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Abstract

For many years scientist and engineers have used complex photonic set ups on large
optical tables to perform quantum experiments. The problem is while the experiments
are getting more and more complex the set ups are getting more and more complex
too. Integration on chip has allowed the implementation of many optical devices in less
than a few square millimeters. Also, quantum integrated photonics has became more
popular in recent years. This technology gives a way to perform quantum experiments
in a chip. Some people are really pessimistic about integrated quantum photonics due
to losses and other complicated problems that have to be solved.

In this thesis, we provide an overview in the field of integrated quantum photonics,
presenting how to implement quantum circuits going from the generic formulation
to the specific implementation in this platform. We also will see the basic building
blocks for future quantum information processing and communication technologies.
These blocks include the generation, manipulation and detection of quantum states of
light. Specifically we will focus on how to manipulate quantum light on chip. After
that we will focus on the understanding of 2x2 couplers. Those elements are keys to
perform quantum integrated photonics. Finally we will provide a novel design for a
short broadband 2x2 coupler.
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Chapter 1

Introduction

The main aim of this thesis is to explore the viability and application of integrated
quantum photonics. This thesis has two parts; chapter 2 and chapter 3. Chapter 2 is a
bibliographic research about quantum integrated photonics and chapter 3 is a device
level novel design of a 2x2 beam splitter.

Since we want this thesis to be self contained we will first introduce the foundations of
quantum mechanics in section 2.1. Then we will see how we can specifically implement
quantum mechanics on integrated photonics in section 2.2. If we divide a quantum
integrated photonic circuit in different components we can distinguish at least three
pieces: single photon sources, single photon detectors and Mach-Zehnder interferome-
ters. We will see an overview of those three in section 2.3. Finally in section 2.4 we will
see how to do quantum integrated computing on chip. We will realize that we need to
add feedforward to be able to do quantum computing on chip.

In chapter 3 we will study the different ways to design a 2x2 beam splitter. In sections
3.1 and 3.1 we will start by the basic Electromagnetic theory for weveguide structures.
Then we will derive coupled mode theory (CMT) in section 3.3. This theory is really
useful to understand coupling between waveguides. CMT will be key to understand
the directional coupler and the adiabatic coupler. We will see in detail the directional
coupler in section 3.4 and the adiabatic coupler in section 3.5. We will simulate such
devices using numerical tools. Most of my work is theoretical supported with simula-
tions, however I had the opportunity to measure some Mach-Zehender interferometers
on chip so in section 3.4.3 we will see those results. Finally in section 3.6 we will explore
a complete novel way to design 2x2 beam spletters.
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Chapter 2

A way to quantum integrated
photonics

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong.

Richard Feynman

2.1 Brief foundations of quantum mechanics

We can feel and sense a classical world. We know for sure that if we throw a ball it
is going to do a parabolic trajectory. Newton’s laws and Maxwell’s equations rule the
world. But is it really true?, during the 20th century, it became obvious that classical
physics does not provide a complete vision of the world. The first evidences were the
black body radiation and the photoelectric effect. Such effects can not be explained by
a classical model. During the last century Planck, Bohr, Einstein, Schrödinger, Dirac,de
Broglie, Feyman, Zurek and many others developed the theory of quantum mechanics,
which explain perfectly the phenomena happening at the atomic-scale.

The creation of this theory broke completely the way to understand the nature. We
have to assume some natural behavior which we are not use to experience daily. In
particular, quantum mechanics assume that physical system is not well-defined un-
til measured. For example a particle can be in two places at the same time until we
measure and discover the position of the particle. In quantum mechanics there exists
a mathematical object called a wavefunction which describes the system. This math-
ematical object contains all the information of the system. However this information
can only be extracted in a probabilistic sense. Quantum mechanics also predicts new
phonomena, such as entanglement and nonlocality, which are far away from our live
experience. However this effects can be observed in nanoscale systems such as single
atoms, electrons, and photons.

Quantum systems are very fragile. They like to be isolated from the environment.
If they interact with the environment the quantum behavior leaks away and ends up
disappearing. This effect is called decoherence and is the reason we can not experiment
quantum mechanics in real life [1].

3
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FIGURE 2.1: Artistic undertanding of quantum mechanics. This figure
is from [1].

2.1.1 States

Let us consider a classical event with n possible outcomes. We can describe this event
by a probability distribution ℘, corresponting to a vector of n real scalars

℘ = (p1, p2⋯pn);pi ∈ R; 0 ≤ pi ≤ 1∀i (2.1)

with the normalization condition

∑
i

∣ pi ∣= 1 (2.2)

Quantum mechanics is a theory which naturally emerges if one attempts to replace
these probabilities by complex amplitudes, with the condition that the 2-norm, rather
than the 1-norm, is conserved.

∣ ψ⟩ = (a1, a2⋯an);pi ∈ C; 0 ≤ ai ≤ 1∀i;∑
i

∣ ai ∣
2
= 1 (2.3)

The state of the system is completely encoded in the state vector ∣ ψ⟩, which is defined
on the complex Hilber space, H. Any spot in H corresponds to a physical state, and
two vectors represent the same state iff one is a multiple of the other. This allows
construction of superposition states

∣ ψ⟩ = a1 ∣ ψ1⟩ + a2 ∣ ψ2⟩

(2.4)
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The Hilbert space has an inner product ⟨φ ∣ ψ⟩, which associates each pair of vectors
∣ ψ⟩,∣ φ⟩ with a complex number, and is positive, linear, and skew symmetric

⟨φ ∣ ψ⟩ ≥ 0; ⟨φ ∣ (a ∣ ψ1⟩ + a ∣ ψ2⟩) = a⟨φ ∣ ψ1⟩ + b⟨φ ∣ ψ2⟩; ⟨φ ∣ ψ⟩ = ⟨ψ ∣ φ⟩∗ (2.5)

Normalization 2.3 can then be re-expressed as ⟨ψ ∣ ψ⟩ = 1.

In order to describe a composite system of two or more objects, Hilbert spaces are
joined by means of the tensor product

HAB = HA⊗HB; ∣ ΨAB⟩ =∣ ψA⟩⊗ ∣ ψB⟩ (2.6)

We will be normally use two-state system with Hilbert space dimension 2 [2].

2.1.2 Measurements

An observable can be any property of a physical system which can in principle be
measured. Observables in quantum mechanics are described by Hermitian operators
Â defined onH, which map states to states:

Â ∶∣ ψ⟩ →∣ Âψ⟩ = Â ∣ ψ⟩ (2.7)

Any observable has a spectral decomposition because is Hermitian.

Â = ∑
i

λiΠ̂λi (2.8)

where λi are the eigenvalues. Here, Π̂λi are orthonormal projectors on H. If λi is non-
degenerate, then

Π̂λi =∣ λi⟩⟨λi ∣ (2.9)

Obviously we will chose {∣ λi⟩} such that form an orthonormal basis forH.

When the observable Â is experimentally measured, the outcome is always an eigen-
value of Â. The outcome of any given measurement is in general probabilistic, return-
ing λi with probability

p(λi) = ⟨ψ ∣ P̂ ii ∣ ψ⟩ (2.10)

When we measure the wave function is projected into an eigensatate of Â correspond-
ing to the measured eigenvalue λi. This is called the collapse of the wavefunction. This
means that while the system is not measured the state is not defined. This does not
mean that is hidden and we can not know which is it. This simply means that the state
is uncertain. However when we measure the state, the state will collapse in a particular
value and remind there [2].

∣ ψ⟩ ↝
Π̂i ∣ ψ⟩

√

⟨ψ ∣ Π̂i ∣ ψ⟩
=∣ λi⟩ (2.11)
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2.1.3 Time evolution

As Newton second law of dynamics the quantum systems evolve with time. They
follow Schrödinger equation

ıh̵
∂

∂t
∣ ψ⟩ = Ĥ ∣ ψ⟩ (2.12)

Where Ĥ is the Hamiltonian of the system.

Time-evolution of a closed quantum system can always be described by a unitary oper-
ator. In the Schrödinger picture of quantum mechanics, we say that Û evolves an input
state ∣ ψ⟩in to an output state ∣ ψ⟩out, as

∣ ψ⟩out =∣ ψ(t)⟩ = Û ∣ ψ⟩in = Û ∣ ψ(0)⟩ (2.13)

[2]

2.1.4 Heisenberg’s uncertainty principle

This is probably one of the most weird things about quantum mechanics. Given two ob-
servables Ĉ,D̂ we can derive the statistical standard deviation △(Ĉ),△(D̂) for a given
unknown state ∣ ψ⟩.

△(Ĉ) △ (D̂) ≥
∣ ⟨ψ ∣ [Ĉ, D̂] ∣ ψ⟩ ∣

2
(2.14)

For two canonical variables such as position and momentum the expression yields to

△(X̂) △ (P̂ ) ≥
h̵

2

(2.15)

This means that there is no way to now exactly the position and the momentum at the
same time. If we, for example, know the exact position then the momentum could be
any value [2].

2.1.5 Qubits

The classical information is encoded with the bit, b ∈ {0,1}. The quantum analogue is
the qubit. A qubit is a two-level quantum system. The qubit is a combination of two
states ∣ 0⟩,∣ 1⟩ which form a basis forH.

∣ ψ⟩ = cos
θ

2
∣ 0⟩ + eıφsin

θ

2
∣ 1⟩ (2.16)

The natural representation for H is the Bloch sphere. There six states which can be
represented on the Bloch sphere as a basis.

∣ 0⟩ ≡ [1,0]t, ∣ +⟩ ≡
1

√
2
(∣ 0⟩+ ∣ 1⟩), ∣ +ı⟩ ≡

1
√

2
(∣ 0⟩ + ı ∣ 1⟩)

∣ 1⟩ ≡ [0,1]t, ∣ −⟩ ≡
1

√
2
(∣ 0⟩− ∣ 1⟩), ∣ −ı⟩ ≡

1
√

2
(∣ 0⟩ − ı ∣ 1⟩)

(2.17)
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Which are eigensates of the Pauli matrices σ̂z , σ̂x, σ̂y respectively [2].

2.2 Linear optics quantum computing

In the last section we have seen the basic concepts of quantum mechanics. The aim
of the last section was not to give a detailed picture of quantum mechanics but a brief
idea about the key points. In this section we are going to do quantum computation by
using integrated photonics. We will start with the basic way to encode qubits. Then we
will introduce the different linear nano-devices that are part of a more complex inte-
grated quantum system. Finally we will explain the main ideas to implement quantum
computation on chip.

2.2.1 Path-Encoded Qubits

As we have seen the qubit is the basic information unit in quantum mechanics. If we
have more than one qubit we can represent the state of each as a strings of zeros and
ones: ∣ 111⟩ represents three qubits, each in the 1 state, for example.

A single qubit can be represented as a point on the surface of the Bloch sphere given
by the polar angle θ and the azimuthal angle φ (2.2).

In integrated photonics qubits are encoded in the path degree of freedom. This qubits
are know as dual-rail qubits. But we are going to refer to them simply as path qubits.
A path qubit is a photon spread between two spatial modes. This will be the modes of
single-mode waveguides. Then a path qubit lives within a pair of waveguides. We can
manipulate such qubits with rotations around the Bloch sphere. A rotation R̂z can be
performed using a phase shifter in one of the waveguides. And a rotation R̂y can be
performed using a phase shifter between two beam splitters, in other words a Mach-
Zehnder interfermoeter (MZI) [3].

FIGURE 2.2: a) Bloch sphere representation of a qubit. b) The qubit occu-
pies one of the two waveguide modes. The gold part represents a heater
which allows to create a phase shift between waveguides c) The two x

shapes represent beam splitters and all the structure is a MZI [3].
This figure is on
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Using three rotations we can transform every state ∣ φ⟩ to an other arbitrary state ∣ ψ⟩.

∣ ψ⟩ = R̂z(θ2)R̂y(θ1)R̂z(θ0) ∣ φ⟩ (2.18)

This allows us to be able to prepare any qubit state by using a phase shifter and a MZI.
This also allows us to measure in any base we want. We just need again a phase shifter
and a MZI. We can see a arbitrary state preparation and arbitrary base measurement
on FIGURE 2.3.

FIGURE 2.3: a) General state preparation. b) General base measurement
[2].

This figure is on

2.2.2 Unitary operations transformation

In order to do linear optics quantum computing three main elements are required. We
will need single photon sources to generate single photons that will propagate through
waveguides. Then we need reconfigurable MZI to manipulate the photon states. After
that we will need single photon detectors to detect the photons. As we have already
seen, we need a MZI and a phase shifter to implement an arbitrary unitary operation
on two modes (Û ∈ SU(2)), in other words, to generate a general single qubit state.
How can we generalize this to systems with more than two modes? Which operations
can we implement on m modes, using only linear-optical elements?

As shown by Reck and Zeilinger [5], any mxn unitary operator Û corresponds to a
linear-optical circuit on m modes, constructed from beamsplitters and phase-shifters
only. That is, any Û has a decomposition as a product

Û = ÛT ÛT−1 . . . Û1 (2.19)

where each ÛT acts nontrivially on at most two modes and does not affect the remain-
ing m-2 modes. A simple proof has been given by Aaronson and Arkhipov [6]. Given
any Û target the task is to perform the 2.19 decomposition. Different people have found
different ways to do this decomposition the first one was Reck on 1994 [5], this last
march a new configuration of beam splitters and phase shifters has been discovered
and uses half of the physical foot print of the Reck design and is significantly more
robust to optical losses [6].
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FIGURE 2.4: A universal N-mode multiport interferometer a) the one
proposed by Reck or b) the one that Aaronson and company [6] demon-

strate. This figure appears on [6]

We have seen that we can implement any unitary matrix, then does that mean that we
can build a universal gate-set for a quantum computer using only beamsplitters and
phase-shifters? The answer is no. We need to build at least an other quantum gate
to perform quantum computation. This gate is called the control not gate or CNOT.
With a CNOT gate and single qubits unitary transformations we can do any quantum
algorithm. But why can we not create a CNOT gate using the decomposition technique
that we have seen before? The answer is that a CNOT gate has a non-linearity. We will
study the CNOT gate on section 2.4.

2.3 Puzzle pieces

In this section we will describe the main devices for quantum integrated photonics and
how they work separately.

2.3.1 Quantum beam splitter

We want to study how two photons interfere when they enter in a beam splitter. First,
we consider a beam splitter paramaterized in the following way

ST = [

√
R ı

√
T

ı
√
T

√
R

] (2.20)

we label the two input spatial modes as a and b, and the two output spatial modes as c
and d. Imagine that each photon arrives at a different time for example t1 mode a and
t1 mode b. Then they are fully distinguishable. The input state will be

∣ Ψin⟩ =∣ 11⟩ = a†
t1b

†
t1 ∣ 00⟩ (2.21)

where the operators a†
t1 ,b†

t2 are the creation operators for the modes a and b respectively
when applied to the vacum state. with their output state given by

∣ Ψout⟩ = (
√
Rc†

t1 + ı
√
Td†

t1)(
√
Rd†

t2 + ı
√
Tc†

t2) ∣ 0000⟩

= [ı
√
RT (c†

t1c
†
t2 + d

†
t1d

†
t2) +Rc

†
t1d

†
t2 − Tc

†
t2c

†
t1] ∣ 0000⟩

= ı
√
RT (∣ 1100⟩+ ∣ 0011⟩) +R ∣ 1001⟩ − T ∣ 0110⟩

(2.22)



10 Chapter 2. A way to quantum integrated photonics

where the Fock basis order is ∣ 0ct10ct20dt10dt2⟩. Then for a balanced beam splitter the
coincidence between modes c and d is Pdist = 1

2 .

Let us say the photons arrive at the same time and then are indistinguishable.

∣ Ψin⟩ =∣ 11⟩ = a†b†
∣ 00⟩ (2.23)

and then the output will be

∣ Ψout⟩ = (
√
Rc†

+ ı
√
Td

†
)(

√
Rd†

+ ı
√
Tc†

) ∣ vac⟩

= [ı
√
RT (c†2

+ d†2+c†d†[R−T ]]∣vac⟩
= ı

√
2RT (∣ 20⟩cd+ ∣ 02⟩cd) + (R − T ) ∣ 11⟩cd

(2.24)

For a balanced beam splitter Pdist = (R − T )2 = 0. This destructively interference is a
quantum sign. This forces the two photons to exit the beam splitter together form the
same spatial output mode. This effect is called Hong Ou Mandel effect [3].

2.3.2 Phase shifter and MZI

The phase shifter is key to implement path-encoded photonic qubits. A phase shifter
leads to the MZI. For a MZI the transfer matrix is

UMZI = ıe
−φ

2 [
−sin(φ2 ) cos(φ2 )

cos(φ2 ) sin(φ2 )
] (2.25)

Let us consider two-photon input state, ∣ 11⟩.

=∣ 11⟩ = a†b†
∣ 00⟩

Ð→ [
sin(φ)

2
(d†2

− c†2
) + cos(φ)c†d†

] ∣ vac⟩

=
sin(φ)
√

2
(∣ 02⟩− ∣ 20⟩) + cos(φ) ∣ 11⟩

(2.26)

Then if we measure coincidences the probability change with φ as p(∣ 11⟩ = cos2(φ) [3].

2.3.3 Single photon source

introduction

In order to do quantum integrated photonics we would like a single photon source
of on demand photons. The most well known way to generate photon pairs is the
parametric down convertion which uses the nonlinear coefficient χ2. However this
coefficient is too small in silicon. Yet silicon benefits from a large χ(3) third-order non-
linearity which enables spontaneous four-wave mixing or SFWM. This is an elastic
process by which two photons from a bright laser beam are converted into two pho-
tons at different frequencies, which we label as signal ( with average wave number ks,
and angular frequency ωs) and idler (width wave number ki, and angular frequency
ωi). This photon-pair source can then be used as a heralded single-photon source ( by
measuring one photon and thus heralding its partner) which, in combination with fast
switches enables the generation of single photons on-demand.
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Theory of SFWM Sources

For a given nonlinear interaction medium supporting a single spatial mode a, the pro-
cess is described by the following Hamiltonian

Ĥ = ĤL + ĤNL (2.27)

where
ĤL = ∫ dkh̵ωka

†
kak (2.28)

in the vacuum Hamiltonian. And the nonlinear interaction is given by the SFWM
Hamiltonian

ĤNL = ∫ dk1dk2dk3dk4S(k1, k2, k3, k4)a
†
k1
a†
k2
ak3ak4 +H.c. (2.29)

where H.c. stands for Hermitian conjugate, and S captures the interaction between the
different modes of the structure we are interested in (i.e., the input pump modes and
the output single-photon modes). We are not going to derive the output state from the
Hamiltonian but we are going to give the expression to first order [].

∣ Ψout = [1 +
ıβ
√

2
∫ dkidk2ΦII(k1, k2)a

a
k1

†
k2
] ∣ vac⟩ (2.30)

ΦII(k1, k2) =
2
√

2πα2

h̵β
∫ dk3dk4Φp(k3)Φ(k4)S(k1, k2, k3, k4)δ(ω1 +ω2 −ω3 −ω4) (2.31)

where Φp is the normalized pump spectral distribution, is the amplitude of the pump,
and β is defined such that

∫ ∣ ΦII(k1, k2) ∣
2 dk1dk2 = 1 (2.32)

ΦII describes the shape of the joint spectral probability amplitude distribution between
the signal and idler photons. It encapsulates all the contributions from the pump spec-
trum, the waveguide dispersion, energy conservation, and any spectral structure due
to the system considered. β reflects the efficiency of the source [3].

2.3.4 Single photon detector

Introduction

In the past few decades new photonics applications have been discovered. A lot of
applications increasingly need single photon detection. For example single photon de-
tection is needed for ultra-high resolution single-molecule fluorescence microscopy [8]
high-sensitivity optical communications, quantum experiments and quantum key dis-
tribution among others. Therefore a new device called single-photon detector has been
invented. The ideal single-photon absorbs a photon and produces an electrical signal
that can be captured. This process always happens and does not depend on photon’s
frequency, shape or polarization. In reality, the ideal single-photon detection does not
exist. Different types of detectors have been used for different frequency regions. For
the visible spectrum, the best approach is the semiconductor based sensors which ba-
sically use an avalanche diode effect. These sensors achieve a maximum efficiency of
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76% at 700nm FIGURE 3.8. However they are not useful at telecom IR wavelengths.
This problem has been solved with a completely different sensor design. Just four-
teen years ago a new superconducting dive concept was created by Alex D. Semenov
[10] and demonstrated by Gol’tsman et al, based on a niobium nitride nanowire [7].
This type of device, known as the superconducting nanowire single-photon detector
(SNPD), is single–photon sensitive at visible and infrared wavelengths, with recovery
times and timing precision order of magnitude faster than existing single-photon de-
tectors based on superconducting materials. In addition, this detector operates at the
boiling point of liquid helium (4.2K).

FIGURE 2.5: Quantum efficiencies (QEs) of different types of silicon de-
tectors. Curves were provided by the manufacturers [8].

Application details

Firstly, I am going to introduce different parameters which involve single-photon de-
tectors and more specifically SNPD. The system detection efficiency is defined as the
probability of detecting a photon. This probability depends on the probability of ab-
sorbing a photon, the registering probability, which is the probability that the sensor
generates an output electrical signal after photon absorption, and finally the coupling
probability, which is the probability that the photon arrives correctly to the sensor. If we
consider a perfect coupling then we have what is called Quantum efficiency (QE). The
timing latency gives an idea of about how long it takes from the photon being absorbed
until the electrical pulse can be measured. This delay between the absorption and the
output signal is not constant and in general it can change a little every measurement.
The jitter measures the standard deviation in the detection time of the detector. The
dark counts are counts a detector registers when no light from our source is incident
on it. The after pulsing gives an idea about correlated false counts that happened some
time after the initial detection event. The recovery time is how long it takes before a
detector is ready to detect the next photon. In the following FIGURE 2.6 we can see this
properties for the device reported in [12; 13].
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FIGURE 2.6: The characteristics of SNSPDs (c) the instrument response
function of a NbTiN SNSPD measured using a femtosecond laser and
TCSPC card at λ = 1550 nm. The 1t of 60 ps FWHM is quoted as the
jitter of the device in [6], (d) a SNSPD fabricated in a low energy gap

superconductor, (λ = 1550 nm) occurs at higher bias currents [13; 9].

The mechanism of single photon detection by thin superconducting films biased close
to the critical current of the film consists in the formation of the hot spot in the place of
photon absorption resulting in voltage pulse generation, which can be easily measured.
SNSPD consists of a superconducting stripe of a submicrometer width (comparable
with the hotspot size) whose thickness is less than the electron thermalization length.
The device is maintained at a temperature much lower than that of superconducting
transition Tc and biased close to the device critical current Ic. The photoresponse mech-
anism is presented in FIGURE 2.7. The collective action of the hotspot formation and
Ib redistribution results in the appearance of the macrsoscopic resistive barrier across
the SNPD stripe [1]. As is illustrated in Fig. 3, after the localized hotspot is created
(FIGURE 2.7(a)), it then grows as quasiparticle diffuse out of the hotpot core. Simul-
taneously, the biasing supercurrent Ib is expelled from the resistive hotspot volume
and concentrated in the “sidewalks” near the edges of the film (FIGURE 2.7 (b)). Thus,
Ib exceeds the critical value outside the hotspot, and phase-slip centres are created in
quasi-one-dimensional sidewalks (FIGURE 2.7(c)). As a result, the superconductivity
is destroyed, and a resistive barrier is formatted across the entire cross-section of the
stripe (FIGURE 2.7(d)). The resistive barrier gives rise to a voltage signal with the am-
plitude proportional to Ib. After its growth phase, the hotspot decreases due to the
relaxation and out-diffusion of quasiparticles. Thus, after the quasiparticle relaxation
time the hotspot in the stripe collapses, superconductivity is restored, and the detector
is ready to register another photon .
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FIGURE 2.7: Schematics of the supercurrent-assisted hotspot formation
mechamism in a ultrathin and narrow superconducting trip, kept at tem-
perature far below Tc are shown. The arrows indicate direction of the

supercurrent flow [7].

State of the art

The best SNSPDs are currently made at NIST, Boulder Colorado. In 2013 they achieved
a 93% efficiency, low dark count rate (<1c.p.s.), low timing jitter (<100ps) and short
reset time (<100ns) at λ = 1520 − 1610 nm [11].

FIGURE 2.8: Bias current dependence SDE or QE for two different polar-
izations of light at λ = 1500 nm [11].

2.4 Quantum algorithms applied to integrated optics

In this chapter we have seen the foundations for quantum mechanics, how qubits can
be encoded and how to perform any unitary operation in an arbitrary number of qubits.
Those things are really interesting but there are not enough to implement quantum al-
gorithms on integrated photonics. Why? We would think that we can do computation
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just applying unitary transformations on our qubits. But in reality the really computa-
tion relies on non linear operations.

Is is well known that we can build any logic classical gate by using only NAND gates.
In quantum computation is well-known [18] that a universal set of 1-qubit gates, to-
gether with any entangling 2-guibit gate (such as the CNOT gate), composes a univer-
sal set for n-qubit operations. That means that with CNOT gates and unitary operations
we can implement any quantum algorithm.

But then how can we build a CNOT gate on integrated optics? In literature we found
three main different approaches to do it [19; 20; 21]. All three have in common the use
of measurement as a non linearity and those three approaches are from the year 2001.
The two first [19; 20] are a general way to implement quantum gates and the third one
[21] is a specific way to implement a CNOT gate on integrated photonics using post-
selection and linear optics. We will see in more detail [19; 21] because [19; 20] are really
similar.

Before let us understand what a CNOT gate is and what it does.

2.4.1 The CNOT gate

A CNOT gate is a two qubit gate. The first qubit is called control qubit and the second
qubit is called target qubit. The output at the control qubit remains the same. The out-
put at the target qubit is going to be the same if the state on the control qubit is ∣0⟩. But
if the control qubit state is ∣1⟩ then the state on target qubit will flip. The representation
for a CNOT gate in quantum computation notation is the following (FIGURE 2.9).

FIGURE 2.9: CNOT quantum gate scheme
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2.4.2 Measured based quantum computation

One-way quantum computation, measurement based quantum computation or MBQC
is a way to think about quantum computing. MBQC relies on the nonlinearity of mea-
surements to perform quantum operations. The idea is to start with a cluster of en-
tangled qubits. Then by measuring those qubits with different bases we will perform
quantum operations. It sounds complicated but is not. We will see how to build the
CNOT. First we need to define a few things:

Ni = ∣+⟩

Eij =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 ⋯ 0
0 1 0 0 0 0 0 0 ⋯ 0
0 0 ⋱ 0 0 0 0 0 ⋯ 0
0 0 0 1 0 0 0 0 ⋯ 0
0 0 0 0 −1 0 0 0 ⋯ 0
0 0 0 0 0 1 0 0 ⋯ 0
⋮ 0 0 0 0 0 0 ⋱ ⋯ 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Mα
i = ⟨±α∣ → si = 0,1

Xs
i = (

0 1
1 0

)

s

, Zsi = (
1 0
0 −1

)

s

(2.33)

We start with n qubits. Ni sets qubit i to ∣+⟩ = 1√
(2)(∣0⟩ + ∣1⟩) state. The operation Eij is

a controlled phase gate CZ and is defined by

Eij ∣i⟩∣j⟩ = (−1)ij ∣i⟩∣j⟩ (2.34)

So it introduces a π phase shift if both qubits i and j are in state ∣1⟩. Mα
i measures qubit

i in the base ⟨±α∣ the output of this measurement is coded on si which will be 0 if we
measured ⟨+α∣ and 1 if we measured ⟨−α∣. Finally Xs

i , Zsi are two of the basic Pauli
operators. Xi flips the state on qubit i. Xi flips the sign on qubit i. Those will act to the
qubit i if the measurement s is 1 too.

Once we defined the basic operations we can start building a CNOT gate. In order
to do that we will need 4 qubits. Quit 1 and 2 will be the control and target qubits
respectively. Qubits 3 and 4 will start in the ⟨+∣ state. Then we will apply CZ opera-
tions between cubits 1-3,2-3,3-4. After that we will measure qubits 2 and 3 using ⟨±∣

base. Finally we will apply corrections on qubit 4 depending on the measurement out-
puts. Then the target qubit output is going to be on qubit 4 []. We can see an symbolic
representation of that on FIGURE 2.10.

CNOT =Xs3
4 Z

s2
4 Z

s2
1 M

0
3M

0
2E13E23E34∣a⟩∣b⟩N3N4 (2.35)

If we do the math on (2.35) is straightforward to see that is doing a CNOT operation.
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FIGURE 2.10: MBQC CNOT quantum gate scheme

It is not clear yet how implement MBQC in integrated photonics. Yet is clear that we
will need to feedforward fast signals and perform operations depending on those sig-
nals. The other problem es to implement a CZ gate, that is a non-linear gate. Knill,Laflamme
and Milburn or KLM proposed an alternative way that does not need CZ gates [20; 22]
but still using feedforward as the MBQC that we have already seen.

2.4.3 Linear optical controlled-NOT gate

In this subsection we will give an over view of T.C. Ralph design. For a detailed expla-
nation see [2; 21]. T.C. Ralph inspired the design on KLM paper [20; 22] but does not
use feedforward it uses postselection instead. This design is not scalable meaning that
we can demonstrate only one CNOT gate but not more. This is due to the fact that the
success probability of the gate is 1

9 That means that assuming that we can simply cas-
cade n CNOT gates with 100% efficiency (which is not true a plus does it make sense)
then the success probability will be 1

9n . In FIGURE 2.11 we can see the schematics

FIGURE 2.11: Schematic of the coincidence controlled-NOT gate. c cor-
responds to control, t corresponds to target, and v are unoccupied [?
]ralph). H and V refers to vertical and horizontal polarizations. But
those photons are path encodets, so for us H is going to be 0 and V is

going to be 1.
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We are not going to do the maths but is straightforward [? ]ralph) to prove that the
schematic acts as a CNOT gate if we only take into account the cases that make sense.
Ergo we have to measure two photons coincidences but the one photon has to be in a
control mode and the other one in a target mode.



Chapter 3

Designing a broadband beam
splitter

The present is theirs; the future, for which I really worked, is mine.

Nikola Tesla

The aim of this chapter is to describe the simulation and design of a new type of coupler
that personally developed the last six month at Nanophotonics lab. In this chapter we
are going to explore the different kinds of beam splitters in the literature. In order to
do that first, we are going to introduce the slab waveguide to understand the basic
concepts. Then we are going to extrapolate to a three dimensional waveguide. We use
waveguides to confine light inside the chip. After understanding the waveguides we
are going to introduce coupled mode theory, supermode picture and adiabatic theory
to be able to describe property the different type of couplers. Once we understand the
theory we are going to the results of simulating lowloss couplers from literature using
codes developed in PLAB. Finally, we are going to describe the operation of how we
invented a new type of coupler conceived and developed during this project.

3.1 Slab waveguide

Firstly we want to introduce the concept of optical guidance. Imagine a long square
metallic pipe made of metal with air inside. If an electromagnetic wave gets into the
pipe it will hit the walls and reflect as in a mirror and hit an other wall and reflect again
and so on. Then we can say that the square metallic pipe is guiding the electromag-
netic wave. However we are working with optical frequencies and metal generates
high losses at these frequencies. We can use the same idea to guide optical frequencies.

The simplest optical waveguide is the dielectric slab. Is one of the few structures which
can be solved analytically. Understanding the slab waveguide is really useful to under-
stand three dimensional waveguides.

The major phenomenon that makes slab waveguides working is the total internal re-
flection. This happens in the interface between two dielectrics if the indecent angle
is small enough. From geometrical optics we know that a ray of light will follow the
Snell’s law while crossing interface separating two different dielectrics.

n1sin(Θ1) = n3sin(Θ3) (3.1)

19
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FIGURE 3.1: In this figure we can see the slab waveguide geometry. It
consist in three layers of different dielectrics which their respective re-
fractive indexes. Red arrows represent the rays traveling through the

structure.

We define the critical angle Θc the angle just before internal reflection. So the condition
for the critical angle is Θ3 = π/2.

Θc = asin(
n3
n1

) (3.2)

Then all the waves with incident angles Θ1 > Θc will be guided due to internal reflec-
tion.

To understand the shape of the electric fields that propagate inside the structure we
can find the modal solutions. The modes are defined as the eigenvalues of the struc-
ture when the Maxwell equations are applied. First we will show the general form of
Maxwell equations.

∇×H = εon
2∂E

∂t

∇×E = −µ
∂H

∂t

(3.3)

The cross indicates a vector product, H and E are the magnetic and electric field vec-
tors, and εo and µo are the dielectric permeability and magnetic permeability of vac-
uum. Magnetic and conductive materials are not considered. The index of refraction
of the medium is designated by n, and t is the time variable.

We simplify the description of the slab waveguide by assuming that there is no varia-
tion in y direction, which we express symbolically by the equation

∂

∂y
= 0 (3.4)
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Those solutions have constant speed and move in z direction. For simplicity and with-
out losing generality we are assuming polarization in y direction. So , that the mode
is Transverse Electric, or TE. The other polarization: Transverse Magnetic, or TM can
be solved analogously. Manipulating the general Maxwell equations we find the scalar
equation that has to be satisfied for each layer.

∇
2Eyi(x, z) + n

2
i k

2
oEyi(x, z) = 0 (i = 1,2,3) (3.5)

As it is has been mentioned we are going to try the following solution where β is the
propagation constant.

Eyi(x, z) = Ei(x)exp(−jβz) (i = 1,2,3) (3.6)

And then we will have to solve the following equation to find the possible values of β

d2Ei
dx2

+ [n2i k
2
o − β

2
]Ei = 0 (3.7)

We are looking for confined fields withing the guide. This means standing wave inside
the guiding layer and evanescent fields outside. Then we can write this trial solutions.

In layer 1:E1 = Ecos(κx − φ)

In layer 2:E2 = E
′exp(γx)

In layer 3:E3 = E
′′exp(−δ(x − h))

(3.8)

where the constants κ,γ and δ are given by

κ =
√

n21k
2
o − β

2

γ =
√

β2 − n22k
2
o

δ =
√

β2 − n23k
2
o

(3.9)

The boundary conditions have to be satisfied. This means continuity of Ei(x) and its
gradient dEidx at each interface. At x=0 we get

E′
= Ecos(φ)

γE′
= −κEsin(−φ)

(3.10)

which leads to a closed-form expression for φ

tan(φ) =
γ

κ
(3.11)

Similarly at x=h we get

E′′
= Ecos(κh − φ)

−δE′′
= −κEsin(κh − φ)

(3.12)

and therefore:
tan(κh − φ) =

δ

κ
(3.13)
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Then manipulating both expressions we finally get the dispersion relation for the slab
wave guide:

tan(κh) = κ
γ + δ

κ2 − γδ
(3.14)

This equation has a discrete set of solutions for β. We can solve this equation numer-
ically and find which are the possible values for β. If we do it for every width we are
going to get the dispersion curve.

Every mode has a propagation velocity. From simple optics we know that the phase
velocity is simply the speed of light over the refractive index. So we define the effective
refractive index of each mode:

neff =
β

ko
=
βλ

2π
(3.15)

FIGURE 3.2: In this figure we can see how the propagation constant is
changing with width for both polarizations. For each with exist a set of
possible modes propagating through the dielectric. The Y-axis is in units
of neff . This is directly related to the propagation constant: neff =

β
ko

.
In this structure n1 = 3.47 (Si) ,n2 = n3 = 1 (Air) @1550nm

As we can see, for the indicated refractive index values in FIGURE 3.2 if the slab thick-
ness is less than 0.2µm we are going to have only one mode in each polarization. The
first mode is called fundamental mode. A waveguide that only guides the fundamen-
tal mode is called monomode waveguide. In future we will like to have monomode
waveguides. It can be prove that the set of modes is complete. Every mode is perpen-
dicular respect to the others. This condition implies that the overlap integral over the
volume for the product of the electric field of two modes i and j is the δij . They also
have a number of nulls depending on the number of modes. For example the funda-
mental mode does not have any null. The first mode has a null, the second has two and
so on [14].
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FIGURE 3.3: In this figure we can see the first two TE modes.

3.2 3D waveguides

In the last section we studied the slab waveguide. It is a 2D structure and it could seem
useless in a 3D world. However, the slab waveguide is used as a good approximation
when one of the dimensions is much higher than the others.

FIGURE 3.4: In this figure we can see the slab waveguide geometry in a
three dimensional world.

When the core dimensions have the same order of magnitude in both directions at the
cross section then we can not do the slab waveguide approximation. Moreover, we can
not find the general expression for the modes.



24 Chapter 3. Designing a broadband beam splitter

FIGURE 3.5: We can approximate the modes in x direction as a slab
waveguide for the left structure. However we can not compute the y di-
rection modes using the slab waveguide approximation. The right struc-
ture is the one we will be dealing with for our designs. It can have air

cladding or SiO2 cladding.

Therefore for now on we are going to use powerful numerical tools to deal with 3D
dielectric structures. Most of those codes have been developed by Prof. Miloš Popović
during his Ph.D.

The first code we are going to use is the modesolver. This code gets a cross section
as an input and computes the modes and propagation constant. It also have a visual-
ization tool which allows to visualize and sort the modes.

FIGURE 3.6: In this figure we can see the visualization tool for the mode
solver. We can select the mode and the field components we want to

visualize.

The first thing we can do is to visualize how the modes look like in a 2D cross section.
First we are going to show the silicon oxide structure. We will see the first three modes:
TE1,TE2,TM1. We are only plotting the real part of Ex and Ey. Those components
gives us mostly of the information of the mode. TE1 has almost all the field on Ex by
definition. However there is some Ey field on the edges due to edges effects. TE1 is
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symmetrical respect to x and y axis in component Ex and asymmetrical respect to x and
y in component Ey. We can see that the TE1 mode is well confined meaning that most
of the field is inside the waveguide. TM1 is the only TM mode that can be guided using
a 220nm thick waveguide. We can see that is not well confined and has even symmetry
in component Ey and odd symmetry en component Ex. Finally for this width we can
observe how TE2 appears. This mode is starting to be guided but if we want to guide
it properly we will need a wider waveguide. We know that a mode is guided if we can
see its shape clearly on the electric field plot. An other way to see if the mode is guided
is look at the dispersion plot FIGURE 3.9 and 3.10 This mode has one null, even parity
respect to x and odd parity respect to y in component Ex.

FIGURE 3.7: First three modes, first row TE1 second row TM1 third row
TE2. 220 nm thick silicon waveguide on silicon oxide substrate and sili-

con oxide cladding.

Putting air as a cladding breaks the symmetry. This makes to loss the symmetry in
the modes too. The index contrast is higher and the modes are better confined. The
propagation constants are higher respect to silicon cladding.



26 Chapter 3. Designing a broadband beam splitter

FIGURE 3.8: First three modes, first row TE1 second row TM1 third row
TE2. 220 nm thick silicon waveguide on silicon oxide substrate and air

cladding.

We have seen that the monomode cutoff for a two dimensional silicon waveguide sur-
rounded by air is 200nm. Analogously we can compute the dispersion for air cladding
and silicon oxide cladding. It is crucial for our designs to find the monomode cutoff.
To avoid problems we are going to use monomode waveguides. After the simulations
this results have been found:

Monomode cutoff width
SiO2 cladding 400nm
Air cladding 600nm
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FIGURE 3.9: Dispersion of 220 nm thick silicon waveguide on silicon
oxide substrate and air cladding.

FIGURE 3.10: Dispersion of 220 nm thick silicon waveguide on silicon
oxide substrate and silicon oxide cladding.

3.3 Coupled mode theory

In the last section we understood the single waveguide. Now we are going to see what
happens when we put two waveguides close together. In order to understand that first
we need to derive a mathematical theory called coupled mode theory. This theory is
an approximation but it leads to pretty accurate results.
Every wave propagating though the structure can be written as a linear combination
of all the modes in the structure. Because, as we have said before, the modes are a
complete set. Without losing generality for now on we are going to focus only on TE
modes. Since we are using monomode waveguides we are going to consider the fun-
damental TE mode.
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We start with two wave guides, they can be different. Just for fun we will pick a rectan-
gular waveguide and a heart shaped waveguide. As we can see in the following figure
each wave guide will have its own fundamental mode.

FIGURE 3.11: TE fundamental mode in both waveguides.

We can write the mode solution as a mode profile with a constant transversal shape
propagating along the waveguide as:

E♡ = E0,♡(x, y)e−jβ♡z

H♡ =H0,♡(x, y)e−jβ♡z

E◻ = E0,◻(x, y)e−jβ◻z

H◻ =H0,◻(x, y)e−jβ◻z

(3.16)

Now we are going to couple this modes. When two waveguides are in close proximity,
they become coupled. In the following figure we can see how the modes look like when
the two waveguides are close. We can observe that the modes have slightly changed in
shape.

FIGURE 3.12: First two modes in the supermode picture.
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This is called supermode picture. This two modes from the entire structure are the su-
permodes. This modes are going to be key in the following sections.

The assumption to derive the coupled mode theory is that the supermodes can be rep-
resented as a weighted sum of the individual guided modes. This implies that the
modes do not change at all with the introduction of the second guide. In reality, the
modes are deformed slightly, but are still coupled.

E = A(z)E♡ +B(z)E◻
H = A(z)H♡ +B(z)H◻

(3.17)

Now we substitute these fields into Maxwell’s curl equations (3.3) to obtain

(ẑ ×E♡)
dA

dz
+ (ẑ ×E◻)

dB

dz
= 0 (3.18)

(ẑ ×H♡)
dA

dz
− jωεo(εr − ε♡)AE♡ + (ẑ ×H◻)

dA

dz
− jωεo(εr − ε◻)AE◻ = 0 (3.19)

We derive the generalized coupled-mode equations by substituting the above expres-
sions into the following integral equations.

∫

∞

−∞ ∫
∞

−∞
[E♡∗ ● (Eq.4.18) −H◻∗ ● (Eq.4.19)]dxdy = 0

∫

∞

−∞ ∫
∞

−∞
[E◻∗ ● (Eq.4.18) −H♡∗ ● (Eq.4.18)]dxdy = 0

(3.20)

After lots of algebra, we get the generalized coupled-mode equations. These are solved
to describe the coupling between the two waveguides.

dA

dz
+ c♡◻

dB

dz
e−j(β◻−β♡)z + jχ♡A + jκ♡◻Be−j(β◻−β♡)z = 0

dB

dz
+ c◻♡

dA

dz
e−j(β◻−β♡)z + jχ◻B + jκ◻♡Ae−j(β◻−β♡)z = 0

(3.21)

Where κ♡◻ is the mode coupling coefficient

κ♡◻ =
ωεo ∫

∞
−∞ ∫

∞
−∞(εr − ε◻)E♡∗ ●E◻dxdy

∫
∞
−∞ ∫

∞
−∞ ẑ ● (E♡∗ ×H♡ +E♡ ×H♡∗)dxdy

(3.22)

c♡◻ is the butt coupling coefficient

c♡◻ =
∫
∞
−∞ ∫

∞
−∞ ẑ ● (E♡∗ ×H◻ +E◻ ×H♡∗)dxdy

∫
∞
−∞ ∫

∞
−∞ ẑ ● (E♡∗ ×H♡ +E♡ ×H♡∗)dxdy

(3.23)

χ♡ is the change in propagation constant

χ♡ =
ωεo ∫

∞
−∞ ∫

∞
−∞(εr − ε◻)E♡∗ ●E♡dxdy

∫
∞
−∞ ∫

∞
−∞ ẑ ● (E♡∗ ×H♡ +E♡ ×H♡∗)dxdy

(3.24)

χ◻ will be the same expression (3.24) but changing hearts to squares.
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Where εr is the dielectric function containing both waveguides and ε◻ is the dielectric
with only ◻ waveguide.

The most important coefficient is the coupling coefficient. This parameter quantifies
how efficiently power leaks from waveguide ♡ to waveguide ◻ due to the behavior of
the supermode. If we change ♡ for ◻ and ◻ for ♡. We will get a coupling coefficient that
tells how efficiently power leaks from ◻ to ♡.

The coefficient c♡◻ quantifies the excitation efficiency from one waveguide to an other.
If the waveguides are sufficient separated then c♡◻ ≈ 0 and κ♡◻ ≈ 0.

Finally the coefficient χ♡ measure how change the propagation velocity of ♡ due to
the fact that ◻ is close. This coefficient increases as the gap between waveguides is
smaller. Normally we will neglect this term because is much lower than the other two.

We know that the total power in wave guide ♡ is

P♡ =
1

2
∫

∞

−∞ ∫
∞

−∞
[E♡ ×H♡∗] ● ẑdxdy (3.25)

The observe that the denominator in all the coefficients is equal to 4P♡. Without losing
generality we will normalize the power according to 4P♡ = 1. Then can be shown that
c♡◻ = c∗◻♡ and χ♡ = χ∗◻.

If we substitute the fields on equation (4.25) and we work with the algebra we will
find the following expression for the power:

P =
1

4
[∣ A ∣

2
+ ∣ B ∣

2
+A∗Bc♡◻e−j2δz +AB∗c∗◻♡e

j2δz
] (3.26)

where δ =
β◻−β♡

2 . Assuming that the waveguides are loss-less the power has to be
conserved and so

dP

dz
= 0 (3.27)

jA∗B(κ∗◻♡ − κ♡◻ − 2δc♡◻)e−j2δz − jAB∗
(κ◻♡ − κ∗♡◻ − 2δc♡◻)∗e−j2δz = 0 (3.28)

And this has to be satisfied for all z, then we must have κ◻♡ = κ∗♡◻ + 2δc∗♡◻. Then if
the waveguides are similar and not super close then κ◻♡ = κ∗♡◻. In our heart shape
waveguide example we could not be able to neglect c♡◻ but since we are going to use
square similar waveguides we can assume c♡◻ = χ♡ = 0. Finally after a lot of effort we
found the coupled-mode equations.

dA

dz
= −jκ♡◻Be−j(β◻−β♡)z

dB

dz
= −jκ◻♡Ae−j(β◻−β♡)z

(3.29)

This simple equations describe how the power bounces around from one mode to an
other [15].
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3.4 Directional Coupler

In the last section we have derived the basic equations for the coupling mode theory.
We also introduced key concepts such as the coupling coefficient. Now we have the
tools to study the directional coupler. First we are going to approach the directional
coupler analytically using coupled mode theory and finally we are going to use finite
differences in time domain to solve numerically the problem.

3.4.1 Directional Coupler: CMT approach

In a directional coupler we have two parallel waveguides. Those waveguides are sepa-
rated by a gap g. They have width w1,w2. And they can be air or silicon oxide cladding
with a thick t.

FIGURE 3.13: Directional coupler

We start injecting light in one of the wave guides. Then the initial conditions to solve
equation (4.29) will be A(0) = A0 and B(0) = 0. Therefore is trivial to get the solutions
for the directional coupler.

A(z) = Ao[cos(ψz) +
jδ

ψ
sin(ψz)]e−jδz

B(z) = −Ao
jκ

ψ
sin(ψz)ejδz

(3.30)

where κ = κAB = κ∗BA, δ = βB − βB and ψ =
√
κ2 + δ2.

It makes more sense to express the last expression in terms of power

PA(z) =
∣ A(z) ∣2

∣ Ao ∣2
= 1 − Fsin2(ψz)

PB(z) =
∣ B(z) ∣2

∣ Bo ∣2
= Fsin2(ψz)

(3.31)
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Where F is the maximum power-coupling efficiency

F = (
κ

ψ
)
2
=

1

1 + ( δκ)
2

(3.32)

From the expression for power-coupling efficiency we can deduce that we will only
be able to transfer all the power form one waveguide to the other if δ

κ = 0. This can
happen if κ⋙ δ, i.e. waveguies with similar sizes and close together. However if the
waveguides get closer and closer then the approximations we have done are less valid.
The other way to be able to achieve 100% power transfer is using the same exact width
for both waveguides.

FIGURE 3.14: Power in each mode vs z with F=1

FIGURE 3.15: Power in each mode vs z with F=0.2

The aim of this section is design a directional coupler. A directional coupler is a device
in which we excite one of the two inputs and we get half of the power in both outputs.
In order to do that we will chose for which z we have 50-50 power transfer and then
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we will pick this value as the length of the device.

L3dB =
1

ψ
asin(

1
√

2F
) =

asin(

√
1+( δ

κ
)2

2 )
√
κ2 + δ2

(3.33)

This equation has solution if F > 0.5 otherwise we can not achieve 50% transmission
form the first waveguide to the second. This condition leads to a condition for δ and κ.

δ ≦∣ κ ∣ (3.34)

FIGURE 3.16: [Plotting equation 4.33 L3dBψ-F ]

If F = 1 we have a directional coupler. For F < 1 we have a delta-beta coupler. For the
case F = 0.5 we do not need exactly L3dB to make the device work 50-50 because it is
first order invariant with length. That would be like FIGURE 3.15 and we would chose
the length that gives a maximum. So we just need to be close enough to that length.

FIGURE 3.17: Artistic representation of our beamsplitter. We start with
all the power in one wavguide then it starts bouncing form one waveg-
uide to the other. Every period we can find a length which splits per-

fectly the power.
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3.4.2 Directional Coupler: FDTD approach

We have seen the theory behind the directional coupler. The fact is, if we want to design
a real device we should verify our geometry first with a more accurate way than CMT.
One of the best ways to simulate the propagation of electromagnetic waves through
dielectrics is finite differences time domain, or FDTD. This approach breaks down the
domain in cells and compute the interaction between neighbors. It is a really elegant
way to simulate this kind of systems. There are some commercial software that are
able to do FDTD simulations. However we have been using the code wrote partially
by Prof. Miloš Popović and company.

The code is written in fortran. However, a few years ago, a matlab script that runs
the simulation had been created. So now is much simpler to do the simulations. For
every simulation we have to define the structure in a three dimensional matrix, the po-
sitions of the sources and the position for the observation plains. The code can work
in 2D supposing one dimension infinite (i.e. slab waveguides) or 3D. We did the study
considering 2D just because the simulations took less time. We will skip the 3D results
and we will see directly the results in 2D. They are analogous to 3D.

The aim is simulating low-loss couplers. To do that we want to avoid something called
numerical scattering. The numerical scattering is caused due to the discritization. If
the discritization is small enough we will not have numerical scattering. However, the
minimum discritization that we can use to solve the structure in a reasonable time and
not consume all the resources of the server is dx = 10nm. In order to solve that problem
we will use a Fermi-Dirac distribution to smooth the edges.

There is no specific reason to use a Fermi-Dirac distribution instead of other function
besides it works. When I arrived at the lab they were already using this technique to
reduce the numerical scattering.

FIGURE 3.18: On the left: waveguide without smoothing. On the right:
smoothed waveguide

The Fermi-Dirac equation that we are using to smooth the edges is

y =
1

1 + ln(9)e
ax

1.5dy

(3.35)

where a is a parameter that controls how many pixels are going to be smoothed. The
smoothing should be performed perpendicular to the curve at each point. However,
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we apply the smoothing in y direction since is the mostly affected direction due to dis-
cretization.
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FIGURE 3.19: Fermi-Dirac distribution for different values of a.

We want to see the effect of the smooth parameter on the dielectric. We have simulated
a sinusoidal bend using the FDTD code. We keep track of the losses on the structure
while changing the parameter a. For now on we are going to chose a value of a = 1
since give us low loss.
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FIGURE 3.20: Loss in the structure versus the smooth parameter a.
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In order to simulate the directional coupler we will add a bending input and bending
output. This sinusoidal bends will couple some light when we get closer to the cou-
pling region. Therefore we have to modify the coupling equation in order to take into
account this extra coupling due to the bend region. Then we will have the cross port
power K2 and the through port power T 2.

K2
= sin(

π

2Lz
[L + zbend])

2

T 2
= cos(

π

2Lz
[L + zbend])

2
(3.36)

Where Lz is the cross-over length and zbend represents the effective extra coupler dis-
tance introduced by the coupling from the non-parallel waveguides.

FIGURE 3.21: Directional coupler dielectric.

Now we can simulate the directional coupler for different lengths and fit the curve to
the theoretical equation. In this way we can find Lz ,zbend. We will chose air cladding
and 160nm width for both waveguides.
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FIGURE 3.22: Directional coupler: power versus length.
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Once we found the desired length to make the device work as a beamsplitter we can
look at its dependence with wavelength. As we can see in the figure the transmission
coefficients highly depend on wavelength. So, the directional coupler can be a short
beamsplitter but not a broadband.
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FIGURE 3.23: Directional coupler: power versus wavelength at 50-50
length.

A variation of the directional coupler is the delta-beta directional coupler. As we have
seen before if we make the waveguides width different then we can not achieve 100%
power transfer from one waveguide to the other one. Just to remember the cross port
power transfer.

K2
=
sin2(κL

√

1 + (
△β
2κ )2

1 + (
△β
2κ )2

(3.37)
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FIGURE 3.24: Delta-Beta Directional coupler dielectric.
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Using this principle we can find the width that make exactly 50% power transfer at
maximum. As we saw in the last section. In this way we can design a structure first
order invariant respect to length. We chose air cladding and 180 and 150 nm width.
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FIGURE 3.25: Delta-Beta Directional coupler: power versus length.

So we chose length 1.6µm and we can see that as the directional coupler is highly
dependent on wavelength.
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FIGURE 3.26: Delta-Beta Directional coupler: power versus wavelength
at 50-50 length.

3.4.3 Mach-Zehnder interferometer

As we have seen on 2.2 MZI are key devices to manipulate qubits. We have already
shown they transfer matrix 2.25. In this section we will show measurements performed
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on a integrated MZI. Those chips have been created by Jeff Shainline. To build those
devices we need to do a template first (FIGURE 3.27). The shape is coded in python
and the output is a .gds file that has the geometry to builder the device. Then the device
is built by lithography in a clean room.

FIGURE 3.27: MZI template made by Jeff Shainline.

In contrast to the devices I described, the core of this device is made by SiN2 and the
cladding is air. Just to remember a MZI is formed of three pieces, first a 50-50 directional
coupler, secondly a phase shift between paths and thirdly an other 50-50 directional
coupler. The phase shift can be active or passive. When the phase shift is active a
resistor is used to heat up one of the paths to change the refractive index and so the
propagation constant. In contrast for passive phase shifts we just change the length
between both paths. In a In FIGURE 3.28 we can see two pipes on the very right and
very left of the image. Those pipes are the optical fibers providing and receiving the
laser light. We can also see two ports at each side. In this case we will measure left top
right bottom. We can also see in the middle two different path length for the top and
bottom waveguide.

FIGURE 3.28: The image is showing a augmented view of a MZI on SiN2
it is taken by myself.

If we zoom in close to the fiber we will see a tape structure called grading. A grading
is used to couple the light from the fiber to the chip. We can also see that apart of the
thin waveguides we have a thick walls next to them. Those walls are not needed but
help on lithography process (FIGURE 3.29).

FIGURE 3.29: The image is showing a detailed augmented view of the
left part of a MZI on NSiO2 it is taken by myself.
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Now we shine 1mW of light trough one fiber and we read the output using a photode-
tector. We have a polarization controller or PC to change the fiber polarization and
reduce the losses. We can also move the fibers around the chip using a very precise
micrometer. We want to put the fiber in the position and set the polarization that maxi-
mizes the power transfer through the device. Once we do that we can start measuring.
The laser will shift the wavelength and measure the power transfer at each wavelength.
Then we change the ports and repeat the process.
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FIGURE 3.30: Transmission for all ports combinations. The signals are
coded as the following: left (L) followed by up or down (U or D) and
then R followed by up or down (U or D). For example the code LDRU

means input port: left down, output port: right up.
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FIGURE 3.31: Transmission for all ports combinations. The signals are
coded as the following: left (L) followed by up or down (U or D) and
then R followed by up or down (U or D). For example the code LDRU

means input port: left down, output port: right up.
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The result should be a sinusoidal of transmission versus wavelength. Changing the
wavelength with a fix length is the same as fixing the wavelength and changing the
length. But the first is easier to do. The second one we should measure different de-
vices with different lengths. We can see that for large wavelengths the device stops
working this is due to the fact that the grading stop working at those wavelengths. We
can also see that the difference from the minimum to the maximum is 30dB. We need
about 37dB extinction to guarantee 49/51 couplers (FIGURE 3.30).

We should expect the same transmission for cross ports, in reality is hard to achieve it
just because optimize the fiber position in different places but in the same way is really
difficult (FIGURE 3.31).

3.5 Adiabatic coupler

So far we have talked about fixed structures. In those structures the waveguide width
does not change with the propagation direction. In this section we are going to explore
what happen when we change the geometry in z direction. We will use those results to
design an another kind of coupler, the adiabatic coupler.

We have already talk about the orthogonality condition in modes. This condition can
not be satisfied in waveguide structures in which the waveguide parameters vary in
the direction of propagation. It can not be satisfied in the sense that we can not find the
same base of ortogonal modes at each distance if it is changing in z direction. However
we can define the local normal modes at the position z0. The local normal mode repre-
sentation will now become a function of z.

FIGURE 3.32: To define a local normal mode, the slowly varying waveg-
uide structure (darker line) is replaced at z0 by the structure constant
with z (less darker line), ant the normal mode solutions atZ0 are obtined.

The amplitudes of the local normal modes in a varying waveguide structure can vary
in contrast to the fixed structure. Power transfer between the local normal modes of
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a varying structure occurs, and we will see that the magnitude of that power transfer
depends on the rate of change of the geometry of the structure.

We have to modify the coupled mode theory due to the variation in z. We are not going
to derive the equations but a rigorous derivation can be found on [17]. The main idea
to find the equations is write the mode of each local section in terms of the modes of
the section right before. In this way we can find how many power is transmitted from
z to z + dz.

∂Ai
∂z

= −Cij
∂ρ

∂z
Aj + jβiAi

∂Aj

∂z
= −Cij

∂ρ

∂z
Ai + jβjAj

(3.38)

where the subscripts i and j refer to the fundamental and next higher order systems
modes. Here (Ai,Aj),(βi, βj) and Cij are the corresponding amplitudes, propagation
constants, and normalized coupling coefficient between these modes. The derivative
∂ρ
∂z is the rate of change of a general parameter related to the specific geometry of the
structure [17]. In our case we are changing width and gap at the same time so we
should find a smart way to define ρ. However we will solve the structure numerically
so we are not going to use this formula in this section.

We define a slow or adiabatic waveguide transition as a transition between two waveg-
uide structures that takes place so slowly that negligible power transfer occurs between
the normal modes, as they propagate from one structure to the other. That happen
when the rate of change of the walls is small in z direction. Then ∂ρ

∂z Ð→ 0 and no
interaction appears between different modes.

∂Ai
∂z

= jβiAi

∂Aj

∂z
= jβjAj

(3.39)

This happen if δ ≫ κ. Then we can lunch the first mode A of the structure at z = 0 and
ideally the power in the second mode B at length L will be

∣ B(L) ∣2

∣ A(0) ∣2
Ð→ 0 (3.40)

This means that all the power will remind in the first mode. Notice that at each section
the modes are changing. By adiabatic assumption the geometry will change slowly.
However for a long structure we can start in one geometry and end in a completely
different one. This is the key concept to design a low loss broad-band coupler.

We will start with two waveguides separated in order to not have coupling at all. We
want the width of this two waveguides to be different. In this way the two first su-
permodes will have different propagation constants. The first mode will correspond
to the wider waveguide. We want to change this cross section with a large gap and
two waveguides with different width to a cross section with a small gap and two equal
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waveguides. The modes in this last section will be the symmetrical and the antisym-
metrical. If our structure is large enough to be adiabatic then the first mode at the
beginning will lead to the first mode at the end. And the same for the second mode.

FIGURE 3.33: We can see how is the structure and which are the modes
in the first and last section. We can also see how the propagation con-

stant evolve with z.

If we have two equal waveguides and we have all the power in ether the first mode or
the second mode. Means that we have half of the power in each wave guide. Then we
need to separate the two waveguides in a symmetrical way. By symmetry there is no
way to transfer power form one waveguide to the other one if we have the symmetrical
or antisimmetrical supermodes.

Despite this structures are robust, easy to design and have a really good performance
they tent to be so long (∼ 100µm). This is not a problem if we do not care about space,
but if we want to package a beamsplitters network we may have to use an other kind
of coupler.

We can not use FDTD to simulate those structures because they are too computational
intrusive. In order to simulate them we are going to use a film mode matching or FMM,
written by Prof. Miloš Popović.

We are going to simulate only the adiabatic region. We are going to keep tracking of the
power for each symmetrical and antisymmetrical mode. Ideally we want to pick the
length that makes the power on the antisymmetrical mode zero. But for a real design
we need the minimum length that makes the device work under some conditions. We
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impose the minimum error ratio has to be 1% in power, so 49-51% is accepted. This
means having less than 1e-4 of the normalized power in the antisymmetrical mode.

FIGURE 3.34: Observation plain: last section where the two waveguides
are the same width. We can see the rate of power for the symmetrical

mode and the antisymmetrical.

From the plot we can see that at length near to 70µm the device could work. However
this length is really sensitive, a little change on length is going to change a lot the
fraction of power in the antisymmetrical mode. In order to avoid that we would pick a
length higher than 20µm which is really long.

3.6 Zero Xtalk coupler

Until now we have seen two of the three main coupler strategies. We are missing the
multimode interference, or MMI but we are not going to cover this last one in this the-
sis. The directional coupler is really short ∽ 5µm but is highly wavelength dependent.
In opposition to the adiabatic coupler which is really long ∽ 200µm but is really broad-
band. So what we are going to do in this section is design a coupler which is short and
broadband. In order to do that we are going to use concepts from both directional and
adiabatic coupler and we are going to create and hybrid. The key idea to this design
came from my advisor Prof. Miloš Popović when he was doing his Ph.D. at MIT back
in 2005. One day he was trying his FMM code, he was simulating the same kind of
adabatic coupler we saw in the last section but he was trying to tilt that structure. Sur-
prisingly he found that the coupling from one section the the next one changes with
tilting. But even more, changing the tilting direction changes the sing of the coupling
coefficient. Which means that exist a tilt of the structure that makes the coupling from
the first to the second mode zero. So now instead of trying to change slowly the struc-
ture to avoid coupling what we want to do is tilt it to compensate the coupling for one
mode to the other.
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The design will consist in the following geometry. We start with a fat waveguide and
a thin waveguide. In this way we can separate the propagation constant from the first
and second mode. Then keeping the gap constant we go from different width to the
same width. We do this transition linearly. In the last cross section if we have the first
or second mode the light will be split equally between waveguides.

First we have to chose the parameters for w1(0),w1(L),w2(0),w2(L) and g. The num-
ber of degrees of freedom is 3 for the first section and 2 for the last section. We are going
to simulate the first and last section and see how the geometry change the effective in-
dex of the three first modes. In order to help this process we not only want to avoid
coupling from the first to the second mode but also from the second to the third. The
condition then is to find the geometry that give us the maximum distance from Neff1,
Neff2 and Neff2, Neff3. This means that Neff2 −Neff1 ≈ Neff3 −Neff2.

We are going to use silicon cladding structures for the 3D simulations. The reason for
that is to simplify the problem. Having a horizontal symmetry on the cross section
avoid coupling from TE to TM modes. Then we only have to worry bout TE modes.
The number of degrees of freedom is 3 for the first section and 2 for the last section. So,
we will start with the last section since it is easier. After simulating the cross section we
realized that roughly as small the gap the better. Then we pick a g = 100nm since is the
smallest gap we can fabricate without any problems. Then we consider which width
pick. We know that w1(L) = w2(L) to have the symmetrical mode in the last section.
After plotting the effective index for the three first modes we decided that the best with
isw(L) = 380nm. Then by trial and error we find that the best width arew1(0) = 480nm
w2(0) = 340nm.
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FIGURE 3.35: Neff versus length for the following geometry: w1(0) =

480nm, w2(0) = 340nm, w(L) = 380nm, g = 100nm. Notice that the Neff
does not depend on the tilting.

We start the algorithm to design the structure with only the first cross section. We
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compute the modes on this section with the FMM code. Then we introduce a new
layer. The widths on this layer will be slightly different since we moved a step in z
direction. Then we are going to slide this layer in x direction an amount ρ. If we plot
the coupling from the first mode in the first section to the second mode in the second
section and the second mode in the first section and the first mode in the second section
we see that there is a ρ0 which makes this amount zero.

FIGURE 3.36: This figure is key to understand this last section. We can
see on the background the two first layers of our design. Both layers
have different width because the widths change with z. We are showing
the first mode on the first section and the second mode on the second
section. The overlap integral between those two modes and a term con-
sidering the variation on the dielectric from section one to section two
gives us κ12. Then we can move the second layer an amount ρ to the

right. There is a rho0 where the κ12 = κ21 ≈ 0

Notice that the coupling in one layer only depends on the layer right before. We can
repeat this process until the last section ends. After doing that we will have found and
we will be able to generate the zero coupling region.
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FIGURE 3.37: Coupling coefficients κ12 and κ21 versus tilt versus tilt and
length. We can find the zero coupling condition for each length (ρ0(z)).

Once we have ρ0(z) we can simulate the structure performance using the FMM code.
As we can see, even though we found the intersection for the two surfaces κ12 and κ21,
that condition does no lead to zero coupling. However it minimizes the coupling.
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FIGURE 3.38: Coupling coefficients κ12 and κ21 versus normalized
length.

If we do the simulation for a adiabatic structure with the same exact geometry of our
structure but with ρ(z) = 0∀z we needed a length of at least ∼ 200µm. Now the length
is going to be ∼ 7µm.



48 Chapter 3. Designing a broadband beam splitter

Length ( µm)
10 0 10 1 10 2

P
ow

er
 tr

an
sm

is
si

on
 c

oe
ff

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

S11
S21

FIGURE 3.39: Power transferred from mode one to mode one and power
transferred form mode one to mode two versus length of the device.

Now we want to verify our designs using FDTD. We will start with a two dimensional
design since it take less computational time and then we will do the three dimensional
simulation. The geometry of the two dimensional design has been chosen analogously
to the third dimensional.

As it happened with the directional coupler apart of the coupling region we need input
and output waveguides. The output wave is easy to design and can be short since the
only requirement is to have symmetry. The only think we have to worry about is the
curvature of the waveguides. If the bending is really abrupt they are going to scatter
all the light.

The input starts with two equal singlemode waveguides separated by ∼ 0.8µm. We
have to link up this first layer with the the first section of our coupling region. In the
input region we will be changing gap and both widths. Again we could use an adia-
batic structure to do this transition but does it not make sense since we want a short
structure. The strategy that we are going to follow to design this part is similar to the
one we used for the coupling region. We are going to define θ as the tilting of all the
structure. So we are going to think about the input as a rigid piece that can rotate an
angle θ. If we simulate the structure for different angles using FDTD2D we can see that
exist an angle that minimizes the coupling between crossed modes. Even more the pa-
rameter S12 is less than 1e − 4 which is desired. We will not be able to use this strategy
in 3D since the minimum S12 we can achieve is 1e− 3 which means that assuming that
everything works ideally besides the input part the maximum we can achieve is 40/60
at the output.
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FIGURE 3.40: .

As we can see in FIGURE 3.40 we want an input angle about -8 degrees. Once the input
is working the design the output in the same way as the directional coupler. So we just
need two symmetrical sinusoidal bends.

Refractive index distribution

µm

0 2 4 6 8 10 12 14

µ
m

0

1

2

3

4

5

6

2

4

6

8

10

12

FIGURE 3.41: Left to right: Input region, coupling region and output
region.

Then we fix the input and output size and we simulate the structure while changing
the coupling region length.
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FIGURE 3.42: Coupler performance versus length lunching the pulse on
the upper waveguide.
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FIGURE 3.43: Coupler performance versus length lunching the pulse on
the down waveguide.

The results are promising. They oscillate with length and we can see that Lcoupling =

2µm gives a awesome performance.
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The next step is designing a three dimensional structure. We could think that changing
form 2D to 3D is straightforward but is not. In 3D we find some problems that we
had not in 2D. The first problem is the existence of two different polarizations that
can couple. We already solved this problem by using Si02 cladding. But doing that
we reduced the index contrast and our design is not going to be as good. The second
problem is the small gap required in 3D. This small gap yields a symmetrical mode
where a lot of power is confined in the slot. Then if we are not careful when we separate
the two waveguides at the output a lot of power will be radiated. We realized that
going from 2D to 3D is not straight forward. So a three dimensional design will not be
presented in this thesis but I will continue with that during my Ph. D. next fall 2016.





Chapter 4

Conclusions

I had two main aims in this thesis. Firstly I wanted to get a good understanding of the
state of the art in quantum integrated photonics. My time was limited and I did my
best to learn as much as possible about the topic. However, I think I still have a lot of
papers to read and explore. I was not expecting to learn all about quantum integrated
photonics in 10 month since I will have plenty of time to do that the next fall during
my Ph.D. I want and I will continue my research on quantum integrated photonics and
I would like to be one of the contributors for the first quantum computer.

Secondly, I proved a high performance beam splitter in 2D with a coupling region of
2µm. Despite, I got good results in 3D; coupling region of 24µm I need more time to
find clever ways to reduce the device length. The results until now have been really
promising and a good design is going to come soon.

To sum up, during the last 10 months I have been learning a lot of new concepts and I
have been solving new problems constantly. I had bad times and good times. I had a
lot of frustrating weeks where nothing was working. That made me grow emotionally
and intellectually. I feel like the person that arrived at Boulder the last July 27th of 2015
is not the same person that will leave Boulder on June 15th of 2016.
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