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Introduction

The integral transforms and the signal representation associated with them are
important concepts in applied mathematics and in the signal theory. The Fourier transforms
on Abelian groups are certainly the best known of the integral transforms. The use of Abelian
groups in the signal theory is not new. The classical harmonic analysis of 1-D continuous
signals and systems is the Fourier analysis on the additive group 2= AR of the real field R..
Finite discrete Fourier analysis in digital signal processing is associated with finite cyclic
groups QQ=7Z/N. The rich and beautiful theory of harmonic analysis on Q=AR and
Q=7Z/N has became a powerful tool, widely used in other branches of mathematics, in
physics and in innumerable applications etc.

The fundamental properties of the classical Fourier transforms are actually based on
the properties these two groups. From mathematical point of view, a significant part of
classical digital signal processing (DSP) can be viewed as topics in Abelian group harmonic
analysis. The classical Fourier transformations are closely connected to such powerful
concepts of the signal theory as linear and nonlinear convolutions (Voltera convolutions),
classical and high-order correlations, invariance with respect to shift, ambiguity and Wigner
distributions, etc. All theorems and properties of this harmonic analysis can be transferred on
harmonic analysis Fourier on arbitrary Abelian groups.

Fourier transforms on Abelian and non-Abelian groups is just one of many ways of
signal representations. In the past 10 years, other analytical methods have been proposed and
applied, for example, Hermite, Lagerra, Legendre, Gabor, fractional Fourier analysis, etc. An
important aspect of many of these representations is the possibility to extract relevant
information from a signal: information that is actually present but hidden in its complex
representation.

The next modest idea in development of signal representations is using so-called
multiparametric transforms (MPTs) having fast algorithms instead of concrete fixed
transforms (for example, Fourier, Walsh, Haar, wavelet). The family of MPTs includes such
subfamilies as multiparametric fractional Fourier transforms, multiparametric fractional
Walsh transforms, multiparametric Haar-Wavelet transforms, multiparametric nonlinear
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transforms and so on. MPT depend on one or several free parameters. When parameters are
changed in some range the type and form of transform are changed too. This fact allows to
calculating spectra of signal/image for infinite number of transforms. The main purpose of
using MPT is to select the best transform among of all MPTs, given a signal/image and an
additive cost function.

There exist many generalization of harmonic analysis on Abelian and non-Abelian
groups, based on variation ways of viewing Q. We generalized the basic notations and
results from harmonic analysis on groups to nonharmonic analysis on hypergroups. The aim
of this work is to obtain analogues of classical and quantum harmonic notions and results for
hypergroups, associated with arbitrary nonharmonic transforms (including manyparametric
transforms). We develop a conceptual framework and design methodologies for nonharmonic
analysis of signals and images on Abelian hypergroups.

Generalized shift operators

Most specialists are probably familiar with the special role played by translations in
digital signal/image processing (DSIP). The translations are viewed as the primary source of
classical DSIP operations including convolution, correlation, Wigner distribution. The
translation-invariance of some classical signal/image processing transforms and filtering
operations is largely responsible for their widespread use. The main problem to be faced in
extending classical DSIP theory (associated with classical Fourier transform) on generalized
DSIP theory (associated with arbitrary discrete transform) is to decide on what is meant by
translation.

The ordinary group shift operators (T : x)(t) =x(t+7) play the leading role in all the

properties and tools of the Fourier transform mentioned above. In order to develop for each
orthogonal transform a similar wide set of tools and properties as the Fourier transform has,
we associate a family of commutative generalized shift operators (GSO) with each
orthogonal (unitary) transform. Such families form Aypergroups. In 1934 F. Marty (1934,
1935) and H.S. Wall (1934, 1937) independently introduced the notion of hypergroup. We
develop the theory of hyperharmonic analysis of signals and images. Such families of
operators allow to unify and generalize the majority of known methods and tools of signal
processing based on classical Fourier transform for generalized classical and quantum signal
theories. Only in particular cases these families are Abelian groups and hyperharmonic
analysis is the classical Fourier harmonic analysis on groups.

Let f(x):QQ—> A be a A -valued signal, where A be an algebra. It can be real,

complex, Galois fields or triplet, multiplet or Clifford algebras. Usually, Q=R"xT, or
Q=7"<xT,where R", Z" and Z), are n-D vector spaces over R, Z and Z,, respectively,

T is a compact (temporal) subset of R, Z, or Z, . Here, R, Z and Z, are the real field, the

ring of integers, and the ring of integers modulo N, respectively.

Let Q" be the space dual to Q. The first one will be called the spectral domain, the
second one be called signal domain keeping the original notion of x €2 as «time» and

w e Q" as «frequency». Let
ClISig=L(Q,A):={f(0)|f(x): Q> A},
CISp=L(Q",A):= {F(w)\F(w) Q' A}
be two vector spaces of A -valued functions. Let {(pw(x)} . be an orthonormal system of

we

functions of CISig. Then for any function f(x)e CISig there exists such a function
F(w) € CISp, for which the following equations hold:
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F@)=CF {f}@)=] _f@)p,@duw). (1)

@ =G Fx)=] _F()p,(x)du), 2)
where 1/(x), (@) are certain suitable measures on the signal Q and spectral Q" domains,
respectively. The function F(w) is called the classical Fourier spectrum (CF -spectrum) of
the classical A -valued signal f(x) and expressions (1)-(2) are called the pair of generalized

classical Fourier transforms (or CF -transforms). In the following we will use the notation
f(x) © F(w) in order to indicate (F -transforms pair.

Remark. Every classical Fourier transform can has two realizations: a classical realization
on classical computer and a quantum realization on quantum computer. Now, quantum
realizations of a classical Fourier transform are called wrongly quantum Fourier transforms.
We shall show that every classical Fourier transform generates its the quantum counterpart as
a natural quantum Fourier transform. It maps classical word on quantum word. Every
quantum Fourier transform can also has two realizations: a classical and quantum
realizations, too.

If {4, (x
several parameters 6 = (01,«92,...,0,,) then associated classical CF -transform is called the

multiparameter transform (F =CF [#]. For this reason, the transform (1) gives
multiparameter spectrum

F(o|0)=CF [0){f}(@) =] _/x)p(w|0)du(x). (3)

0)} o is an orthonormal system of functions, depending on one parameter & or

Obviously,
f(x)=CF "[0]{F}(x) = J-XGQ*F(a)|¢9)(p(a)|6’)dﬂ(a)) . (4)

When parameters are changed in some range, the type and form of transform are changed too
and we calculate spectra of signal/image for continue number of transforms belonging to
MPT. All set of spectra is called the spectrogram. If in classical signal/image processing
systems we take a look at single «photo» of spectrum (for example, the spectrum of an image
in Fourier basis), then in multiparameter case we can look through the thriller «<SPECTRA
OF SIGNALy. For all of transforms of the same family of MPTs we can select any concrete
transform (for fixed values of parameters). The output of a computation can be memorized to
be used in later numerical computations. The main purpose of using MPT is to select the best
transform among of all MPTs, given a signal/image and an additive cost function.

For example, let Q) = [— 1,+1] and ¢, (x\@) = Jac\*”’ )(x) be (a, ﬂ) -Jacobi polynomials,

where 0 = (a, B). In this case, generalized classical Fourier transform is (a, ﬂ) -parametric
Fourier-Jacobi transform

F(k|(a, ﬁ)) =CF [(a. B)]{f} (k)= j F(x)Jac™? (x)(1-x)* (1-x)" dx ,

where du(x)=(1-x)"(1—x)"dx.
If @ = B=0 then {Jac®™ (x)}, =1{Leg,(x)}", is the Legendre basis and CF [(0,0)]
is the Legendre transform. If o= f=-0.5, then {Jac,((‘o‘s’"o‘s)(z‘)}oo 0= {Chk (t)}w is the

k= k=0

Chebyshev basis and CF [(—0.5,—-0.5)] is the Chebyshev transform.
The next example of MPT. Let

CF [(191,«92,...,9”)] =cs(6,)®cs(6,)®...®cs(6,)
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) coséd sin @

be n-parametric orthogonal transform, where cs(H) =| . . When
sinf —cosf

6 =...=6, =n/4 it is the classical Walsh transform. For other values of §6,,6,...,68, we

obtain other orthogonal transforms.
The classical shift operators in the «time» and «frequency» domains are defined as

(Ti f)(x):: f(x+7) and (DZ,F)(a)):F(mv).
For f(x)=e/"and F(w)=e’™ we have

Tvre]a)x _ ejw(xH') = /e’ and D{:efij _ e*j(a)‘H/) — g /I

*‘/Aalx

b

i.e., harmonic signals e’™, e are eigenfunctions of «timen-shift and «frequency»-shift

operators T . and D..
We introduce generalized @-parametrized «timex»-shift and «frequency»-shift
operators (GSOs) by

TA[01/(x) = f(x(g f), T[01f (x) = f(x'g r),

DulO)F (@] 0) = F(a)c?v | 9), Dul0)F (o 0) = F(a)ﬂé vl 9)

such that
¢,(x( 710)=¢,(x[0)p,(z]0), ¢,(x' 7|0) =0,(x|0)p,(z|0) (5)
and
Poor(X10)=0,(x[0)0,(x]0),  0,5,(x]0)=0,(x]|0)¢,(x]0). (6)
Here, symbols “(9 ”, “%) ” and “% ”, “'H ” denote the @-parametrized quasi-sums and quasi-

differences, respectively.
We will need in the following modulation operators:

(Mi[e]f)(x) =0, (x|0) £ (). (MZ[H]F)(m 0):=3,(c| O)F (@] 6).

From the GSOs definition it follows the following result (theorems about shifts and
modulations). Shifts and modulations are connected as follows:

oW =r(x8t) o MUOF(©@0)=F@|0),F|0),

DuOF(@0)=F(a( vI6) ©  MIOIf(x|0)=f()7,(x]0)
Two families of @-parametrized GSOs {Tx“} 0= {T:[H]} ., and {D;} = {D;[@]}VEQ, form

N
ve ve veQ

two commutative hypergroups for every value of 4.
By definition, functions ¢, (x|60) are eigenfunctions of GSOs. For this reason, we

can call them hypercharacters. The idea of a hypercharacter on a hypergroup encompasses
characters of locally compact and finite Abelian group and multiplication formulas for
classical orthogonal polynomials. The theory of GSOs was initiated by Levitan (1949,1964)
and (in the terminology of hypergroup) by Duncl (1966) and Jewett (1975). The class of
commutative generalized translation hypergroups includes the class of locally compact and
finite Abelian groups and semigroups. We will show that many well-known harmonic
analysis theorems extend to the commutative hypergroups associated with arbitrary Fourier
transforms.
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Generalized convolutions and correlations

It is well known that any stationary linear dynamic systems (LDS) are described by
convolution integrals. Using the notion GSO, we can formally generalize the definitions
convolution and correlation.

Definition 1. The following functions

v 10)=(HE 10 = [ me)f () 7) duco), )
Y(a)|0)=(HzF)(a))= [ H(v)F(m%v) du(v), ()

and veQ)
cor, ,(c10)=(/ %) @)= [ (g (x' ) du), ©)
CORF,G(V|9):(F?G)(V): [ F(w)é(w%v)du(a)) (10)

"
weQ

are called the @-parametrized E - and % - convolutions and the cross - and A-
0 [

correlation functions, respectively, associated with a classical manyparameter Fourier
transform CF [49] If f=g and F =G then cross correlation functions are called the-g—

and ? -autocorrelation functions.
The spaces CISig, and ClISp, equipped multiplications E - and z- convolutions
14

form commutative Banach @ -parametrized signal and spectral convolution algebras

<<ClSig0,E>> and <<ClSp0,z>>, respectively. Generalized correlations and convolutions
4

have many of the properties with group correlations and convolutions; many of them are
catalogued in (Creutzburg et al., 1992, 1994, 1998; Labunets ef al., 1976, 1980, 1982, 1993,
2000).

Theorem 1. Generalized classical manyparametric Fourier transforms (3) and (4)
map ¢-and ®-convolutions and +&- and #-correlations into the products of spectra and
signals, respectively,

F [9]{h]§ f}=a: [6](A)-CF [0](f) = H(|0)-F(w]0),
cF o)y Fl =¥ [o]{H}-CF [0]{F} = h( £ ()
CF [0]{ f %} =CF [0]{/}CF [0]{g} = F(@|0)-G(®| )
CF " [0){F A G| =CF " [0]{F}-CF "O]{G} = f(x)g().

If classical generalized multiparametric Fourier transform CF [6] has fast classical or

quantum realizations for all values of & then this theorem gives us a fast procedure of
calculating of generalized convolutions and correlations. When parameters are changed in

some range, the type and form of transform CF [6’] and GSOs are changed too. We can

calculate convolutions and correlations for infinite number of transforms belonging to MPT.
The sets all convolutions and correlations are called the convolutiongram and
correlationgram. If in classical signal/image processing systems we take a look at single
«photoy» of convolution or correlation (for example, the ordinary convolution of an image in
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Fourier basis), then in multiparametric case we can look through two thrillers
«CONVOLUTIONS OF SIGNALS» and «CORRELATIONS OF SIGNALS».

Fixing special values of @ we fixe special form of classical Fourier transform and,
hence, the special familie of GSOs and, therefore, we can obtain special types of convolution
and crosscorrelation: arithmetic, cyclic, dyadic, m-adic, etc. The output of a computation
can be memorized to be used in the later numerical computations.

Generalized ambiguity functions and Wigner distributions

Along with the «time» and «frequency» domains we will work with «time-time»
QxQ, «ime-frequency» QxQ°, «frequency-time» Q xQ, and «frequency-frequency»
Q" xQ" domains, and with four distributions, which are denoted by double letters
ff(x,0) e L(QxQ,A),  Ff(0,0)eL(Q xQ,A), fF(x,v)eL(QxQ",A)  and
FF(o,v) e L(Q xQ,A).

An important examples of time-frequency distribution are so-called the symmetrical
and asymmetrical Wigner-Ville distributions. The Wigner asymmetric wV* [ f ](x, a)) and

symmetric wV*[ f](x,®) distributions were introduced in 1932 by E. Wigner in the context

of quantum mechanics, where he defined the probability function of the simultaneous values
of the spatial coordinates and impulses.

Definition 2. The ordinary symmetric and asymmetric Wigner-Ville distributions of
two signals f,g are defined by

wlrlno)=£ \r(xe el =x {2 o)
wWels.g)(xw)=F {7(x)g(x-o)=F {(/-8) (o).

<—T

where (f-g) (x,7) = f(x+%j-g(x—%j and (f-Z)" (x,7)= f(x)-E(x—1) are so-called

the symmetric and asymmetric products of two signals, F is the ordinary classical Fourier
transform.

Definition 3. The ordinary symmetric and asymmetric Wigner-Ville distributions of
two spectra F,G are defined by

Wv'[F,G](@,x)= F {F(mgj-é(w—gj}: F {(F-E)s (co,v)},

Wv'[F,G](x,0) = F V‘l {F(w).é(a)—v)} =F V‘l {( F.E;)” (o, v)},
where (F@)\ (w,v) :=F(a)+%j-(_?(a)—%j and (F-E)” (w,v) = F(a))-(_?(a)—v) are so-

called the symmetric and asymmetric products of two spectra.

Wigner's idea was introduced in signal analysis in 1948 by J. Ville, but it did not
receive much attention there until 1951 when P. Woodward reformulated it in the context of
radar theory. Woodward proposed treating the question of radar signal ambiguity as a part of

the question of target resolution. For that, he introduced functions Aw’[f](v,7) and

AW’[ f](v,7) that described the correlation between a radar signal and its Doppler-shifted
and time-translated version.
Definition 4. The ordinary symmetric and asymmetric cross-ambiguity functions of
two signals f,g are defined by
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AWS[f,g](V, T) = vEx{f[x+g) g(x_%J} = vlix{(f g)s (X, T)} 5
AW[f.gl,7) = F {f()-8x=0)}=F {(/-8)' (%),

Where(f-g)s (x,7) ::f(x+§j-§(x—%j and (f-g)“ (x,7) = f(x)-g(x—71) are so-called

the temporal generalized local cross-correlation functions.
Definition 5. The ordinary symmetric and asymmetric cross-ambiguity functions of
two spectra F,G are defined by

aW'[F,G](z,v)= F ' {F(awrgj-(_?(a)—%j}: F {(FE) (w,v)},

T T

aW*[F,G](z,v)= F {F()-Glo-v)} = F {(F .G) (@ v)} ,

where (F-E)S (w,v) = F(aH—%jé(w—%j and (F-(_})a (w,v) = F(a))-(_J(a)—v) are so-

called the spectral generalized local cross-correlation functions.

Using the notion GSO, we can formally generalize the notions of ambiguity functions
and Wigner-Ville distributions.

Definition 6. The generalized symmetric and asymmetric Wigner-Ville distributions
of two signals f,g are defined by

W [relne) = [0 T x, )} - fetf(r-e) ).

W<T

WV [f. g0 = CF[01] £ (x)8 (", o)} = CF [0){( /&) ().
Definition 7. The generalized symmetric and asymmetric Wigner-Ville distributions
of two spectra F,G are defined by

Wv' [F,G](@,x) = QEV‘[QJ{F(Q?%)E(@% gj} = (zivl[e]{(p.é)s (a),v)} :

WV [F,G](@,2) = CF "[6] {F(a)) E(a)s"; v)} - gv‘l[e]{F .G (0. v)} .

Definition 8. The generalized symmetric and asymmetric cross-ambiguity functions of
two signals f,g are defined by

Aw'[f.g](v.1)=CF [0] { S(x)-g (x'e r)} = gifx[ﬁ]{(f -g)" (x, r)},

where (fg)s (x,7) :=f[x(g gjg(x'e %j and (f.g)“ (x,7) :=f(x).g(x'9 2') are so-called

temporal generalized local cross-correlation functions.
Definition 9. The generalized symmetric and asymmetric cross-ambiguity functions of
two spectra F,G are defined by

aW' [F,G](z.v) = CF "'[0] {F(w?%}@[a)tﬁg %}} ~CF “[9]{F@“(m, v)},

aW* [F,G](z.v) =CF 18] {F(a;)ﬁ(a)% v)} _(F ‘1[6']{(F-5)a (@, v)},

T
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where (F-E)S (w,v) = F(a)(ﬁ;gj(_}(a)ﬂi gj and (F-(_?)a (o,v) = F(a))-a(a)% v) are so-

called the spectral generalized local cross-correlation functions.
We see that the Wigner-Ville distributions are the 2D symplectic Fourier transform of

aW’|[f,g](z.v) and aW*[ f,g](z,v), respectively:

wV[f,g](x, a)) = gl:r[é’]gv_l[e]{aW[f,g](r,v)}, (11)
Wv[F,G](@,x)=CF "[6]CF [0]{aW[F,G](z.v)}. (12)

The 2D symplectic Fourier transform in (11) and (12) can be also viewed as performing two
subsequently 1D transforms with respect to 7 and v.

Conclusion

In this paper we developed generalized nonharmonic analysis of signals and images on
commutative hypergroups, associated with arbitrary unitary (orthogonal) transforms. We in-
troduced generalized convolutions, correlations, Wigner-Ville distributions, and ambiguity
functions. All theorems and properties of ordinary classical Fourier harmonic analysis are
transferred on nonharmonic analysis Fourier on arbitrary Abelian hypergroups.
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