 142.05 0.39
House 6 88.19 1375.17 0.50

Table 11: Results of running EDPF with 100 particles.

34

227.95
247.1
75.95

291.70

205.33

Average RMSE per number of particles

300

D —— —— House 1
/\\ —— House 3
—_— —=— House 4
225 - —— House 5
‘_‘_-_'_‘_‘—-Q—
I —— House 6
%]
=
o 160
@© oo
&
2
S
— .
[a] —
0
20 particles 30 particles 50 particles 100 particles

Number of particles
Figure 12: Scaling of EDPF’s average RMSE for different number of particles.

We can see that increasing the number of particles offers marginal improvements
in both the Fl-score and RMSE, and that in some times we get worse results (due to
the random nature of the algorithm). This means that the particles are not the cause
for the low scores, and that the cause is probably the training phase: EDPF needs
to fit better the devices at training time, and no matter how many particles we use,
we cannot explore the true state space if the models we have are wrong. The positive
point about EDPF is that it is very parallelizable, since the scaling in time is linear
with respect to the number of particles, and the sequential Monte Carlo method can
run many of them in parallel.

8.4 Testing DDSC with lower sampling rates

We mentioned that DDSC is designed to work in environments with low sampling rate,
but all the previous tests were performed with sampling rates of less than a minute. We
will now compare how DDSC works with different sampling periods. Due to missing
data, we have only been able to get results from houses 1 and 6 with hourly sampling
rates during a week. This is the performance of DDSC with different sampling rates:

10 minutes 30 minutes 60 minutes

RMSE F1 RMSE F1 RMSE F1
House 1 124.84 0.28 7811 0.20 57.95 0.20
House 6 164.45 0.32 167.11 0.31 14762 0.29

Table 12: DDSC results with lower sampling rates in houses 1 and 6 from REDD
dataset.

As expected, DDSC tends to perform better the lower the sampling rate is; with
the same data, lower sampling rates give lower RMSE, but also lower F1 score. This
means that while DDSC gets worse at classifying what devices are on/off, it gets better
at assigning powers to each one of them. This may be so due to the amount of bases

35

that were used (5 in this test), which may be too few to disaggregate data at a higher
sampling rate, but they work just fine with 1-hour readings.

8.5 Testing AFAMAP: reduced datasets

Unfortunately, managing the amounts of data that the other disaggregators were using
proved to be too much for my implementation of AFAMAP, making Gurobi run out
of memory pretty early in the execution. For this reason, I have reduced the REDD
dataset to multiple shorter-length periods - which AFAMAP can properly handle.
Also, since AFAMAP was implemented under Windows, and the NILMTK installation
failed in that OS, the only algorithms being used in the comparison will be EDPF and
DDSC; the metrics are the same as computed by NILMTK, but manually implemented
using the scikit-learn Python library. Here are the results for House 1 with a sampling
rate of 60 seconds:

AFAMAP DDSC EDPF
RMSE F1 |RMSE F1 | RMSE Fl1
House 1 51687.50 0.85 | 177.17 0.72 | 583938 0.75

Table 13: AFAMAP, DDSC and EDPF on 1 day worth of data, with a sample
period of 60 seconds.

This quick test gives us a bit of insight on how AFAMAP works. The run time
of AFAMARP is not included in this table, as experiments were done in a different
machine but it is very large compared to the other algorithms - AFAMAP takes around
5 minutes to disaggregate one day worth of data.

Second, it is interesting to see such high RMSE reported by AFAMAP (and also
by EDPF). Upon further inspection, this corresponds to some periods of failing to
disaggregate high-profile devices that consume hundreds of watts, which produces
such a very high number. EDPF suffers from this as well, and the reason is the
low sampling rate. This fits exactly with the assumption explained in the AFAMAP
section earlier: it works based on the “one-at-a-time” assumption, which says that at
every data point, only one device at most should be switched on or off. In order to
test AFAMAP better, we need to increase the sampling rate without running out of
memory, which means that we need to take shorter periods of time:

AFAMAP DDSC EDPF
Hour RMSE F1 RMSE F1 RMSE F1

1 3.00 1.0 14.04 1.0 10.08 0.99
House 1 2 10.65 1.0 18.06 1.0 7.29 0.99
3 268.43 1.0 6.1 1.0 34796 1.0
4 10.58 1.0 15.20 1.0 94.16 0.99
1 4.94 0.96 9.18 0.94 7.55 0.95
House 3 2 7.40 0.78 2.19 0.91 66.18 0.92
3 1546.78 0.93 73.78 0.99 3954.64 0.99
4 373.78 0.86 15.02 0.78 416.63 0.89
1 4.94 0.96 45.34 0.95 619.80 0.94
House 4 2 2.75 1.0 941 1.0 11.71 1.0
3 14.56 0.93 8.72 0.92 51.36 0.99
4 32327 1.0 1397 1.0 20741 0.99

Table 14: AFAMAP, DDSC and EDPF on 1 hour intervals with a sample period
of 10 seconds.

36

AFAMAP results are much more sensible now that the sampling rate is increased.
Unfortunately, AFAMAP takes much longer to run (up to half an hour for some
instances), and usually runs out of memory in the machine I used for testing it. For
this reason, we are not able to provide results with bigger samples or offer meaningful
run time comparisons.

It is interesting to see that AFAMAP and EDPF perform poorly on mostly the
same instances. This is probably due to, again, the way we are fitting the HMMs to
the real data. Since AFAMAP and EDPF use the same models, they struggle when
the fitting is not good enough. However, AFAMAP always works better than EDPF,
which provides us with an upper-bound on how good EDPF could be.

When comparing across each house and all these test instances, we can see that
AFAMAP performs as well as the others, and in some cases outperforms them. How-
ever, it has a few disadvantages that make it less preferable than, for example, DDSC,
in this set of experiments. The disadvantages here are the combination of the need
for a high sampling rate and the computational requirements, making AFAMAP hard
to test with in this machine. In a real-life scenario, however, AFAMAP can be de-
ployed as an unsupervised algorithm, and as we said before, this alone can make all
the difference for consumers.

8.6 Conclusions

Thanks to these experiments we have gained some insight into the workings of each
one of the algorithms. It is clear that they have all strengths and weaknesses, and in
some cases it may be preferable to use one before the others.

One of the key factors to decide on a suitable algorithm is the existence of training
data. In a real life application, it may be too hard to acquire training data for most of
the devices in a house. This can be solved by only monitoring a subset of the devices
(e.g. the top 5 appliances in a house), but in the end it is an extra cost that we need
to take into account, and if we have access to this kind of data then we do not need
a disaggregation algorithm. The solution to this problem is to train algorithms across
multiple houses and use the results to test on new houses, but this requires further
research.

Another key factor is the sampling rate: it is more expensive to monitor the power
signal of a household at high sampling rates, and maybe it is just more practical to
have a low sampling rate, lower accuracy algorithm.

For practical purposes, DDSC seems to be the algorithm that could be deployed
right now, as current smart meters make energy readings at hourly ratingsm]. How-
ever, the algorithm needs training data on the home appliances, and for this reason,
DDSC should be trained across multiple houses, offline, in order to learn common
usage patterns for devices. This remains as future work, as we have not explored this
possibility in this project.

The algorithms that require a high sampling rate first need infrastructure to mea-
sure power signal at higher frequencies. They would need high-end smart meters,
or more specific solutions as discussed in'?. If we ignore this issue, the most at-
tractive algorithm is AFAMAP, because it does not require training data. However, it
should be tuned to automatically label the learned device sets with easy to understand
names, maybe with a database of common device behaviours - otherwise AFAMAP
will provide non-actionable feedback, which is not very useful.

We could also apply the same strategy to any other algorithm, and have all algo-
rithms go through a phase of offline training. If this is the case, and we assume that
we have good enough training data, it seems that FHMM would be the best choice; it
is slower than the others, but we have plenty of time to run it, as feedback does not
need to be real-time (it can come with a few hours of delay, or even it can be presented
as a daily report).

37

In conclusion, we have the algorithms to disaggregate our energy signals, but what
we lack right now is infrastructure to deploy them. Unless we are willing to pay for
custom meters and plugs, our best disaggregator candidate right now is DDSC - always
assuming it has access to the smart meter readings.

38

9 Visualizing results

For desaggregation to be useful for a regular user, results have to be presented mean-
ingfully and visually. To achieve this, we have created Endivia (ENergy DIsaggregation
VIsualizing Application) to give users an easy-to-understand graph with a summary
of the disaggregation info.

Endivia is a simple Python script that plots the disaggregated signal in a mean-
ingful way. It works on HDFS files, which are produced by NILMTK and represent
the disaggregated signals of every device, as well as more information. With this data
Endivia allows the user to understand their energy consumption profile at a glance.

Endivia plots the disaggregated data as a line plot, an area chart, and a pie chart.
The line plot is very useful to see the devices usage patterns and their relative con-
sumptions to the others along the time. However, it is hard to combine multiple
devices in this plot, so the area chart stacks them to show which are the most consum-
ing at every point in time. Finally, the pie chart represents the percentage of power
consumed of each device, so it is very easy to see what devices should the consumers
prioritize on if they want to reduce their power consumption.

Here are some screenshots of Endivia’s plots, with the data of house 1 in the
REDD dataset, disaggregating the top 10 appliances and doing it at a sample rate of
30 seconds:

Endivia . e o
File Hel
= = Active devices:
W fridge
o sockets
- W sockets
Bl fridge & light
1600 | sockets 1 & microwave
sockets :“‘”k:"“” -
L _ 1 electric space heater
1400 = light o sockets
microwave o light
1200 B unknown 1 o light
= T electric space heater
= | sockets 1
g . light
2 800| b
& EE light
600
400 |
200 | I
| 1]
ol | -
500 1000 1500 2000 2500
Time steps

200+ 2@

Load data...| Generate data |Draw line plot| Draw area chart| | Draw pie chart| Show Grid

39

Endivia
File Help

other
s | fridge
sockets
sockets
2500 B light

sockets

Power (W)

1500 |

light
light

microwave
2000 | unknqwn |
electric space heater

1500
Time steps

20O+

Load data...| Generate data | Draw line plot| Draw areachart| | Draw pie chart| Show Grid

Endivia
File Help
Percentage of power consumption per device
sockets
sockets
microwave
0O+ &

Load data...| Generate data | Draw line plot| Draw area chart| | Draw pie chart| Show Grid

Active devices:
o fridge

o sockets

o sockets

o light

& microwave
o unknown
& electric space heater
o sockets

o light

o light

Active devices:

o fridge

o sockets

o sockets

o light

 microwave
unknown|
electric space heater
sockets
light
light

In a real-life application, Endivia could be deployed on a smartphone or tablet,
and it would show the disaggregated signal in real time. For now, the initial version
of Endivia only works on batch mode, but it could be easily deployed as a real-time
application. As we have seen in the different studies, a real-time feedback would be

very beneficial to encourage energy saving habits.

40

10

Future work

Even though the presented algorithms manage to disaggregate a signal well, they can
be improved a long way to get even better results. This line of research could be
continued in several ways:

Explore other solutions. As we have seen in section 3, energy disaggregation
can be approached from many different angles. One interesting approach is the
use of deep learning, as this has already been explored for source separation [52],
but it can be worth to explore energy disaggregation as a problem for LSTM
(long short-term memory) neural networks (53] We also have not used the high-
frequency voltage data, which can be added into the models for more powerful
disaggregation.

Training on multiple houses. We may be able to disaggregate the power
signal of a house with training data of that house, but if we want to make a
viable disaggregation solution, we will need to train on a test of houses that is
different from the consumer houses.

Algorithm extensions. The algorithms presented here can all be extended.
In particular, the original DDSC paper presents three separate extensions that
affect the results in different ways; particle filters can be extended with plenty
of heuristics, and the original AFAMAP paper presents a way of learning device
HMMs from the aggregate signal - it would also benefit from being run in a
more powerful machine, or also a cluster. EDPF can also benefit from using
existing libraries to fit HMMs such as hmmlearn.

Further testing and tweaking. Before deploying these algorithms in a real-
life scenario, we need to further test as many cases as we want and tweak the
algorithms so they can automatically adjust to each problem’s particular signa-
ture.

Endivia development and testing. In the future the visualizer could be
deployed on smartphones and tablets to provide users with a quick overview of
their power consumption. As conveying information is hard, there needs to be
some user experience research in order to design a usable visualizer.

Focus on unsupervised methods. The methods we have presented all need
training data to work. However, DDSC can be used to learn appropriate bases
from a training set and then use those to disaggregate the signal of a different set
of houses; also, EDPF and AFAMAP can be run in an unsupervised way. This
would prove to be quite useful to the end user, avoiding the need for installing
smart meters in their homes. Energy companies could use the solution to provide
the users with real-time or almost real-time feedback.

Commercialization. One possible outcome of this research is the creation
and sale of a new product. To do this, a market study needs to be carried out
and then a strategy must be designed around the study. Given the state of the
energy industry and the introduction of smart meters, this could potentially be
a commercially successful product.

41

11 Conclusion

In this project we have implemented and compared multiple algorithms for energy
disaggregation. This process, also known as non-intrusive load monitoring, promises to
be a great tool to estimate our power consumption and grow healthy habits, as multiple
studies have shown. On the technical side, NILM can be performed in many different
ways: from basic signal processing techniques, to more sophisticated probabilistic
analysis, machine learning or optimization problems. On the consumer side, NILM
is a tool that has shown to have a positive impact on users’ habits, and can make
consumers save money and protect the environment.

Specifically, we have explored three algorithms: DDSC, based on sparse coding;
EDPF, based on particle filters; and AFAMAP, based on integer programming. We
have integrated DDSC and EDPF in NILMTK, which is an open-source toolkit that
aims to unify development and testing of NILM algorithms. We have tested the
different algorithms on the REDD dataset, and the algorithms have shown acceptable
results, sometimes outperforming NILMTK’s algorithms. Maybe more important than
this, we have gained some insight into the disaggregation process and the algorithms’
behaviours and requirements.

Energy disaggregation remains an open problem, but many research groups are
tackling the problem from different fronts, and our interest in this area grows every
year. As more powerful techniques (for example, deep learning) start being a part
of many commercial products, and as more data is available, we will start to see
commercial disaggregators for the public to use. Only at that point we will be able to
see whether energy disaggregation is a viable solution for us to acquire better habits.

42

References

1]

2]

(12]

(13]

(14]

(15]

George W Hart. Nonintrusive appliance load monitoring. Proceedings of the
IEEE, 80(12):1870-1891, 1992.

B Neenan, J Robinson, and RN Boisvert. Residential electricity use feedback: A
research synthesis and economic framework. Flectric Power Research Institute,
2009.

Sarah Darby et al. The effectiveness of feedback on energy consumption. A
Review for DEFRA of the Literature on Metering, Billing and direct Displays,
486:2006, 2006.

Agnim Cole, Alexander Albicki, et al. Algorithm for nonintrusive identification
of residential appliances. In Circuits and Systems, 1998. ISCAS’98. Proceedings
of the 1998 IEEFE International Symposium on, volume 3, pages 338-341. IEEE,
1998.

Christopher Laughman, Kwangduk Lee, Robert Cox, Steven Shaw, Steven Leeb,
Les Norford, and Peter Armstrong. Power signature analysis. Power and Energy
Magazine, IEEE, 1(2):56-63, 2003.

Shwetak N Patel, Thomas Robertson, Julie A Kientz, Matthew S Reynolds, and
Gregory D Abowd. At the flick of a switch: Detecting and classifying unique
electrical events on the residential power line. Lecture Notes in Computer Science,
4717:271-288, 2007.

J Zico Kolter, Siddharth Batra, and Andrew Y Ng. Energy disaggregation via
discriminative sparse coding. In Advances in Neural Information Processing Sys-
tems, pages 1153-1161, 2010.

Jack Kelly and William Knottenbelt. Neural nilm: Deep neural networks applied
to energy disaggregation. arXiv preprint arXiv:1507.06594, 2015.

Dominik Egarter, Venkata Pathuri Bhuvana, and Wilfried Elmenreich. Paldi: On-
line load disaggregation via particle filtering. Instrumentation and Measurement,
IEEE Transactions on, 64(2):467-477, 2015.

J Zico Kolter and Tommi Jaakkola. Approximate inference in additive factorial
hmms with application to energy disaggregation. In International conference on
artificial intelligence and statistics, pages 1472-1482, 2012.

Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knottenbelt,
Alex Rogers, Amarjeet Singh, and Mani Srivastava. Nilmtk: an open source
toolkit for non-intrusive load monitoring. In Proceedings of the 5th international
conference on Future energy systems, pages 265-276. ACM, 2014.

K Carrie Armel, Abhay Gupta, Gireesh Shrimali, and Adrian Albert. Is disaggre-
gation the holy grail of energy efficiency? the case of electricity. Energy Policy,
52:213-234, 2013.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: bringing order to the web. 1999.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5(1):3-55, 2001.

Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

43

(16]

(17]

(18]

(19]

20]

29]

(30]

(31]

Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257—-286, 1989.

Julian Kupiec. Robust part-of-speech tagging using a hidden markov model.
Computer Speech € Language, 6(3):225-242, 1992.

Anders Krogh, BjoErn Larsson, Gunnar Von Heijne, and Erik LL. Sonnhammer.
Predicting transmembrane protein topology with a hidden markov model: appli-
cation to complete genomes. Journal of molecular biology, 305(3):567-580, 2001.

Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models.
Machine learning, 29(2-3):245-273, 1997.

Tuomas Virtanen. Speech recognition using factorial hidden markov models for
separation in the feature space. In INTERSPEFECH. Citeseer, 2006.

Bernd Fischer, Volker Roth, Franz Roos, Jonas Grossmann, Sacha Baginsky,
Peter Widmayer, Wilhelm Gruissem, and Joachim M Buhmann. Novohmm:
a hidden markov model for de novo peptide sequencing. Analytical chemistry,
77(22):7265-7273, 2005.

Gautham J Mysore, Paris Smaragdis, and Bhiksha Raj. Non-negative hidden
markov modeling of audio with application to source separation. In Latent variable
analysis and signal separation, pages 140-148. Springer, 2010.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: open source scientific
tools for {Python}. 2014.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse
coding algorithms. In Advances in neural information processing systems, pages
801-808, 2006.

Tan Jolliffe. Principal component analysis. Wiley Online Library, 2002.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning
structured prediction models: A large margin approach. In Proceedings of the
22nd international conference on Machine learning, pages 896-903. ACM, 2005.

Michael Collins. Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-Volume 10,
pages 1-8. Association for Computational Linguistics, 2002.

Adrian Smith, Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential
Monte Carlo methods in practice. Springer Science & Business Media, 2013.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of Nonlinear Filtering, 12(656-704):3,
2009.

Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gaetano Borriello.
Bayesian filtering for location estimation. IEEE pervasive computing, (3):24-33,
2003.

Richard J Meinhold and Nozer D Singpurwalla. Understanding the kalman filter.
The American Statistician, 37(2):123-127, 1983.

44

33]

34]

(35]

(40]

(41]

(47]

(48]

PJ Hargrave. A tutorial introduction to kalman filtering. In Kalman Filters:
Introduction, Applications and Future Developments, IEE Colloguium on, pages
1-1. IET, 1989.

Christopher Z Mooney. Monte carlo simulation, volume 116. Sage Publications,
1997.

M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174-188, 2002.

John Geweke. Bayesian inference in econometric models using monte carlo in-
tegration. Fconometrica: Journal of the Econometric Society, pages 13171339,
1989.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear /non-gaussian bayesian state estimation. In Radar and Signal Process-
ing, IEE Proceedings F, volume 140, pages 107-113. IET, 1993.

Tood K Moon. The expectation-maximization algorithm. Signal processing mag-
azine, IEEE, 13(6):47-60, 1996.

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization
technique occurring in the statistical analysis of probabilistic functions of markov
chains. The annals of mathematical statistics, 41(1):164-171, 1970.

Lloyd R Welch. Hidden markov models and the baum-welch algorithm. IEEFE
Information Theory Society Newsletter, 53(4):10-13, 2003.

James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297. Oakland, CA, USA., 1967.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992.

Antonin Chambolle. An algorithm for total variation minimization and applica-
tions. Journal of Mathematical imaging and vision, 20(1-2):89-97, 2004.

Daniel Bienstock. Computational study of a family of mixed-integer quadratic
programming problems. Mathematical programming, 74(2):121-140, 1996.

Peter J Huber et al. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73-101, 1964.

Alvaro Barbero and Suvrit Sra. Fast newton-type methods for total variation
regularization. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 313-320, 2011.

G David Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268—
278, 1973.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 68(1):49-67, 2006.

Laurent Condat. A direct algorithm for 1d total variation denoising. IEEE Signal
Processing Letters, 20(11):1054-1057, 2013.

45

[50]

[51]

[53]

J. Zico Kolter and J. Johnson. REDD: A public data set for energy disaggregation
research. Proceedings of the SustKDD workshop on Data Mining Applications in
Sustainability, 2011.

Andrea Monacchi, Dominik FEgarter, Wilfried Elmenreich, Salvatore
D’Alessandro, and Andrea M Tonello. Greend: An energy consumption
dataset of households in italy and austria. In Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on, pages 511-516.
1IEEE, 2014.

Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and Paris Smaragdis. Deep
learning for monaural speech separation. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on, pages 1562-1566. IEEE,
2014.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with Istm. Neural computation, 12(10):2451-2471, 2000.

46

