
Modelling Contention in Multicore
Hardware Resources during Early

Design Stages of Real-Time Systems
Author:

David Trilla Rodríguez

Master in Innovation and Research in Informatics
High Performance Computing Specialization

July, 2016

Director:
Francisco J. Cazorla IAAA-CSIC

Barcelona Supercomputing Center

Codirector:
Jaume Abella Barcelona Supercomputing Center

Tutor:
Mateo Valero Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 2

Abstract

This thesis presents a modelling approach for the timing behavior of real-time embedded sys-
tems (RTES) in early design phases. The model focuses on multicore processors – accepted
as the next computing platform for RTES – and in particular it predicts the contention
tasks suffer in the access to multicore on-chip shared resources. The model presents the key
properties of not requiring the application’s source code or binary and having high-accuracy
and low overhead. The former is of paramount importance in those common scenarios in
which several software suppliers work in parallel implementing different applications for a
system integrator, subject to different intelectual property (IP) constraints. Our model helps
reducing the risk of exceeding the assigned budgets for each application in late design stages
and its associated costs.

The timing contention model builds on the concept of an execution profile that is extracted
by each software supplier in isolation for each of its applications, and that provides an
estimate of the usage of resources made by the application. Execution profiles of the different
applications – which can be shared among suppliers without jeopardizing confidentiality (IP)
of each application – are then combined with our contention model to derive an application’s
execution time increase due to multicore contention.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 3

Contents

Abstract 2

1 Introduction 9
1.1 Structure of the Thesis . 11

2 Background 12
2.1 Timing Analysis . 14

2.1.1 Static Deterministic Timing Analysis 15
2.1.2 Measurement-Based Deterministic Timing Analysis 15
2.1.3 Probabilistic Timing Analysis . 16

2.2 Scheduling Domains . 17

3 Contention Modeling 19
3.1 Application Process . 21
3.2 Histogram Approach . 21

3.2.1 Histogram Realization . 23
3.3 Restricted Access Interleaving Information . 24
3.4 Global Notation & Parameter Description . 25

4 Execution Profile 28
4.1 Profile Generation . 28
4.2 Profile Information . 29

5 Cache Contention Model 32
5.0.1 Set collision distribution . 34
5.0.2 Increment in stack distance . 34
5.0.3 Final Step . 35

5.1 Example . 36

6 Bus and Memory Contention Model 39

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 4

6.1 Considerations . 41
6.2 Example . 42

7 Assumptions & Simplifications 43
7.1 General approach . 43
7.2 Core model . 43
7.3 Cache model . 44
7.4 Bus model . 44
7.5 Addressable unit . 44

8 Evaluation 45
8.1 Methodology & Experimental Framework . 45

8.1.1 Target platform . 45
8.2 Benchmarks . 46

8.2.1 Workloads . 47
8.3 Metrics . 47
8.4 Results . 48

8.4.1 Average-Based Model . 48
8.4.2 Cache Contention Model . 48
8.4.3 Bus Contention Model . 49
8.4.4 Multicore Execution Time . 50
8.4.5 Performance and Overhead . 51

9 Related Work 53

10 Conclusions & Future Work 55
10.1 Future Work . 56

11 Acknowledgements 57

12 Published Work 58

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 5

List of Figures

2.1 Block Diagram of the 4-core NGMP architecture. 13
2.2 Example of the MBPTA probability-WCET curve 16
2.3 EP usage to derive ∆t . 17

3.1 Application steps of our approach. 20
3.2 Example of use of the histogram-based modeling approach 22
3.3 Access Sequence Seq1 generated by a task τj 26

5.1 Visualization: Window of vulnerability . 36
5.2 Visualization: Contenders’ injection . 37
5.3 Visualization: Contenders’ collision . 37
5.4 Visualization: Discarding repeated accesses 38

8.1 Accuracy of the cache contention model . 48
8.2 Accuracy of the bus contention model . 49
8.3 Performance accuracy of the complete model. Results have been normalized w.r.t.

the actual measurements. 50
8.4 Average overheads of our contention prediction model. 51

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 6

List of Tables

2.1 Timing analysis techniques summary . 14

3.1 Global notation. 25

4.1 Specific information in the Execution Profile and Notation 29
4.2 Operation types in the NGMP and their assumed latencies 30

8.1 Workloads used for evaluation . 47

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 7

Acronyms

API application programming interface.

BCM bus contention model.

CCM cache contention model.

CM contention model.

EDP early design phases.

EP Execution Profile.

ESA European Space Agency.

FP floating point.

FPU floating point unit.

IP intelectual property.

LDP late design phases.

MBDTA measurement-based deterministic timing analysis.

MBPTA measurement-based probabilistic timing analysis.

MBTA measurement-based timing analysis.

NGMP Next Generation Microprocessor.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 8

OEM original equipment manufacturer.

PTA probabilistic timing analysis.

RTES real-time embedded systems.

SDTA static deterministic timing analysis.

SPTA static probabilistic timing analysis.

STA static timing analysis.

VM virtual machine.

WCET worst case execution time.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 9

Chapter 1

Introduction

The design of real-time embedded systems (RTES) comprises multiple development phases
that affect both hardware and software components. During early design phases (EDP)
critical decisions about the hardware to use and the time budget assigned to each task are
taken. This may affect not only the subsequent design phases, but even the final delivered
product.

Those decisions taken during EDP are mainly affected by uncertainties and lack of informa-
tion in terms of functional and non-functional requirements of the system (e.g. how often
will a certain task be triggered, what will be the execution time of a task under different
hardware resources?, will a certain schedule be feasible?). During EDP all the components
of a system are in a preliminary state and this affects their timing requirements too. With
this conditions developers have to asses this uncertainties by bounding them with estimates.
This may lead to two different results:

• Overestimating time budgets: In this case, the developers have assumed safety bounds
that exceeds the worst cases that could be observed on the system. This may result in
an over-designed system with significant spare capacity and an unnecessary increased
cost in wasted resources.

• Underestimating time budgets: In this case, the developers did not successfully predict
the worst cases that could be observed on the system. This may lead to many changes
in the task structure in the late design phases (LDP) of the system, which are costly
and might even delay the delivery of the product.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 10

This situation gets even worst if we add-in multicores into the equation. Multicores which
are being considered for the future RTES as the main computing platforms. In this type of
hardware tasks running on the different cores have its execution time affected by the usage
of the shared resources that their co-runner tasks do. This is so because tasks interfere each
other in many difficult to predict ways, thus affecting the predictability of the execution
time and its estimates.

In those cases in which software is developed by different software suppliers, not only the
predictability of the system is affected, but also the relationship between software developers
and original equipment manufacturers (OEMs). This is so because since the timing estimates
depend now on information of other companies or even competitors, that might be protected
under IP rights.

In the context defined in this thesis, each software supplier is provided with a virtual machine
(VM) that mimics the functional behavior of the target hardware, the NGMP in our case.
This allows the supplier to develop and validate the functionality of its software. Each VM
can be attached a timing simulator of the underlying multicore processor to derive timing
estimates including the impact of contention. The main problem of this approach is that
timing simulators incur a high timing overhead: virtualization incurs performance penalties
that are as low as few percentage points and can range up to 1x-2x slowdown depending
on the virtualization technology and whether the host’s ISA is the same as the simulated
ISA. Instead, full-fledged timing simulators can be much slower because for each simulated
instruction the timing simulator executes hundreds or even thousands of native instructions
to model the delays incurred by the simulated instruction on the simulated CPU, cache,
interconnection network, etc.

This may lead to slowdowns in the 100x-1000x range. This is undesirable, for software
suppliers who, despite willing to obtain timing estimates for their applications, cannot pay
this overhead in the speed of the VM. Our approach i) controls time overhead by performing
a characterization of each application in isolation, that despite being a slow process it is
performed only once per application; and ii) speeds up the much more frequent computation
of contention. Furthermore, detailed timing simulators require information about co-runner
tasks that is unlikely to be available due to IP restrictions. This work will also refer to
the interference as contention and contention modeling as the process of estimating the
inter-task interference.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 11

To develop a solution to these problems, we will focus on a specific hardware, the Next
Generation Microprocessor (NGMP). The NGMP is a good representative of multicores
used in RTES and it is in the European Space Agency (ESA) roadmap for becoming the
processor used for the future missions and will be maintained for years [5].

The objective of this thesis is to present a solution to the mentioned problems that affects
the EDP in form of a model. This model will try to provide the timing estimates when the
target architecture is a multicore under virtualized environments. The model will derive the
amount of inter-task interference involved in using shared hardware resources and use it to
provide an increase in execution time of a task under.

1.1 Structure of the Thesis

This thesis is structured as follows. The chapter 2 describes in which context this concepts
are set out, regarding the industrial environment where it could be applied and how already
the timing analysis process works. Chapters 3 and 4 describe the basic concepts of this
model, what it intends to do, with what information and how to acquire it. Chapters 5
and 6 describe the details of the model, how the behavior under a multicore scenario is
represented in the shared cache and in the bus. Chapter 7 will provide numerical data as
part of the evaluation of the model. To conclude chapters 8, 9 and 10 close with the related
work, conclusions and future work to expand this thesis respectively.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 12

Chapter 2

Background

In single-core integrated-architectures (such as IMA [1] in avionics and AUTOSAR [4] in
automotive) early in the design the OEMs assigns a CPU quota (budget) to each software
supplier – together with the functionality to perform. In terms of timing, OEMs usually
implement budgets via time partitioning: time is split into windows each of which is assigned
to a different application, and hence to its corresponding supplier. From the supplier point
of view, other than some overheads due to context switches, time analysis of its applications
can be done in isolation.

Interestingly, the interaction in I/O resources can be handled via forcing that the I/O oper-
ations of an application occur during its assigned window or during a specific period desig-
nated for that purpose (e.g. at the end of each time window in the context of cyclic-executive
scheduling). Hence, single-core CPUs allow each supplier to easily design applications to
fit in its assigned quota or negotiate with the OEM a larger quota. This can occur during
the EDP, which reduces the cost of any change that is required on the timing or functional
behavior of the system.

Multicores complicate this approach because the timing behavior of an application depends
both on its own behavior and its co-runners behavior. Conceptually, the execution time of
an application in a multicore (etmuc) can be broken down into two components as follows:

etmuc = etsolo +∆t (2.1)

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 13

where etsolo is the execution time of the application in isolation and ∆t is the execution time
increase the application suffers due to contention in the access to multicore shared resources.

While suppliers have confidence on the estimates derived for etsolo, the same cannot be
said about ∆t since it depends on co-runners the supplier does not know, and might not
be allowed to know due to IP restrictions. Several studies show that ∆t can be as high as
etsolo [14][15], so it can have a great impact on the scheduling plan defined by the OEM to
determine the budget and the specific time windows given to each application. If violations
to assigned budgets are discovered during the LDP this may require costly application re-
coding, changing the scheduling plan or even changing or adding more multicore CPUs if
there are not enough computation capabilities to guarantee the execution of all the required
functionalities. This, of course, may significantly increase the overall product (system) cost
and time-to-market. Therefore, obtaining early and tight estimates of ∆t is of great help to
reduce the risk of LDP changes.

There is a general consensus in the literature [8][11] that during the EDP accuracy of the
timing estimates is not the only metric to consider, with tight upper-bounding estimates
being rather required for LDP. Instead, the speed to obtaining those estimates plays a key
role to allow engineers to explore a vast set of design choices in a timely manner. However,
no particular figure is reported for the required accuracy in timing predictions during the
EDP, which in our view is end-user dependent. In the context of multicores, it has been
reported that the impact of contention in execution time can be as high as 20x for some
kernels and as high as 5.5x for some EEMBC Automotive benchmarks [10].

Figure 2.1: Block Diagram of the 4-core NGMP architecture.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 14

Our reference architecture is the Cobham Gailser Next-Generation Multipurpose Processor
(NGMP) [5], sketched in Figure 2.1. The NGMP comprises four LEON4 cores, each core
having a private instruction cache (iL1) and data cache (dL1), and a global (shared) unified
second level cache (uL2). Cores and caches are connected with a bus. A memory controller
acts as interface between the processor cores and memory.

The following section describes the state of the art of the field in which this thesis is placed,
but in advance let’s state that this thesis focuses on measurement-based timing analysis
techniques. While a discussion of when static or measurement-based timing analysis ap-
proaches are convenient is out of the scope of this thesis, it is a fact that different industries
for different systems (functions) use both [24][3]. Hence, research on both techniques is
needed so both are able to support multicore timing analysis in early and late phases of the
system design.

2.1 Timing Analysis

Timing analysis is one of the most important subjects in RTES, verifying that systems
meet their requirements and that they are not going to fail due to unaccomplished timing
constraints while doing their critical tasks is a subject of interests for the embedded industry.
There are several ways in which today’s embedded critical systems are being timing analyzed.
The main focus of this techniques is to find the worst case execution time (WCET).The
WCET explains the maximum time that a task will take and for which a system has to be
designed in order to take that into account. Predicting the WCET is a difficult task and
has serious implications.

To fulfill this objective the industry follows several distinct methods [23], which we summa-
rize in the following table.

Static Measurement
Deterministic SDTA MBDTA
Probabilistic SPTA MBPTA

Table 2.1: Timing analysis techniques summary

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 15

2.1.1 Static Deterministic Timing Analysis

Static deterministic timing analysis (SDTA) approach derives WCET estimates without
simulation. Basically, SDTA analyzes the data and control flow paths and builds a model
of the hardware that allows to derive timing estimates. In other words, SDTA derives an
equation that has as inputs (or variables) highly detailed and highly specific parameters
about the behavior of the program and the architecture, the result of this equation is the
WCET.

The main problem with this technique, is the need of in depth detail in order to be accu-
rate [3]. The work-around for when not enough information is available is to upper bound
the time consumption values for those resources. This is specially true for the microarchitec-
ture, that manufacturers usually try to protect by hiding details and not providing a highly
detailed definition of their hardware in their manuals.

2.1.2 Measurement-Based Deterministic Timing Analysis

In the measurement-based deterministic timing analysis (MBDTA) measurements and static
analysis are combined to form an hybrid analysis that derives a single WCET but using
measured inputs. This is an approach to avoid the strict requirements of SDTA, by doing
so, the explicit hardware modeling can be somehow avoided and adding parametrization
allows to decrease the complexity of the models [21]. The first phase of MBDTA consists on
collecting execution-time measurements of the software programs of interest, this execution
times are strongly dependent on (a) the conditions in which the runs are made, since those
must represent the conditions during operation, and (b) the selected inputs that should
provoke the worst case execution time.

This means that the end user controls the state conditions and inputs and is responsible for
that, which at the same time is a difficult task, since for example, deriving all the potential
cache layouts or a significant subset of them may lead to a lot of options. This is still a
problem in measurement-based timing analysis (MBTA) since it leads to a lack of control
that also brings low coverage of the sources of jitter, hence it decreases the confidence on
the WCET value provided.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 16

2.1.3 Probabilistic Timing Analysis

Probabilistic timing analysis (PTA) tackles a lot of the problems inherent with the traditional
techniques of static timing analysis (STA). The idea is to produce more than one WCET with
an assigned probability, that allows the system designer to choose the amount of pessimism
desired with a function of how improbable is an event to happen. By this definition, low
probability WCETs that are inherent to STA and cannot be discarded, with PTA can be
now assumed if the probability of those events of high WCET are irrelevant enough to be
observed during operation time of the system. There are two different ways to apply PTA.

Static Probabilistic Timing Analysis

In static probabilistic timing analysis (SPTA) each analyzed event from STA is modeled
with a discrete spectrum of latencies with attached probabilities to each one of them. Then
in order to obtain WCET this events (i.e. instructions, accesses to the cache) combine their
vectors of latency-probability by using convolution operations. By this convolution steps
the final result is a limited set of WCETs with attached probabilities.

Measurement-Based Probabilistic Timing Analysis

The measurement-based probabilistic timing analysis (MBPTA) takes a more inductive ap-
proach, by collecting execution times and applying extreme value theory, it is able to predict
how WCET will behave when the cases of worst execution time are extreme. With an enough
number of runs MBPTA is able to depict a curve that provides a value of WCET given a
certain probability. We can observe an example of this in Figure 2.2.

Figure 2.2: Example of the MBPTA probability-WCET curve

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 17

The proposal of this thesis fits in the Measurement-Based Deterministic Timing Analysis,
since our inputs come directly from measurements but we derive a static model to derivate
the WCET estimates.

2.2 Scheduling Domains

The industry has maintained conservative behavior with respect to scheduling, changes
impact many fields of development, and when a critical task or schedule has been verified
it is preferable not to change it. This is also true for the scheduling techniques, were
cyclic executive scheduling remains as widely used in many domains such as avionics and
automotive – though this proposal is valid for other scheduling approaches. This approach
allows for an almost complete abstraction from the protected information that describes
architecture or software analyzed and allows for tighter WCET estimates.

Figure 2.3: EP usage to derive ∆t

Cyclic executives divide time into major cycles (mac), which are further divided into minor
cycles (mic). In each mic, several jobs are executed in a non-preemtable manner. Each
job is required to finish in a mic (also called frame). Usually, mics have the same duration
to simplify implementation. While the jobs executed in each mic may vary making those
mics different, all macs are identical. That is, each mac has exactly the same sequence of
mics and set of jobs called in each mic. Despite its static nature, due to its simplicity a
cyclic executive is often the preferred scheduling solution in real-time systems in domains
such automotive and avionics in which the ARINC 653 standard recommends its use for
partitions [2].

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 18

As an illustrative example, Figure 2.3 shows a cyclic-executive based scheduling plan pro-
vided by the OEM from where each supplier can determine the co-runners of its application
in each minor cycle (mic). For instance, in mic1 applications A and B interact with C in
the multicore so it is required to derive ∆t1A, ∆t1B and ∆t1C , where ∆t1A corresponds to ∆t

of application A in mic1. If both etmuc
A + etmuc

B and etmuc
C fit in a mic, no change to the

schedule (for this first mic) is required. The same process is repeated for all mics. Interest-
ingly, in mic3 if etmuc

C > etmuc
D then E suffers no contention from D, i.e. ∆t3E = 0. It is

worth noting that in the first iteration of this process between the OEM and the suppliers,
the OEM creates a scheduling plan assuming no contention or a nominal contention based
on its previous experience. This initial value is refined through the different iterations of
our approach.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 19

Chapter 3

Contention Modeling

From now on, this thesis is going to explain the process of modeling contention, to sum-
marize ,the purpose of this thesis is to present and provide a framework with following key
capabilities:

• A model that obtains accurate estimates of execution time under high uncertainty
environment (corresponding to the EDP).

• Allow the solution to be implemented on any of the actors involved in the system
development process without compromising IP constraints.

• Base the proposal on the characterization of the tasks obtained from the measured
statistics of its execution in isolation.

• The solution will be light-weigth, and with low overhead. The estimates must be
obtained quickly so different scheduling plans can be tested in a faster way than with
traditional simulators even under VM environments.

Our approach builds upon the concept of an Execution Profile (EP) which encapsulates
for each task information about its resource usage and is described later in Chapter 4. The
process to apply our approach involves the steps of generating the EP for each task and then
combining several EPs – in accordance with a scheduling plan – by means of a contention
model to derive ∆t, see Figure 3.1.

The main shared resources we consider in our target architecture (see Figure 2.1) are the uL2
cache, the bus and the memory bandwidth. For the former we explain our contention model
in Chapter 5 and for the latter two in Chapter 6. Our model keeps no state information

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 20

Figure 3.1: Application steps of our approach.

about executed instructions, i.e. it models each instruction in isolation.

First, the cache contention model predicts the increment in number of misses that τj suffers
due to the contention created by its co-runners, ∆muL2

j . Then it derives the execution time
increment (∆tuL2

j) caused by those ∆muL2
j hits in the execution in isolation that become

misses due to its co-runners.

In a second step, we account for the impact on the bus and the memory controller that each
access suffers when accessing those resources. The access latency of each uL2 hit is increased
by the contention on the bus:

lmuc
uL2h = lsolouL2h +∆tbus@ (3.1)

Likewise, the time it takes the memory to serve a uL2 miss increases due to contention on
the bus and memory:

lmuc
uL2m = lsolouL2m +∆tbus@ +∆tmem

@ (3.2)

From the number of hits and misses in the private caches; the increment in misses in the uL2;
and hit and miss delays in the access to the cache/memory (as presented in Equation 3.1 and
Equation 3.2) we derive the overall execution time increase due to the bus and the memory,
called ∆tBUS

j and ∆tMEM
j , respectively. With this, the overall execution time on multicore

is predicted as:

etmuc
j = etsoloj +∆tuL2

j +∆tBUS
j +∆tMEM

j (3.3)

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 21

3.1 Application Process

At the core of our approach we find the Contention Model (or CM), which combines (mixes)
the EP of those applications that co-run in the multicore to predict ∆t, see Á in Figure 3.1.

The OEM distributes the scheduling plan to every supplier together with the EP of all
applications. This allows each supplier to determine those applications that are co-runners
of its own ones. Each supplier uses the CM to estimate ∆t (Á) for each of its applications.
∆t for each application along its corresponding etsolo is sent back to the OEM. If there is no
violation of the budgets (Â), the scheduling plan is deemed as valid (Ä). On the contrary,
the OEM can increase the budget given to a supplier – if some slack is available – or change
the scheduling plan. On its side, the supplier can also try to reduce the CPU requirements
of its application (Ã).

3.2 Histogram Approach

Under a simulator environment, the state of the hardware model is kept in software data
structure. Caches are a clear example of this, and are modelled by a two dimensional table,
with each cell being a struct containing information about its LRU bits, validity bits, data,
etc. On each access, the software has to search its internal data structures and update
its contents and this is well known to be a time consuming process. In order to reduce
simulation speed, we abstract our model from the execution history and will simulate each
instruction in isolation.

We use the information in the EPs either from the task under analysis τj and the contender
tasks to make a prediction in their timing behavior. Most of this information will be stored
in form of histograms or distributions, since we find that these kind of statistics are able to
build a representative scenario and are easy to capture and allow for a light weight model
to be accurate enough. The following example demonstrates the need of this distributions
(histograms):

Given two tasks τj and τh, we want to model the impact on their execution time when
both tasks share a signle-entry cache. For this case τj accesses have a given address and τh

accesses go to a different address. Cache hits take 1 cycle, while misses take 10 cycles. Under
this scenario, consecutive accesses from the same task are hits, while interleaved accesses
evict each other’s data and thus are misses. Basically how frequent each of the tasks accesses
the cache, will tell how often they produce a consecutive access and how often the other task

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 22

evicts data. Let’s assume the available data about each of this two tasks to be the frequency
of access as depicted in Figure 3.2(a). These histograms, which are respectively called Tj

and Th, depict how every τh access is sent to cache 4 cycles after the last one completed,
while 50% of τj requests are sent one cycle after the previous one and the other 50% every
7 cycles after the previous one completes.

(a) Tj and Th for τj and τh (b) τh’s execution time prediction

Figure 3.2: Example of use of the histogram-based modeling approach

Let’s analyze this case under two possible methods:

• Average: If we use information about average both τj and τh are assumed to send
one request to the cache at the same rate of every 4 cycles. As a result all accesses
would interleave and be misses. If τj performs 100 accesses, its predicted execution
time would be 1,000 cycles. This fails to capture the fact that τj has a bimodal
distribution, which means that the number of requests from τj among requests of τh
varies: it can be 0, 1, 2 or 3 and hence some accesses can be hits.

• Histogram. With the approach based on histograms, for every τj access we derive the
time since the last access according to its histogram. To that end we define a random
variable X modelling frequencies in the histogram as probabilities. For instance, Tj

is the random variable capturing the distribution of cycles between consecutive τj ’s
accesses.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 23

3.2.1 Histogram Realization

We refer to a realization of a random variable or distribution in form of histogram X as the
process to obtain a random sample from that distribution. We notate it, from a histogram
X as x, i.e. the name of the random variable but in lower case. Hence, tj is one particular
value obtained from the distribution Tj . For instance, to obtain tj we generate a random
number (r) between 0 and 1, so r ∈ [0, 1). Given that the time between accesses for τj is 1
or 7 cycles with 50% probability each, tj is 1 or 7 as follows:

tj =

 1 cycle if (r < 0.5)

7 cycles if (r ≥ 0.5)

This process for obtaining one value from a random variable, which can be performed for
histograms with any number of points and density, is called realization as we previously have
mentioned. We represent it as x = rand(X), that for the case of the time between accesses
is tj = rand(Tj).

Coming back to the example in Figure 3.2, the histogram based approach results in τj

and τh experiencing hits and misses – as it would be expected based on their frequency of
access. To obtain the predicted execution time for τj , we perform several runs of the model.
In each run, the access delay of each access is obtained by performing one realization of Tj

(e.g., tj = 7) and as many as needed of Th to determine how many accesses of τh occurred
since the previous access of τj . The estimate obtained for the execution time distribution
for τj is as shown in Figure 3.2(b). We observe that the resulting distribution captures the
fact that the alignment between tasks’ accesses impacts each task’s execution time. The
average execution time is 779 cycles instead of 1,000 as with the average-based model.

Our results in Section 8 show for real benchmarks that taking averages instead of consider-
ing the histogram leads to high inaccuracies since accesses interleave systematically in the
same way despite the fact that, in reality, they interleave in many different ways. Instead,
histogram-based interleaving captures tasks’ access interleaving much more accurately.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 24

3.3 Restricted Access Interleaving Information

A key element in our approach is that we assume no information about the distribution
(over time) of the accesses of a given program to hardware resources. For instance, for τj

in Figure 3.2(a) we know 50% of the accesses are sent 1 cycle after the previous completes
and the other 50% 7 cycles. Our model does not record, for instance, information about
whether those accesses concentrate on the initial phase of the execution of the program or
at the end, that is, how they interleave with other task instructions. If we assume that τj

and τh run in parallel it could be the case that all τj accesses occur before those of τh, so
in reality they are not going to suffer inter-task contention in cache. Likewise, we do not
record information about whether τj accesses of the different types interleave.

There are several reasons behind this choice. (i) Keeping time-dependent distribution infor-
mation would increase the size of EP, since we could not summarize it in a histogram but we
would need to keep the exact sequence of accesses and how they interleave over time. This
would also result in more complex and time-consuming modelling. (ii) This approach would
also affect time composability [18][17] since provided contention bounds would be specific
to how requests interleave, which changes when tasks suffer any type of shift.

Since our model aims at predicting the worst-case contention among tasks, not the average,
whenever two tasks partially overlap in the scheduling plan we pessimistically increase their
etmuc assuming they fully overlap and hence, suffer continuously high contention. Despite
this adds some pessimism, it simplifies EP and makes the CM lighter – which is critical since
the CM is used in an iterative manner to adjust the scheduling plan, so it has to incur a
small slowdown.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 25

3.4 Global Notation & Parameter Description

Throughout this thesis, special and abbreviated notation will be used to refer to the different
statistics the following table summarizes, for an easy and quick reference, the abbreviations
used and to what they refer to:

Table 3.1: Global notation.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 26

The main parameters used for our model are those in Table 3.4. We introduce some of them
in this section, while others are presented as they are used. In Table 3.4, starting bottom
up, we observe that parameters provide cache, per-instruction, per-access information and
per-task information. The latter is further broken down into cache, time and instruction
information of the task. For cache information of the task we use the convention metric−
cache − task: metric are the initials of the metric described (in capital letters to mean it
is a random variable, i.e. histogram); cache is cache initial, that for the NGMP is i for the
instruction cache, d for the data cache and u for the unified L2 cache. Finally task is the
task id that is added as subindex. For instance, Kdj is the stack distance of the accesses to
dL1 of task τj . When we talk about a cache in general we omit the cache initial, e.g Kj .

We introduce some of Table 3.4’s parameters via the example sequence in Figure 3.3. For
each access we report its address, accessed cache set and the time in which it happens.

Access number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

address @A @D @A @B @F @C @B @E @A @A @F @A @B @E @C @A @F
accessed set s0 s1 s0 s0 s2 s0 s0 s1 s0 s0 s2 s0 s0 s1 s0 s0 s2

time 1 4 10 14 16 20 22 25 32 36 40 41 43 50 56 58 60

TSj 0 0 9 4 0 6 2 21 10 4 24 5 2 25 13 2 20
Ej ∞ ∞ 1 0 ∞ 1 0 5 1 0 5 1 0 5 1 0 5
Kj ∞ ∞ 0 ∞ ∞ ∞ 1 ∞ 2 0 0 0 1 0 2 2 0

Figure 3.3: Access Sequence Seq1 generated by a task τj

• Time between accesses to the same set (TS) captures the time between accesses tar-
geting the same set. For instance, accesses #2 and #8 to addresses @D and @E

respectively, are consecutive accesses to set 1 (set1). They occur in cycles 4 and 25
respectively, which results in a time between accesses to the same set of 21 cycles.

• Set distance (E) for a given set seti is the number of other sets (different than seti but
not necessarily unique) accessed since the last time seti was accessed. For instance,
access #2 in Seq1 accesses set1, which is accessed again by access #8. In between
there are 5 accesses to sets different than set1, hence set distance equals 5 for #8.

• Stack distance (K). The stack distance of an access @Al is defined as the num-
ber of unique (i.e. non-repeated) addresses mapped to the same set where @Al is
mapped and that are accessed between @Al and the previous access to it, i.e. @Al−1.
Note that stack distance is similar to the concept of reuse distance, though the lat-
ter does not break down accesses per set. For instance, in Seq1 the accesses to set0

are (AABCBAAABC) with stack distances (∞0∞∞120012) respectively. The stack
distance of a task τj (Kj) is built from the stack distances of its accesses.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 27

It is worth noting that common eviction cache policies such as LRU have the stack prop-
erty [13], which determines whether a given address is still in cache. For LRU, the focus of
this thesis, each set in a cache can be seen as an LRU stack with lines sorted based on their
last access cycle. The first line of the LRU stack is the Most Recently Used (MRU) and the
last is the LRU. Interestingly, i) the position of a line in the LRU stack defines its stack
distance; ii) those accesses with a stack distance smaller than the number of cache ways (w)
result in a hit and vice versa; and iii) the sensitivity of the access of τj to be evicted from
cache by accesses of a contending task τh depends on its stack distance: the higher it is, the
higher its sensitivity.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 28

Chapter 4

Execution Profile

The execution profile is the characterization of a task in form of statistic values and stored in
a file. The time modeling process collects relevant data that represents how the application
uses hardware resources in isolation. The result of this data collection process is an EP per
application, that will be used by the contention model to obtain predictions on ∆t.

4.1 Profile Generation

The process of generating the execution profile starts by instrumenting a VM so we recover
for every emulated instruction data such as the opcode, program counter and data address
for the memory operations. This instrumentation is usually already available in some form
of application programming interface (API) that enables access to that kind of information.
This extracted information or raw data is then processed by two different components:

• Cache simulator: The cache simulator will pick the program counter addresses and
data reference addresses and perform a cache simulation in order to collect data such
as cache hit rates, stack distance or set distance.

• Instruction Processing Module: An instruction processing module is in charge of map-
ping the instructions to their respective instruction types and computing the instruc-
tion mix values.

While the overall process is slow, since the instrumentation adds some overhead to the
execution and it takes some time to process all the data, this process is only done once per
application release.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 29

4.2 Profile Information

The EP generation deploys a high-level cache simulator and some extra modules that process
the information coming from the instrumentation of the VM. As a result we obtain an EP
that is the input for contention modeling. Table 4.1 summarizes these contents and provides
a notations for them.

Table 4.1: Specific information in the Execution Profile and Notation
Hij ,Hdj ,Huj cache hit rates (miss rates derived as (1−Hxj))

TSuj Time between accesses going to the same set in uL2
Kuj uL2 stack distance of τi (including all data accesses)
Euj uL2 set distance of τi (including all data accesses)
Imix Percentage of instructions of each type
ntotal,ny Total and per-type instruction count
ly Nominal back-end latency per instruction type
etsoloj τj ’s execution time in isolation

• Instruction count: For each task we keep the total number of instructions executed
ntotal.

• Per-type instruction count: We keep the number of instructions of each type (ny)
in the task. This can be obtained from the opcode of each instruction. It follows that∑

y∈Y ny = ntotal, where Y is the set of all instruction types.

• Instruction mix0. Imix provides the distribution of instructions across types, i.e.
ny/ntotal for each type y.

• Per-type instruction latencies. It provides information about the latency of each
different type of instruction (ly). This information can be derived by benchmarking [9]
or can be found in the user manuals provided by the chip vendor. The information
provided covers the core latency of operations and the latency of the local caches, global
caches and the main memory for load/store operations. We differentiate the following
instruction types (Y) since they are common in several RISC architectures: integer
short latency (e.g., add, cmp), integer long latency (e.g., idiv, imult), control (e.g.,
bne), floating point short latency (e.g., fpadd, fpmult), floating point long latency
(e.g., fpdiv and fpsqrt) and memory operations (e.g., ld and st). Some of these
types can be further divided. For instance, the floating point long latency type can
be split into divisions (fpdiv) and square roots (fpsqrt) since the execution time of
these two instruction types can be quite different.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 30

It is noted that each instruction instance may suffer variability in its execution time
due to two factors. First, input-data dependence that occurs when instructions such
as floating-point division take variable latency depending on the particular values
(input-data) operated. And second, pipeline state dependence: in this case, a given
instruction may have variable latency depending on its predecessor instructions. In
our aim to model the worst-case we handle these sources of jitter by assuming as the
latency for every type an upperbound to those latencies. This provides an upperbound
to the execution of the instruction. This incurs relatively low inaccuracy while keeping
the model simple and fast. For the NGMP, which has mostly a stall-free pipeline, so
removing pipeline-state dependences, Table 4.2 shows the latency we assume in our
model for every instruction type.

Table 4.2: Operation types in the NGMP and their assumed latencies
operation type jitter min-max latency Assumed latency

int. short latency NO 1 1
int. long latency YES 1-35 35

control NO 1 1
fp. short latency NO 4 4
fp. long latency YES 16-25 25

• Local caches information: For the local caches, our cache simulator provides the
hit rate. In particular for each τj we keep Hij and Hdj .

• Global caches information: As for the local caches, we record information on the
hit rate of the application for the global caches, i.e. Huj for the NGMP.

• Inter-access latency: For every core instruction executed we have its latency ly. For
instruction and cache accesses the cache simulator is used to determine whether they
hit/miss in the different cache levels, for which we have an associated latency. With
this information, for every two accesses to uL2 we can predict the execution time of
the instructions between them, and hence we can derive the time between consecutive
accesses. The histogram (TSuj) is derived by counting how many times each latency
occurs between two consecutive uL2 accesses to the same set.

• Kuj and Euj : From the cache simulator it is straightforward to derive stack distance
and set distance since we have the memory operations accessing uL2 and the set they
access.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 31

• Solo performance . In our environment, software suppliers are provided with a
virtualized environment (e.g. for the SPARC based NGMP in our case) that runs on
a host platform (e.g. x86) where etsolo – that is the first addend in Equation 3.3 –
cannot be derived. We derive etsolo by applying a simple approach in which for each
instruction we add its front-end (of the pipeline) latency and its back-end latency.

etsoloj =
∑
y∈Y

[ny × (fend(y) + bend(y))] (4.1)

Instruction’s front-end latency depend on whether they hit or miss in iL1 and uL2. For
each of these scenarios their associated latency is different. Whether an instruction
hits/misses in cache is provided by the cache simulator. For core operations, such as
add or mult, ly gives an estimate of their execution time in the back-end. For memory
operations such as load or store, their back-end latency also depends on whether
they hit or miss in dL1 and uL2.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 32

Chapter 5

Cache Contention Model

The main objective of the cache contention model is to derive the amount of data in the
shared cache that will be evicted due to access of tasks’ contenders, or in other words, the
increase in the miss rate due to contention.

The process of modeling the contention is based on Monte Carlo experiments. Each instruc-
tion that accesses the cache is simulated for all the different statistic figures that describe
those accesses1. This means that the model iterates for a chosen number of instructions,
modeling one by one. At first the instruction type is defined by performing a realization on
Imix. Based on the instruction type y extracted, the model obtains its back-end latency ly.

The targeted object to analyze are the uL2 hits which are the only ones that could become
a miss under a multicore environment, iL1 and dL1 hits are unaffected because L1 caches
are private and non-inclusive, and uL2 misses will still miss in contention because our tasks
do not share data. This model does not keep track of the execution history, meaning that
each uL2 access @Al of the task under analysis τj will be modeled independently from the
others.

L2 cache misses can be described by its stack distance value, a stack distance value greater
than the number of ways of a cache will always be a miss, and the other way around, a stack
distance with a value smaller than the number of ways, will be a hit. In that way the model
will compute the increase in stack distance that an access @Al suffers due to access injection

1Our model does not need to simulate the entire number of instructions of a given task, instead a fixed
subset number of instructions, fit for a tight timing simulation, can be simulated through the Monte Carlo
experiments, and then data can be extrapolated linearly to the real number of instructions. This enables
the model to keep its light-weight/low-overhead capabilities.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 33

of contenders between the previous access to the same data @Al − 1. To summarize, if the
stack distance in isolation of @Al (ksolo@Al

) is smaller than the number of uL2 ways (wuL2)
but its multicore stack distance (kmuc

@Al
) exceeds the number of ways, we will account that

access to be increasing the total miss count (∆ml2
j). We define this in equation 5.1.

(ksolo@Al
≤ wuL2) and (kmuc

@Al
> wuL2) (5.1)

Deriving (kmuc
@Al

) is the main objective of this model. To attack this problem, we will first
determine how long is the vulnerability window of an access to cache (i.e. The time between
two consecutive accesses to the same address @A), with this value it is possible to determine
then how many lines the contenders inject in this period of time. Two considerations have to
be taken into account, a) contenders have to fetch lines that go to the same set of @A, b) all
this accesses have to be unique, repeated accesses will hit on cache and won’t be increasing
the stack distance by occupying other ways.

First of all, we determine the window of vulnerability, the time in which an access of the
task under analysis is stored in the cache and until its LRU value is reseted (tsolo@Al

). For
a given access @Al we perform a realization on its stack distance (ksolo@Al

= rand(Kuj)), if
the stack distance in isolation is greater than the number of ways, this access was a miss
in isolation, thus we discard it, otherwise we keep this value as the number of times the
task under analysis τj visits the set of @Al until it fetches @Al itself. Now we just need to
know how much time it takes for τj to produce an access to uL2, if we multiply how many
times we access a set in cache since access @Al−1 to @Al by the time it takes to send this
accesses (tsuj) we get the total amount of time in which the access @Al is vulnerable to
have its stack distance increased. This timing measure is derived from a realization on the
time between accesses to the same set (ksolo@Al

= rand(Kuj)).

tsolo@Al
= tsuj × ksolo@Al

(5.2)

Now that we have the vulnerability window, its time to compute the number of accesses
injected by the contenders (τh ∈ c(τj)) to the same uL2 set. To do so, we extract the
time between accesses to the same set, in the same way as in the previous paragraph for
the contenders (tsuh = rand(TSuh)) and divided by the vulnerability window (tsolo@Al

). The
resulting value is the proportion of how many accesses a contender can fit in @Aj time
window as described in the first addend in equation 5.3. If tsolo@Al

and tsuh are not multipliers,
an extra access may be injected by τh due to some extra cycles that are left until τj accesses
its data. We model this behavior on the second addend of equation 5.3 by computing how

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 34

many cycles are left until renewing the LRU stack for @Al (tsolo@Al mod tsuh) and generating
a random number between 1 and tsuh that will describe if task τh was able to inject an
access before τj .

ah@Al =
⌊
tsolo@Al

tsuh

⌋
+min

(⌊
tsolo@Al mod tsuh

rand(1,tsuh)

⌋
, 1
)

(5.3)

Up until now, we have considered that all accesses from the contenders, are interfering on
the task under analysis, the truth is that memory mapping as well as the usage of the
different sets for different tasks have a very important impact on accesses colliding on the
same set. Along with that, accesses that repeat on the same set won’t be incrementing the
stack distance of our access @Aj . We solve the first issue with a set collision distribution
model and mitigate the effects of the second one by implementing limits on the increment
of stack distance.

5.0.1 Set collision distribution

In order to model the effect of not using the whole s̈et spectrum öf the cache, we define the
concept of set dispersion, as the probability that contenders’ accesses go to the same set
where @Al is mapped. To compute this probability duh, we first derive the average layout
occupancy of the cache, or in other words, the proportion of sets that our tasks uses, taken
from the average of the set distance distribution Euh and dividing that by the total number
of uL2 sets. Therefore the probability of a task τh mapping an access to the same set as τj

is the intersection of both cache utilization percentages (i.e. Ph
du = duj × duh).

ah@Al =

 ah@Al(as in Eq. 5.3) : rand(0, 1) < Ph
du

0 : rand(0, 1) ≥ Ph
du

(5.4)

5.0.2 Increment in stack distance

This other effect depicts the situation where, a contender τh produces in the time interval
of the vulnerability window, 4 accesses (ah@Al = 4) but all this accesses are accesses to the
same data (e.g. BBBB, where B is a cache block). In this case we have to account for those
accesses not increasing the stack distance in 4 but just in 1 since they will fill the same
cache block, just one way. To do so, we perform realizations on the stack distance of the
contenders (rand(Kuh)) to obtain how many of those interfering accesses are repeated. We

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 35

describe this behavior in equation 5.5 by limiting the amount of accesses that a contender
can inject.

∆kh@Al = min(ah@Al, rand(Kuh) + 1) (5.5)

5.0.3 Final Step

Finally, we can account for the true increment of stack distance of ksolo@Al
by all the contenders

accesses, allowing us to derive the stack distance in the multicore environment (kmuc
@Al

).

kmuc
@Al

= ksolo@Al
+

∑
τh∈c(τj)

∆kh@Al (5.6)

Once this is computed for all the instructions or an arbitrary amount of instructions them,
and according to the condition stated in Equation 5.1, the amount of hits that become misses
∆muL2

j can be derived. By applying the penalty in cycles for each miss we can derive the
increase in terms of cycles that task τj suffers due contention as stated in Equation 5.7.

∆tuL2
j = ∆muL2

j × (luL2miss − luL2hit) (5.7)

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 36

5.1 Example

Let’s explain the whole process through an example of a 1 access analysis.

Setup:

• 4 way cache

• 2 Contenders (τh, τk)

Process:

1. Window of vulnerability: Span of time between an access to address under analysis
@Ai

j and the next hit-access to @Ai+1
j .

• τj =


ksolo@Al

= 2

tsuj = 20 cycles

tsolo@Al
= tsuj × ksolo@Al

= 20× (2 (+1)) = 60 cycles

• Depicted situation:

Figure 5.1: Visualization: Window of vulnerability

2. Contender’s accesses injected: Amount of accesses from contenders that will poten-
tially increase the stack distance of @Aj .

• τh =

 tsuh = 30 cycles

ah@Al =
⌊
tsolo@Al

tsuh

⌋
+min

(⌊
tsolo@Al mod tsuh

rand(1,tsuh)

⌋
, 1
)
=

⌊
60
30

⌋
+min

(⌊
0
15

⌋
, 1
)
= 2

• τk =

 tsuk = 25 cycles

ak@Al =
⌊
tsolo@Al

tsuk

⌋
+min

(⌊
tsolo@Al mod tsuk

rand(1,tsuk)

⌋
, 1
)
=

⌊
60
25

⌋
+min

(⌊
10
8

⌋
, 1
)
= 3

• Depicted situation:

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 37

Figure 5.2: Visualization: Contenders’ injection

3. Set collision: Discard the accesses from the contenders that do not collide in the same
set as @Aj .

• τj =
{

duj = 60%

• τh =


duh = 40%
Ph
du = duj × duh = 0.6× 0.4 = 0.24

rand(0, 1) = 0.1 < 0.24 ⇒ ah@Al = ah@Al

• τk =


duk = 90%
P k
du = duj × duk = 0.6× 0.9 = 0.54

rand(0, 1) = 0.75 ≥ 0.54 ⇒ ak@Al = 0

• Depicted situation:

Figure 5.3: Visualization: Contenders’ collision

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 38

4. Repeated contenders’ accesses: Discard repeated accesses to the same set since those
are not increasing LRU stack distance.

• τh =

 rand(Kuh) = 0

∆kh@Al = min(ah@Al, rand(Kuh) + 1) = min(2, 0 + 1) = 1

• Depicted situation:

Figure 5.4: Visualization: Discarding repeated accesses

After all the process we see how task τk was not able to inject any access into the same
set of Aj and thus was not able to increase the stack distance of that access. However task
τh had two accesses to the same set, but both accesses were to the same block, hence we
have to discard one since it is not increasing the LRU stack distance. In the end, the access
@Aj increased it’s stack distance from 2 to 3, meaning that it is able to remain in the LRU
algorithm and not be evicted by the interference.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 39

Chapter 6

Bus and Memory Contention
Model

Under the targeted system of the NGMP we assume that bus accesses are not split, meaning
that the bus is not relinquished until the access is served either by the L2 cache or the main
memory, this implies that one access to the bus contains the delay for the L2 cache and
the main memory thus allowing us to simplify the model since it will inherently include the
contention suffered in memory.

This model will estimate the contention (∆tBUS
j) in cycles faced by task τj on the bus (and

memory). In order to do so we derive in the following order this four measures:

1. etbusuL2
j : The Execution Time in Bus will describe how many cycles our task τj spends

on the bus. This value will already factor in the impact of the uL2 cache interference
analyzed previously in the cache contention model (CCM).

2. ubusc(j): The Utilization of the Bus by the contenders relative to their execution time.

3. abusj : Availability of the bus, or probability of finding the bus free of contenders.

4. ∆tBUS
j .

etbusuL2
j is obtained by adding the time spent by τj serving uL2 cache hits and misses in

isolation and factoring in the estimates of increase in misses from the CCM. The following
equation defines the time spent in bus:

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 40

etbusuL2
j = ((nsolo

uL2h −∆muL2
j)× luL2hit) + ((nsolo

uL2m +∆muL2
j)× luL2miss) =

= (nsolo
uL2h × luL2hit) + (nsolo

uL2m × luL2miss) +
(
∆muL2

j × (luL2miss − luL2hit)
)

(6.1)

In equation 6.1, nsolo
uL2h and nsolo

uL2m, correspond respectively to the number of uL2 hits and
misses in isolation, and ∆muL2

j to the hits in isolation that become miss due to intertask
interference as derived by the CCM. We now use the total execution time derived from
the execution time in isolation and adding the number of increased misses multiplied by a
penalty for each miss, this is described in equation 6.2.

etuL2
j = etsoloj +∆muL2

j × (luL2miss − luL2hit) (6.2)

Now if we divide the time spent in bus by the total execution time, we obtain the utilization
of the bus for a given task in isolation taking into account a possible cache contention,
ubusuL2

j .

ubusuL2
j =

etbusuL2
j

etuL2
j

(6.3)

Next we compute the contention of all the contenders, this can be done by adding together
the utilization factors of the tasks involved, of course we have to account for the case of
utilization surpassing the 100% mark, check section 6.1(a) for further explanation.

ubusc(j) =
∑

τh∈c(τj)

ubusuL2
h (6.4)

With this values we can now compute the availability of the bus for the core under analy-
sis. This information is derived from the complement of the proportion of cycles that the
contenders occupy and the total window of occupied bus, this last factor is computed from
the utilization of the contenders plus the utilization of the core under analysis. This step
makes a strong assumption on the tasks bus utilization, check section 6.1(b) for a further
explanation.

abusj = 1−
ubusc(j)

1 + ubusc(j)
(6.5)

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 41

Finally, the inverse of the availability will provide how often τj will have to retry an access
to the bus in order to get the hardware resource. Then this value is multiplied by the total
time spent in the bus etbusuL2

j to obtain the increase in time in the bus due to contention,
∆tBUS

j .

∆tBUS
j =

(
1

abusj

)
× etbusuL2

j (6.6)

6.1 Considerations

There are two main consideration taken in this model as practical assumptions:

• a) Joint utilization over 100%: When adding bus utilization together we can find
the scenario where ubusc(j) is greater than 100%. For instance, let’s assume τj has
two contenders, τh and τm, each with bus utilization of 60%. This results in a bus
utilization of ubusc(j) = 1.2. We will consider that contention will obviously increase
the time window since total bus utilization of τj and its contenders cannot exceed
100%.

• b) Circular dependence: The time window increases by the true contention that
the other tasks cause on τj . However, the actual impact of contention on the bus is
the result of the model. For instance, recalling the previous example, the impact of
τh and τm bus accesses will increase τj execution time, thus increasing bus availability
(same number of accesses over a larger time window). However, such increased bus
availability is already needed to compute the time window, thus creating a circular
dependence.
To break this dependence, we upper-bound contention impact in the time window with
the total utilization of the other tasks. See the right addend of Equation 6.5, where the
time window available is 1 (available utilization in isolation) plus the time that other
tasks access the bus (ubusc(j)). Hence, the actual bus utilization is approximated by
dividing the utilization of the other tasks by the total time window. τj finds the bus
available (abusj) when it is not being used by others.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 42

6.2 Example

Let’s assume a simple example to completely figure out how the bus contention model (BCM)
works:

 1 luL2hit

10 luL2miss

τj =


1900 nsolo

uL2h L2 hits

100 nsolo
uL2m L2 misses

300 ∆muL2
j L2 miss increase

10000 etsoloj isolation cycles

τh =


1000 nsolo

uL2h

150 nsolo
uL2m

150 ∆muL2
h

5000 etsoloh

1. Time in bus:

• τj : etbusuL2
j = (nsolo

uL2h×luL2hit)+(nsolo
uL2m×luL2miss)+

(
∆muL2

j × (luL2miss − luL2hit)
)

= (1900× 1) + (100× 10) + (300× (10− 1)) = 5600

• τh: etbusuL2
j = (nsolo

uL2h×luL2hit)+(nsolo
uL2m×luL2miss)+

(
∆muL2

h × (luL2miss − luL2hit)
)

= (1000× 1) + (150× 10) + (150× (10− 1)) = 3850

2. Bus Utilization:

• τj : etuL2
j = etsoloj +∆muL2

j × (luL2miss − luL2hit) = 10000 + 300×
× (10− 1) = 12700 ubusuL2

j =
etbusuL2

j

etuL2
j

= 5600
12700 = 0.44

• τh: etuL2
h = etsoloh +∆muL2

h × (luL2miss − luL2hit) = 5000 + 150×
× (10− 1) = 6350 ubusuL2

h =
etbusuL2

h

etuL2
h

= 3850
6350 = 0.60

• ubusc(j): ubusc(j) =
∑

τh∈c(τj)
ubusuL2

h = 0.6 = 0.6

3. Availability: Availability of the bus, or probability of finding the bus free of contenders.

• τj : abusj = 1− ubusc(j)
1+ubusc(j)

= 1− 0.6
1+0.6 = 0.625

4. Increased Cycles:

• τj : ∆tBUS
j =

(
1

abusj

)
× etbusuL2

j =
(

1
0.625

)
× 5600 = 8960

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 43

Chapter 7

Assumptions & Simplifications

Our model balances accuracy in its prediction and the execution time overhead to run it.
Results presented in Section 8 show that our model achieves a good balance between both.
However in this section we detail the variety of trade-off decisions that we had to consider.

7.1 General approach

The most remarkable assumption in our models is that we take frequencies observed when
characterizing applications as probabilities. However, events such as cache hits/misses do not
have a randomized nature as it would be required to attach probabilities to their occurrence.
For the sake of simplicity we make this assumption for any process to limit the complexity
of the cache model.

7.2 Core model

In general our model does not work with the temporal distribution of events. For instance,
we assume that instructions of each type are equidistant in the code. Despite we have
histograms we do not consider how instructions are distributed over time. For computing
processor core time, we over-approximate the execution time of each instruction in the core
instead of tracking pipeline and data dependences, that is, we assume the longest latency
of a jittery instruction, e.g. for the NGMP we assume that fplong, i.e. fp long-latency
instruction we assume, always takes 25 cycles when in reality it can take either 16 or 25

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 44

cycles depending on the input values operated. This heavily simplifies the processor core
time model with low impact on accuracy.

7.3 Cache model

For the cache model, stack distances and set distances are not maintained per set, but
we have one stack distance histogram and one set distance histogram for the whole cache.
Alternatively, to increase accuracy we could keep information in a per-set basis, but this
would add some non-negligible complexity to the model, would increase the amount of
information recorded by a factor of s (the number of sets in cache), and would make results
dependent on the actual sets (and so memory locations) of the different tasks. Another
source of innacuracy is that we average set distance to approximate set dispersion.

7.4 Bus model

In the bus model there are two main sources of inaccuracy. First, when determining the
bus availability for a task the time window assumed is upper-bounded. Second and more
important, our bus model assumes that bus accesses are blocking, i.e. they stall the processor
pipeline. However, the LEON4 cores in the NGMP have a store buffer able to manage a
pending store without stalling the pipeline. Since dL1 caches are write-through in the
LEON4 core, write operations to uL2 are abundant. Hence, the bus contention effect will
not be as linear as assumed, resulting in under-estimations of the model.

As shown in the result section, the overall accuracy of the model is acceptable as execution
time estimates to be used during the EDP, while it incurs low execution time overhead.

7.5 Addressable unit

For sake of simplicity we have assumed in our explanations that each access corresponds to
a cache line. When the addressable unit is smaller than a cache line, accesses to different
addresses can be mapped to the same cache line. This has no impact on our previous
formulation. For instance, let us assume the sequence (A,A,B,C,B,A), in which B and
C go to the same line. We can simply abstract this sequence as (A,A,B,B,B,A), hence
considering that the access to C corresponds to another access to B, so cache stack distances
would be (∞ 0 ∞ 0 0 0 1). This allows us applying the formulation presented.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 45

Chapter 8

Evaluation

8.1 Methodology & Experimental Framework

This work will compare the proposed model against a simulator with a determined target
platform. This simulator called SoCLib [20] has been validated and on average produces a
3% deviation on the results reported by the real hardware for a specific benchmark suite,
the EEMBC automotive benchmarks.

8.1.1 Target platform

As it has been already said, the reference platform for this work is the NGMP [5] depicted
in Figure2.1 and described in the following points:

• Core: The NGMP has 4 cores based on the LEON4 core. These are SPARC cores with
a seven-stage scalar in-order pipelines. All these cores have an instruction and data
first-level caches (iL1,dL1). All the cores are interconnected through an AHB AMBA
bus to a shared second-level cache (uL2).

• Floating point: The floating point unit (FPU) of the NGMP core has a double path
for floating point (FP) operations. There is one path for divisions and square roots,
and another path for the rest of FP operations which is fully pipelined providing a
latency of 4 cycles. The pipeline of the divisions and square roots is not pipelined
meaning that its latency is inversely proportional to its throughput.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 46

• Bus: Arbitrated by a round-robin policy and with 128-bit width the bus of the NGMP
follows the AHB AMBA standard. It has 5 masters (4 cores and I/O master) and 2
slaves (level 2 cache and I/O slave). On the analyzed architecture the bus split feature
is not build in yet.

• Memory: The level 1 caches have a size of 16KB and are 4-way associative, giving
them 128 sets. These also implement a write-trhough and write no allocate policies
with some write buffers. On the next level, the L2 unified cache, there are 2048 sets
and a total of 256KB and 4 ways. It implements a copy-back, write allocate policies.

8.2 Benchmarks

The software used to test our model, will come from three different sources:

• EEMBC automotive: This suite of benchmarks [16] is well-known in the real-time
domain and adjusted to analyze the capabilities of the embedded architectures and
tools designed in that environment. A subset of this benchmarks have been chosen,
these correspond to the most c̈ache sensibleb̈enchmarks, or those that have a larger
footprint on the cache, and are prone to have data evicted from the level 2 cache. The
following are the benchmarks selected: aifirf (AF), aiifft (AT), bitmnp (BI), cacheb
(CB), canrdr (CN), idctrn (ID), iirflt (II), puwmod (PU), rspeed (RS).

• European Space Agency benchmarks: These are representative benchmarks actually
being used by the ESA. The following are the benchmarks selected: On-board Data
Processing (OB), and DEBIE (DE). The OB benchmark contains the algorithms

• Stressing Kernels: These are benchmarks that focus their activity on certain hard-
ware resources. Using this kernels will allow the model to be stressed. The following
benchmarks will be used: l2full (U), l2half (H), l2miss (M), l1miss (L), mixed-8-12-80
(E). The first 3 benchmarks produce accesses to the level 2 cache, filling it, filling
only 2 ways or missing always on it. The l1miss benchmark produces misses on the
instruction cache, and finally mixed-8-12-80 (E) is a specific mixture of instructions
(8% stores, 12% loads, 80% adds),

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 47

8.2.1 Workloads

We run four-task workloads, and select eight different workloads for each task under analysis.
The contenders selected correspond to the eight workloads than hurt most the performance
of the task under analysis. For the first task we use our model to estimate its execution time
bound. This first task is either an EEMBC AutoBench benchmark or an ESA benchmark.
The other three (contending) tasks in the workload are l2full, l2half, l2miss, l1miss or
mixed-8-12-80. This creates a stressful scenario in which we can fairly assess the accuracy
of the predictions our model. Table 8.1 summarizes the workloads used in this thesis.

Table 8.1: Workloads used for evaluation
BENCHMARK 8 WORKLOADS IN WHICH IT RUNS

AF (LLL), (LLH), (LHL), (HLL), (HLH), (HHL), (LHH), (ULL)
AT (UUU), (UMU), (MUU), (UUM), (MMU), (MUM), (UMM), (MMM)
BI (UUU), (UMU), (MUU), (UUM), (MMU), (UMM), (MUM), (MMM)
CB (LUU), (UUU), (ULU), (UUL), (HUU), (MUU), (UHU), (UMU)
CN (ULU), (UUL), (LUU), (HUU), (UHU), (UUH), (MUL), (ULM)
DE (MUU), (UMU), (UUU), (UUM), (MMU), (MUM), (UMM), (MMM)
ID (UUU), (UMU), (MUU), (UUM), (MMU), (UMM), (MUM), (MMM)
II (LLL), (LLH), (LHL), (HLL), (LHH), (LEL), (HLH), (LLE)
OB (UUU), (UMU), (MUU), (UUM), (MMU), (MUM), (UMM), (MMM)
PU (UUU), (UMU), (MUU), (UUM), (LUU), (ULU), (UUL), (UMM)
RS (LLL), (LLH), (LHL), (HLL), (LEL), (LLE), (ELL), (HLH)

8.3 Metrics

We evaluate the accuracy provided by our model in terms of the increment in the number of
L2 misses (∆muL2

i), bus time (∆tBUS
i +∆tMEM

i) and the overall execution time in multicore
(etmuc). For each of these three metrics we measure accuracy as PredictedV alue

ActualV alue . Hence the
closer to one the better, with values above one showing that the model over-approximates
and values below one that the model under-approximates. For each four-task workload, we
measure the accuracy in estimating the contention of its first task. As shown in Table 8.1 we
create eight workloads for each EEMBC Automotive and the ESA benchmarks. We show
the distribution of the accuracy across the eight workloads with a boxplot, thus showing the
median, the quantiles, maximum and minimum values and outliers.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 48

8.4 Results

8.4.1 Average-Based Model

For comparison purposes we obtained results for the cache contention model using average
values rather than histograms. Our results show that for all the workloads listed in Table 8.1
the average-based model detects almost no contention. This occurs because dividing average
values by the number of sets du, as done in Equation 5.4, leads to very low predicted
interferences among tasks. This produces contention predictions as low as 0.0034, that is
with an inaccuracy of almost 100% (1− 0.0034 = 0.9966).

8.4.2 Cache Contention Model

small (a) Common cases (b) Extreme cases

Figure 8.1: Accuracy of the cache contention model

As we can see in Figure 8.1(a) ∆muL2
i is accurately estimated for several benchmarks and

somehow overestimated for others. The largest deviation are due to the fact that our cache
contention model assumes that stack and set distances are homogeneous across sets for
the sake of simplicity. However, this is not always the case and, in fact, our l2full and
l2half synthetic kernels are specifically designed to stress all cache sets and half of them,
respectively, so that heterogeneous behavior across sets produces large inaccuracies in our
model.

The case of the three benchmarks in Figure 8.1(b) is completely different since ∆muL2
i is

in the range [10, 100]. In this case, benchmarks suffer in the order of dozens extra misses
in L2 due to contention, which is negligible for those benchmarks executing millions of
instructions. Hence, although our model overestimates ∆muL2

i by a factor of 10-20x, this
only represents accounting for around of 1,000 extra L2 misses whose impact in the total
execution time is negligible.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 49

It can also be observed that the cache contention model leads to an overestimation of ∆muL2
i .

The main reason is the fact that our model assumes that cache accesses are homogeneously
distributed in time. However, in reality they typically occur in bursts. Thus, if bursts of all
different tasks occur simultaneously, the model is accurate but if, instead, not all of them
overlap completely (the common case) real interference is lower than estimated because the
number of interfering accesses from other tasks during a burst of the task under analysis is
lower than predicted.

8.4.3 Bus Contention Model

Figure 8.2: Accuracy of the bus contention model

For bus contention, shown in Figure 8.2, we observe a variety of behaviors across benchmarks.
Although such contention is somehow overestimated for few benchmarks, it is typically
underestimated for most of them. This effect is particularly noticeable for aiifft, debie

and obdp. As explained before, the NGMP processor has store buffers that are able to hide
part of the latency of stores. However, since stores occur in bursts, whenever they occur in
a short period of time they can produce performance degradations much higher than linear.
For instance, it has been proven that execution time may grow by a factor of 20x in the
NGMP with just 4 cores due to the (bad) interaction of store operations in the different
cores [10]. How to better capture this effect in our bus contention model without incurring
high overhead is still part of our future work.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 50

8.4.4 Multicore Execution Time

Figure 8.3: Performance accuracy of the complete model. Results have been normalized w.r.t. the
actual measurements.

We have also analyzed the accuracy of our performance estimates when considering all
contention models and assumptions together. The accuracy in determining etsolo is high
with predictions in the range [1.02, 1.23] for all benchmarks.

Results are shown in Figure 8.3. We observe that the accuracy of the estimates is mostly
dominated by bus contention in the NGMP. The main reason is the fact that the difference
between L2 hit and L2 miss latencies is relatively low (9 versus 23 cycles) and only affects
∆muL2

i , whereas the impact of bus contention affects all load misses in L1 and all store
instructions given that DL1 is write-through. Therefore, inaccuracies due to the effect of
the store buffer in terms of bus contention dominate the results.

Overall, our simple analytical model is able to keep performance estimates in the range
[0.6, 1.4] w.r.t. the real performance in the NGMP. These are accurate results for execution
time estimations for early-design phases. The accuracy of our model allows system designers
to really take into account multicore contention in the design choices made (e.g. deciding
the scheduling plan).

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 51

8.4.5 Performance and Overhead

(a) Time required by the EP generation

(b) Time to perform one estimation of the multicore contention

Figure 8.4: Average overheads of our contention prediction model.

To produce the ‘raw data’ from the VM as presented in Figure 3.1, we introduce instrumen-
tation instructions to read information about the particular instruction under execution.
The number of instructions to add is relatively low: three instructions in our case to read
opcode, program counter and data address. From the raw data we run the cache simulator
and process instructions to generate the EP. Figure 8.4(a) shows the execution time of this
EP generation step, which is run just once per application. If the application has several
releases whose resource-usage profile is expected to change, this step is repeated once for
each of those releases. The duration of this step depends on the length of the program.
For the EEMBC and the real ESA benchmarks, whose execution is in the order of dozens
millions of instructions, in the worst case this step takes around 80 seconds. On average
EP generation requires around 20 seconds across all benchmarks, which is reasonably short
given the low frequency with which this step executes.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 52

Figure 8.4(b) shows the execution time overhead of contention models, once EP information
has been produced. The duration of this step is the most important for the feasibility of
our approach. This is so because, once the EPs are generated, the system designer needs
short turn-around time of the models to be able to evaluate different design choices. We
observe that predicting the multicore performance of an application in a workload requires
as low as 120ms on average, which enables a vast design space exploration of various system
parameters by system designers.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 53

Chapter 9

Related Work

The focus of timing analysis techniques in the literature for EDP has been on single-core
architectures. To our knowledge, the work presented in this thesis is the first addressing the
challenge of providing timing estimates in EDP for multicores.

Some approaches for single-core architectures work on the assumption that the target proces-
sor and/or the corresponding compilation toolchain is available, while others do not. When
the target processor is not available, several techniques exist to derive timing estimates that
help deciding the hardware platform that best satisfies system requirements [8][22] as well
as sizing it. The approach consists in compiling the source code for a given set of potential
target ISAs. For each of the ISA there is a parameterizable processor simulator (model)
from which timing information is gathered. The model allows changing parameters with
high impact on timing such as cache configuration [22]. Then program information (e.g.
paths) obtained from the executable and timing from the generic processor model are com-
bined to approximate programs execution time. In our case the target ISA and processor
are fixed, so such an approach would not be necessary.

Other approaches do not work at the binary level but at the source code level, or an in-
termediate representation level, which are available earlier in the design cycle of the sys-
tem. In some cases, timing is integrated in high level modelling environments such as
Matlab/Simulink [6]. The ultimate goal is providing the developer knowledge of the worst-
case “as the code is written” [7]. In all cases the focus is on single-core architectures, while
our focus is on multicore contention.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 54

In many of the approaches above one of the main challenges lies in deriving a light, yet
accurate, timing (cost) model for individual instructions or sequences of them. Some pa-
pers [7] assume a WCET-friendly processor design, such as the Java Optimized Processor
(JOP). This simplifies the timing model since the processor is predictability aware. Other
papers propose methods to derive a timing model from measurements of representative code
extracts on the target processor. For instance, authors in [12] work on the concept of C-
source-level abstract machine which is calibrated based on measurements to match a target
real hardware. In this line, [11] proposes the timing model code level that combines mea-
surements and a regression model to perform timing estimates of source code. In this latter
work, the timing (cost) model is built, i.e. it is not assumed as an input. In both cases the
focus is on constructs that frequently appear on the target programs.

While previous works focus on single-core processors, our focus is on multicore specific as-
pects. In particular the contention in the access to hardware shared resources. For multicore,
it could be possible to run the program under analysis against a set of resource stressing
kernels (rsks) which put high load on the shared resources [10, 19]. This would provide
a good estimation of the program execution time under heavy (extreme) load conditions.
However, it has been shown that this approach leads to inflated execution time estimates,
up to 20x bigger than programs’ execution time in isolation, which makes it impractical to
obtain accurate execution time approximations during EDP.

Previous works show that, while exact bounds are required in LDP, during EDP, instead,
approximations to those bound are needed [8][11]. Some accuracy is traded to speed up the
estimation process so that engineers can make design space exploration taking into account
timing. To our knowledge, no particular figure is reported on accuracy required in EDP. For
multicores several works show that the impact of contention can up to 20x for some kernels
and up to 5.5x for some EEMBC benchmarks [10]. In this context, we deem the accuracy
results obtained by our approach (between 0.6x and 1.4x) as sufficiently precise.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 55

Chapter 10

Conclusions & Future Work

In the Introductory Chapter of this thesis we presented some relevant problems that start
emerging in the design of RTES. Among these problems it is the slow-downs a task suffers
due to use of virtualization and simulators. In particular when the target (virtualized)
platform is a multicore uncertainties arise due to the fact that the timing behavior of a task
depends on its co-runners. This increases the complexity – with respect to current practice
– to derive timing bounds in early-design stage.

In this thesis we have presented a first approach on how to estimate the impact of multicores
in EDP on the NGMP platform. The core of this approach is based on EPs for each
application that do not compromise software suppliers’ IP and hence can be shared amongst
them. This EPs together with the model proposed allow for anyone to derive execution
time estimates and impact of the contenders on their developing tasks in a fast manner that
allows multiple schedules to be planned. This thesis puts the model to the test showing how
the estimates are accurate enough for the EDP and that evaluating an schedule takes less
than 0.2 seconds, which makes the model light-weigh in terms of overhead.

This new technique enables RTES developers to analyze and manage with better preci-
sion the uncertainties that multicore environments present to the industry. Unlocking this
knowledge will allow for cheaper and better designed systems that will benefit the entire user
spectrum, from industry to end-user. However it is crucial to maintain this efforts in this
fields since there is still many unknowns to be cleared in order provide a smooth transition
to multicores to the RTES industry.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 56

10.1 Future Work

During the making of this work some approaches where left aside in order to focus on the
completion of the thesis, this bits of improvement that could be added, are detailed as future
work:

• Bus Model: As denoted in Section 7, the bus model has two main sources of inaccuracy.
Both issues should be tackled first, since we have seen how bus contention can have a
proportionally large impact in the increase of execution time. However the model still
provides acceptable bounds of accuracy.

• Information per Set: By gathering information more specifically for each set, instead
of gathering information globally, we could capture de non-uniformity of usage across
sets.

• Information per Time: If we add some kind of information that relates statistics to
a precise moment in time, we could locate the different statistic values per regions of
the program, that may allow us to model programs with non-uniform behavior.

• Isolation Accuracy: Or due the accuracy in isolation is good enough for our predictions
to be accurate, an improvement by covering corner cases for the isolation execution
time estimation will also have a positive impact on the later predictions since the
contention model (CM) has inputs that depend on the results on the simulations and
results from isolation.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 57

Chapter 11

Acknowledgements

I could not end this thesis without acknowledging some of the people that made possible
this work.

To Francisco J. Cazorla and Jaume Abella, my advisors, for having the patience to deal
with specific difficulties and details far-off from their main duties.

To Mikel Fernández and Javier Jalle for collaborating in this research, and helping me get
in touch with the main tools used.

To all my colleagues at the CAOS group for their kind help.

To all the BSC team and the Severo Ochoa grants for allowing me to take part in their
project.

And as always, thanks to my parents for supporting me no matter my mood.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 58

Chapter 12

Published Work

This work has been published under the following format:

• David Trilla, Javier Jalle, Mikel Fernandez, Jaume Abella, Francisco J. Cazorla, ”Im-
proving Early Design Stage Timing Modeling in Multicore Based Real-Time Systems”,
in proceedings of the 22nd IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), Vienna (Austria), April 11-14, 2016.

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 59

Bibliography

[1] Guidelines and methods for conducting the safety assessment process on civil airborne
systems and equipment. ARP4761, 2001.

[2] ARINC Specification 653: Avionics Application Software Standard Standard Interface,
Part 1 and 4, 2012.

[3] J. Abella et al. WCET analysis methods: Pitfalls and challenges on their trustworthi-
ness. In SIES, 2015.

[4] AUTOSAR. Technical Overview V2.0.1, 2006.

[5] Cobham Gaisler. NGMP Preliminary Datasheet Version 2.1, May 2013.

[6] Raimund Kirner et al. Fully automatic worst-case execution time analysis for mat-
lab/simulink models. In ECRTS, 2002.

[7] Trevor Harmon et al. Fast, interactive worst-case execution time analysis with back-
annotation. IEEE Trans. Industrial Informatics, 8(2), 2012.

[8] C. Ferdinand et al. Integration of code-level and system-level timing analysis for early
architecture exploration and reliable timing verification. In ERTS2, 2010.

[9] G. Fernandez et al. Increasing confidence on measurement-based contention bounds for
real-time round-robin buses. In DAC, 2015.

[10] Mikel Fernández et al. Assessing the suitability of the ngmp multi-core processor in the
space domain. In EMSOFT, 2012.

[11] J. Gustafsson et al. Approximate worst-case execution time analysis for early stage
embedded systems development. In SEUS, 2009.

[12] R. Kirner and P. Puschner. A simple and efficient fully automatic worst-case execution

David Trilla Rodríguez UPC, Barcelona School of Informatics

Modelling Contention in Multicore Hardware Resources during Early Design Stages of
Real-Time Systems 60

time analysis for model-based application development. In Workshop on Intelligent
Solutions in Embedded Systems, 2003.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Syst. J., 9(2), June 1970.

[14] M. Paolieri et al. An Analyzable Memory Controller for Hard Real-Time CMPs .
Embedded System Letters (ESL), 2009.

[15] Zheng Pei Wu et al. Worst case analysis of DRAM latency in multi-requestor systems.
In RTSS, 2013.

[16] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina State
University, 2007.

[17] Peter Puschner and Martin Schoeberl. On Composable System Timing, Task Timing,
and WCET Analysis. In WCET Analysis Workshop, 2008.

[18] P. Puschner et al. Towards Composable Timing for Real-Time Software. In Workshop
on Software Technologies for Future Dependable Distributed Systems, 2009.

[19] Petar Radojković et al. On the evaluation of the impact of shared resources in multi-
threaded cots processors in time-critical environments. ACM TACO, 2012.

[20] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.

[21] Michael Tautschnig Raimund Kirner Sven Bünte, Michael Zolda. Improving the confi-
dence in measurement-based timing analysis.

[22] http://www.absint.com/timingprofiler. Timing Profiler. AbsInt.

[23] R. Wilhelm et al. The worst-case execution time problem: overview of methods and
survey of tools. ACM TECS, 7(3):1–53, 2008.

[24] Wilhelm R. et al. The worst-case execution-time problem overview of methods and
survey of tools. ACM TECS, 7:1–53, May 2008.

David Trilla Rodríguez UPC, Barcelona School of Informatics

