
Concurrency primitives in Haskell

Daniel Mart́ı

Advisor: Jordi Petit (Computation)

June 27th, 2016
Computer Engineering - Computation

Barcelona School of Informatics (FIB)
Polytechnic University of Catalonia (UPC BarcelonaTech)

Receiving Insitution: University of Newcastle

Abstract

Asynchronous circuits are digital logic circuits not governed by
a global clock signal. This makes them potentially more powerful,
power efficient and modular in large systems. They have lots of real-
world applications, although they are yet to be widely adopted in the
industry. The main reason behind this is the lack of a simple way
for developers to design asynchronous circuits to solve real problems.
Current methods involve graphs that quickly grow in size, making
development of complex systems infeasible. We were able to simplify
and modernize the process by allowing developers to formally define
their circuit in a way that is understandable and maintainable. This
new method is also compatible with state of the art tools like Worcraft
for the circuits to become real hardware.

Contents

1 Introduction 4
1.1 Asynchronous circuits . 4
1.2 A new approach . 4
1.3 Location and context . 5
1.4 Personal motivation . 6

2 Scope 7
2.1 Objectives . 7
2.2 Obstacles . 7

2.2.1 Domain Specific Language (DSL) 7
2.2.2 Workcraft . 7

2.3 Outside of scope . 8

3 Methodology 9
3.1 Source control . 9
3.2 Test-driven development . 9
3.3 Continuous integration . 9
3.4 Direct feedback . 10
3.5 Progress monitoring . 10

4 Temporal planning 11
4.1 Description of tasks . 11

4.1.1 Viability tests . 11
4.1.2 Project formalization 12
4.1.3 Initial setup . 12
4.1.4 Porting from Launchpad 12
4.1.5 Design . 12
4.1.6 Coding . 13
4.1.7 Final task . 14

4.2 Alternatives . 14
4.2.1 DSL . 14
4.2.2 Workcraft . 14

4.3 Resources used . 14
4.3.1 Hardware . 14
4.3.2 Software . 15
4.3.3 Other (cloud) . 15

1

4.4 Action plan . 15

5 Budget and sustainability 16
5.1 Budget estimation . 16

5.1.1 Hardware resources . 16
5.1.2 Software resources . 16
5.1.3 Human resources . 17
5.1.4 Total budget . 17

5.2 Budget control . 17
5.3 Sustainability . 17

5.3.1 Economic sustainability 18
5.3.2 Social sustainability . 18
5.3.3 Environmental sustainability 19

6 Design 20
6.1 Command line program . 20
6.2 Workcraft plugin . 20

7 Implementation 21
7.1 From Launchpad to GitHub 21

7.1.1 Porting information over 21
7.1.2 Continuous integration 23

7.2 Simple program . 24
7.2.1 STG format . 24
7.2.2 Required information 25
7.2.3 Unit tests . 25

7.3 Input concepts at runtime . 26
7.3.1 Writing a compiler . 26
7.3.2 Hint library . 26
7.3.3 Changes to Hint . 27
7.3.4 Changes to Concepts 29

7.4 Taking the user’s circuit . 30
7.4.1 Changes to Concepts 30
7.4.2 Executable binary . 32

7.5 Extensive testing of the program 33
7.6 Independent binary . 33
7.7 Workcraft plugin . 34

7.7.1 GHC dependency . 35

2

7.7.2 Program compilation 35
7.7.3 Simplify STG . 35

8 Conclusions 36

3

1 Introduction

1.1 Asynchronous circuits

Asynchronous circuits are event-driven, i.e. they react to changes in a system
when the changes occur [1], which may be at any point in the future. This
makes them particularly useful for on-chip power management, where the
ability to quickly respond to dynamically changing loads across the chip is
essential for reliable operation and efficiency [2].

Signal Transition Graphs (STGs)[3] are commonly used for the specifi-
cation of asynchronous circuits. To put it simply, an STG can be thought
of a form of Petri Net, which is a graph with nodes (places) and vertices
(transitions). An example of an STG (of a C-Element) can be seen at Figure
1. We can represent circuits using those mathematical models.

There exist tools such as Petrify [4] and Mpsat [5] that take an STG of a
complete controller and produce a speed-independent circuit implementation
[6]. This means that one can design entire circuits and chips on a computer,
and have them become real hardware.

This approach to designing asynchronous circuits has poor scalability: as
the system grows in complexity its monolithic specification becomes challeng-
ing to grasp and debug. STGs cannot be easily split into pieces and re-used,
and thus each new design must be built from the ground up. This further
adds to the design time, hence making asynchronous circuits undesirable for
use in industry.

Figure 1: STG of a C-element

1.2 A new approach

To address this issue, researchers at the University of Newcastle propose a
new method of asynchronous circuit design. The method splits a specification

4

into several parts corresponding to operational modes of the circuit (scenar-
ios). The features, constraints and requirements of each scenario (concepts),
are described in a formal notation, which is being implemented as a Domain
Specific Language (DSL) embedded in Haskell [7].

Concepts can be composed and one concept can be made up of multiple
smaller concepts, thus supporting the design reuse at the level of system
specification. Figure 2 shows a concept for a C-Element, which is equivalent
to the STG in Figure 1.

A set of concepts describing the operation of a scenario is then passed to
a translation program that automatically converts it into an equivalent STG,
which satisfies all given concepts and can be model-checked using standard
tools like Workcraft [8] as defined in [9].

When all scenarios have been translated to STGs and verified, they can
be combined to produce a complete specification. All of these steps will be
automatic and, ideally, transparent to the user.

This project will focus on the translation program mentioned above.
This program can be thought of as the missing piece - there already are
tools to work with STGs and produce complete circuit specifications, such
as Workcraft. As soon as our formal specification of asynchronous circuits
can be automatically transformed into an STG, developers will be able to
seamlessly go from a high-level formal definition to an actual circuit usable
in real life.

1 cElement : : a −> a −> a −> CircuitConcept a
2 cElement a b c = b u f f e r a c <> b u f f e r b c

Figure 2: C-element concept

1.3 Location and context

This project is taking place in the University of Newcastle, in Northern Eng-
land. With the help of teachers from UPC BarcelonaTech, the student found
that a research group in England was looking for a student to help with their
research. The project was agreed upon before the arrival of the student, and
the entire project is being conducted in the visiting university with the help
of professor Andrey Mokhov.

It should also be noted that it is the same research group that develops
Workcraft. The tool is used not only in subjects and labs at Newcastle Uni-

5

versity, but also throughout many universities around Europe where circuit
design is taught.

1.4 Personal motivation

The student chose the location and university because he wanted to do the
entirety of the project in English, not just the paper and presentation. It was
also a great opportunity to improve his English skills, living and working for
half a year in the country that spawned the language.

As for the theme of the project, both functional programming and circuit
design were of interest to the student. Moreover, these fields are filled with
very talented people who offer many opportunities. In fact, Newcastle Uni-
versity is in close research collaboration with Microsoft, who are avid Haskell
users and employ some of the most popular Haskell developers in the world.

6

2 Scope

2.1 Objectives

This section will give an overview of the objectives of this project. The
temporal planning will give a more in-depth, step by step description of each
of the tasks and objectives in the temporal planning.

The main objective of this project is to develop the translation program.
Taking the high-level definition of an asynchronous circuit, it will generate
an STG. It should be in a generic and useful format that can be imported
and used by other tools.

The secondary objective is to integrate the tool that implements this
program into Workcraft. That will be done in the form of a plugin for
Workcraft, written in Java. It will have to integrate well with the entire
program, being able to easily import a formal definition and obtain an STG
directly.

2.2 Obstacles

2.2.1 Domain Specific Language (DSL)

There is plenty of design to be done, since the language is not specific enough
yet. For example, signals need to be differentiated between input, output and
internal signals. This is required since an STG without defined input and
output signals will not be sufficient.

The DSL implementation being worked on at Newcastle University will
also need work. The first implementation simply allows you to define your
circuit combining concepts and then simulate it. This serves a great purpose
since you can actually check that your definition is correct, but it’s not what
we need. The translation program needs to walk through the definition of
the circuit, much like a compiler walks through an AST of a program.

2.2.2 Workcraft

Since the high-level formal definition is in a Haskell DSL, the user would
need an entire Haskell compiler to make use of it. GHC weighs nearly a
gigabyte, so it would be best to not have it as a hard dependency on the
user’s machine.

7

This is a rather big obstacle, as right now there is no way in Haskell to
parse and evaluate Haskell source code without having to install GHC in its
entirety - not even via a library.

2.3 Outside of scope

Producing a simplified version of the STG is not part of the scope of this
project. This is what existing tools such as the already mentioned Petrify
do. Our tool will similarly not optimize nor treat the resulting STG in any
way; this is all done on the Workcraft side, with tools like Petrify.

Helping the circuit developer write better asynchronous circuits, or pro-
ducing any sort of warnings if they are not well defined enough, is also not
part of the project. This will be done as part of the DSL, before we grab
hold of the circuit definition.

8

3 Methodology

The development of the project itself is going to start with the transformation
of an asynchronous circuit defined using concepts into an STG by hand. This
will be simply to prove that we are correct in assuming that the STGs we
are going to produce are going to be valid and integrate with the rest of the
workflow in designing asynchronous circuits.

The next step is going to be implementing the program, mocking the
asynchronous circuit definition that the user would input and verifying that
the STG outputs are valid and as expected.

Finally, we will make it possible for the developer to provide their own
asynchronous circuit definition to the program, so that the program can
convert it to a valid STG. This will be our first working version of the project.

3.1 Source control

Git will be at the center of our development process. We will be using
GitHub, which allows for pull requests, managing of issues and milestones,
releases, binary distributions and many more features.

Later in the document it will be explained how Workcraft, currently living
in Launchpad, will be ported over to GitHub.

3.2 Test-driven development

Tests will be a very important part of this project. There will be tests to
verify the simulation of asynchronous circuit definitions, as well as tests for
the translation from such formal definitions to their STG counterparts.

We will also be using test code coverage to identify dead code paths, as
well as untested code. This will greatly reduce the possibility of hidden bugs
or unknown behaviour.

3.3 Continuous integration

We will integrate third party services such as Travis and Coveralls to keep
the repositories on Github in shape. The former checks that the build and
tests still work, and the latter checks that code coverage is either kept or
improved as time goes on.

9

3.4 Direct feedback

We ourselves in the research group will be making use of this entire pipeline
once it is finished. Aside from the feedback from our peers, there already
are plenty of Workcraft users, some of which are interested in the new way
to define asynchronous circuits. We will gather and act on feedback on a
continuous manner.

3.5 Progress monitoring

We will be using milestones on Github to group issues that keep us from
accomplishing targets in the project. One such milestone will be transforming
an arbitrary asynchronous circuit into an STG, for example. Another will
be to have a completely independent binary without depending on GHC, as
mentioned earlier.

10

4 Temporal planning

This section concerns temporal planning and it aims to describe the tasks
that are going to be executed in order to do the project. It gives an action
plan that summarises the actions that have to be taken in order to finish the
project in the desired time frame. However, we have to keep in mind that
the following plan is subject to modifications depending on the development
of the project.

The project was started on January 25th, 2016 and its deadline is June
30, 2016. At 30 hours a week, this amounts to a total of 750 hours. Therefore
we have to develop our schedule given these time constraints.

4.1 Description of tasks

In this section we are going to describe the tasks that we have planned to do
in order to make our project. A Gantt chart follows, showing an overview of
the time spent on each section.

Jan Feb Mar Apr May Jun Jul

Viability tests

Formalization

Software setup

Porting to GitHub

Design

Implementation

Final task

4.1.1 Viability tests

We spent the first week of the project confirming that the asynchronous
circuits which can be defined in our Haskell DSL can all be transformed and
represented as STGs. This is key for the project to be successful.

We did this simply by transforming the circuits by hand. The fact that
an STG exists for each one of them - and especially that we were able to find
it quite easily - proves that an program can be written.

The tests were successful.

11

4.1.2 Project formalization

This section was done as part of GEP. It took a total of two weeks. It is
divided into these stages:

• Scope and context

• Temporal planning

• Economic management and sustainability

• Presentation

This comes before the rest of the tasks as it defines the rest of the tasks
themselves.

4.1.3 Initial setup

We will need several tools. Most importantly, a development machine, which
will be running Arch Linux. On it, we will need GHC version 8.0 as well as
Java 1.7, which are needed by Concepts and Workcraft respectively.

We will also need several development tools, such as Git, Github and
Travis, which fortunately we are already familiar with.

4.1.4 Porting from Launchpad

Before the start of this project, Workcraft lived on Launchpad. Since we plan
on using Github and third party tools around it to ease collaboration and
test-driven development, we need Workcraft moved over from Launchpad.

Before any coding is done, the project must be ported from Launchpad.
This will be necessary to be able to integrate key parts of the development
cycle such as continuous integration. This will take us two weeks.

4.1.5 Design

The next step is to design our program. We will take into account what its
input will be, as well as its expected output. We also want to validate this
with the rest of the research team, as they are much more familiar with the
workflow of circuit design and can give valuable output.

This will take us two weeks.

12

4.1.6 Coding

This is the main task in our project - implementing it. It will take a total of
12 weeks. We can split it into several stages:

• Simple program (1 week): We will write a simple version of the trans-
lation program, mocking its asynchronous circuit definition input and
verifying its output against the expected STG.

• Input concepts at runtime (2 weeks): Currently, the only way to use
circuit concepts in the Haskell DSL in any way is to hard-code them
at compile time. We will need to find a way for our program to take
them as input, i.e. becoming a compiler itself.

• Taking the user’s circuit (2 weeks): We will rewrite part of the Concepts
software to be able to feed the user’s asynchronous circuit definition to
the translator program. This cannot be currently done, as the software
just simulates the circuit.

• Extensive testing of the program (2 weeks): We will test our program
against large inputs and all sorts of edge cases. This is mainly to make
sure that any of the assumptions we may have are correct, and that
our program isn’t performing terribly on terms of memory or time.

• Independent binary (2 weeks): We will need to somehow produce a
static, independent binary which developers can use to transform their
circuit definitions in Haskell into STGs, without having to have GHC
installed. This has already been mentioned as a potential obstacle,
since it may not even be possible.

• Workcraft plugin (2 weeks): Finally, we will wrap up the tool in a
plugin for Workcraft written in Java. This way, Workcraft users will
be able to easily import a Haskell file for their circuit from within
Workcraft and not worry about executing the tool and handling the
STG file themselves.

The dependencies between these stages are simple - each stage depends
on the one before it.

As mentioned before, we will be conducting test-driven development. So
each and every one of the stages will include tests and will be measured for
test coverage. Documentation will also be written.

13

4.1.7 Final task

In this task we are going to check that everything works as expected and we
are going to prepare the delivery of the project, assuring that the documen-
tation is correct and preparing the final presentation.

We will also ship our Workcraft plugin in a public Workcraft release. This
task will take us two weeks.

4.2 Alternatives

We have stated some potential obstacles, so here we define alternatives for
every one of them.

4.2.1 DSL

If we do not find a way to define which signals are input and which are
output, we can make our translation program simply make assumptions,
leaving those that it can’t decide on up to the user to settle manually.

4.2.2 Workcraft

We have said that there is currently no way to bundle a Haskell compiler
into an independent binary. At least, in a binary whose size is acceptable -
at most ten or twenty megabytes. If we do not find any such way to do it,
we have two options:

• The first and simplest is to require that our users install GHC on their
machines.

• The second is to use a tool such as upx [10], which would let us compress
most of the binary. We have run some quick tests, and this decreases
size by roughly 70%, down to a size that is manageable.

4.3 Resources used

4.3.1 Hardware

• Lenovo X1 Carbon Laptop, generation 2 (2013) - used in all tasks

14

4.3.2 Software

• Arch Linux - used in all tasks

• GHC 8.0 - used in all tasks concerning Haskell

• OpenJDK/JRE 1.7 - used in all tasks concerning Java

• Workcraft - used to test STGs translated by hand

• Gradle - used to build Workcraft

4.3.3 Other (cloud)

• GitHub - Git repositories, issue tracking

• Travis - Continuous integration

4.4 Action plan

We already are and will continue to have weekly team meetings over lunch
on Thursdays. On these, there are regular progress reports and discussion
on the status of the project. They will help us keep our focus, as well as keep
our mentor in the loop as to what is happening with the currently ongoing
task or stage.

We have defined a clear set of tasks, which we already set expiration dates
for on Github. We will use these dates and the progress in the milestones to
keep track of our performance and to make sure that we finish the project in
the time we have.

15

5 Budget and sustainability

This section treats the budget and the sustainability of the project. It con-
tains a detailed description of the costs of the project, describing both ma-
terial and human costs.

As in previous sections, this budget described is subject to modifications
depending on the development of the project.

5.1 Budget estimation

In this section we estimate the budget needed in order to make our project
possible. We are going to divide the budget in three sections, depending on
the kind of resources that we are taking into account.

To calculate the amortisation we are going to take into account two fac-
tors, the first one being the useful life and the second one being the fact that
our project is going to last for approximately six months.

5.1.1 Hardware resources

The following table contains the costs of the hardware that we are going to
use in the development of the project.

Product Price Useful life Amortisation
Laptop 2000e 4 years 250e
Virtual Private Server 200e 2 years 50e
Total 2200e 300e

5.1.2 Software resources

The table 2 contains the costs of the software that we are going to use in the
development of the project.

Product Price Useful life Amortisation
Arch Linux 0e Indefinite 0e
GHC 8.0 0e Indefinite 0e
OpenJDK 7 0e Indefinite 0e
Latex 0e Indefinite 0e
Total 0e 0e

16

5.1.3 Human resources

A single person will be working on the project, working on both the planning
and designing aspects of it as well as all the coding and testing. All of these
tasks amount to a total of 750 hours, as previously mentioned. At an hourly
rate of 20e/hour, this will amount to 15.000e.

5.1.4 Total budget

Using data shown in the tables above, we can use the following table to
describe the total cost of the project.

Concept Cost
Hardware resources 300e
Software resources 0e
Human resources 15.000e
Total 15.300e

5.2 Budget control

Our budget could need a modification if the development of the project makes
it impossible to follow the plan established, which is something that is likely
to happen.

We could have difficulties in our project, although it is unlikely that we
will need any hardware resource apart from the resources that have been
already listed in the budget estimations shown in the previous section. We
might need more software resources, but we will probably cover those needs
with free and open source software just like we have already been doing.

Since we have no human resource costs, even if further programming or
design hours are needed, they will come at no budget cost increases.

5.3 Sustainability

In this section we are going to evaluate the sustainability of our project in
three different areas:

• Economic

• Social

• Environmental

17

5.3.1 Economic sustainability

In this document we already can find an assessment of the costs of our project,
taking into account both material and human resources.

The cost stated in the Budget estimation section of this document could
be the only cost spent in the project, since we aim to create a working
program, so it should not need maintenance in the case that we do not
create any update.

It would be difficult to do a similar project with a lower cost. We are
not spending any money on software nor on human resources, so the only
way to reduce costs would be to use worse hardware. Which could be ac-
complished, but at the expense of worse conditions for the person doing the
actual development of the project, potentially worsening its quality.

We can not assure that the cost of the project would make it competitive,
but we can say that it depends on how it is going to be distributed. We
could make it a free application, so it would be very competitive, but then
we would need a way (for example, advertisements) to get paid every time
that the application is downloaded so we can recover the money invested. In
the other hand, we could make it a paid application, but its price should not
be high.

It is not the case, but is important to remark that this project could have
been executed with collaboration of companies in the hardware manufactur-
ing industry, since they may be interested in developing an application like
this very one.

5.3.2 Social sustainability

The application that we are going to develop in this project is going to be
used in the countries which are developed enough so that everyone can have
access to a computer, since our goal is that it can be used by everyone who
can have access to a decent computer.

Everyone desiring to design an asynchronous circuit is going to be able to
use the program resulting of the development of our project. The program
gives the developer a way to design it in a simple and scalable way - before
its creation he or she had to use a graph manually, which would get complex
quickly and not scale well.

18

5.3.3 Environmental sustainability

The resources used in the project have been detailed in the Budget estimation
in this document.

During all the development of our project we are going to have a laptop
running. The devices used and the energy spent running them are going to
be the only resources used.

Knowing that, we can estimate the energy spent developing the project.
We can suppose that our computer consumes an average of 40 W when we
are working in the project. Since we need to use the computer in all the
development of the project, which is 750 hours long, the energy we need is
30 kWh, which is equivalent to 11.3 kg of CO2. It is a moderate amount of
energy, but since we need to make constant use of a computer there is no
way to reduce it.

19

6 Design

In this section we will come up with an outline of the program, designing both
how it will work on its own as well as how it will integrate with Workcraft.

6.1 Command line program

For the program to be useful as a standalone command line utility, users
will have to be able to feed it input via files or standard input. That is, the
circuit concepts described in the Haskell DSL.

It will also have to produce its result to an output file or standard output.
If the input concept is valid Haskell that compiles, the program should work
correctly without any human interaction.

Note that the program does not need to specifically run any checks to
verify that the circuit is well defined, as that is already done thanks to the
Haskell DSL. Any incorrect definition of a circuit will simply not compile.

This type of input/output tool follows the Unix philosophy of doing one
thing and doing it well, so it will be easy to reuse it at later stages.

There are two major obstacles to face in the implementation of this pro-
gram. Unfortunately, we cannot investigate them much further without div-
ing into implementation details. Thus, these obstacles are dealt with in the
implementation stage.

6.2 Workcraft plugin

As stated in the project timeline, we will be writing a Workcraft plugin that
will allow users to input a circuit concept defined in the Haskell DSL directly
into Workcraft, obtaining an STG that they can then test, simulate and
otherwise work with.

Workcraft already has a number of plugins, adding up to 17. These are
all built on top of the WorkcraftCore package, which provides a base and a
set of interfaces to interact with the whole program and graphical interface.

Thankfully, there are already a handful of plugins that simply wrap
command-line binaries. For example, there already is a plugin that wraps
Petrify, which we have mentioned before. This sort of plugin is rather simple,
as it does not have any complicated logic in itself.

Since Petrify also works on input and output files, our approach of writing
the command-line program in this way will conjugate well with Workcraft.

20

7 Implementation

7.1 From Launchpad to GitHub

As described in the temporal planning, one of the first key tasks will be
moving Workcraft from its Launchpad [22] repository to a Github [12] one.
This will simplify the workflow in the team, as Github integrates tools such
as code review better. But most importantly, it will allow for the use of key
components such as continuous integration via Travis.

Launchpad and GitHub use different source control management systems
- Bazaar [11] and Git [23], respectively. Luckily enough, a Bazaar repository
is very similar to a Git one, and can be semi-automatically converted to one.
The bigger problem lies in all the information on Launchpad outside of the
source control, such as bug reports and milestones.

Over on GitHub, we register the Tuura organization [24] where all of the
research group’s code and products will live from this point onwards.

7.1.1 Porting information over

To port all the information over from Launchpad, scripting will be needed.
Python is the language choosen for the job, as development speed is a much
higher priority than runtime performance for such a one-day tool.

The key components that the software will do are as such:

• Download Bazaar source repository from Launchpad

• Download all bugs, blueprints and milestones from Launchpad

• Convert the Bazaar repo to a Git repo

• Fix all the commit author names and e-mail addresses to match com-
mits with GitHub users properly

• Assign all bugs, blueprints and milestones unique ids that will be used
when importing them on GitHub

• Rewrite all the Git commit messages to port all references to bugs,
blueprints and milestones

• Use a bot GitHub account to push the git repository

21

• Use a bot GitHub account to submit all the bugs and blueprints

• Use a bot GitHub account to submit all the milestones and assign the
respective issues to them

In total, it took little over a week to write the tool and finish the task.
The tool itself took about an hour to do the entire thing, mainly because
GitHub has rate limits in place that made the tool sit around for most of the
time.

As one can expect, there were lots of little details that needed correction.
After a handful of retries from scratch, the switch over to GitHub is done.
The new repository can be found at tuura/workcraft [13]. The old and new
repositories can be found at Figure 3 and Figure 4, respectively.

Figure 3: Abandoned Launchpad repository [14]

Figure 4: New GitHub repository [13]

We also added issue and pull request templates [15], further simplifying
the process for users and developers who wish to contribute.

22

7.1.2 Continuous integration

As described previously in the methodology, we want to use continuous in-
tegration as part of our development process. As such, we want to set up
Workcraft with Travis [16], which will let us run a number of commands or
scripts at each commit and pull request.

Workcraft already has some JUnit unit tests, which Travis will run. On
top of these, we add:

• Testing on multiple JDKs (OpenJDK 7, OracleJDK 7 and 8)

• Format checks via Checkstyle [18]

• Java checks via PMD [19]

Keeping a consistent code format across the codebase is very important to
keep the project maintainable and easy to develop, especially since there are
multiple people involved. And PMD adds many static code analysis checks
that many IDEs already perform, but with the advantage that no GUI is
needed and especially that they can be checked by Travis.

The Checkstyle configuration file for Workcraft can be found in the git
repository [20], as can the PMD one [21].

23

7.2 Simple program

The main objective of this task is to get familiar with what the inputs and
outputs of our program will be. The first question we should ask is how we
will feed the output STG to Workcraft.

7.2.1 STG format

We will use Workcraft to draw simple STGs and observe the export formats,
to see which one is the correct one for us.

The format should:

• Be in plain text, to ease debugging and development

• Be easy to generate

• Not be overly verbose

• Not contain any graphical nor UI information

Workcraft supports multiple import and export formats for STGs. One
such example is the .work format, which is the default in use when exporting
an STG. It is way too complicated for our needs, though.

Another format, called dotG, fits our needs. It is plaintext, only contains
the STG - no graphical interface information - and it is represented in simple
plain text. We can see an example of an STG in the dotG format in Figure
5.

1 . model Unt i t l ed
2 . inputs in1 in2
3 . outputs out
4 . graph
5 in1+ out+
6 in1− out−
7 in2+ out+
8 in2− out−
9 out+ in1− in2−

10 out− in1+ in2+
11 . marking {<out−, in1+> <out−, in2+>}
12 . end

Figure 5: C-element STG in the dotG format

24

7.2.2 Required information

Once we know what we want to produce and how, the next task is determine
what information is needed to produce such output. We will need:

• A list of all the unique signals

• A list of all the unique arcs

• The initial state for each of the signals

Optionally, we could also set the type of each signal - input, output or
internal - in the STG. Although that is not necessary to make a standalone
circuit into a working STG.

7.2.3 Unit tests

Once we know what information is required and how to transform it into an
STG, we now write a set of tests with inputs and expected outputs. The
purpose of such tests is to confirm our design so far.

The program is very simple at this point, as it does little more than
encoding the given information into a dotG file. Once we wire this into our
real input, circuit concepts defined in the Haskell DSL, the program will
become more complex.

The tests work properly, and the generated dotG files are successfully
imported by Workcraft.

25

7.3 Input concepts at runtime

As outlined in the temporal planning, our next step is to remove the re-
quirement that concepts be input at compile time. This is cumbersome, as
the entire DSL toolset needs to be compiled with the user’s concept already
in place. That means that if the concept needs changing, the user must
recompile everything.

We need to write a program that takes input bytes, either from standard
input or a file, compiles them as a Haskell module representing the user’s
concept, and wires that up to the Concepts toolset [29] for it to be simulated
or treated in any way.

7.3.1 Writing a compiler

The biggest challenge here is that, effectively, we need to write a compiler.
Thankfully, GHC itself is a set of Haskell modules we can import. Less
fortunately, its API is cumbersome to work with and changes quite drastically
from release to release. Even if we got it to work with GHC 8.0, it will very
probably not compile with GHC 7.8 or other relatively recent versions.

Ideally, we would want a library that wraps around the GHC API to solve
both of those problems. It would simplify its usage, and provide a layer of
compatibility across multiple GHC versions, allowing our program to compile
and work under multiple GHC versions at once.

7.3.2 Hint library

Our research leads us to Hint [25], written by Daniel Gorin and hosted in a
Darcs source code repository [26]. This library aligns very well with what
we described above - it is a wrapper around the GHC API, and provides
compatibility with GHC versions from 7.4 through 7.10.

Unfortunately, this library does not yet support the latest GHC release -
8.0 - and it has been seemingly abandoned since 2014, without any activity
for more than two years.

As such, we e-mailed Daniel offering to take over maintenance of the
package, and he agreed. As such, Hint now lives on Github [27] and has
seen two major releases - 0.5 and 0.6 - since the takeover in maintenance,
including contributions from many in the Open Source community.

26

7.3.3 Changes to Hint

A number of changes were required in Hint to allow its use in our program,
and were made in the following weeks:

• GHC 8.0 support

• Do not error if GHC returns any warnings

• Allow unsafe interpretation of expressions

• Allow providing a GHC libdir at runtime

The first two are straightforward - GHC 8.0 support is required since
that’s the version we will be using, and we do not want our compiler to error
if any warnings are found. The latter was a bug in earlier versions of Hint.

The third concerns how one can use Hint to compile modules from an
array of bytes. The compilation is simple - the tricky part comes with ex-
tracting information from the compiled module. For instance, the example
below will use the function foo as defined in the module in Figure 6, com-
piled at runtime in Figure 7. It has been tested to run on GHC 8.0 with Hint
0.6.0 installed.

1 module Foo where
2

3 f oo : : Int −> Int
4 f oo n = n + 1

Figure 6: Foo.hs

27

1 module Main (main) where
2

3 import q u a l i f i e d Language . Haske l l . I n t e r p r e t e r as GHC
4

5 main = GHC. r u n I n t e r p r e t e r do In t e rp r e t
6

7 do In t e rp r e t : : GHC. I n t e r p r e t e r ()
8 do In t e rp r e t = do
9 GHC. loadModules [”Foo . hs”]

10 GHC. setTopLevelModules [”Foo”]
11 −−
12 f oo <− GHC. i n t e r p r e t ” foo ” (GHC. as : : Int −> Int)
13 l e t n = 2 {− 2 −}
14 l e t n2 = foo n {− 3 −}
15 re turn ()

Figure 7: Sample Hint usage

Note that we have to know the type of the interpreted name at compile
time. We need to be able to supply the type at runtime, since circuit con-
cepts might take any number of signals to work on. As such, we added an
unsafeInterpret variant that allows this. It is more powerful, but it is also
easier to get the program crashing if the type is not formatted correctly. A
usage sample can be found at Figure 8.

28

1 module Main (main) where
2

3 import q u a l i f i e d Language . Haske l l . I n t e r p r e t e r as GHC
4 import q u a l i f i e d Language . Haske l l . I n t e r p r e t e r . Unsafe as GHC
5

6 main = GHC. r u n I n t e r p r e t e r do In t e rp r e t
7

8 do In t e rp r e t : : GHC. I n t e r p r e t e r ()
9 do In t e rp r e t = do

10 GHC. loadModules [”Foo . hs”]
11 GHC. setTopLevelModules [”Foo”]
12 −−
13 f oo <− GHC. u n s a f e I n t e r p r e t ” foo ” ” Int −> Int ”
14 l e t n = 2 {− 2 −}
15 l e t n2 = foo n {− 3 −}
16 re turn ()

Figure 8: Sample Hint usage with unsafe variant

And lastly, the fourth concerns the GHC libdir. That is a path to a
directory that holds all the libraries (modules) that GHC will use when com-
piling modules that import others. For example, that is where Prelude will
be available.

In previous releases of Hint, that would be hard-coded to the libdir path
of the GHC installation that compiled Hint, via the ghc-paths library [28].

That is very inflexible, and means that a truly independent and static
Haskell compiler using Hint is not possible, as the libdir path is hard-coded
at compile time. As such, the hard-coding was made into a fallback, allowing
the user to provide a libdir at runtime if they wish to.

7.3.4 Changes to Concepts

All of the above was integrated into the Concepts toolset, meaning that
it now includes binaries that can take concepts (Haskell DSL modules) at
runtime, compile and use them however they want to. To prove that this
worked, we implemented the first of such binaries, that simply simulates a
concept interactively. A sample of the usage of the binary can be found at
Figure 9.

29

1 $ runghc s imulate /Main . hs examples /Concept . hs
2

3 S igna l names : [”A” ,”B” ,”C”]
4 C i r c u i t s i g n a l s : 3
5

6 State : 000
7 Enabled : [A+,B+]
8 Do : A+
9 State : 100

10 Enabled : [B+]
11 Do : B+
12 State : 110
13 Enabled : [C+]
14 Do : C+
15 State : 111
16 Enabled : [A−,B−]

Figure 9: Simulate executable usage with a C-element

The command above can be executed from the root of the Concepts repo
[29], given that both Hint and Concepts have been installed via Cabal [30].

7.4 Taking the user’s circuit

Now that we know what information we need to create an STG, and we
know how to use a circuit concept provided at runtime, we need to write an
executable that takes a concept from a Haskell DSL module file and produces
an STG in the form of a dotG file.

7.4.1 Changes to Concepts

The first step in this process is to adapt the Concepts toolset to be able to
gather the required information from the concepts (circuits) that the user
provides. Up to this point, the Concepts toolset can only interpret concepts
to simulate them.

That means that when two concepts are combined, as in our cElement
example earlier, they are collapsed into a single new concept. The behaviour
is as expected and works for simulation purposes, but not for our purposes
- it is no longer possible to take apart the concept in pieces, looking at each
of its components separately.

30

As we outlined in the required input for our translation to an STG in the
dotG format, we need the arcs between all the signals (nodes). Such arcs
are themselves concepts, the most basic kind - they are represented with the
string >. For example, we can combine two arcs to form a buffer as seen in
Figure 10.

1 b u f f e r : : a −> a −> CircuitConcept a
2 b u f f e r a b = r i s e a ˜> r i s e b <> f a l l a ˜> f a l l b

Figure 10: Buffer concept

<> is used to combine the two concepts at each end, forming a new con-
cept.

What we need to do is list all the > concepts that form any concept.
As said, the simulation uses a Haskell Monoid that combines concepts by
creating new concepts that AND all the components. And since it represents
arcs as functions, an arbitrary concept combined with this Monoid contains
a function that can simulate all the transitions and arcs, but can not list
them.

As such, we will develop a separate Monoid that will behave differently.
Instead of representing > (arcs) as a function, it will represent them as
tuples from transition to transition as seen in Figure 11.

1 r i s e a ˜> r i s e b
2 {− would become −}
3 (Trans i t i on a True , Trans i t i on b True)
4 {− and −}
5 f a l l b ˜> f a l l c
6 {− would become −}
7 (Trans i t i on b False , Trans i t i on c Fa l se)

Figure 11: Arcs as tuples

Each concept will contain a list of such tuples. Then, when two concepts
are to be combined in the Monoid, the lists will simply be appended. Were
there to be any duplicates, we can deal with them at a later stage.

This simple approach will let us parse and evaluate a concept, and then
obtain all the atomic causalities or arcs from it. This was one of the obstacles
described, in the DSL category. We have successfully overcome this obstacle.

31

7.4.2 Executable binary

Now that we know how we will extract the needed information from a con-
cept, we need to write an executable program similar to the simulate exe-
cutable that we wrote with Hint earlier.

Thankfully, we can reuse much of the code. The only difference is that
when using the concept, we must use our new ”inspection” monad instead
of the simulation one.

Inspecting the concept also gives us the initial states of each of the signals,
as that is baked into a circuit concept in our Haskell DSL. And lastly, for
the list of unique signals, we are already gathering them via Hint since we
needed to list them for our simulation program.

Now that we have all the bits needed for our previously defined and
written program, we simply have to wire it up. Figure 12 shows a sample of
the usage of the program.

1 $ runghc trans form /Main . hs examples /Concept . hs
2 . model concept
3 . graph
4 A+ C+
5 A− C−
6 B+ C+
7 B− C−
8 C+ A−
9 C+ B−

10 C− A+
11 C− B+
12 . marking {<C−,A+> <C−,B+>}
13 . end

Figure 12: Transform executable usage with a C-element

This STG is complete with all the arcs and the initial states. Now we
face the other obstacle defined in the DSL category - knowing which signals
are input and which are output.

Since STGs in Workcraft can work without this information in them, we
are postponing this part as it is not a crucial part in finishing our project.
Once we get the rest of key components working well, we will move on to it.

32

7.5 Extensive testing of the program

As described in the timeline, we now need to set up a series of test cases
with user inputs and desired outputs. The two goals here are to test for edge
cases and to ensure that no current features are broken in the future, i.e.
regression tests.

We set these up via Cabal, so that they can be easily run via cabal test.
One of the edge cases that we stumble upon is causalities involving more

than two signals. So far we have only seen causalities involving two signals,
which can be represented via a single arc from the first transition to the
second transition.

But one may specify causalities from multiple transitions into a single
transition, either with the AND or the OR operand. The former can be
rewritten as multiple simple causalities, which we can already handle. The
latter, though, is not as simple. We will need to figure out a way to represent
it in terms of simple arcs.

Fortunately, though, a wide variety of circuits can be expressed in simple
causalities. Only certain very specific cases need an OR causality involving
more than two signals. As such, we can also delay this piece of work as it is
not a key component in our tool that blocks moving forward.

7.6 Independent binary

This section concerns the remaining obstacle defined when formalising this
project. Now that we have developed our programs that compile and evaluate
concepts using Hint, we can investigate this further.

Our programs are compilers themselves, but they still depend on GHC
being installed. What we want is for them to be truly static and independent
- for them to work even if the running system is a Linux box only with the
bare minimum installed programs and libraries, such as an interactive shell.

The programs can be compiled statically, and they weigh around 50 MiB.
They are still not truly independent though, as they still require a path
pointing at the directory holding all the Haskell libraries (modules) that any
compiled program might import.

When making improvements to Hint, we already made it possible for it
to take such a libdir at runtime. So we have two options:

• Use the libdir from the user’s GHC setup

33

• Bundle a libdir along with our executable in a tarball

The first option is a bad idea on two accounts. First, the user’s GHC
version would have to match the GHC version to compile the binary, which
is not portable at all. But most importantly, we would require that the user
have GHC installed again, as having only a libdir does not make much sense.

The second option seems like a good idea at first sight. If we were to
include the base library, which includes basic modules such as Prelude, the
size of our distributed tarball would rise to just under 100 MiB. But even if
the increased size is acceptable, this setup would be very crippled.

If the user’s concept were to use any module outside of the base package,
it would simply not work. This greatly limits the possibilities of writing
circuits in the form of concepts in our Haskell DSL.

Having those considerations in mind, we decide to give up on the possi-
bility to not require that the user have GHC installed. After all, if the user
wants to develop circuits using Haskell, they most likely already have GHC
installed or would not mind installing it.

This obstacle is not overcome simply because we have deemed the disad-
vantages to be greater than the advantages.

7.7 Workcraft plugin

As mentioned in the design stage, there already exist Workcraft plugins that
simply wrap around command-line utilities that work on input and output
files. One such plugin is the PetrifyPlugin.

Like it, our plugin will not have much complex logic in itself. All it will
do is:

• Add an option to the ”Open” menu to deal with circuit concepts
(Haskell files)

• Feed the file to our standalone program and obtain the output STG in
the dotG format

• Load the STG in the dotG format into memory (Workcraft already
supports the format)

• Display the STG in a new work (document) on the graphical interface

There are various subtleties and possible issues to take care of, though.
We describe them below.

34

7.7.1 GHC dependency

Since we require GHC to be installed on the user’s machine, the plugin should
check whether it is installed and provide a useful error message if it isn’t. It
should also point the user to instructions on how to install GHC properly on
their machine.

The plugin should also check what GHC version is installed in the user’s
machine, to make sure that it’s new enough for it to be able to run our
translating program. In particular, our use of Hint and the Concepts libraries
(our Haskell DSL) means that we require at least GHC 7.8.

7.7.2 Program compilation

Since our program is itself a compiler, as previously explained it will need
access to a GHC setup to make use of any packages and libraries that the
compiled module may use. As such, the program must be compiled in the
user’s machine, since it must be compiled for the user’s platform and archi-
tecture as well as with the exact same GHC version.

Since we require GHC anyway, the simplest solution is to make the plugin
compile the program on first use. It should also re-compile it if the GHC
version changes.

7.7.3 Simplify STG

The STGs produced by our translation from a concept will often be verbose.
They may have lots of unnecessary places and arcs, and there might be a
simpler STG that is equivalent to it. This is exactly what Petrify does,
which Workcraft already has support for via a plugin.

Instead of reinventing the wheel, our plugin will depend on the Petrify
plugin and make use of its features to get the STGs to be simple and under-
standable by the time they get shown on the user’s screen.

7.7.4 Shipping into a release and feedback

The main reason behind writing a plugin is for the tool to be easily accessible
through a graphical interface to all Workcraft users. As such, the plugin
should get shipped into a Workcraft release along with the rest of the plugins.

Once that is done, feedback can be gathered from real users, both on the
Haskell DSL as well as its translation into STGs for use in Workcraft.

35

Since this document and the presentation of the project are all to be done
three weeks prior to the end of the project, this final stage is not yet finished.
As such, we will use our limited internal feedback on an unfinished version
of the plugin to make our conclusions in the next section.

36

8 Conclusions

This project was ambitious because the student had limited experience both
in Haskell and in the world of circuit design. At the same time, the objectives
and timeline were realistic and the potential obstacles had been in mind since
the very beginning.

Given that the project has followed its timeline closely and has reached
its goals successfully, one can say that it has been a success. The fact that
one of the obstacles hasn’t been overcome may seem like a failure, but it is
not - a decision was made balancing the pros and cons of the possible solution
that was found to the obstacle.

The student has learned a great deal about Haskell and the world of
circuit design thanks to the mentorship and help of the research group at the
visiting organization. As such, this project has also been a personal success
and a good learning experience.

Finally, the shipped product meets its initial requirements and is actually
useful, as envisioned when formalising the project. It is worth keeping in
mind that the time invested in the software will be of use to researchers and
students using Workcraft at many universities including Newcastle university.

From our internal feedback, the tool meets its purpose correctly and does
not get in the way. It is nothing too special on its own, but together with
the circuit design in the Concepts DSL in Haskell it opens up new ways to
design simple yet reusable circuits in the real world.

37

References

[1] Jens Sparsø and Stephen B Furber. Principles of asynchronous circuit
design: a systems perspective. Springer Netherlands, 2001.

[2] Jonathan Audy. Navigating the path to a successful IC switching regulator
design. Tutorial at IEEE International Solid-State Circuits Conference
(ISSCC), 2008.

[3] A. Yakovlev, L. Lavagno,. A unified signal transition graph model for
asynchronous control circuit synthes ICCAD, 1992.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev. Logic Synthesis for Asynchronous Controllers and Interfaces.
Springer, 2002.

[5] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting state en-
coding conflicts in STG unfoldings using SAT. Fundamenta Informaticae,
62(2):221-241, 2004.

[6] W. Bartky D. Muller. A theory of asynchronous circuits. International
Symposium of the Theory of Switching, 1959.

[7] P. Hudak. Building domain-specific embedded languages. ACM Comput-
ing Surveys, 28(4):196, 1996.

[8] http://www.workcraft.org/, March 2016

[9] Ivan Poliakov, Victor Khomenko, and Alex Yakovlev. Workcraft - a
framework for interpreted graph models. In Applications and Theory of
Petri Nets (ATPN), pages 333-342. Springer, 2009.

[10] http://upx.sourceforge.net/, March 2016

[11] http://bazaar.canonical.com/en/, April 2016

[12] https://github.com/, April 2016

[13] https://github.com/tuura/workcraft, April 2016

[14] https://launchpad.net/workcraft, April 2016

38

[15] https://github.com/blog/2111-issue-and-pull-request-templates,
April 2016

[16] https://travis-ci.org/, April 2016

[17] https://travis-ci.org/tuura/workcraft, April 2016

[18] https://github.com/checkstyle/checkstyle, April 2016

[19] https://github.com/pmd/pmd, April 2016

[20] https://github.com/tuura/workcraft/blob/v3.1.0/config/

checkstyle/checkstyle.xml, April 2016

[21] https://github.com/tuura/workcraft/blob/v3.1.0/config/pmd/

rules.xml, April 2016

[22] https://launchpad.net/workcraft, March 2016

[23] https://git-scm.com/, April 2016

[24] https://github.com/tuura, March 2016

[25] https://hackage.haskell.org/package/hint, April 2016

[26] http://hub.darcs.net/jcpetruzza/hint, April 2016

[27] https://github.com/mvdan/hint, April 2016

[28] https://hackage.haskell.org/package/ghc-paths, April 2016

[29] https://github.com/tuura/concepts, April 2016

[30] https://www.haskell.org/cabal/, April 2016

39

