
Service and Information System Engineering
Campus Diagonal Nord
Edifici Ω
C. Jordi Girona, 1-3.
08034 Barcelona
Spain
+34 93 413 78 39
www.essi.upc.edu

Institut Supérieur d’Informatique, de
Modélisation et de leurs Applications

1 rue de la Chebarde
TSA 60125

CS 60026
63178 Aubière Cedex

France
www.isima.fr

Experimenting with Genetic Algorithms
to resolve the Next Release Problem

Valentin Elvassore

July 2016

Master Thesis

Master in Innovation and Research in Informatics

Specialization Service Engineering

ESSI Supervisors: David Ameller, Xavier Franch Gutiérrez

ISIMA Supervisor: Vincent Barra

www.essi.upc.edu
www.isima.fr

Acknowledgements

I would like to acknowledge all the people who helped me before and during my thesis.

First, I would like to thank Xavier Franch Gutiérrez and David Ameller who proposed

the subject of the thesis and followed the progress of my work helping me and organising

frequent meetings.

Then, I would also like to thank Vincent Barra and the administrative staff of ISIMA.

In addition to helping me organise my internship at ESSI, they also ensured that every-

thing was passing fine.

Finally, I am grateful for the assistance provided by the staff of both ESSI and FIB

to facilitate my incorporation and my daily work.

i

ii

Abstract

Nowadays, there are more and more software and applications which are often provided

through a sequence of development cycles. In this context, a problem emerges: how to

determine which features, among the ones requested by their clients, have to be developed

during the next cycle. This is the Next Release Problem. The main issue of this problem

is to maximise the value of the next release while minimising its development cost this

is why this problem is considered as multi-objective. Due to its complexity this problem

is classified as NP-hard, therefore it is unsolvable by exact techniques so an appropriate

way to resolve it is using heuristics such as genetic algorithms.

In this thesis, the Next Release Problem is reformulated in order to better fit with

current research challenges, considering the available development resources and assigning

employees only to features they are skilled for. Indeed, the cost is considered as human

hours instead of money and the value as priority instead of customer importance. This

reformulation allows producing a precise planning of features to develop.

This thesis consists first in gathering knowledge about the Next Release Problem and

about its resolution methods, especially on genetic algorithms. After that the aim is to

implement this problem into a java software using the jMetal framework which provides all

the necessary tools to solve multi-objective problems. This implementation has to consider

the precedence constraints between features, the availability of the human resources and

the skills they possess have to match with those requested by the features to be developed.

Moreover, as the traditional Next Release Problem has to be on budget, our version has

to respect the end date of the cycle development.

To attain these objectives, two programs are developed. The first is a data generator

which creates features, employees and skills according to parameters in order to be pro-

cessed by the Next Release Problem solver. The second is an interface that allows the

user to execute a parametrised algorithm on a generated data set. These two programs

reinforce the tests done previously and ensure that the solver works normally whatever

the processed data.

Finally, as a universal better algorithm does not exist for solving all the multi-objective

problems, the aim is to define an experiment method and to apply it in order to determine

which genetic algorithm better solves the Next Release Problem as it is formalised in this

thesis. To do this, it is necessary to be able to compare the results of two different

algorithms on the same instance of the Next Release Problem.

Then, in order to match with real cases of the Next Release Problem, some real data

iii

coming from a company participating in the SUPERSEDE H2020 project was used as a

reference to estimate the number of employees, the number of skills and the number of

precedence constraints engaged for developing a certain amount of features.

Concerning the experiment, it was decided to realize three instances: one which con-

siders the size of the problem, one which attaches importance to the number of employees,

keeping constant the number of features and the last which varies the number of features

with a constant number of resources.

This thesis considers the following genetic algorithms to solve the Next Release Prob-

lem: the Multi-Objective Cellular genetic algorithm (MOCell), the Non-dominated Sort-

ing Genetic Algorithm II (NSGA-II), the Pareto Envelope-based Selection Algorithm II

(PESA-II) and the Strength Pareto Evolutionary Algorithm II (SPEA-II).

These results figure out that MOCEll is the genetic algorithm which finds the better

solutions in all the three experiments. It is also the faster one. On the other hand,

PESA-II has shown the worst results of the genetic algorithms experimented. Between

these two extremes, NSGA-II and SPEA-II can provide good results in reasonable times,

especially when the size of the problem is high. Furthermore, it is observed that the rate

of employees by feature does not influence the results quality with MOCell as it does for

the PESA-II and SPEA-II algorithms.

Concerning the computing time, there are some variations depending on the algorithm:

the faster is MOCell which can resolve the Next Release Problem in less than a second

when SPEA-II, the more time-consumer, needs 10 seconds. About the realization of each

experiment protocol, it lasts between 120 and 280 minutes.

Key words: next release problem; genetic algorithms; experimenting; jMetal

iv

French Summary

Introduction

De nos jours, on fabrique de plus en plus de logiciels et d’applications. Les entreprises

adoptent souvent un développement par cycle pour leur réalisation afin d’avoir un retour

rapide sur ce qui a été fait et pouvoir s’adapter à de nouvelles demandes. La résolution

du Next Release Problem (le problème de la prochaine version) permet de sélectionner,

parmi toutes les fonctionnalités souhaitées par les clients, une liste de fonctionnalités à

développer lors du prochain cycle de développement.

Ce problème met en avant deux objectifs en conflit à réaliser que sont la minimisation

du coût de développement et la maximisation de la valeur apportée aux clients les plus

importants. Ce problème a une trop grande complexité pour être résolu à l’aide de

méthodes exactes et nécessite l’emploi d’heuristiques. Parmi ces méthodes, cette thèse

se focalise sur les algorithmes génétiques et devra déterminer lequel fournit les meilleures

performances pour la résolution du problème.

Lors de cette thèse, après une première étape d’apprentissage sur le problème et ses

méthodes de résolution, il sera nécessaire d’adapter sa définition puis de créer un pro-

gramme exécutant un algorithme choisi sur des instances du Next Release Problem.

Ces instances seront créées par un second programme à développer qui devra utiliser

des valeurs paramétrables pour une génération au plus près des cas réels. Finalement,

une méthode d’expérimentation devra être trouvée et utilisée pour déterminer quel est

l’algorithme génétique le plus adapté à notre version du Next Release Problem.

Contexte

État des lieux

Une partie importante de cette thèse a été consacrée à la recherche d’informations

et d’articles afin d’en connaitre plus sur le Next Release Problem et ses méthodes de

résolutions et plus spécifiquement sur les algorithmes génétiques.

Le Next Release Problem considère habituellement une liste de clients avec leur im-

portance relative à l’entreprise ainsi que les fonctionnalités que chacun veut voir réalisées.

Dans cette thèse, le problème a été reformulé pour s’adapter au projets de recherche, tenir

v

compte des ressources disponibles et pouvoir produire un planning précis au lieu de la

simple liste de fonctionnalités à développer.

La version utilisée dans cette thèse ne considèrera plus des clients mais un niveau de

priorité affecté à chaque fonctionnalité et ce sera la somme des priorités des tâches plan-

ifiées qui devra être maximisée. En ce qui concerne le coût de développement d’une fonc-

tionnalité, il a été remplacé par le nombre d’heures de travail nécessaire à sa réalisation.

Le deuxième objectif consiste à minimiser le nombre d’heures nécessaire à la réalisation des

fonctionnalités planifiées, tout en ne dépassant pas la date de fin du cycle de développement.

C’est l’optimisation de ces deux objectifs contradictoires qui fait de ce problème un

problème multi-objectifs.

Pour résoudre ce problème, cette thèse devra déterminer quel est l’algorithme génétique

qui trouve les meilleures solutions. Les algorithmes génétiques font partie de la famille des

algorithmes évolutionnistes et se comportent comme décrit sur la figure 1. Ils commencent

par générer une population de base puis vont successivement sélectionner des individus,

les modifier grâce à des mutations et des croisements puis les évaluer plusieurs fois jusqu’à

ce qu’une condition soit atteinte (un nombre d’itérations, une qualité attendue, . . .).

Figure 1: Fonctionnement des algorithmes génétiques

Planning

Après deux semaines de recherches et de lectures sur le contexte de la thèse, nous

avons décidé de la découper en trois parties comme sur le diagramme de Gantt de la

figure 2. La première de ces 3 étapes consiste à réaliser l’implémentation du problème

et de sa résolution en un programme java. La seconde devra montrer que la première

partie fonctionne correctement en permettant de générer des instances du problème et

en les résolvant grâce à un algorithme choisi. Enfin, c’est lors de la dernière étape que

sera définie et appliquée la méthode d’expérimentation qui déterminera quel algorithme

génétique apporte les meilleures performances pour résoudre notre version du Next Release

Problem.

À la fin de la thèse, le diagramme a été actualisé tel que sur la figure 3. Ce diagramme

montre que la première des trois étapes a duré beaucoup plus longtemps que prévu. En

effet, cette étape a nécessité des recherches et un temps de familiarisation des outils. Les

deux étapes suivantes ont été raccourcies et non pas eu besoin du temps initialement

vi

1er Février – 8 Juillet 2016

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Démonstration du concept

Installation Comparaison

Lectures sur le problème

Familiarisation avec jMetal

Implémentation
du problème

Création du générateur
et de l’éxécuteur

Expérimentation

Rédaction du rapport

Préparation de
la présentation

Figure 2: Diagramme de Gantt initial

planifié puisque la majorité des recherches avait déjà été faite.

Outils

Pour l’implémentation des programmes à fournir durant cette thèse, il a été imposé

le langage java et l’utilisation de la bibliothèque jMetal. Cette bibliothèque fournit de

nombreux outils pour résoudre des problèmes à l’aide de méta-heuristiques et propose

déjà l’implémentation des algorithmes les plus connus.

De plus, certains outils supplémentaires ont été utilisés pour le suivi et la qualité du

projet:

Git : C’est un logiciel de controle de version très utilisé pour le développement informa-

tique. Je l’ai utilisé afin de conserver un historique des changements, pour partager

l’avancement avec mes superviseurs et pour conserver une sauvegarde sur un serveur.

Trello: C’est une application web qui permet de suivre l’avancement d’un projet. Elle

propose de définir des tâches sous formes de cartes que l’on peut déplacer entre les

états d’avancement: à faire, en cours ou terminée.

JUnit : C’est un cadre logiciel d’outils de tests unitaires pour le langage java. Avec cet

vii

1er Février – 8 Juillet 2016

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Démonstration du concept

Installation Comparaison

Lectures sur le problème

Familiarisation avec jMetal

Implémentation
du problème

Création du générateur

Corrections et améliorations

Programme exécuteur

Experimentation

Rédaction du rapport

Préparation de
la présentation

Figure 3: Diagramme de Gantt final

outil, j’ai pu m’assurer que le comportement du programme continuait de fonction-

ner malgré l’ajout de nouvelles fonctionnalités.

JFreeChart : C’est une bibliothèque java qui permet de présenter des données sous forme

de graphiques. Elle est très complète et propose toutes sortes de graphiques, ce qui

m’a permis de choisir le plus adapté pour présenter les résultats des experimenta-

tions.

Développement

Implémentation du problème

La première étape du développement a consisté en l’implémentation du problème avec

l’utilisation de la bibliothèque jMetal. Cela a donné lieu à la création de classes dérivant

des entité de base de la bibliothèque comme présenté sur le diagramme de classes de la

viii

figure 4.

Figure 4: Diagramme de classes du coeur de l’implémentation

Les classes servant à la définition et à la résolution du problème multi-objectifs sont

NextReleaseProblem qui définit les données du problème et qui évalura les PlanningSo-

lution qui contiennent les variables du problème. Chaque solution contient en effet une

liste de fonctionnalités à implémenter dans la prochaine itération dans l’ordre de leur

plannification.

Outres ces deux classes fondamentales, on trouve les principales entités du problème

: PlannedFeature qui regroupe la Feature à réaliser et l’Employee qui s’en chargera, Skill

qui fait le lien entre une fonctionnalité et les employés qui sont qualifiés pour la réaliser

et PriorityLevel qui permet de définir la valeur ajoutée pour chaque fonctionnalité.

Il a aussi fallut surcharger les opérateurs des algorithmes génétiques que sont la muta-

tion et le croissement. L’opérateur de mutation passes toutes les fonctionnalités en revue

et décide de les modifier ou d’en ajouter de nouvelle avec une probabilité Pm = 1
nbtaches

pour chaque fonctionnalité. Quant à l’opérateur de croisement, il coupe les parents en

deux selon une probabilité Pc = 0.8 et inverse les deux fins en faisant attention de ne pas

planifier une tâche deux fois.

Finalement, le résultat de la résolution d’un problème produit un planning des fonc-

tionnalités à développer, reliées aux employés qui en sont en charge.

Un ensemble de tests a été développé et exécuté à chaque modification importante

pour s’assurer que le programme continue de fonctionner comme attendu.

ix

Utilisation de l’implémentation

Après avoir implémenté le prolbème et sa résolution, deux programmes ont été créés.

Le premier est un générateur d’instances du problème qui permet d’effectuer des tests

sur des problèmes générés aléatoirement. Ce générateur est en charge de créer les listes

d’employés, de fonctionnalités et de compétences.

Afin de générer des instances réalistes des problèmes, il a été extrait des valeurs qui

relient le nombre de fonctionnalités aux nombres des autres entités grace à des données

fournies par des entreprises participant au projet SUPERSEDE.

Le second programme permet de générer une instance du problème et de lancer

sa résolution par l’algorithme voulu à travers une interface (figure 5) qui permet de

paramétrer cette exécution.

Figure 5: Interface graphique exécutant les algorithmes

Expérimentation

L’implémentation du problème et de son générateur étant fonctionnels, la dernière

étape consiste en la définition et l’exécution d’une méthode d’expérimentation. J’ai

d’abord défini un indicateur de qualité basé sur la valeur des objectifs d’une solution

pour comparer les résultats des différents algorithmes. Il a ensuite été décidé de réaliser

trois expériences:

• La première expérience fait varier la taille du problème pour voir si quel est le

meilleur algorithme pour une taille donnée.

x

• La deuxième expérience considère un nombre constant d’employés et fait varier le

nombre de fonctionnalité pour voir si cela influe sur le meilleur algorithme.

• Finalement, la dernière expérience fait varier le nombre d’employés pour un nombre

constant de fonctionnalités pour voir si un algorithme se comporte mieux lorsque

les ressources sont limitées.

Ces trois expériences ont donné un résultat similaire, visible sur la figure 6, qui est

que l’algorithme MOCEll apporte des meilleures solutions à problème identique quelque

soit la taille du problème. Il met aussi en exergue que l’algorithme PESA-II donne les

plus mauvais résultats. Les algorithmes NSGA-II et SPEA-II donnent des résultats in-

termédiaires voire égaux lorsque le nombre de fonctionnalités à développer et égal au

nombre d’employés.

Figure 6: Résultat des expérimentations

En terme de performances, MOCell est aussi l’algorithme le plus rapide (moyenne de

50 ms par exécution) alors que l’algorithme SPEA-II met 200 fois pus de temps (moyenne

de 10 secondes).

xi

Conclusion

Cette thèse m’a permis d’acquérir de nombreuses connaissances sur le Next Release

Problem et ses méthodes de résolution mais aussi plus généralement sur les méthodes de

travail appliquées aux projets de recherche.

Lors de ces 22 semaines, le problème a été redéfinit puis implémanté. Il a été créé un

générateur de tests pour pouvoir mesurer les performances des algorithmes lorsqu’ils sont

exécutés sur des cas réalistes.

Finalement, un protocole d’expérience a été définit puis exécuté et a déterminé que

MOCEll est l’algorithme qui, en plus d’être le plus rapide, est celui qui fournit les

meilleures solutions et ce quelque soit la taille du problème ou le taux de ressources

disponibles.

Du fait que les méthodes de résolution heuristiques sont en constante évolution, cette

étude pourrait être complétée par la comparaison d’autres types d’algorithmes que les

algorithmes génétiques

xii

Introduction, Motivation and Goals

Nowadays, there are lots of software, applications and web services and their develop-

ment is more and more split into development cycles. In fact, instead of developing all

the features and deliver only once, the providers and the users often prefer to meet them

during the development process in order to discuss and adapt the last improvements done

according to their needs.

A difficulty that occurs when a software is developed using development cycles is to

determine the order of the features to develop and even more what will be the features

to develop in the next cycle. This is the objective of the Next Release Problem. It

considers the resources available and determines what has to be developed in the next

cycle considering the costs and the importance of each feature.

Because of the complexity of this problem[1], its resolution needs to be done using

heuristic algorithms. Although this problem is well known, its resolution considering it

as a multi-objectives problem is quite recent and the first paper published about it was

in 2007[2].

In this thesis, we will only focus on the genetic algorithms. There are several genetic

algorithm implementations, some better suited to solve some problems than others and

the main objective of this thesis is to determine which of these performs better to solve

the Next Release Problem.

This thesis was made in the context of the European project SUPERSEDE1 whose

global motivation is to incorporate more the users needs and feedback into the software

development process (creation, evolution and adaptation).

The rest of the master thesis is organised as follows: First section provides information

about the Next Release Problem and the genetic algorithms. The second section describes

the context of related work. In section 3, I present the time organisation of the project

while in section 4, I present the tools used. Section 5 is dedicated to the development of

the thesis and the next one to the experimentation part. Then there is an evaluation and

the last section is the conclusion.

1www.supersede.eu

xiii

www.supersede.eu

xiv

Table of Contents

Acknowledgements i

Abstract ii

French Summary v

Introduction, Motivation and Goals xiii

1 Background 3

1.1 The Next Release Problem . 3

1.2 Genetic Algorithms . 5

2 State of the art 9

3 Planning 11

4 Tools 13

4.1 Presentation of the jMetal framework . 13

4.2 Other tools used . 14

5 Development 15

5.1 Set-up . 15

5.2 Proof of concept . 22

6 Experimentation 27

6.1 Quality of a solution . 27

6.2 Experiment protocol . 28

6.3 Results . 28

6.4 Computing time . 30

7 Evaluation 33

7.1 Results . 33

7.2 Planning . 33

7.3 Personal comments . 33

Conclusion 35

xv

References 36

Appendices 39

A Test Cases 41

xvi

List of Figures

1 Fonctionnement des algorithmes génétiques vi

2 Diagramme de Gantt initial . vii

3 Diagramme de Gantt final . viii

4 Diagramme de classes du coeur de l’implémentation ix

5 Interface graphique exécutant les algorithmes x

6 Résultat des expérimentations . xi

1.1 Illustration of the Next Release Problem 4

1.2 Main steps of Genetic Algorithms . 6

1.3 Illustration of Mutations on binary examples 6

1.4 Illustration of a Crossover Operation . 7

3.1 Initial Gantt Diagram . 12

4.1 Class Diagram of the jMetal’s Core Architecture 13

5.1 Class Diagram of the Problem Domain . 16

5.2 Class Diagram of Employee’s Weekly Planning 20

5.3 Example of a HTML outcome . 21

5.4 Graphic Interface which executes algorithms 25

6.1 Results of Experiment 1 . 30

6.2 Results of Experiment 2 . 31

6.3 Results of Experiment 3 . 32

7.1 Final Gantt Diagram . 34

A.1 Output of the simplest test case . 41

A.2 Output of the simple optimisation test case 42

A.3 Output of the precedence test case . 42

A.4 Output of the precedences test case . 43

A.5 Output of the skills test case . 43

A.6 Output of the employee overflow test case 44

A.7 Output of the employee overflow test case 44

1

2

Background

In this section, I’m going to explain and detail the main concepts of my thesis that

are the Next Release Problem and genetic algorithms.

1.1 The Next Release Problem

1.1.1 Classical Definition

Any company involved in the development and the maintenance of a large and complex

software product is faced with the problem of determining what should be in its next

release. The goal to solving this problem is to obtain the list of the features to add in the

next release, considering the following inputs[1]:

Features The list of enhancements needed by the customers, with their cost,

Precedence constraints Some features need the realisation of others to be computed,

Customers The list of the customers with their value for the company considering that

we have to favour features needed by the most important client for the company,

Requirements The requirements needed for each feature development,

Budget The budget of the company for the cycle is limited and must not be exceeded.

The objective of solving the Next Release Problem is to select the feature of the most

important clients within constraints and budget. This decision is very important for the

company and can have serious consequences.

Satisfying each requirement entails spending a certain amount of resources which can

be translated into cost terms. In addition, satisfying each requirement provides some

value to the software development company. The problem is selecting the set of require-

ments that maximize total value and minimize required cost. These two objectives are

conflicting, which is why the problem is considered as multi-objective[2].

3

Feature 1

Feature 2 Feature 3

Customer 1 Customer 2

Figure 1.1: Illustration of the Next Release Problem

The Figure 1.1 illustrates an example of a Next Release Problem: assuming that the

budget allows the development of only 2 features, we must choose to develop Feature 1

because it is needed for the other features. Concerning the second enhancement to develop,

Feature 2 and Feature 3 will be settled according to the importance of their respective

customer for the company.

1.1.2 Thesis adaptation

In order to make the problem more generic and to fit with the needs of the SUPER-

SEDE project, we have adapted it considering the following changes:

• The Customer concept disappears, replaced by a priority level attributed to each

feature,

• Apparition of Human Resources hours instead of cost: we attach a list of employees

to the development cycle with their weekly availability,

• Apparition of a Skill concept: each feature needs a skill to be performed and can

be executed only by employees that possess it,

• The global budget is replaced by an end date (described as a number of weeks and

the number of working hours by week)

• The objective of maximising the value becomes that of maximising the number of

features, weighted by their priority,

• The objective of minimising the cost becomes that of minimising the end date.

These changes allow the investigation projects to be considered as they are not strictly

concerned by customers and as they consider the cost in term of human hours. Moreover,

they enable the possibility to produce a precise planning instead of only obtaining the

list of features to plan. Finally, it ensures to have the necessary resources to perform the

scheduled features.

4

1.1.3 Formal definition

Let us consider the set of n possible features to execute in the iteration: F =

{f1, . . . , fn} with their corresponding positive duration di > 0; i = 1, . . . , n and priority

value pi; i = 1, . . . , n. Moreover, we associate to each feature a variable xi ∈ {0, 1}; i =

1, . . . , n. If xi = 1 the feature fi will be scheduled otherwise it will not be.

Thus, we consider the problem with the two following objective functions:

Minimise
n∑

i=1

di · xi

Maximise

n∑
i=1

pi · xi

Besides, let us define two types of constraints:

• We have to assume a directed acyclic graph G = (R,E) with E the set of precedence

constraints, modeled by arcs (f, f ′) which means that the feature f ′ needs the feature

f to be terminated to start.

• The development cycle lasts w weeks with h hours by week which means the end

date e can not exceed e = w × h.

The trouble with the Next Release Problem is that its solving time grows exponentially

with its number of enhancements (it is NP-hard[1]) so that it is unthinkable to get the

best solution with traditional solving tools with more than a dozen of features[2].

1.2 Genetic Algorithms

Nowadays, there are some problems that we can not resolve in a reasonable time.

For this reason, we can use heuristics. These algorithms do not certify that the optimal

solution will be obtained but the result will be close and produced in due time.

In order to solve multi-objective problems, these algorithms execute some operations

several times in order to improve the quality of the solutions found and stop only after

satisfying a termination condition which can be reached by a number of iterations, by an

expected result or by a computing time for instance.

The core of multi-objective algorithms evaluate each objective in order to compare the

solutions and determine which is the better one.

The comparison of two solutions has the aim of determining if one dominates the other

or not. To do this, all the objective values of a solution have to be better (i.e. greater

5

in case of maximisation and lower in case of minimisation) or equal than the ones of the

other solution to assert that it dominates (and at least one of these values has to be

strictly better).

At the end of comparing all the solutions, the algorithm gives as a result a list of

non-dominated solutions.

Genetic algorithms belong to the larger category of evolutionary algorithms, and gen-

erate solutions to optimization problems using techniques inspired by natural evolution.

Indeed, after creating a base population, the algorithm will apply the three basics opera-

tions on its individuals: the selection, the mutation and the crossover (Figure 1.2).

Figure 1.2: Main steps of Genetic Algorithms

1.2.1 The Selection Operation

This operation consists in selecting individuals in the population in order to breed a

new generation[3]. There are various strategies to do this: some of these do it entirely

randomly which warrants the population diversity and others favour the best ones (such

as the Tournament Selection).

1.2.2 The Mutation Operation

In order to make more diversity inside the population, each genetic algorithm has a

mutation operator. As it can be seen on the Figure 1.3, various mechanisms exist to

do a mutation: the alteration, the exchange, the insertion and the deletion. In order to

progress gradually, the mutation probability has to be well chosen. In publications, it is

recommended to use 0.001, 0.01 or 1
length

[4].

Alteration

0 1 1 0 0 1

0 0 1 0 0 1

Exchange

0 1 1 0 0 1

0 0 1 1 0 1

Insertion

0 1 1 0 0 1

0 1 1 0 0 0 1

Deletion

0 1 1 0 0 0

0 1 1 0 1

Figure 1.3: Illustration of Mutations on binary examples

6

1.2.3 The Crossover Operation

Crossover is a process of taking more than one parent solutions (commonly two) and

producing children solutions from them. The Figure 1.4 shows an example with two par-

ents cut after the third bit and engendering two children. There could be some crossover

methods more complicated that cut the parents into more than two parts or that have a

limit number of bits than they can cross but the general principle stays the same.

Parents:

Children:

0 1 1 0 0 1

0 1 1 1 0 0

0 0 1 1 0 0

0 0 1 0 0 1

Figure 1.4: Illustration of a Crossover Operation

1.2.4 Existing Genetic Algorithms

There are many genetic algorithms and I am going to briefly introduce the ones used

in this thesis that have demonstrated their performance in solving multi-objective opti-

misation problems.

NSGA-II

Non-dominated Sorting Genetic Algorithm II is a well known multi-objective genetic

algorithm[5]. It includes a non-dominated sorting procedure and a constraint mechanism

using a modified definition of domination in order to not use penalty functions. Moreover,

it uses crowding distance in order to guarantee diversity and spread of solutions. Finally,

it implements elitism which stores all non-dominated solutions, and hence enhancing

convergence properties.

MOCell

MOCell is a cellular genetic algorithm for solving multi-objective problems. Its main

feature is to conserve an external archive of non-dominated solutions and randomly insert

some of them into the current population[6].

PESA-II

Pareto Envelope based Selection Algorithm II is an algorithm that instead of attaching

a fitness value to each solution, the fitness value is assigned to hypercubes of the objective

space[7].

7

SPEA-II

Strength Pareto Evolutionary Algorithm is an algorithm that archives the non-dominated

solution apart from the population which will maintain a front of the better solutions found

while it can try to optimise the inside population solutions[8].

8

State of the art

The Next Release Problem

As the Next Release Problem is often present in software development, it is well

documented. The first paper I have read about it is The Next Release Problem written by

A.J. Bagnall, V.J. Rayward-Smith and I.M. Whittley in 2001[1] which taught me about

the modelization of the problem and about its complexity. In addition to providing some

typical instances in order to test the results obtained by its resolution, this paper also

uses solving methods such as CPLEX and GRASP methods.

Solving Algorithms

At the beginning of the thesis, I was asked to read Solving the Large Scale Next

Release Problem with a Backbone-Based Multilevel Algorithm written by J. Xuan, H.

Jiang, Z. Ren and Z. Luo in 2012[9] which proposes a multilevel approach to solve the Next

Release Problem. It is an experiment of executing an approximate and a soft backbone-

based algorithm on large generated instances of the Next Release Problem. The paper

demonstrates that these algorithms better performs to solve large instances of the Next

Release Problem than direct solving approach.

After that, I focused on the problem as a multi-objective problem, reading The Multi-

Objective Next Release Problem written by Y. Zhang, M. Harman and S.A. Mansouri in

2007[2] which is the first paper published about it. This paper proposes to solve different

instances of the Next Release Problem using three different methods: NSGA-II, Pareto

GA and Single Objective GA. It resulted that the NSGA-II outperformed the others both

in terms of diversity and results but the paper only consider problems without precedence

constraints. Additionally, the paper mentions that exceeding 20 features, the problem

will need a metaheuristic technique to be solved.

In order to gain knowledge about genetic algorithms, the paper A summary and com-

parison of MOEA algorithms [8] gave an overview of a large panel of evolutionary algo-

rithms in their different versions.

9

Comparison and Experimenting

Furthermore, with the aims of determining if there is a genetic algorithm that is better

than the others, I have read about the No Free Lunch Theorem in Optimization[10] which

clearly indicates that an evolutionary algorithm can be the best for a problem area but

will be outperformed as the problem changes.

Finally, I have read about experimenting algorithm on the Next Release Problem with

A Study of the Bi-Objective Next Release Problem[11] which expresses the results by charts

including both score and cost of solutions.

10

Planning

The internship lasts 22 weeks, from February 1st to July 8th, 2016. After 2 weeks of

reading about the Next Release Problem and genetic algorithms, we made a plan. Of the

remaining 19 weeks, we decided to split into 3 main steps of six weeks each.

1. Set-up: The main objective of this step is to implement the problem and its reso-

lution. To do this, the step starts by reading and learning about the Next Release

Problem, genetic algorithms and the tools to use. After that, the idea is to improve

the program between each meeting with my supervisors every 10 days.

2. Proof of concept: During this step, two applications will be created: the first that

will generate data adapted to the Next Release Problem and the second that will

use the first to generate a set of data and then applying a chosen genetic algorithm

on it. Both of these application have to be configurable by parameters. This step

ensure that all that have been done during the Set-up step works fine or to correct

the bugs otherwise.

3. Comparison: This last step consists in defining an experimenting method, to im-

plement it and finally to extract the results from these experiments.

This led to the initial planning on Figure 3.1.

The real final planning can be found on Figure 7.1 in page 34.

11

1st February – 8th July 2016

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Set-up Proof of concept Comparison

Reading about the NRP
and genetic algorithms

Taming of jMetal

Implementation
of the problem

Creation of the generator
and the executor

Experimenting

Redacting the memory

Preparation of the
thesis presentation

Figure 3.1: Initial Gantt Diagram

12

Tools

4.1 Presentation of the jMetal framework

In order to use existing implementation of genetic algorithms, it was decided to use

a framework. My supervisors have chosen jMetal on it 5.0 version[12] which integrates

several mechanisms to resolve multi-objective problems and some tools for experimenting.

The jMetal (stands for Metaheuristic Algorithms in Java) is an object-oriented Java-

based framework for multi-objective optimization with metaheuristics. It offers a based

structure in order to apply its various algorithms to any multi-objective problem. The

Figure 4.1 shows the four main interfaces of the library’s core structure:

Figure 4.1: Class Diagram of the jMetal’s Core Architecture

Problem : In addition to define the variables, the objectives and the constraints of the

problem to solve, this interface is responsible for evaluating the solutions,

Solution : This is a solution of the problem, containing the variables and having objec-

tives values,

Algorithm : This interface is implemented by all the algorithms available in jMetal,

13

Operator : This is the interface for all the operators: selection, mutation and crossover.

The strength of this core structure, with interfaces and generics, is that it defines

a base for commons situation but we can also redefine the behaviour of some entities

appropriately to our problem by implementing subclasses.

Out of this core structure, jMetal also provides other interesting tools such as an

algorithm execution timer and solutions utilities (e.g. comparators, getter method for the

best solution).

4.2 Other tools used

In order to manage properly the project and to share the advancements with my

supervisors, I have used some more tools:

Git : This is a version control software widely used for software development. I have used

it in order to keep an history of the changes, to share it with my supervisors and to

have a backup on a github server.

Trello: This is a web application that tracks the progress of a project. Its purpose is to

define the tasks as cards that we can move from various states: to do, in progress,

done, . . . Besides allowing to manage the progress of the project, this tool allows it

to be shared with the other team members.

JUnit : This is a unit testing framework for the Java programming language. With this

tool, I could make sure that the behaviour of the program still works as expected

throughout the project despite changes.

JFreeChart : This is a java library to present data into charts. It is very useful because

it proposes many types of charts and I could chose the most appropriate to present

the experiment results.

14

Development

In this section, I am going to present the three steps of the development.

5.1 Set-up

The objective of this step was to implement the Next Release Problem and its resolu-

tion with genetic algorithms using the jMetal library.

5.1.1 Implementation

Core

After some trials with easier problem considering bits and integers problems in order

to familiarise myself with jMetal, I could extend the core structure of the library (Figure

4.1 on page 13) to match with the Next Release Problem.

Thus, I created the following structures (class diagram on Figure 5.1):

NextReleaseProblem: This class implements the Problem interface of jMetal and will

be responsible for evaluating solutions objectives and constraints. Moreover, this

class contains problem data such as the list of employees, the list of features, the

number of weeks of the iteration and the number of working hours by week.

PlanningSolution: This class contains the planned features and implements the inter-

face Solution of jMetal. The order of the planned features in the list is its order

of execution. It contains mainly two methods to modify this list : schedule() and

unschedule().

PlannedFeature: This is the variable of the problem. It encapsulates a Feature and

the Employee who will achieve it. Moreover, it contains the beginning and ending

hours. In this thesis we have considered that the feature can be executed by only

one employee.

Feature: This is the feature to realise. It contains the information of the feature such as

its PriorityLevel, the Features that need to be executed before its own realisation

15

(precedence constraints) and the Skill needed (in this project, we will consider that

a Feature needs only one Skill).

Employee: This is the human resource who can execute the features. It has a weekly

availability (expressed in hours) and the list of Skills it possesses.

PriorityLevel: This is an enumeration of priority levels from 1 (the most important) to

5. It contains a score to determine the global score of a PlanningSolution. We have

decided that the score of a level is twice the one of the lower level because we are

considering that doing a feature of the level i is equivalent to do two features of the

level i− 1.

Figure 5.1: Class Diagram of the Problem Domain

Operators

After having done it, in order to make diversity, I have extended the Operator interface

of jMetal to adapt the behaviour of the mutation and the crossover to the Next Release

Problem.

Basically, the mutation operator will draw a random number between 0 and 1 for

each feature and, if it is greater than the mutation probability, change the feature or

the employee for the features already planned and add it for the ones which are not

(Algorithm 1). I have chosen a probability of mutation Pm = 1
number of features

which is

16

Algorithm 1: Mutation Algorithm

Data: parent : The parent solution
Result: child : The offspring solution
child← parent.copy();
foreach plannedTask in child.getPlannedTasks() do

if doMutation() then // random < mutation probability

if newRandom < 0.5 then
changeTask(plannedTask);

else
changeEmployee(plannedTask);

end

end

end
foreach undoneTask in child.getUndoneTasks() do

if doMutation() then // random < mutation probability

solution.schedule(undoneTask);
end

end
return child ;

often used for the Next Release Problem[2] and which will realise one change in average

each time that the mutation operator is applied on a solution.

Concerning the crossover operator, it splits the two parents into two parts each and

reverses it, taking care of not planning a feature twice (Algorithm 2). As it is recom-

mended to chose a crossover probability between 0.5 and 1, I have chosen a crossover

probability Pc = 0.8 which allows the production different solutions, keeping variety in

the population[4].

I did not have to override the selection operator because jMetal already proposed

its owns that are compatible with my implementation because they do not consider the

variables but the constraints and objectives values in their process.

Objectives Evaluation

There are two objectives: minimise the end date of the planning and maximise the

priority score (i.e. the sum of each feature priority score).

The end date objective will be a value between 0.0 (if there is no feature planned)

and the end date of the iteration (number of weeks×hours by week). To obtain this value

for a solution, we first have to attribute the begin and end dates of each planned feature

such as presented in the Algorithm 3 and then to extract the last end date of the planned

features.

Concerning the score objective, as there are some algorithms that only work with

minimisation objectives, I have considered that a solution which has planned all the

17

Algorithm 2: Crossover Algorithm

Data: parent1, parent2 : The parent solutions
Result: offsprings : The offspring solutions
offsprings .add(parent1.copy());
offsprings .add(parent2.copy());
if doMutation() then // random < crossover probability

minSize← min(offsprings [0].getNumberOfPlannedTasks(),
offsprings [1].getNumberOfPlannedTasks());

if minSize > 0 then
splitPosition← random(1,minSize);
endChild1← parent1.getP lannedTasks().sublist(splitPosition);
endChild2← parent2.getP lannedTasks().sublist(splitPosition);
foreach plannedTask in endChild2 do

child1.unschedule(plannedTask);
end
foreach plannedTask in endChild1 do

child2.unschedule(plannedTask);
end
foreach plannedTask in endChild1 do

child1.schedule(plannedTask);
end
foreach plannedTask in endChild2 do

child2.schedule(plannedTask);
end

end

end
return offsprings ;

18

features will have a priority score of 0.0 and a solution that does not have a planned

feature will get the worst possible score (the sum of each feature priority level). Indeed,

to calculate this objective value for a solution, it only needs to sum the priority score

of each planned feature and to subtract it from the worst score which is stored into the

NextReleaseProblem.

Algorithm 3: Simplified Evaluation Algorithm

Data: solution: The solution to evaluate
solutions.resetHours(); // set the begin and end hours to 0.0

foreach plannedFeature in solution.getPlannedFeatures() do
feature← plannedFeature.getFeature();
beginHour ← Max(getEmployeeAvailability(plannedFeature.getEmployee()),
getMaxEndHour(feature.getRequiredFeatures());
plannedFeature.setBeginHour(beginHour);
plannedFeature.setEndHour(beginHour + feature.getDuration()) ; // This

will be updated later to consider the employee week availability

end

Constraints Evaluation

The system of constraints is already implemented in jMetal, I only needed to make

the NextReleaseProblem class to implement the ConstrainedProblem jMetal interface, to

define what are they and to make their evaluation method. There are four types of

constraints:

• The respect of the skills,

• The overflow of the employee’s weekly availability,

• The global overflow of the planning,

• The precedences between features.

For the first one, as it produced lots of constrained solutions, I have created a Map

linking the Skills to the Employees that possess it in order to execute a feature so that

an employee will be chosen only among the skilled employees. Furthermore this type of

constraint cannot be violated anymore.

In order to improve the efficiency of the algorithm, I have also removed the employee’s

weekly availability overflow constraint by creating employee’s weekly planning (Figure

5.2) and fill them independently of the number of weeks of the iteration. Thus I only

need to check the global overflow.

The two last types of constraints are classically evaluated in the evaluateConstraint()

method and the value of the constraint attribute of the solution is set to the number of

19

Figure 5.2: Class Diagram of Employee’s Weekly Planning

this violated constraints. Moreover, 10% of the generated solution of the base population

is generated taking into account the precedence constraints. This was done to ensure that

some feasible solutions will exist but its low rate allows to keep variety in the population

by generating random solutions in the rest of the cases.

5.1.2 Input files

In order to facilitate the tests, I have implemented the functionality in charge of

reading the features, the employees and the skills from files. There are two types of files:

those containing the features information and those which contain the employees data.

For the first one, each line corresponds to a feature which is identified by its name. A

line contains the following fields, separated by a tabulation:

• the name (unique),

• the priority level (integer between 1 and 5),

• the duration (expressed in hours),

• the required skill name,

• the previous features names, separated by a comma.

Here is an example of a feature data file:

Feature 1 2 2.0 Skill 1

Feature 2 3 3.0 Skill 2 Feature 1

Feature 3 4 2.0 Skill 1 Feature 1

Feature 4 1 3.0 Skill 2 Feature 2, Feature 3

Concerning the employees data files, they have a similar structure: they contain the

following fields, also separated by a tabulation:

• the name (unique),

• the week availability (expressed in hours),

• the skills names he has, separated by a comma.

20

Here is an illustration for the employees data files:

Employee 1 20.0 Skill 1

Employee 2 15.0 Skill 1, Skill 2

5.1.3 Output

In order to have a graphical view of the planning and to quickly have an overview of

the solution, I chose to generate the output into HTML (HyperText Markup Language)

because it is compatible with most of the systems (readable by a web browser) and the

structure of the file is as simple that I did not spend so much time to obtain a suitable

view (Figure 5.3).

Figure 5.3: Example of a HTML outcome

5.1.4 Testing

In order to ensure that the program behaves as expected and continue to do it after

adding enhancements, I have developed some test cases which I execute with JUnit. The

following test cases were created as I went along developing new features (details can be

found on Annex A):

Simplest: This is the simplest case with only one feature and one employee that tests

if the developed core works normally and if the final solution is not empty and

contains the feature, planned at the right dates.

Simple optimisation: This case is to check if the algorithm well distributes the two

features between the two employees instead of attributing them to the same resource.

21

Precedence: With two dependent features, this test case ensures that the precedence

constraints are respected by checking the order of the planned features.

Skill: This test case ensures that the program is taking into account the skills needed for

each feature to attribute to the employees.

Overflow: Here, we are checking that the feature that overflows the iteration date is not

planned. This is to be sure that the overflow constraint is well implemented.

Overflow optimization: In this test case, all the features cannot be planned because

their duration exceeds the end date of the iteration. So, we have to check if only the

features with the highest priority are planned and that the end date of the output

planning is lower than the end date of the iteration.

Employee overflow: In this test case, the employee does not have time to realise a

feature in a week so the test case checks if the feature is well distributed on the

iteration weeks.

All these tests are executed after each important modification and check crucial informa-

tion such as dates, objectives values and constraints.

5.2 Proof of concept

During this second stage, the objective was to create two programs: one which gener-

ates data set for the Next Release Problem and the other which can execute an algorithm

taking into account some input parameters.

5.2.1 Generator

This program has to take three parameters as inputs: the number of features, the

number of employees and the number of skills to generate.

After having generated a list of skills (which just consists in generating different

names), we can generate the features as presented on the Algorithm 4. This algorithm

basically determines the number of precedence constraints to generate and then pick up

into the list of previous generated features to add the constraint.

Finally, it generates the employee with a random weekly availability hours and random

skills among the list.

After having generated the data, the program encapsulates it in a class with the aims

to solve the Next Release Problem made from this data. It can also generate data files in

order to conserve it and to execute experiments on this particular case.

Finally, in order to have data compatible with realist problems, I had to find out

some key values to determine for instance how many employees there are in average

22

Algorithm 4: Features Generation

Data: numberOfFeatures: The number of features to generate; skills : the list of
skills available; precedenciesRate: the rate of precedencies by feature

Result: features: The generated features
priorities← PriorityLevel.values();
remainPreviousConstraints← round(numberOfFeatures× precedenciesRate);
features← new List(numberOfFeatures);
for i← 0 to numberOfFeatures do

previousFeatures← new List();
if features.size() > 0 and remainPreviousConstraints > 0 then

probability ← remainPreviousConstraints/(numberOfFeatures− i);
possiblePreviousFeatures← features.copy();
while remainPreviousConstraints > 0 and
possiblePreviousFeatures.size() > 0 and newRandom() < probability do

indexFeature← newRadom(possiblePreviousFeatures.size());
previousFeatures.add(possiblePreviousFeatures.get(indexFeature));
possiblePreviousFeatures.remove(indexFeature);
remainPreviousConstraints = remainPreviousConstraints− 1;
probability ← remainPreviousConstraints/(numberOfFeatures− i);

end

end
requiredSkill← skills.get(newRandom(skills.size());
features.add(new Feature(”Feature ” + i,
priorities[newRandom(priorities.length)], newRandomDuration(),
previousFeatures, requiredSkill));

end
return features;

23

Table 5.1: Release companies data

for x features. To do this, we analysed the real data coming from the three companies

participating in the SUPERSEDE project (Table 5.1)

Of this data, I have extracted three interesting indicators:

• The rate of employees by feature of 0.4,

• The rate of skills by feature to 0.5,

• The rate of dependencies by feature to 0.3.

These values are used in a default execution of the program but can be changed in a

configuration file.

As example, if the generator generates a 10-features problem data, there will be 4

employees, 5 skills and 3 dependence constraints.

5.2.2 Algorithm Executor

After creating the generator, the next step was to create a program which can receive

parameters in order to:

• Generate a data set,

• Perform an algorithm on it,

• Display the resulted planning.

Besides the parameters of the generator, this program has to receive some other inputs

such as the iteration ones (number of weeks, hours by week) and the algorithm ones

(population size, number of evaluation).

Moreover, the user has to chose which algorithm he wants to use. To define the

implemented algorithm of this program, I looked at the jMetal documentation to see what

are the subclasses of the AbstractGeneticAlgorithm. There were the following: MOCell,

NSGAII, PESA2, SMSEMOA, SPEA2 and SteadyStateGeneticAlgorithm.

24

As the SMSEMO and the Steady State Genetic Algorithm do not consider constraints

when they evaluate solutions, the user of the program can finally choose between MOCell,

NSGA-II, PESA-II and SPEA-II to solve the Next Release Problem with this program.

The program is usable by command line but I have also developed a basic graphic

interface using swing. This interface can be seen on Figure 5.4

Figure 5.4: Graphic Interface which executes algorithms

25

26

Experimentation

The last step of the thesis was the comparison of the algorithm. In addition to defining

an experiment method, I also had to find out a way of comparing the results of the different

algorithms.

6.1 Quality of a solution

In order to compare two solutions of two different algorithm executions for the same

problem, I had to establish a way to evaluate the solution quality.

To do this, I have chosen to base my method on the objective values. Concretely,

for each problem, the priority score objective value is between 0 and the worstscore of

the problem. As 0 is the value for planning all the features and worstscore the value for

having planned none of them, I have decided to attribute a priority quality score between

0 and 1 as Qp = 1− priority value
worst score

.

The same method was used for the end date objective (Qed = 1− end date value
iteration end

) and the

final quality score is the average of this two calculations.

This quality score has a value between 0 and 1, respectively the worst and the best

score. This score does not have any other usefulness than to compare two results for the

same problem. For instance having a score of 0.1 can seem bad but this result cannot be

expressed because it can be a case in which there were a lots of features to plan and very

few time in the iteration as a little part of them can be included. Its objective is only to

say that an algorithm that obtain a final solution with best quality for the same problem

than an other has found a better solution. Finally, I have accepted that a solution with

violated constraint has a quality score to 0.

6.1.1 Filter

As some algorithms provide a list of solutions as result, I was asked to extract only

one of them. In fact, there are algorithms that return the final population as result and

all the solutions are not the best so I had to filter them and I used the quality indicator

to do this. Moreover, there still are some solutions that are strictly equivalents in term of

objectives (for instance, two employees with the same skills for who we can inverse their

27

Table 6.1: Experiments

two plannings) so we decided to extract one randomly.

6.2 Experiment protocol

Inspired by some papers which compare algorithm results on the Next Release Problem

considering the size but also trying to find out some relation with the number of customers

or the number of features[2][11], we have decided of three types of experiments (resumed

on Table 6.1):

• Comparing the different algorithms results in function of the size of the problem

(considering that the size is the sum of the number of employees and the number of

features) with a constant ratio of employees by feature extracted from the previous

section,

• Comparing the results for a constant number of employees and by varying the num-

ber of features in order to see if the best algorithm is different with a different

proportion of employees by feature,

• Comparing the results for a constant number of features and by varying the number

of employees with the aims of determining if there is an algorithm that has better

results with limited resources for instance.

To do this, each algorithm will be executed on the same data set, this is reproduced

50 times (on 50 data sets in total) and the result for each algorithm (executed with

500 evaluations of a 100-size population) is the average of his values. The Algorithm 5

illustrates this on the employees experimenting.

6.3 Results

The following results are presented using the JFreeChart library which provides the

chart frames. I only had to give the data to present and a couple of presentation param-

eters to obtain the experimenting graphs.

28

Algorithm 5: Simplified Evaluation Algorithm

Data: algorithms: The list of algorithms to experiment
Result: dataset : The set of experiment data
numberOfEmployees← INITIAL EMPLOYEES ;
dataset← initializeSeries();
params← new GeneratorParameters(NUMBER OF FEATURES,
numberOfEmployees);

while numberOfEmployees ≤ MAX EMPLOYEES do
qualityV alues← initializeMap(algorithms);
for i ∈ 0 . . . TEST REPRODUCTION do

data← generateData(params);
nrp← new NextReleaseProblem(data);
executor ← new AlgorithmExecutor(nrp) ;
foreach algorithm ∈ algorithms do

result← executor.executeAlgorithm(algorithm) ;
qualityV alues.get(algorithm)[i] ← result.getQuality() ;

end

end
dataset.updateSeries(qualityV alues);
numberOfEmployees += EMPLOYEES INCREMENT;
params.setNumberOfEmployees(numberOfEmployees);

end
return dataset;

6.3.1 Experiment 1

As it can be seen on Figure 6.1, the algorithm which provides better solutions is

MOCell and whatever the size is. NSGA-II and SPEA-II provide solutions not as good

but the quality gap becomes smaller and smaller with the increase of the size. On the

other hand, PESA-II is always the worst algorithm for the Next Release Problem.

On the chart, it can be observed a decreasing trend of the solution qualities. This is

due to the complexity of the problem that is increasing with the size but above all to the

iteration time that it is fixed to 3 weeks of 35 hours so the number of features that can

be planned is still constant.

6.3.2 Experiment 2

This second experiment confirms the dominance of MOCell in most of cases but the

chart (Figure 6.2) also shows that with few features, the other algorithms produces results

as good nay better.

29

Figure 6.1: Results of Experiment 1

6.3.3 Experiment 3

This last experiment (results on Figure 6.3) confirms the dominance of MOCell to

solve the Next Release Problem especially when the resources are limited. But when the

number of employees approaches the number of features, NSGA-II and PESA-II provide

solutions as good as MOCell and even exceed it when the two variables are equals.

6.4 Computing time

All these experiments were processed on a personal computer using Windows 7 SP1

64bits with an Intel R© CoreTMi3-2350M processor (3M Cache, 2.30 GHz) with 6 Go of

RAM.

The times of execution of each experiment is presented on Table 6.2. The Experiment

2 is the faster one because of less experiments done.

Table 6.2: Execution times of the experiments

The average execution times of the algorithms can be found on Table 6.3. We notice

30

Figure 6.2: Results of Experiment 2

that the MOCEll algoritihm is much faster than all the others and that SPEA-II is the

longer and that it is responsible of most of the experiment execution time.

Table 6.3: Execution times of the algorithms

31

Figure 6.3: Results of Experiment 3

32

Evaluation

7.1 Results

This thesis has revealed that in addition to being the faster, MOCell algorithm is the

one which provides better results without depending on the resources available or the

size of the problem. NSGA-II and SPEA-II can also provide close solutions needing little

more time. In contrast PSEA-II is not a good option for solving our version of the Next

Release Problem.

7.2 Planning

The updated planning can be seen on Figure 7.1 (the initial one is on page 12). If

the tasks and their order were respected, there is a large difference in the durations.

Indeed, we had split the thesis into three equals parts but the first one, about learning

and implementing the problem has lasted much longer. This is due to the need to learn a

lot about mutli-objective resolution and to the gaps in jMetal documentation which the

core is well explicated but as in our case I had to specialize quite many class behaviours,

it was complicated to find information. Moreover, I had faced on optimisation problems

thats final solutions were not as optimised as expected and it was complicated to debug

because of using random (not reproducible), the use of several threads (complicate to

trace) and the amount of data that is processed (hundreds of iterations which manipulate

population of 100 solutions).

After passing this step, some corrections have been made but as I got used with the

environment, the steps of executing and experimenting were faster than expected.

7.3 Personal comments

This first experience in investigation was very rich for me. Besides having gained

knowledge about the Next Release Problem, meta-heuristics and genetic algorithms, it

taught me how to find information using scientific publications and about investigation

methodology. Before this thesis, I had a more practical approach, accustomed to work in

33

1st February – 8th July 2016

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Proof of concept

Set-up Comparison

Learning about the NRP
and genetic algorithms

Taming of jMetal

Implementation
of the problem

Creation of the generator

Corrections and Improvements

Executor program

Experimenting

Redacting the memory

Preparation of the
thesis presentation

Figure 7.1: Final Gantt Diagram

internship contexts but after an adaptation time and thanks to my supervisors feedback,

I could have a more holistic and scientific point of view.

In addition, using professional tools, libraries and frameworks in a computer science

context has taught me about technique and allows me to produce better results. Moreover,

the lack of some documentation reminds me how important it is to document what is done.

34

Conclusion

The objective of the thesis was to determine which genetic algorithm performs better

the resolution of the Next Release Problem. The problem was adapted to be more generic

and include the available resources and to be able to produce a precise planning.

Several programs were created in order to solve the problem, create relevant data

set and finally execute the experiment of the thesis. Moreover, it some key values were

extracted to modelise realistic problems.

An important work was done in learning and then implement the better genetic algo-

rithm strategies to fit with the concerned problem especially on the operators and on the

chosen probabilities.

The experiments figure out that the MOCell algorithm is the better genetic algorithm

included in the jMetal library to solve the Next Release Problem. It is the faster one but

NSGA-II and SPEA-II provide also good results in a reasonable time.

Finally, as meta-heuristic solutions are constantly evolving, it would be interesting to

compare the results extracted from this thesis with other types of algorithms than the

genetic ones.

35

36

References

[1] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M Whittley. The next release

problem. Information and software technology, 43(14):883–890, 2001.

[2] Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri. The multi-objective next

release problem. In Proceedings of the 9th annual conference on Genetic and evolu-

tionary computation, pages 1129–1137. ACM, 2007.

[3] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes

used in genetic algorithms. Foundations of genetic algorithms, 1:69–93, 1991.

[4] Mais Haj-Rachid, Christelle Bloch, Wahiba Ramdane-Cherif, and Pascal Chaton-

nay. Différentes opérateurs évolutionnaires de permutation: sélections, croisements

et mutations. http://lifc.univ-fcomte.fr/ publis/papers/pub/2010/RR2010-07.pdf,

july 2010.

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197, 2002.

[6] Antonio J Nebro, Juan J Durillo, Francisco Luna, Bernabé Dorronsoro, and Enrique

Alba. Mocell: A cellular genetic algorithm for multiobjective optimization. Interna-

tional Journal of Intelligent Systems, 24(7):726–746, 2009.

[7] David W Corne, Nick R Jerram, Joshua D Knowles, Martin J Oates, et al. Pesa-ii:

Region-based selection in evolutionary multiobjective optimization. In Proceedings of

the genetic and evolutionary computation conference (GECCO’2001. Citeseer, 2001.

[8] Daniel Kunkle. A summary and comparison of moea algorithms. Northeast. Univ.

Boston Mass, 2005.

[9] Jifeng Xuan, He Jiang, Zhilei Ren, and Zhongxuan Luo. Solving the large scale next

release problem with a backbone-based multilevel algorithm. Software Engineering,

IEEE Transactions on, 38(5):1195–1212, 2012.

[10] David H Wolpert and William G Macready. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

37

[11] Juan J Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and Antonio J Nebro.

A study of the bi-objective next release problem. Empirical Software Engineering,

16(1):29–60, 2011.

[12] Antonio J. Nebro and Juan J. Durillo. jMetal 5 Documentation. University of Málaga,

2015.

38

Appendices

39

Test Cases

Here are presented the inputs and outputs of the test cases

Simplest

simplest.features:

Feature 1 2 2.0 Skill 1

simplest.employees:

Employee 1 10.0 Skill 1

Output:

Figure A.1: Output of the simplest test case

Simple Optimisation

simpleoptimisation.features:

Feature 1 2 2.0 Skill 1

Feature 2 2 4.0 Skill 1

simpleoptimisation.employees:

Employee 1 10.0 Skill 1

Employee 2 5.0 Skill 1

Output:

41

Figure A.2: Output of the simple optimisation test case

Precedence

precedence.features:

Feature 1 2 2.0 Skill 1

Feature 2 2 2.0 Skill 1 Feature 1

precedence.employees:

Employee 1 10.0 Skill 1

Output:

Figure A.3: Output of the precedence test case

Precedences

precedences.features:

Feature 1 2 2.0 Skill 1

Feature 2 2 3.0 Skill 1 Feature 1

Feature 3 2 2.0 Skill 1 Feature 1

Feature 4 2 3.0 Skill 1 Feature 3

precedences.employees:

Employee 1 20.0 Skill 1

Employee 2 20.0 Skill 1

Output:

42

Figure A.4: Output of the precedences test case

Skills

skills.features:

Feature 1 2 2.0 Skill 1

Feature 2 2 4.0 Skill 2

skills.employees:

Employee 1 35.0 Skill 1

Employee 2 35.0 Skill 2

Output:

Figure A.5: Output of the skills test case

Overflow

skills.features:

Feature 1 2 36.0 Skill 1

skills.employees:

Employee 1 50.0 Skill 1

Output:

The solution no has planned feature.

43

Employee Overflow

employeeoverflow.features:

Feature 1 2 3.0 Skill 1

employeeoverflow.employees:

Employee 1 2.0 Skill 1

Output:

Figure A.6: Output of the employee overflow test case

Overflow Optimisation

overflowoptimisation.features:

Feature 1 1 3.0 Skill 1

Feature 2 2 2.0 Skill 1

Feature 3 3 1.0 Skill 1

Feature 4 1 3.0 Skill 1

Feature 5 2 2.0 Skill 1

Feature 6 3 1.0 Skill 1

overflowoptimisation.employees:

Employee 1 4.0 Skill 1

Employee 2 5.0 Skill 1

Output:

Figure A.7: Output of the employee overflow test case

44

	Acknowledgements
	Abstract
	French Summary
	Introduction, Motivation and Goals
	Background
	The Next Release Problem
	Genetic Algorithms

	State of the art
	Planning
	Tools
	Presentation of the jMetal framework
	Other tools used

	Development
	Set-up
	Proof of concept

	Experimentation
	Quality of a solution
	Experiment protocol
	Results
	Computing time

	Evaluation
	Results
	Planning
	Personal comments

	Conclusion
	References
	Appendices
	Test Cases

