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Abstract

Given the heterogeneity of complex graph data on the web, such as RDF linked
data, it is likely that a user wishing to query such data will lack full knowledge
of the structure of the data and of its irregularities. Hence, providing flexible
querying capabilities that assist users in formulating their information seeking
requirements is highly desirable. In this paper we undertake a detailed theo-
retical investigation of query approximation, query relaxation, and their combi-
nation, for this purpose. The query language we adopt comprises conjunctions
of regular path queries, thus encompassing recent extensions to SPARQL to
allow for querying paths in graphs using regular expressions (SPARQL 1.1). To
this language we add standard notions of query approximation based on edit
distance, as well as query relaxation based on RDFS inference rules. We show
how both of these notions can be integrated into a single theoretical framework
and we provide incremental evaluation algorithms that run in polynomial time
in the size of the query and the data, returning answers in ranked order of their
‘distance’ from the original query. We also combine for the first time these two
disparate notions into a single ‘flex’ operation that simultaneously applies both
approximation and relaxation to a query conjunct, providing even greater flex-
ibility for users, but still retaining polynomial time evaluation complexity and
the ability to return query answers in ranked order.

Keywords: Graph query languages, Query approximation, Query relaxation

1. Introduction

The volume of graph-structured data on the web continues to grow, most
recently in the form of RDF Linked Data [1]. At the time of writing, there
were 295 publicly-accessible large datasets, spanning a variety of domains, such
as the life sciences, geographical and government domains1. The prevalence

1http://lod-cloud.net
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of graph DBMSs such as Sparksee2, Neo4j3 and OrientDB4, has also greatly
increased over the past few years, and they have been used in areas as diverse
as social network analysis5, recommendation services6 and bioinformatics7. The
increasing awareness that keyword-based searches alone do not provide the user
with enough semantics or contextual structure to return useful answers from
information on the web is exemplified by the recent inception of the Google
Knowledge Graph [2]. This uses semantic information garnered from Google’s
knowledge base to enhance the search results returned by their search engine.

The data relating to such graph-modelled application domains may be com-
plex, heterogeneous and evolving in terms of its structure and content, making
it difficult for users to formulate queries that precisely match their information
seeking requirements. In this paper we consider the application of query approx-
imation and query relaxation techniques to the evaluation of conjunctive regular
path queries (CRPQs) over graph data, with the aim of assisting users in formu-
lating queries over complex, irregular graph-structured data and in retrieving
results that are of relevance to them. We define the italicised terms in Section 2
and begin here with an overview of our running example, to motivate our work.

Motivating Example: Suppose two flight insurance companies agree to
share some of their data. Figure 1 shows part of the merged data graph that
might arise. For simplicity here, we assume that common concepts have the
same name in both the datasets and that the subscripts on the node and edge
labels indicate the dataset from which each was derived (dataset 1 or dataset 2).
F1 and F2 are classes, representing the Flight class in each of the datasets. Sim-
ilarly, P1 and P2 represent the Person class; E1 represents the Employee class —
which is present only in dataset 1; andN1 andN2 represent the class National In-
surance Number (which is used in the administration of the UK National Social
Security system). Of the various edge labels in Figure 1, explained in full in the
caption, fn denotes flightNumber, ppn denotes passengerPassportNumber,
and pn denotes passportNumber.

Figure 2 shows additional classes, properties, and relationships between
them, that serve to semantically integrate the two datasets. Again, the var-
ious node and edge labels are explained in full in the caption to Figure 2.

A user familiar with dataset 1 may pose the following CRPQ, Q1, in an
attempt to find the passport numbers of passengers on flight number ‘FL56’ (as
instantiations of the variable Y ):

Y ← (‘FL56’, fn1, Y ), (Y, pn−1 .type, P1)

This query however returns no answers because of errors in the first query
conjunct, (‘FL56’, fn1, Y ). The edge label ought to be fn−1 instead of fn1,

2http://sparsity-technologies.com/
3http://neo4j.com/
4http://orientdb.com/
5http://neo4j.com/use-cases/social-network, https://snap.stanford.edu/data/
6http://neo4j.com/use-cases/real-time-recommendation-engine/
7http://bio4j.com/
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indicating an incoming, rather than an outgoing, relationship from the node
denoting the flight number to the adjacent node. Moreover, the edge label ppn1
is missing.

Assuming the availability of query approximation, rather than trying to cor-
rect their original query the user may pose instead the following query, Q2,
which allows the first conjunct to be automatically approximated by including
the operator APPROX:

Y ← APPROX(‘FL56’, fn1, Y ), (Y, pn−1 .type, P1)

The system will now incrementally apply edit operations to fn1, comprising
insertions, deletions, inversions etc. of edge labels, returning to the user answers
at increasing ‘cost’ from their original query, for as long as the user wishes.
Specifically, the sequence of edit operations that replaces fn1 by fn−1 and inserts
ppn1 after fn−1 will return the relevant result ‘1234’ (at a cost of 2α, say, if α
is the cost of each of the edit operations made).

In an attempt to retrieve additional relevant answers, and assuming also
the the availability of query relaxation, the user may now pose the following
query, Q3, which also allows the second conjunct to be automatically relaxed
by including the operator RELAX:

Y ← APPROX(‘FL56’, fn1, Y ), RELAX(Y, pn−1 .type, P1)

Using the information in Figure 2, the system will automatically relax prop-
erty pn1 to its superproperty pn and class P1 to its superclass P (there is a
‘subproperty’ edge between pn1 and pn, and a ‘subclass’ edge between P1 and
P ), at a cost of 2β, say, assuming a cost β for each relaxation operation. An
additional relevant result ‘6789’ will now be returned to the user at an overall
cost of 2(α+ β).

Contributions: Regular expressions have been used as a powerful mech-
anism for querying graph-structured data for over 20 years (e.g. [3]) and have
been adopted by the semistructured data community (e.g. [4]) and more recently
by the RDF community (e.g. [5, 6]) in SPARQL 1.1 [7]. Building on techniques
from [8, 9], the work in [10] showed that approximate matching of CRPQs, us-
ing edit operations on edge labels, can be undertaken in polynomial time. The
edit operations considered in that work were insertions, deletions, substitutions,
transpositions and inversions of edge labels (corresponding to reverse traversal
of edges). The work in [11] considered relaxation of conjunctive queries (but
not CRPQs) over RDF data, and formalised relaxation using RDFS entailment.
In [12], we extended relaxation to the more general case of CRPQs and allowed
either approximation or relaxation to be applied to each CRPQ conjunct. The
present paper makes several contributions. Firstly, we extend the work of [12]
by considering the full range of edit operations on CRPQs and by giving full
details of the algorithms and full proofs of the theoretical results. Secondly, in
Section 4 we propose a new query operator, FLEX, that applies both approx-
imation and relaxation to a query conjunct, thus providing greater flexibility
to users in formulating their queries by not requiring them to select whether
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approximation or relaxation should be applied to a given query conjunct; as
we will see in Section 4, there are answers returned by CRPQs using FLEX
semantics which cannot be returned by any CRPQ using APPROX/RELAX
semantics. Thirdly, to prepare for this integrated treatment of query approxi-
mation and relaxation, we introduce in Section 3.1 the notion of the ‘triple form’
of a sequence of edge labels, which is a departure from the direct application
of edit operations to strings in [12] and which gives for the first time a uni-
form framework for handling both query approximation and query relaxation
for CRPQs.

Outline of the paper: The rest of the paper is structured as follows.
In Section 2 we give the necessary background, introducing our graph-based
data model, which comprises a data graph and an ontology graph, and our
query language, which supports conjunctive regular path queries (CRPQs). In
Section 3 we give a formal definition of CRPQs, discuss exact matching of single-
conjunct CRPQs, and give formal presentations of approximate matching and
relaxation of such queries. We show how the approximate answer to a single-
conjunct CRPQ can be computed in time that is polynomial in the size of the
query and the data graph, with answers being returned in ranked order of their
‘distance’ from the original query. We also show how the relaxed answer to a
single-conjunct CRPQ can be computed in time that is polynomial in the size
of the query, the data graph and the ontology graph, again with answers being
returned in ranked order. Finally, we discuss the evaluation of multi-conjunct
CRPQs, each of whose conjuncts may be approximated or relaxed, and the
complexity of query answering.

In Section 4 we discuss the application of both approximation and relaxation
to an individual query conjunct using the new query operator, FLEX. We show
how the evaluation of single-conjunct CRPQs that have FLEX applied to them
can be undertaken using a combination of the techniques used for approximation
and relaxation of single-conjunct queries. The evaluation is again accomplished
in time that is polynomial in the size of the query, the data graph and the
ontology graph, with answers being returned in ranked order. We also discuss
the characteristics of multi-conjunct CRPQs in which conjuncts can have FLEX
applied to them, considering query evaluation, complexity, and expressiveness.

In Section 5 we review related work in flexible query processing for semi-
structured and graph-structured data. Section 6 summarises the contributions
of the paper, and gives our concluding remarks and directions for further work.

2. Preliminaries

In this paper we consider a general graph-structured data model comprising
a directed graph G = (VG, EG,Σ) and a separate ontology K = (VK , EK).
The set VG contains nodes each representing either an entity instance or an
entity class, which we term entity nodes and class nodes, respectively. The set
EG ⊆ VG × (Σ ∪ type) × VG represents relationships between the members of
VG. If e = (x, l, y) ∈ EG, then l is called the label of edge e. Node x is the
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Lit F1 Lit P1 E1 N1

FL56 f1 1234 p1 e1 n1

type type type type type type

fn1 ppn1 pn1 ie1 n1

f2 6789 p2 n2

fn2 ppn1

pn2 n2

F2 Lit P2 N2

type type type type

Figure 1: Example data graph G, where: F denotes Flight, P denotes Person, E denotes
Employee, N denotes NationalInsuranceNumber, fn denotes flightNumber, ppn denotes
passengerPassportNumber, pn denotes passportNumber, ie denotes isEmployee and n de-
notes hasNationalInsuranceNumber.

source of e, while y is its target. We assume that the alphabet Σ is finite and
that type /∈ Σ.

The set VK contains nodes, each representing either an entity class or a
property; in other words, VK is the disjoint union of two subsets VClass and
VProp, the subset of class nodes and the subset of property nodes, respec-
tively. The edges in EK capture subclass relationships between class nodes,
subproperty relationships between property nodes, and domain and range re-
lationships between property nodes and class nodes. Hence, EK ⊆ VK ×
{sc, sp, dom, range} × VK . We assume that Σ ∩ {type, sc, sp, dom, range} =
VProp ∩ {type, sc, sp, dom, range} = ∅, and that of VG representing classes are
contained in VClass.

Our graph model comprises a fragment of the RDFS vocabulary: rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, which we
abbreviate in this paper by the symbols type, sc, sp, dom, range, respectively.
The model does not allow for the representation of RDF’s ‘blank’ nodes (which
are indeed discouraged by some authors for linked data [13]) and we leave their
consideration as future work.

Example 1. Figures 1 and 2 illustrate fragments of a data graph G and an
ontology K, respectively, which we first presented in Section 1. These may have
resulted from the integration of two heterogeneous datasets, from two flight
insurance companies, under a common ontology. In Figure 2, d and r denote,
respectively, dom and range. The subscripts on node and edge labels indicate
the dataset from which each was derived (dataset 1 or dataset 2) We see from
Figure 1 that there is some overlap in the datasets, through the literals ‘FL56’
and ‘6789’. The first of these literals is a flight number while the second is a
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fn1 ppn1 pn1 ie1 n1
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Figure 2: Example ontology K, where: d denotes dom, r denotes range, F denotes Flight, P
denotes Person, E denotes Employee, N denotes NationalInsuranceNumber, fn denotes
flightNumber, ppn denotes passengerPassportNumber, pn denotes passportNumber, ie
denotes isEmployee and n denotes hasNationalInsuranceNumber.

passport number. �

Our query language is that of conjunctive regular path queries (CRPQs) [4].
A CRPQ over a graph G is of the form:

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn) (1)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m,
is a variable appearing in the body of the query, and each Ri, 1 ≤ i ≤ n, is a
regular expression over the alphabet of edge labels.

Given a CRPQ Q and graph G, let θ be a mapping from {X1, . . . , Xn, Y1,
. . . , Yn} to VG such that (i) each constant is mapped to itself, and (ii) for each
conjunct (Xi, Ri, Yi), 1 ≤ i ≤ n, there is a path from θ(Xi) to θ(Yi) in G whose
sequence of edge labels is in the language denoted by Ri. Let Θ be the set of
such mappings. Then the (exact) answer of Q on G is {θ(Z1, . . . , Zm) | θ ∈ Θ}8.

The work in [10] built on techniques from [8, 9] and [15] to show that ap-
proximate matching of CRPQs can be undertaken in polynomial time, subject
to certain assumptions which we discuss in Section 3.7. The query edit op-
erations considered were insertions, deletions and substitutions of edge labels,
inversions of edge labels (corresponding to reverse traversals of graph edges),
and transpositions of adjacent labels, each with an assumed edit cost. Query

8Proposed approaches for evaluating CRPQs include automaton-based methods, transla-
tion into Datalog or into recursive SQL, search-based processing, and reachability indexing —
see [14] for an overview and citations of representative works.
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results were returned incrementally to the user in order of their increasing edit
distance from the original query.

Example 2. Referring again to Figures 1 and 2, a user familiar with the first
dataset may pose the queryQ2 that was listed in the Motivating Example earlier,
in an attempt to find passport numbers relating to flight number ‘FL56’, making
use of the query approximation techniques proposed in [10]:

Y ← APPROX(‘FL56’, fn1, Y ), (Y, pn−1 .type, P1)

The Motivating Example describes how the result ‘1234’ can be returned by this
query. �

The work in [12] proposed combining approximation and ontology-based
relaxation for CRPQs. Either approximation or relaxation could be applied to
each conjunct of a CRPQ, although edge inversions and transpositions were not
considered within the set of edit operations.

Example 3. Continuing with the query in the previous example, the user may
pose the query Q3 that was listed in the Motivating Example earlier, which also
allows the second conjunct to be relaxed:

Y ← APPROX(‘FL56’, fn1, Y ), RELAX(Y, pn−1 .type, P1)

The Motivating Example describes how the additional result ‘6789’ can be re-
turned by this query. �

3. Approximation and Relaxation of CRPQs

In this section we first discuss exact matching of single-conjunct CRPQs,
followed in Section 3.2 by approximate matching as performed by the APPROX
operator. In Sections 3.4 and 3.5 we discuss relaxation of single-conjunct CRPQs
based on information from an ontology, as well as how answers for a conjunct
to which the RELAX operator has been applied can be computed. We also
describe how answers can be returned to the user incrementally in Sections 3.3
and 3.6. Finally, in Section 3.7, we discuss the evaluation of multi-conjunct
CRPQs, each of whose conjuncts may have APPROX or RELAX applied to
them.

3.1. Single-Conjunct Queries

Let G = (VG, EG,Σ) be a graph as defined in Section 2. We will allow each
edge e = (x, l, y) ∈ EG to be traversed both from its source x to its target y and
from its target y to its source x. In order to specify the traversal from target
to source, it is useful to define the inverse of an edge label l, denoted by l−.
Let Σ− = {l− | l ∈ Σ}. If l ∈ Σ ∪ Σ− ∪ {type, type−}, we use l− to mean the
inverse of l, that is, if l is a for some a ∈ Σ ∪ {type}, then l− is a−, while if l
is a− for some a ∈ Σ ∪ {type}, then l− is a.
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A single-conjunct regular path query Q over a graph G = (VG, EG,Σ) has
the form:

vars← (X,R, Y ) (2)

where X and Y are constants or variables, R is a regular expression over Σ
∪Σ− ∪ {type, type−}, and vars is the subset of {X,Y } that are variables. If
X or Y is a constant, then that constant must appear in VG if Q is to return a
non-empty answer on G (see Definition 1 below).

A regular expression R over Σ ∪ Σ− ∪ {type, type−}, is defined as follows:

R := ε | a | a− | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty sequence, a is any label in Σ ∪ {type}, “ ” denotes the
disjunction of all constants in Σ ∪ {type}, and the operators have their usual
meaning.

A weighted non-deterministic finite state automaton (NFA), MR, of size
O(R) can be constructed to recognise the language denoted by R, L(R), using
Thompson’s construction (which makes use of ε-transitions) [16]. Each transi-
tion of MR is labelled with a label from Σ ∪ Σ− ∪ {type, type−}, and has a
weight, or cost, which is zero. We use weighted automata in order to model the
costs associated with approximation and relaxation. The full definition of MR

is given below as Definition 8.

Definition 1. A semipath [4] p in G = (VG, EG,Σ) from x ∈ VG to y ∈ VG is a
sequence (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), where n ≥ 0, v1 = x, vn+1 = y and
for each vi, li, vi+1 either (vi, li, vi+1) ∈ EG or (vi+1, l

−
i , vi) ∈ EG. A semipath

p conforms to a regular expression R if l1 · · · ln ∈ L(R).
Given a single-conjunct regular path query Q and graph G, let θ be a map-

ping from {X,Y } to VG that maps each constant to itself. We term a mapping
such as θ a (Q,G)-matching. A tuple θ(vars) satisfies Q on G if there is a
semipath in G from θ(X) to θ(Y ) which conforms to R. The exact answer of Q
on G is the set of tuples which satisfy Q on G. �

The following result on the complexity of exact query answering follows from
Lemma 1 in [17].

Proposition 1. Given single-conjunct regular path query Q and graph G, the
exact answer of Q on G can be found in time which is polynomial in the size of
Q and G.

We now define the triple form of both a semipath in a graph and a sequence
of labels in L(R). The definition uses the notion of a triple pattern, which is
a triple each of whose components may be either a constant or a variable. We
use triple forms as a uniform syntax to which we can apply approximation and
relaxation.
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Definition 2. Let p be a semipath (v1, l1, v2, l2, v3, . . . , vn, ln, vn+1), n ≥ 1, in
G. A triple form of p is a sequence of triple patterns

(v1, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, vn+1)

where W1, . . . ,Wn−1 are distinct variables. If p is of length zero, then p is of
the form (v, ε, v) and the only triple form of p is (v, ε, v). �

Definition 3. Given a queryQ with single conjunct (X,R, Y ), let q = l1l2 · · · ln,
n ≥ 1, be a sequence of labels in L(R). A triple form of (Q, q) is a sequence of
triple patterns

(X, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, Y )

where W1, . . . ,Wn−1 are distinct variables not appearing in Q. If q = ε, then
the triple form of (Q, q) is (X, ε, Y ). �

Definition 4. Let T be a sequence of triple patterns

(W0, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln,Wn)

such that n ≥ 1, W1, . . . ,Wn−1 are variables, and W0 and Wn are variables or
constants. Any triple pattern (Wi−1, li,Wi) in which li ∈ Σ− ∪ {type−} is said
to be inverted; otherwise the triple pattern is non-inverted. The normalised
form of an inverted triple pattern (Wi−1, li,Wi) is (Wi, l

−
i ,Wi−1), while the

normalised form of a non-inverted triple pattern is the triple pattern itself. The
normalised form of T comprises the normalised form of each triple pattern in
T . �

Example 4. Assume we have G as shown in Figure 1, query Q comprising the
single conjunct (‘FL56’, fn−1 · ppn1, X), where ‘FL56’ is a constant and X is a
variable, and q = fn−1 · ppn1. The triple form of (Q, q) is

(‘FL56’, fn−1 ,W1), (W1, ppn1, X)

for the normalised triple form is:

(W1, fn1, ‘FL56’), (W1, ppn1, X)

�

3.2. Approximate Matching of Single-Conjunct Queries

Approximate matching of a single-conjunct query Q against a graph G is
achieved by applying edit operations to the sequence of labels in L(R), where R
is the regular expression used in Q. Let q be a sequence of labels in L(R) and l
be an arbitrary label in Σ ∪ Σ− ∪ {type, type−}.

An edit operation on q is one of the following:

(i) the insertion of label l into q,

9



(ii) the deletion of label l from q,

(iii) the substitution of some label other than l by l in q,

Each edit operation has a cost, which is a positive integer; the costs may be
different for different edit operations. We assume throughout that the cost of
substitution is less than the combined cost of insertion and deletion (otherwise
the substitution operation would be redundant, as it would be no more costly
to achieve such an edit through an insertion and a deletion operation).

In [10], we defined two additional edit operations: (i) the inversion of a
label in q and (ii) the transposition of a pair of adjacent labels in q. We note
that both these operations can be subsumed semantically by the edit operations
given above; inversion is subsumed by substitution in which some label l ∈ Σ is
replaced by l−, and transposition is achieved by either applying substitution to
the pair of labels to be transposed or by a combination of insertion and deletion
of labels.

Definition 5. The application of an edit operation to a sequence of triple pat-
terns T of the form

(X, l1,W1), (W1, l2,W2), . . . , (Wn−1, ln, Y ),

where n ≥ 1, X and Y are variables or constants, and W1, . . . ,Wn−1 are distinct
new variables, is defined as follows:

The result of a substitution on T is

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn−1, l

′
n, Y )

such that there must be some 1 ≤ j ≤ n such that lj 6= l′j (l′j has been substituted
for lj) and li = l′i, for each i 6= j, 1 ≤ i ≤ n.

The result of an insertion into T is

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn, l

′
n+1, Y )

such that there is a 1 ≤ j ≤ n+ 1 for which li = l′i, for each 1 ≤ i ≤ j − 1, and
li = l′i+1, for each j + 1 ≤ i ≤ n (l′j is the inserted label).

If n > 1, the result of a deletion from T is

(X, l′1,W1), (W1, l
′
2,W2), . . . , (Wn−2, l

′
n−1, Y )

such that there is a 1 ≤ j ≤ n for which li = l′i, for each 1 ≤ i ≤ j − 1, and
li+1 = l′i, for each j ≤ i ≤ n− 1 (lj is the deleted label). If n = 1, the result of
a deletion from T is (X, ε, Y ) (where l1 is the deleted label).

If T is of the form (X, ε, Y ), then only the insertion operation applies, the
result of which is (X, l′, Y ), where l′ is the inserted label. �

Definition 6. Given graph G, semipath p in G, query Q with single conjunct
(X,R, Y ), (Q,G)-matching θ, sequence of labels q ∈ L(R), triple form Tq for
(θ(Q), q), and triple form Tp for p:

10



• we write Tq �A Tp, if Tq can be transformed to Tp (up to variable renam-
ing) by a sequence of edit operations. The cost of the sequence of edit
operations on Tq is the sum of the costs of each operation.

• the approximation distance from p to (θ(Q), q) is the minimum cost of
any sequence of edit operations which yields Tp from Tq. The cost of the
empty sequence of edit operations (so Tq is already a triple form of p) is
zero. If Tq cannot be transformed to Tp, then the approximation distance
is infinity.

• the approximation distance from p to θ(Q) is the minimum approximation
distance from p to (θ(Q), q) for any sequence of labels q ∈ L(R).

• the approximation distance of θ(Q), denoted adist(θ,Q), is the minimum
approximation distance to θ(Q) from any semipath p in G.

• the approximate answer of Q on G, denoted QA(G), is a list of pairs
(θ(vars), adist(θ,Q)), where θ is a (Q,G)-matching, ranked in order of
non-decreasing approximation distance.

• the approximate top-k answer of Q on G is a list containing the first k
tuples in QA(G). �

We now describe how QA(G) can be computed in time polynomial in the size
of Q and G. A similar process was described in [10], but that paper included
only sketch proofs of the theoretical results. Broadly, the steps are as follows:
(1) construct a query automaton MQ, (2) construct an approximate automaton
AQ, (3) construct the product automaton H of AQ and G, and (4) perform
shortest path traversals of H in order to find the approximate answer of Q on
G. Each of the terms introduced above are defined next.

Definition 7. A weighted non-deterministic finite state automaton (NFA) M
is a tuple (S,A, δ, S0, Sf , ξ), where: S is a set of states; A is an alphabet of
labels; δ ⊆ S × A × N × S is the transition relation; S0 ⊆ S is the set of start
states; Sf ⊆ S is the set of final states; and ξ is a final weight function mapping
each state in Sf to a non-negative integer [18]. Given a transition (s, a, c, t) ∈ δ,
we sometimes say that the transition is from s to t and call a the label and c
the cost of the transition.

We call a sequence of transitions from an initial to a final state of M a run.
Given a sequence of labels p, a run for p is a sequence of transitions of the form
(s1, a1, w1, s2), . . . , (sn−1, an−1, wn−1, sn), where s1 is an initial state, sn is a
final state, and p = a1 · · · an−1. The cost of the run is w1 + · · ·+wn−1 + ξ(sn).
We sometimes say that the run is from s1 to sn. �

Definition 8. Let R be a regular expression defined over alphabet Σ ∪ Σ− ∪
{type, type−}. A weighted NFA MR recognising L(R) can be constructed in
the same way as a normal NFA recognising L(R), except that each transition
and each final state has a zero weight associated with it. Formally, MR =
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(S,Σ∪Σ−∪{type, type−}, δ, {s0}, {sf}, ξ), where there is only one initial state
s0 and one final state sf , and ξ maps sf to zero.

Let Q be a single-conjunct query with conjunct (X,R, Y ). The query au-
tomaton MQ for Q is the same as MR but with annotations on the initial and
final states. In particular, if X (or, respectively, Y ) in Q is a constant c, then
s0 (sf ) is annotated with c; otherwise s0 (sf ) is annotated with the wildcard
symbol ∗ which matches any constant. �

Definition 9. Let Q be a single-conjunct query with conjunct (X,R, Y ), and
MR = (S,Σ ∪Σ− ∪ {type, type−}, δ, {s0}, {sf}, ξ) be the weighted NFA for R.
We construct the approximate automaton AQ for Q by first constructing an ap-
proximate automaton AR from MR. The approximate automaton is constructed
in a number of steps:

• First the automaton A1
R with deletions is constructed from MR. Automa-

ton A1
R is the same as MR except that the set of transitions δ′ includes

all those in δ along with the set {(s, ε, cd, t) | (s, a, 0, t) ∈ δ∧ s 6= t}, where
cd is the cost of deletion.

• Next an automaton A2
R without ε-transitions is constructed from A1

R, us-
ing the method of [18]. Briefly, the method first computes the ε-closure
of A1

R, which is the set of pairs of states connected by a sequence of ε-
transitions along with the minimum summed weight for each such pair.
Then A2

R = (S,Σ ∪ Σ− ∪ {type, type−}, δ′′, {s0}, S, ξ′), where the tran-
sitions in δ′′ comprise the non-epsilon transitions in δ′ along with each
transition (s, b, w, u) such that pair (s, t) with weight w is in the ε-closure
and transition (t, b, 0, u) ∈ δ′ (b 6= ε). Because every original (non-
looping) transition in δ′ has an associated ε-transition, all states will be
final. The final state function ξ′ is defined as follows. For final state sf ,
ξ′(sf ) = ξ(sf ). For each state s 6= sf , ξ′(s) is the minimum weight of the
pairs (s, sf ) in the ε-closure.

• Thirdly, an automaton A3
R with substitutions is constructed from A2

R. Au-
tomaton A3

R is the same as A2
R except that the transitions of A3

R comprise
those of A2

R along with transitions of the form (s, b, w + cs, t), where cs
is the cost of substitution, for each transition (s, a, w, t) ∈ δ′′ and label
b ∈ Σ ∪ Σ− ∪ {type, type−} (b 6= a).

• Finally, the approximate automaton AR is constructed from A3
R by in-

cluding insertions. Automaton AR is the same as A3
R except that the

transitions of AR comprise those of A3
R along with transitions of the form

(s, a, ci, s), where ci is the cost of insertion, for each state s ∈ S and label
a ∈ Σ ∪ Σ− ∪ {type, type−}.

The approximate automaton AQ for Q is formed from AR by annotating
the initial and final states in AR with the annotations from the initial and final
states, respectively, in MQ. �
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s0 s1 sf
fn1, 0 pn−1 , 0

FL56 ∗, 0

Figure 3: Query automaton MQ for conjunct (‘FL56’, fn1 · pn−
1 , X).

s0 s1 sf
fn1, 0 pn−1 , 0

fn−1 , cs ppn1, ci

FL56 ∗, 0

Figure 4: Fragment of approximate automaton AQ for conjunct (‘FL56’, fn1 · pn−
1 , X).

Example 5. Consider the graph G shown in Figure 1, and the following ap-
proximated query Q:

X ← APPROX(‘FL56’, fn1 · pn−1 , X)

The query automaton MQ for Q is shown in Figure 3. We see that MQ is
comprised of two transitions, each labelled with a cost of zero; the initial state,
s0, is annotated with the constant ‘FL56’; and the final state, sf , is annotated
with the wildcard symbol ∗, and has a weight of zero.

A fragment of the approximate automaton AQ for Q is shown in Figure 4.
Two transitions — represented by the dashed lines — appear in AQ but not
in MQ. The transition (s0, fn

−
1 , cs, s1) indicates that the label fn1 has been

substituted by fn−1 , and the transition (s1, ppn1, ci, s1) indicates that the label
ppn1 has been inserted before pn−1 ; cs and ci denote the cost of these edit
operations, respectively. �

We next show that using automaton AR is sufficient to find all sequences
of labels generated by edit operations at an approximation distance k from a
given query. To do so, we make use of the concept of a trace of edit operations,
introduced in [19]. A trace is essentially a sequence of edit operations in which
order is unimportant and redundancy is not present. More specifically, edit
operations are applied only to labels in the original sequence, and redundant
operations (such as the insertion of some previously-deleted label) are not per-
formed. Therefore, without loss of generality, we can assume that in our edit
sequences, all deletions come first, followed by all substitutions which are then
followed by all insertions.

Lemma 1. Let Q be a single-conjunct CRPQ with conjunct (X,R, Y ). Let AR
be the automaton constructed for R as described in Definition 9 above, q be a
sequence of labels in L(R), and p be a sequence of labels in (Σ ∪ Σ− ∪ {type ∪
type−})∗ corresponding to a semipath in G. The approximation distance from
p to q is equal to the minimum cost of a run for p in AR.

13



Proof. Given graph G and (Q,G)-matching θ, let Tq be the triple form of
(θ(Q), q), and Tp be a triple form for p. The approximation distance from p to q
is defined as the minimum cost of any sequence of edit operations which yields
Tp from Tq. The proof proceeds by induction on the number of edit operations
used in any such minimum-cost edit sequence.

Basis: If no edit operations are used, then, by definition, the cost of the
edit sequence is 0, and Tq is already a triple form of p. Thus, there is a run of
cost 0 in AR. Clearly, this run is of minimum cost.

Induction: For the inductive step, assume that there is an n ≥ 0 such that,
for all m ≤ n, if m edit operations are used in a minimum-cost edit sequence of
cost c which yields Tp from Tq, then the minimum cost of a run for p in AR is c.

Now consider a sequence of labels p which requires n+ 1 edit operations in
a minimum-cost edit sequence to produce Tp from Tq. Let this edit sequence be
given by S = P0 �A P1 �A · · · �A Pn �A Pn+1, where P0 = Tq and Pn+1 = Tp.
Let the cost of a deletion, substitution and insertion be denoted by cd, cs and
ci, respectively. The cost of the sequence S is k = ndcd +nscs +nici, where nd,
ns and ni are the number of deletions, substitutions and insertions, respectively,
used in S for some nd ≥ 0, ns ≥ 0 and ni ≥ 0, and nd + ns + ni = n+ 1.

Using a result from [19], we can assume that in edit sequence S all deletions
appear first, followed by all substitutions, and then all insertions. Let opE
denote the edit operation applied to Pn to yield Pn+1 = Tp. The proof proceeds
by considering the possible alternatives for opE :

(1) opE is a deletion: There are two cases to consider, depending on whether
or not the deleted triple pattern is the last in Pn.

(i) We first consider the case in which the deleted triple pattern is not
the last in Pn. So assume that opE deletes the triple pattern (Wm−1, b,Wm)
in Pn to produce Pn+1 = Tp, transforming the pair of triple patterns t′f =
(Wm−1, b,Wm), (Wm, g,Wm+1) in Pn into tf = (Wm−1, g,Wm) in Pn+1. Let the
subsequence of sequence S up to Pn be denoted by S′. By definition, sequence
S′ uses n edit operations and has cost k−cd. By the inductive hypothesis, there
is a minimum cost run r of cost k− cd in AR for the sequence corresponding to
triple form Pn. Suppose that in run r the subsequence t′f in Pn is matched by
the transitions (s1, b, d1, s2) and (s2, g, d2, s3) in AR. We will show that there is
a minimum cost run of cost k in AR which matches Tp.

Suppose that, prior to the removal of ε-transitions, t′f corresponds to the
sequence of transitions in AR given by s′ = Γ, (s4, b, 0, s2),∆, (s5, g, 0, s3), where
Γ and ∆ represent sequences of ε-transitions. Sequence Γ represents the presence
of x1 ε-transitions which include y1 ε-transitions each of cost cd, representing
the deletion of labels in Tq prior to b in some triple form prior to Pn in S, where
x1 ≥ 0, y1 ≤ x1, and s1 = s4 if x1 = 0. Sequence ∆ represents the presence of
x2 ε-transitions which include y2 ε-transitions each of cost cd, representing the
deletion of labels from Tq between b and g in some triple form prior to Pn in S,
where x2 ≥ 0, y2 ≤ x2, and s2 = s5 if x2 = 0.

After the removal of ε-transitions, s′ is transformed to t′ = (s1, b, d1, s2),
(s2, g, d2, s3) in run r, where d1 = y1cd and d2 = y2cd, as shown in Figure 5.
Thus, the cost of run r is k−cd = d1+d2+e, where e is the cost of the remaining
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s1 s2 s3

s4 s5

b, d1 g, d2

g, d1 + cd + d2

ε, cd

b, 0

ε, cd

g, 0
Γ, (ε, d1)

∆, (ε, d2)

Figure 5: Automaton for the deletion of the label b in Tpk (b is not the last label).

transitions in r. By construction, the transition (s4, ε, cd, s2) representing the
deletion of b is present in AR, as shown in Figure 5.

There is a sequence of ε-transitions from s1 to s4 of cost d1. Along with the
ε-transition from s4 to s2, this means there is a sequence of ε-transitions from
s1 to s2 of cost d1 + cd.

There is a sequence of ε-transitions from s2 to s5 of cost d2. Therefore there
is a path of ε-transitions from s1 via s4 and s2 to s5 of cost d1 + cd + d2. As
there is a transition of cost 0 labelled with g from s5 to s3, a transition labelled
with g from s1 to s3 of cost d1 + cd + d2 would have been added to AR during
the removal of ε-transitions (see Figure 5). Therefore, there is a minimum cost
run of cost k in AR which matches Tp.

(ii) We now consider the case where the deleted triple pattern is the last in
Pn. Assume that opE deletes the triple pattern (Wm, g,Wm+1) in Pn, transform-
ing triple form t′f = (Wm−1, b,Wm), (Wm, g,Wm+1) in Pn into tf = (Wm−1, b,
Wm) in Pn+1 = Tp. As in case (i), we know by the inductive hypothesis that
there is a minimum cost run r of cost k−cd in AR for the sequence corresponding
to triple form Pn. Suppose that in run r the subsequence t′f in Pn is matched by
the transitions (s1, b, d1, s2) and (s2, g, d2, s3) in AR. We will show that there is
a minimum cost run of cost k in AR which matches Tp.

Suppose that prior to the removal of ε-transitions, t′f is matched in AR by
the partial sequence of transitions given by s′, as defined previously. After the
removal of ε-transitions, s′ is transformed to t′, also as given previously. Using
the same reasoning as in the case for when the deleted label is not the last in Pn,
we note that d2 = y2cd, representing the deletion of y2 ε-transitions, succeeding
b and preceding g in Tq, in some sequence prior to Pn.

If there were m ε-transitions succeeding g in Tq, these would all have been
deleted prior to Pn in sequence S′. As g is the last label, then, from the inductive
hypothesis, we have that ξ(s3) = d3, where d3 = mcd. Thus, the cost of run r
is k− cd = d1 + d2 + d3 + e where e is the cost of the remaining transitions in r.

By construction, the transition (s5, ε, cd, s3) representing the deletion of g
is present in AR. There is a sequence of ε-transitions from s2 to s5 of cost d2,
and, along with the ε-transition from s5 to s3 of cost cd, this means there is a
sequence of ε-transitions from s2 to s3 via s5 of cost d2 + cd. Thus ξ(s2) set to
d2 + cd + d3. Thus, there is a minimum cost run of cost k which matches Tp.
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(2) opE is a substitution: Suppose opE replaces some triple t′ = (Wm−1, a,
Wm) in Pn by t = (Wm−1, b,Wm) in Pn+1 = Tp. Hence the subsequence of
sequence S up to Pn uses n edit operations and has cost k−cs. By the inductive
hypothesis, there is a minimum cost run r of cost k− cs in AR for the sequence
corresponding to triple form Pn.

Suppose that in run r triple t′ is matched by the transition f ′ = (s1, a, d, s2).
Then, by construction, AR has a transition f = (s1, b, d + cs, s2) matching t.
Substituting f ′ in r by f yields a run r′ in AR with cost k which matches Tp.

(3) opE is an insertion: Suppose opE inserts a triple pattern t = (Wm−1, a,
Wm) after another triple pattern t′ = (Wm−2, h,Wm−1) in Pn to produce
Pn+1 = Tp. Hence the subsequence of sequence S up to Pn uses n edit op-
erations and has cost k − ci. By the inductive hypothesis, there is a minimum
cost run r of cost k− ci in AR for the sequence corresponding to triple form Pn.

Assume that in run r triple t′ is matched by the transition f ′ = (s1, h, d, s2),
where d ≥ 0. By construction there is a transition (s2, a, ci, s2) in AR, and hence
a sequence (s1, h, d, s2), (s2, a, ci, s2) matching t′ and t. Using this sequence
instead of (s1, h, d, s2) in r yields a run of cost k in AR. The case for inserting
a triple pattern before another triple pattern is analogous. �

Definition 10. Let AQ = (S,Σ ∪ Σ− ∪ {type, type−}, δ, {s0}, S, ξ) be an ap-
proximate automaton and G = (VG, EG,Σ) a graph. We can view G as an
automaton with set of states VG, alphabet Σ, set of initial states VG, and set
of final states VG. There is a transition from state s to state t labelled a in the
automaton if and only if there is an edge (s, a, t) ∈ EG. We can then form the
product automaton, H, of AQ and G. Formally, H is the weighted automaton
(T,Σ∪Σ− ∪ {type, type−}, σ, I, T, ξ), where I ⊆ T is a set of initial states and
all states in T are final. The set of states T is given by {(s, n) | s ∈ S∧n ∈ VG}.
The set of transitions σ consists of transitions of the form

• ((s, n), a, c, (s′, n′)) if (s, a, c, s′) ∈ δ and (n, a, n′) ∈ EG,

• ((s, n), a−, c, (s′, n′)) if (s, a−, c, s′) ∈ δ and (n′, a, n) ∈ EG.

The set of initial states I is given by {(s0, n) | n) ∈ VG}. We overload the use of
ξ as the final weight function, carrying over the weights from final states in AQ
to those in H. The annotations on initial and final states in H are also carried
over from the corresponding initial and final states in AQ. �

H can be viewed either as an automaton or as a graph, whichever is ap-
propriate in a given context. When H is viewed as an automaton, we will use
the terms states, transitions and runs; when viewed as a graph, we will use the
terms nodes, edges and paths.

We can now define how QA(G), the approximate answer of Q on G, can be
computed:

(i) We construct the weighted NFA MR from R, using Thompson’s construc-
tion [16], and then the query automaton MQ from MR.
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(ii) We construct the approximate automaton AQ from MQ.

(iii) We form the product automaton, H, of AQ with G.

(iv) Let the conjunct of Q be (X,R, Y ). Assume first that X is a constant u.
Assume also that u ∈ VG, for otherwise QA(G) is empty. We perform a
shortest path traversal of H starting from the initial state (s0, u), incre-
menting the total cost of the path by the cost of the transition. Whenever
we reach a final state (sf , v) in H we output v, provided v matches the
annotation on (sf , v), along with the cost of the path. Recall that if Y is a
constant the annotation on sf will be that constant, and if Y is a variable
the annotation will be the wildcard symbol ∗. Node v matches the anno-
tation if and only if the annotation is v or ∗. Now assume X is a variable.
In this case, we perform a shortest path traversal of H, outputting nodes
as above, starting from state (s0, u) for each node u ∈ VG.

The above construction of an approximate automaton differs from that given
in [10] where the NFA for approximate matching of regular expression R was
constructed using a number of copies of the NFA for recognising R, each cor-
responding to matching at a different distance. Hence, in that NFA, distance
was represented implicitly by the ‘copy number’ of states, rather than explicitly
using a weight as above.

The next two lemmas show firstly the correctness of the traversal of the
product automaton, H; and secondly that the approximation distance from a
semipath in a graph G to the matchings for a single-conjunct query Q is equal
to the minimum cost of a corresponding run in H.

Lemma 2. There is a run in H from (s0, v0) to (sf , vn) of cost k if and only
if there is a semipath from v0 to vn in G and a run of cost k from s0 to sf in
AQ, for some initial state s0 and some final state sf in AQ.

Proof. There are two types of transition in H, as given in the definition of its
construction. The first type of transition, ((s, n), a, c, (s′, n′)), is in H if and only
if there is an edge labelled a from n to n′ in G and a transition labelled a from s
to s′ with a cost of c in AQ. The second type of transition, ((s, n), a−, c, (s′, n′)),
is added to H if and only if there is an edge labelled a from n′ to n in G and a
transition labelled a− from s to s′ with a cost of c in AQ.

Given the above, it is straightforward to show (by induction, for example)
that there is a sequence of transitions of the form ((s0, v0), a1, c1, (s1, v1)), . . . ,
((sj−1, vj−1), aj−1, cj−1, (sf , vj)) in H of cost k = c1 + · · ·+ cj−1 + ξ[sf ] if and
only if there is a semipath from v0 to vj in G and a sequence of transitions of
the form (s0, a1, c1, s1), . . . , (sj−1, aj−1, cj−1, sf ) of cost k in AQ. �

Lemma 3. Let θ be a matching from a query Q with single conjunct (X,R, Y )
to a graph G = (VG, EG,Σ), where θ(X) = v0 and θ(Y ) = vn for some v0, vn ∈
VG. Let p be a semipath from v0 to vn in G, and H be the product automaton of
AQ and G. The approximation distance from p to θ(Q) is k if and only if k is
the minimum cost of a run for the sequence of labels comprising p from (s0, v0)
to (sf , vn) in H, for some initial state s0 and some final state sf in AQ.
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Proof. (⇒) We know, by definition, that if the approximation distance from p
to θ(Q) is k, then k is the minimum approximation distance from p to (θ(Q), q)
for any sequence of labels q ∈ L(R). For any such q ∈ L(R), we also know, by
definition, that if the approximation distance from p to (θ(Q), q) is k, then k is
the minimum cost of any sequence of edit operations which yields triple form
Tp from triple form Tq.

From Lemma 1, we know that if p has approximation distance k from q, the
minimum cost of a run from s0 to sf for p in AR, and hence AQ, is k. From
Lemma 2, we know that there is a run of cost k for p from (s0, v0) to (sf , vn) in
H. There can be no run of cost less than k for p in H since this would contradict
the fact that p is of approximation distance k from θ(Q).

(⇐) Suppose that the minimum cost of a run for the sequence of labels
comprising p from (s0, v0) to (sf , vn) in H, for some initial state s0 and some
final state sf in AQ, is k. This means that, by Lemma 2, AQ has a minimum
cost of k for a run for p. Hence, the minimum cost of edit operations needed to
obtain Tp from Tq, for any q ∈ L(R), must be k. Therefore the approximation
distance from p to θ(Q) is k. �

We next consider the complexity of approximate matching. For all the
complexity-related proofs in this paper, we make the assumption that any occur-
rence of “ ” in a regular expression — denoting the disjunction of all constants
in Σ∪{type}— has been rewritten to a1|a2|...|an|type where Σ = {a1, . . . , an}.

Lemma 4. AQ has at most 2|R| states and 4|R|2|Σ| transitions, and can be
constructed in O(|R|3|Σ|) time.

Proof. From [16], we have that MR contains at most 2|R| states and 4|R|
transitions. Deletions add at most |R| more transitions, giving 5|R| transitions
in total. The subsequent removal of ε-transitions may result in AQ having
at most 25|R|2 transitions. Insertions add at most 2|R||Σ| transitions, and
substitutions add at most 25|R|2|Σ| transitions. However, since a directed,
labelled multi-graph with 2|R| nodes and |Σ| distinct labels can have at most
4|R|2|Σ| edges, this is also the bound for the number of transitions in AQ.
From [18], we have that the construction of AQ can be performed in O(|R|3|Σ|)
time. �

Proposition 2. Let G = (VG, EG,Σ) be a graph and Q be a single-conjunct
query using regular expression R over alphabet Σ∪{type}. The approximate an-
swer of Q on G can be found in time O(|R|2|VG|(|R||Σ||EG|+|VG| log(|R||VG|))).

Proof. Let AQ be the approximate automaton constructed from R, and H be
the product graph constructed from AQ and G. Lemma 3 shows that traversing
H correctly yields all approximate answers of Q. Lemma 4 tells us that AQ has
at most 2|R| states and 4|R|2|Σ| transitions. Therefore H has at most 2|R||VG|
nodes and 4|R|2|EG||Σ| edges. If we assume that H is sparse (which is highly
likely), then running Dijkstra’s algorithm on each node of a graph with node set
N and edge set A can be done in time O(|N ||A| + |N |2 log |N |). So, for graph
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H, the combined time complexity is O(|R|3|VG||EG||Σ|+ |R|2|VG|2 log(|R||VG|))
which is equal to O(|R|2|VG|(|R||Σ||EG|+ |VG| log(|R||VG|))). �

As a corollary, it is easy to see that the data complexity is O(|VG||Σ||EG|+
|VG|2 log(|VG|)) and the query complexity is O(|R|3). The space complexity is
dominated by the space requirements of H given in the proof above.

3.3. Incremental Evaluation

The above evaluation can also be accomplished “on-demand” by incremen-
tally constructing the edges of H as required, thus avoiding precomputation and
materialisation of the entire graph H. This is performed by calling a function

Succ with a node (s, n) of H. The function returns a set of transitions
d→ (p,m),

such that there is an edge in H from (s, n) to (p,m) with cost d.
We list function Succ below, where the function nextStates(AQ, s, a) re-

turns the set of states in AQ that can be reached from state s on reading input
a, along with the cost of reaching each.

Function Succ(s, n,AQ, G)

Input: state s of AQ and node n of G
Output: set of transitions which are successors of (s, n) in H

(1) W ← ∅
(2) for (n, a,m) ∈ EG and (p, d) ∈ nextStates(AQ, s, a) do

(3) add the transition
d→ (p,m) to W

(4) return W

Lemma 5. The transition
d→ (p,m) is returned by Succ(s, n,AQ, G) iff (s, n)

a,d→
(p,m) is in H = AQ ×G.

Proof. By the definition of Succ, the transition
d→ (p,m) is added to W if

and only if (n, a,m) ∈ EG and (p, d) ∈ nextStates(AQ, s, a). By the definition
of H, the presence of an edge labelled a from n to m in G and of a transition

labelled a from s to p in AQ results in an edge (s, n)
a,d→ (p,m) in H. �

For incremental evaluation, a set visitedR is maintained, storing tuples of
the form (v, n, s), representing the fact that node n of G was visited in state s
of AQ having started the traversal from node v. Also maintained is a priority
queue queueR containing tuples of the form (v, n, s, d, f), ordered by increasing
values of d, where d is the approximation distance associated with visiting node
n in state s having started from node v, and f is a flag denoting whether the
tuple is final or non-final, with the latter being the initial value for f .

Recalling that Q has the form (X,R, Y ), we begin by enqueueing the initial
tuple (v, v, s0, 0, f), if X is some node v, or enqueueing a set of initial tuples
otherwise, one for each node v of G. We maintain a list answersR containing
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tuples of the form (v, n, d), where d is the smallest approximation distance of
this answer tuple to Q and ordered by non-decreasing value of d. This list is
used to avoid returning as an answer (v, n, d′) for any d′ ≥ d. It is initialised to
the empty list.

We then call function getNext shown below to return the next query answer,
in order of non-decreasing approximation distance from Q. We see that getNext
repeatedly dequeues the first tuple of queueR, (v, n, s, d, f), adding (v, n, s) to
visitedR if the tuple is not final, until queueR is empty.

After dequeueing a tuple (v, n, s, d, f), we check to see whether the tuple is

a final one; if not, we enqueue (v,m, s′, d + d′, f) for each transition
d′→ (s′,m)

returned by Succ(s, n,AQ, G) such that (v,m, s′) 6∈ visitedR. If s is a final
state, its annotation matches n, and the answer (v, n, d′) has not been generated
before for some d′, then we add the final weight function for s to d, mark the
tuple as final, and enqueue the tuple.

On the other hand, if a dequeued tuple is a final one and the answer (v, n, d′)
has not been generated before for some d′, the triple (v, n, d) is returned after
being added to answersR.

We note that the maximum size of each of visitedR and queueR is 2|R||VG|2,
and that the size of answersR will never exceed |VG|2. For queueR this result
follows from the fact that, as in Dijkstra’s shortest path algorithm, we assume
that, for each combination of nodes v and n and state s, at most one tuple
(v, n, s, d, f) is enqueued by using the priority queue’s ‘decrease key’ operation.

Function getNext(X,R, Y,AQ, G)

Input: query conjunct (X,R, Y )
Output: triple (v, n, d), where v and n are instantiations of X and Y

(1) while nonempty(queueR) do
(2) (v, n, s, d, f)← dequeue(queueR)
(3) if f 6= ‘final’ then
(4) add (v, n, s) to visitedR

(5) foreach
d′→ (s′,m) ∈ Succ(s, n,AQ, G) s.t. (v,m, s′) 6∈ visitedR

do
(6) enqueue(queueR, (v,m, s

′, d+ d′, f))

(7) if s is a final state sf and its annotation matches n and
6 ∃d′.(v, n, d′) ∈ answersR then

(8) enqueue(queueR, (v, n, s, d+ ξ[s],‘final’))

(9) else
(10) if 6 ∃d′.(v, n, d′) ∈ answersR then
(11) append (v, n, d) to answersR
(12) return (v, n, d)

(13) return null
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The following theorem shows that our incremental evaluation algorithm,
represented by getNext, is correct: that is, given a single-conjunct query Q and
a graph G, it returns the approximate answer of Q on G.

Theorem 1. Let Q be a query with single conjunct (X,R, Y ), and G a graph.
Let visitedR, queueR and answersR be initialised as described above and
getNext be called repeatedly until it returns null. When getNext returns null,
then (1) (v, n, d) ∈ answersR if and only if (v, n, d) is in the approximate answer
of Q on G, and (2) if answersR[i] = (v, n, d) and answersR[j] = (v′, n′, d′), for
non-negative integers i and j with i < j, then d ≤ d′.

Proof. Throughout, we define H as being the product automaton of the graph
G and the approximate automaton AQ constructed for Q; and s0 and sf indicate
an initial state and final state in AQ, respectively.

Part (1): (⇐) By Lemma 3, we need to show that if the minimum cost of any
run from (s0, v) to (sf , n) is d, for some v, n ∈ VG, then (v, n, d) ∈ answersR.

We first show that if the minimum cost of any run in H from (s0, v) to (s, n)
(where s may or may not be a final state) is d, then tuple (v, n, s, d, f) is added
to queueR before any tuple (v, n′, s′, d′, f), where d′ > d, is dequeued from
queueR. Assume that r is a minimum cost run in H from (s0, v) to (s, n). The
proof proceeds by induction on the number of transitions in r having non-zero
cost.

Basis: For the base case, there are no transitions with non-zero cost in
r, so the cost of r is zero. By definition we have that the tuple (v, v, s0, 0, f),
possibly as one of a set of initial tuples, is enqueued in queueR. When one
of these zero-cost tuples is dequeued at line (2), we can see, by Lemma 5 and
the invocation of Succ(s0, v, AQ, G) at line (5), that all tuples representing the
successive transitions in H will be enqueued in queueR at line (6); each of these
tuples subsequently undergoes the same process. Because run r ends with (s, n),
the tuple (v, n, s, 0, f), where f is ‘non-final’, will be added to queueR.

Now assume that, at some point, (v, n′, s′, d′, f), where d′ > 0 and f is
‘non-final’, is added to queueR. As queueR is a priority queue ordered by non-
decreasing values of cost, it is straightforward to see that (v, n′, s′, d′, f) will not
be dequeued before tuple (v, n, s, 0, f) is enqueued.

Induction: For the inductive step, suppose that there is an n ≥ 0 such that,
for all m ≤ n, if a minimum cost run in H of cost k from (s0, v) to (u,w), say,
has m transitions of non-zero cost, then tuple (v, w, u, k, f) will be placed on
queueR before any tuple (v, w′, u′, k′, f), k′ > k, is dequeued from queueR.

Now consider a minimum-cost run r of cost k which contains n+1 transitions
with non-zero cost. Let run r be from (s0, v) to (s, n), and let transition t be
the last transition in r labelled with a cost c > 0. Hence, r can be viewed as run
r′ · r′′, where t is the first transition on r′′. Clearly, the number of transitions
with a non-zero cost in r′ is n, and the cost of r′ is k− c. Let (u,w) be the state
in H at which r′ ends and r′′ starts. By the induction hypothesis, we know that
the tuple (v, w, u, k − c, f) will have been placed on queueR before any tuple
(v, w′, u′, k′ − c, f), where k′ > k, is dequeued from queueR .
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Suppose, in the worst case, that there is already a tuple (v, n′, s′, k′, f),
k′ > k, on queueR. Since k − c < k′, tuple (v, w, u, k − c, f) will be dequeued
before (v, n′, s′, k′, f). Suppose that transition t is form (u,w) to (x, y) in H.
When the tuple (v, w, u, k−c, f) is dequeued at line (2), we know from Lemma 5
that invoking Succ(u,w,AQ, G) at line (5), will, at line (6), enqueue all tuples
representing successive transitions in H, including the tuple (v, y, x, k, f).

If y = n and x = s, the proof is complete. If not, tuple (v, y, x, k, f) will
be dequeued before (v, n′, s′, k′, f) since k < k′ and queueR is a priority queue.
Because the remaining transitions on r′′ are of cost zero, it is easy to see that
(v, n, s, k, f) will be added to queueR before any (v, n′, s′, k′, f) is dequeued.

So for a minimum cost run of cost d from (s0, v) to (sf , n), where sf is a
final state, we know that tuple (v, n, sf , k, f) will also be dequeued from queueR
before any tuple (v, n′, s′, d′, f), d′ > d, is dequeued (because queueR is a priority
queue). The (v, n, s) triple is then added to visitedR at line (4), enqueued as
a ‘final’ tuple at line (8), and once again dequeued before any tuple at greater
cost. This time the dequeued tuple results in the tuple (v, n, d) being added to
answersR at line (11).

(⇒) We show that if (v, n, d) ∈ answersR, then the minimum cost of any
run in H from (s0, v) to (sf , n), for some final state sf , is d. The result then
follows by Lemma 3. The proof is by contradiction.

Suppose that a triple (v, n, d) ∈ answersR but that the minimum cost of a
run in H from (s0, v) to (sf , n) is d′ < d. As (v, n, d) was added to answersR
at line (11), we know, by line (7), that the triple (v, n, d′) was not added to
answersR prior to the tuple (v, n, s, d, f) being dequeued from queueR at line
(2). There are only two possibilities which could give rise to this state.

The first possibility is that the tuple (v,m, s, d, f) was dequeued before the
tuple (v,m, s, d′, f) was enqueued in queueR. However, as we have seen in
(⇐) above, (v,m, s, d, f) cannot be dequeued before (v,m, s, d′, f) is enqueued.
Thus, we have a contradiction.

The second possibility is that, at line (5), the invocation of Succ(si, vi, AQ, G),

for some state si and some node vi, did not return a transition
d′′→ (sf , n), for

some cost d′′, where d′′ ≤ d′, and hence the tuple (v,m, s, d′, f) was never en-
queued at line (6). But we know, from Lemma 5, that Succ returns all and only
transitions that occur in H. Thus, we have a contradiction.

Therefore, either (v, n, d) /∈ answersR or the minimum cost of any run in H
from (s0, v) to (sf , n) is d.

Part (2): From Part (1), we have that the tuple (v, n, s, d, f) — representing
the minimum cost run in H from (s0, v) to (s, n) — is dequeued from queueR
before any tuple (v, n′, s′, d′, f), where d < d′, is dequeued.

Suppose we have two runs, r and r′; suppose run r is from (sr0, vr) to
(srf , nr) of minimum cost dr and run r′ from (s′r0, v

′
r) to (s′rf , n

′
r) of minimum

cost d′r, where srf and s′rf are final states. It is then straightforward to see that

if the triple (vr, nr, dr) had been added as the ith item in answersR as a result
of completely traversing run r, and the triple (v′r, n

′
r, d
′
r) had been added as the

jth item in answersR as a result of completely traversing run r′, for some i < j,
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(Subproperty) (1)
(a, sp, b) (b, sp, c)

(a, sp, c)
(2)

(a, sp, b) (X, a, Y )

(X, b, Y )

(Subclass) (3)
(a, sc, b) (b, sc, c)

(a, sc, c)
(4)

(a, sc, b) (X, type, a)

(X, type, b)

(Typing) (5)
(a, dom, c) (X, a, Y )

(X, type, c)
(6)

(a, range, c) (X, a, Y )

(Y, type, c)

Figure 6: RDFS Inference Rules

then dr ≤ d′r. �

3.4. Ontology-Based Relaxation of Single-Conjunct Queries

The work in [11] considered ontology-based relaxation of conjunctive queries
in the setting of the RDF/S data model and showed that query relaxation can be
naturally formalised using RDFS entailment. The entailment was characterised
by the derivation rules given in Figure 6, grounded in the semantics developed
in [20, 21]. The work in [12] extended ontology-based relaxation to CRPQs,
using an automaton-based approach. Here, we revisit the work of [12], giving
full details and formally proving its correctness and complexity.

For RDF/S graphs G1 and G2, [11] states that G1 |=rule G2 if G2 can be
derived from G1 by iteratively applying the rules of Figure 6. The closure [21]
of an RDF/S graph G under these rules is denoted by cl(G).

In the formalisation of RDF [21], infinite sets I of IRIs and L of RDF literals
are assumed. The elements in I ∪ L are called RDF terms. Given a set of
variables V disjoint from I and L, a triple pattern is a triple (v1, v2, v3) ∈
(I ∪ V )× (I ∪ V )× (I ∪ V ∪ L).

As described in Section 2, in this paper we assume that the data graph G and
the ontology K are separate graphs, such that the nodes representing classes
in VG also appear as nodes in VK . We also assume that query evaluation takes
place on the graph given by restricting cl(G∪K) to the nodes of VG∪VK and the
edges labelled with labels from Σ∪{type}∪VProp. We call this the closure of the
data graph G with respect to the ontology K and denote it by closureK(G). For
example, the closure of the data graph of Figure 1 with respect to the ontology
in Figure 2 is illustrated in Figure 7.

Terminology Note: Henceforth in this paper, we use the term ‘graph’ to mean
‘data graph’, unless otherwise stated. We use the term ‘closure of the data graph
G’ to mean ‘closure of the data graph G with respect to the ontology K’ if the
ontology K can be inferred from the context.

We recall that the edges of K have labels from the set {sc, sp, dom, range}.
As in [12], we assume that the subgraphs of the ontology K induced by edges
labelled sc and sp are acyclic, and that K is equal to its extended reduc-
tion [11]. These restrictions are necessary for associating an unambiguous cost
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Lit F1 Lit P1 E1 N1

FL56 f1 1234 p1 e1 n1

type type type type type typefn1

fn

ppn1
pn1

pn
ie1 n1

F P N

f2 6789 p2 n2

fn2
fn

ppn1

pn2

pn
n2

F2 Lit P2 N2

type type type

type type type

type type type type

Figure 7: Closure of graph G in Figure 1 with respect to the ontology in Fig-
ure 2 where: F denotes Flight, P denotes Person, E denotes Employee, N
denotes NationalInsurancenumber, fn denotes flightNumber, ppn denotes
passengerPassportNumber, pn denotes passportNumber, ie denotes isEmployee and
n denotes nationalInsuranceNumber.

with queries, so that query answers can be returned to users in order of increas-
ing cost (see more details below, an illustrative example in Example 8, and full
details in [11]).

The extended reduction of an ontology K, denoted by extRed(K), is given
by cl(K) − D, where D is defined as follows: D is the set of triples in cl(K)
that can be derived using rules (1) or (3) in Figure 6, or rules (e1), (e2), (e3)
or (e4) in Figure 8. We note that, because cl(K) is closed with respect to the
edge labels sp and sc, and also that the subgraphs induced by each of sp and
sc are acyclic, the set D is uniquely defined9.

As discussed in [11], although the rules of Figure 8 are not sound for RDFS
entailment, using extRed(K) allows us to perform what were termed direct
relaxations in [11] which correspond to the “smallest” relaxation steps. This
is necessary for associating an unambiguous cost to query answers, so that
they can be returned incrementally in order of increasing relaxation cost10. In
particular, we consider the cost of applying rule 2, 4, 5, or 6 of Figure 6 to
be, respectively, cr2, cr4, cr5 or cr6, each of which is a positive integer. (Since
queries and data graphs cannot contain sc and sp, rules 1 and 3 are inapplicable
to them, although of course they are used in computing cl(G ∪K).)

9Note also that removing sp and sc edges using rules (1) and (3) of Figure 6 is equivalent
to forming the transitive reduction of cl(K) with respect to these labels (which is unique when
the subgraphs they induce are acyclic).

10It is observed in [11] that extRed(K) may not be logically equivalent to K. However, it
is shown in that paper (Proposition 7) that the direct relaxations of any triple pattern using
K can still be obtained from extRed(K).
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(e1)
(b, dom, c) (a, sp, b)

(a, dom, c)
(e2)

(b, range, c) (a, sp, b)

(a, range, c)

(e3)
(a, dom, b) (b, sc, c)

(a, dom, c)
(e4)

(a, range, b) (b, sc, c)

(a, range, c)

Figure 8: Additional rules used to compute the extended reduction of an RDFS ontology.

The set of variables mentioned in a triple pattern t is denoted by var(t).
Let t1 and t2 be normalised triple patterns (see Definition 4) such that t1, t2 6∈
cl(G ∪K), and var(t2) = var(t1). Then t1 relaxes to t2, denoted t1 ≤ t2, 11 if
({t1}∪G∪K) |=rule t2. Note that when applying the rules of Figure 6 to triple
patterns, rather than (ground) triples, a, b and c must be instantiated to RDF
terms, while X and Y can be instantiated to either RDF terms or variables.

Given data graph G, ontology K and triple patterns t1 and t2, let G1 and
G2 be the sets of triples in the closure of G that are ‘matched’ by t1 and t2,
respectively. Then it can be shown that t1 ≤ t2 if and only if (G1 ∪K) |=rule

G2. From now on in this section we assume that all triple patterns have been
normalised, and likewise all triple forms of queries and paths.

A graph pattern P is a set of triple patterns. The set of variables mentioned
in P is denoted by var(P ). Let P1 and P2 be graph patterns such that var(P2) =
var(P1) and for all t1 ∈ P1 and t2 ∈ P2, t1, t2 6∈ cl(G ∪K). Then P1 relaxes to
P2, denoted P1 ≤ P2, if for all t1 ∈ P1 there is a t2 ∈ P2 such that t1 ≤ t2 and
for all t2 ∈ P2 there is a t1 ∈ P1 such that t1 ≤ t2. The relaxation relation is
reflexive and transitive.

Example 6. Consider the ontology K described in Example 1 and shown in
Figure 2. Let query Q comprise the single conjunct (X,R, ‘FL56’), where X is a
variable, ‘FL56’ is a constant, and R = (ppn−1 ·fn1). Recall that K contains the
triples (fn1, dom, F1) and (F1, sc, F ). There is only a single q ∈ L(R), namely
q = ppn−1 fn1. Recalling the definition of a ‘triple form’ in Section 3.1, consider
the following normalised triple form T of (Q, q):

(W1, ppn1, X), (W1, fn1, ‘FL56’)

Notice that a triple form of (Q, q) is a graph pattern. Let P be the following
graph pattern:

(W1, ppn1, X), (W1, type, F )

Then T relaxes to P since (W1, fn1, ‘FL56’) ≤ (W1, type, F1) by rule 5, and
(W1, type, F1) ≤ (W1, type, F ) by rule 4.

Note that, because of our requirement that variables be preserved when per-
forming relaxation, rules 4, 5 and 6 can only be applied to the first or last triple

11For notational simplicity we assume that the parameters G and K are implicit.
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pattern of a triple form of a sequence of labels, and even then only when a con-
stant is present (as above). So, for example, (ppn1, range, Lit) ∈ K but we can-
not apply rule 6 to the triple pattern (W1, ppn1, X) to relax it to (X, type, Lit)
because variable W1 is lost in the process. We make use of this restriction in
our algorithm for computing relaxed answers in Section 3.5 below. �

We previously defined the exact semantics of single-conjunct regular path
queries in Section 3.1. We now define the relaxed semantics of such queries.

Definition 11. Given a query Q with single conjunct (X,R, Y ) and the closure
of a data graph G with respect to an ontology K, closureK(G), let θ be a (Q,G)-
matching. We use the notation θ(Q) to denote (θ(X), R, θ(Y )). A semipath p
in closureK(G) r-conforms to θ(Q) if there is a q ∈ L(R), a triple form Tq of
(θ(Q), q) and a triple form Tp of p such that Tq ≤ Tp. �

Note that a path in closureK(G) can r-conform to a query on the basis of a
triple pattern t relaxing to a triple pattern t′ such that the constants in t and
t′ differ, due to applications of rules 5 and 6 (for example, the triple patterns
(W1, fn1, ‘FL56’) and (W1, type, F ) in the previous example).

Example 7. Consider the query Q3 from Example 3, the graph G of Figure 1
and the ontology K of Figure 2. Suppose that the second conjunct is used in a
single-conjunct query Q4 as follows:

Y ← RELAX(Y, pn−1 .type, P1)

Using matching θ1 that matches Y to ‘1234’, semipath (‘1234’, pn−1 , p1, type, P1)
r-conforms to θ1(Q4) since it matches the query exactly. Using matching θ2 that
matches Y to ‘6789’, semipath (‘6789’, pn−2 , p2, type, P2) r-conforms to θ2(Q4)
because the normalised triple form (W,pn1, ‘6789’), (W, type, P1) for θ2(Q4) re-
laxes to the triple form (W,pn, ‘6789’), (W, type, P ) which is a triple form for
the semipath (‘6789’, pn−, p2, type, P ) in closureK(G). �

Example 8. Consider again the ontology K described in Example 1 and shown
in Figure 2. Recall that K contains the triples (fn1, dom, F1) and (F1, sc, F ). If
we did not use the extended reduction of K, then K could also include the triple
(fn1, dom, F ). Now, given a query conjunct (X, fn1, ‘FL56’), we could apply
rule 5 in order to relax (X, fn1, ‘FL56’) to (X, type, F1) with cost cr5 and to
(X, type, F ), also with cost cr5. However, the cost of relaxing (X, fn1, ‘FL56’)
to (X, type, F ) should really be cr5 + cr4, reflecting the cost of using rule 5
to relax (X, fn1, ‘FL56’) to (X, type, F1) followed by the cost of using rule 4
to relax (X, type, F1) to (X, type, F ). The extended reduction of K does not
contain the triple (fn1, dom, F ) because of applying rule e3 in reverse. �

We now consider the cost of applying relaxations in order to be able to
return answers ordered by increasing cost. For this we need the notion of direct
relaxation [11]. The direct relaxation relation, which we denote here by �R, was
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defined in [11] to be the reflexive, transitive reduction of the relaxation relation
≤12. The direct relaxations of a triple pattern t (i.e., the triple patterns t′ such
that t �R t′) are the result of the smallest steps of relaxation (and the indirect
relaxations of a triple pattern t are the triples t′ such that t ≤ t′ and t 6�R t′).

It is shown in [11] that a single application of each of the rules 2, 4, 5, 6
of Figure 6 to a triple pattern t and a triple o ∈ extRed(K) yields precisely the
direct relaxations of t with respect to K. We now extend this to graph patterns:

Given graph patterns P1 and P2, we say that P1 directly relaxes to P2,
denoted P1 �R P2, if P1 = {t1} ∪ P and P2 = {t2} ∪ P , for some (possibly
empty) graph pattern P , and t1 �R t2. The cost of the direct relaxation is the
cost of applying the rule that derives t2 from t1. The cost of a sequence of direct
relaxations is the sum of the costs of each relaxation in the sequence.

Definition 12. Given ontology K = extRed(K), graph G = closureK(G),
semipath p in G, query Q with single conjunct (X,R, Y ), sequence of labels
q ∈ L(R), (Q,G)-matching θ, triple form Tq for (θ(Q), q), and triple form Tp for
p such that Tq ≤ Tp:

• the relaxation distance from p to (θ(Q), q) is the minimum cost of any
sequence of direct relaxations which yields Tp from Tq; the cost of the
empty sequence of direct relaxations (so that Tq is already a triple form
of p) is zero;

• the relaxation distance from p to θ(Q) is the minimum relaxation distance
from p to (θ(Q), q) for any sequence of labels q ∈ L(R);

• the relaxation distance of θ(Q), denoted rdist(θ,Q), is the minimum re-
laxation distance to θ(Q) from any semipath p that r-conforms to θ(Q);

• the relaxed answer of Q on G is a list of pairs (θ(vars), rdist(θ,Q)), such
that there is a semipath in G that r-conforms to θ(Q), ranked in order of
non-decreasing relaxation distance;

• the relaxed top-k answer of Q on G is a list containing the first k tuples
in the relaxed answer of Q on G.

�

3.5. Computing the relaxed answer

We now describe how the relaxed answer can be computed, starting from
the weighted NFA MR that recognises L(R) which was described in Section 3.2.

Given a query Q with single conjunct (X,R, Y ), a weighted automaton
MR = (S,Σ∪Σ−∪{type, type−}, δ, s0, Sf , ξ) that does not contain ε-transitions,
and ontology K such that K = extRed(K), we construct as described below

12Once again for notational simplicity, we view the parameters G and K as being implicit.
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the automaton MK
R = (S′,Σ ∪ Σ− ∪ {type, type−}, τ, S0, S

′
f , ξ
′) of MR with

respect to K. The set of states S′ includes the states in S as well as any new
states defined below. S0 and S′f are sets of initial and final states, respectively,
with S0 including the initial state s0 of MR, S′f including all final states Sf of
MR, and both possibly including additional states as defined below. We obtain
the relaxed automaton MK

Q by annotating each state in S0 and S′f either with a
constant or with the wildcard symbol ∗, depending on whether X and Y in Q
are constants or variables. We recall that ξ (and initially ξ′) is the final weight
function mapping each state in Sf to a non-negative integer. The transition
relation τ includes the transitions in δ as well as any transitions specified by
the rules defined below. The rules below are applied repeatedly until no new
transitions or states arise. The process terminates because of our assumption
that the subgraphs of K induced by edges labelled sc and sp are acyclic:

• (rule 2) For each transition (s, a, d, t) ∈ τ (respectively (s, a−, d, t) ∈
τ) and triple (a, sp, b) ∈ K, there is a transition (s, b, d + cr2, t) (resp.
(s, b−, d+ cr2, t)) in τ .

• (rule 4 (i)) If there is a transition (s, type, d, t) ∈ τ where t ∈ S′f and
(c, sc, c′) ∈ K such that t is annotated with c, there is a final state t′

annotated with c′ in S′. State t′ has the same set of outgoing transitions
as t. For each transition (s, type, d, t) ∈ τ , there is a transition (s, type, d+
cr4, t

′) in τ .

• (rule 4 (ii)) If there is a transition (s, type−, d, t) ∈ τ where s ∈ S0 and
(c, sc, c′) ∈ K such that s is annotated with c, there is an initial state
s′ annotated with c′ in S′. State s′ has the same set of incoming tran-
sitions as s. For each transition (s, type−, d, t) ∈ τ , there is a transition
(s′, type−, d+ cr4, t) in τ .

• (rule 5) If there is a transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ) where
t ∈ S′f (resp. s ∈ S0) and (a, dom, c) ∈ K, there is a final state t′ (resp.
initial state s′) annotated with c in S′. State t′ has the same set of outgoing
transitions as t (resp. s′ has the same set of incoming transitions as s). For
each transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ), there is a transition
(s, type, d+ cr5, t

′) (resp. (s′, type−, d+ cr5, t)) in τ .

• (rule 6) If there is a transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ) where
s ∈ S0 (resp. t ∈ S′f ) and (a, range, c) ∈ K, there is an initial state s′

(resp. final state t′) annotated with c in S′. State s′ has the same set of
incoming transitions as s (resp. t′ has the same set of outgoing transitions
as t). For each transition (s, a, d, t) ∈ τ (resp. (s, a−, d, t) ∈ τ), there is a
transition (s′, type−, d+ cr6, t) (resp. (s, type, d+ cr6, t

′)) in τ .

We call the initial and final states specified by rules 4, 5 and 6 cloned states.

Example 9. Consider once again the ontology K shown in Figure 2 and the
query Q4 from Example 7:

Y ← RELAX(Y, pn−1 .type, P1)
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s0 s1

sf

s′fpn−, cr2

pn−1 , 0

type, cr4

type, 0

∗

P1

P

Figure 9: Relaxed automaton MK
Q for conjunct (Y, pn−

1 .type, P1).

s0, 1234 s1, p1 sf , P1

s′f , Ps0, 6789 s1, p2

pn−, cr2

pn−1 , 0

type, cr4

type, 0

pn−, cr2 type, cr4

Figure 10: A subautomaton of the product automaton H.

The relaxed automaton MK
Q initially comprises the states {s0, s1, sf} and two

transitions labelled with cost zero between them, as shown in the lower part of
Figure 9. From Figure 2, we see that K contains the triples (pn1, sp, pn) and
(P1, sc, P ). If we apply the transformation for rule 2 to the transition labelled
pn−1 , 0 and the triple (pn1, sp, pn) ∈ K, then we add the transition labelled
pn−, cr2 from s0 to s1. If we now apply the transformation for rule 4 to the
transition labelled type, 0 and the triple (P1, sc, P ) ∈ K, then a new final state
s′f , annotated with P is added, as is the transition labelled type, cr4 from s1 to
s′f .

Now consider the closure of the graph G shown in Figure 7 with respect to
the ontology K shown in Figure 2. A subautomaton of the product automaton
H of MK

Q and closureK(G) is shown in Figure 10.
For a matching θ1 that maps Y to ‘1234’, it is easy to see that there are four

runs in H from the initial state (s0, 1234) to a final state, with costs 0, cr2, cr4
and cr2 + cr4. Hence the relaxation distance of the answer ‘1234’ is 0. For a
matching θ2 that maps Y to ‘6789’, there is only one run in H from (s0, 6789) to
a final state, with cost cr2 + cr4, so the relaxation distance of the answer ‘6789’
is cr2 + cr4. �

The following proposition shows firstly the correctness of the construction
and traversal of the product automaton, H; and secondly that the relaxation
distance from a semipath in a graph G to the matchings for a single-conjunct
query Q is equal to the minimum cost of a run in H.
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Proposition 3. Let Q be a query comprising a single conjunct (X,R, Y ). Let
MK
Q = (S′,Σ ∪ Σ− ∪ {type, type−}, τ, S0, Sf , ξ) be the relaxed automaton for

query Q and ontology K = extRed(K), where the ε-transitions have been re-
moved from MK

Q . Let G = closureK(G) be a graph and H be the product

automaton of MK
Q and G. Let θ be a (Q,G)-matching such that θ(X) = v0 and

θ(Y ) = vn. (1) There is a semipath p = (v0, l1, . . . , ln, vn) in G that r-conforms
to θ(Q) if and only if there is a run r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1),
ln, cn, (sn, vn)) in H, where s0 ∈ S0 and sn ∈ Sf . (2) The relaxation distance
of θ(Q) is given by c1 + · · · + cn if and only if r is of minimum cost over all
runs from (s0, v0) to (sn, vn) for any s0 ∈ S0 and sn ∈ Sf .

Proof. Part (1): (⇒) Let p be a semipath (v0, l1, . . . , ln, vn) in G that r-
conforms to θ(Q). Hence there is a q ∈ L(R), a triple form Tq of (θ(Q), q)
and a triple form Tp of p such that Tq ≤ Tp. Since q ∈ L(R), we know that
there is a run in MR corresponding to Tq. We therefore need to show that there
is a run in MK

Q corresponding to Tp. The proof proceeds by induction on the
number of direct relaxations required to yield Tp from Tq.

Basis: When the number of direct relaxations applied to Tq is zero, Tq =
P0 = Tp. Thus, there is a run for Tp in MK

Q , which corresponds to a run in MR.
Induction: For the inductive step, assume that there is an n ≥ 0 such that,

for all m ≤ n, if m direct relaxations are used in a relaxation sequence which
yields Tp from Tq, there is a corresponding run in MK

Q .
Now assume that n + 1 direct relaxations are required to produce Tp from

Tq. Let such a sequence be given by S = P0 �R · · · �R Pn �R Pn+1, where
P0 = Tq and Pn+1 = Tp. From the induction hypothesis, we know that there
is a run rn in MK

Q corresponding to the sequence of direct relaxations given by
the sequence S′ = P0 �R P1 �R · · · �R Pn.

We consider in turn each type of direct relaxation operation induced by the
rules given in Figure 6 which can be used to produce Pn+1 from Pn. We show
that, corresponding to each such operation, is a transition in MK

Q which, when

traversed, gives rise to a run for Tp in MK
Q . In all cases below, d denotes the

cost of the transition.
Rule 2: Suppose that Pn+1 is produced by applying rule 2 to the triple

(a, sp, b) ∈ K and the triple pattern f = (Wm−1, a,Wm) in Pn which results in
f being replaced by (Wm−1, b,Wm) in Pn+1, where Wm−1 and Wm are variables
or constants. Suppose that f is matched by the transition (h, a, d, s) in rn. By
construction, MK

Q has a transition (h, b, d+cr2, s) and hence replacing (h, a, d, s)
by (h, b, d+ cr2, s) in rn yields a run for Pn+1.

On the other hand, if Pn+1 is produced by applying rule 2 to (Wm, a,Wm−1)
in Pn, where the matching transition in rn is (h, a−, d, s), then (Wm, b,Wm−1)
is in Pn+1 and there is a transition (h, b−, d+ cr2, s) in MK

Q .
Rule 4: Suppose that Pn+1 is produced by applying rule 4 to the triple

(c, sc, c′) ∈ K and the triple pattern f = (Wm, type, c) in Pn which results in f
being replaced by (Wm, type, c

′) in Pn+1, where Wm is a variable. Suppose that
f is matched by the transition (h, type, d, s) in rn, where s is annotated with c.
By the induction hypothesis and the fact that f is the last triple pattern in Pn, s
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must be a final state. By construction, MK
Q has a transition (h, type, d+cr4, s

′)
where s′ ∈ Sf and is annotated with c′, and hence replacing (h, type, d, s) by
(h, type, d+ cr4, s

′) in rn yields a run for Pn+1.
On the other hand, if Pn+1 is produced by applying rule 4 to f = (c, type,Wm)

in Pn, where Wm is a variable and where the matching transition in rn is
(s0, type

−, d, h) (where, by the induction hypothesis and the fact that f must
be the first triple pattern in Pn, we have that s0 must be an initial state), then
(c′, type,Wm) is in Pn+1 and there is a transition (s′0, type

−, d+ cr4, h), where
s′0 is annotated with c′, in MK

Q .
Rule 5: Suppose that Pn+1 is produced by applying rule 5 to the triple

(a, dom, c) ∈ K and the triple pattern f in Pn. Because applying relaxation
requires that the variables between pairs of triple patterns remain the same, it
must be the case that f is of the form (W,a, z), where z = θ(Y ) or z = vn
(respectively z = θ(X) or z = v0), and W is a variable. Hence, f must be
matched by a transition t which leads to a final state (respectively starts from
an initial state) in rn; thus we have t = (h, a, d, s) (respectively (s0, a

−, d, h))
where s ∈ Sf (respectively s0 ∈ S0). From the application of rule 5, we also
have that f is replaced by (W, type, c) in Pn+1. By construction, MK

Q has a

transition (h, type, d+cr5, s
′) (respectively (s′0, type

−, d+cr5, h)) where s′ ∈ Sf
(respectively s′0 ∈ S0) and is annotated with c, and hence replacing (h, a, d, s)
(respectively (s0, a

−, d, h)) by (h, type, d+ cr5, s
′) (respectively (s′0, type

−, d+
cr5, h)) in rn yields a run for Pn+1.

Rule 6: Suppose that Pn+1 is produced by applying rule 6 to the triple
(a, range, c) ∈ K and the triple pattern f in Pn. Because applying relaxation
requires that the variables between pairs of triple patterns remain the same, it
must be the case that f is of the form (z, a,W ), where z = θ(X) or z = v0
(respectively z = θ(Y ) or z = vn), and W is a variable. Hence, f must be
matched by a transition t which starts from an initial state (respectively leads
to a final state) in rn; thus we have t = (s0, a, d, h) (respectively (h, a−, d, s))
where s0 ∈ S0 (respectively s ∈ Sf ). From the application of rule 6, we also
have that f is replaced by (W, type, c) in Pn+1. By construction, MK

Q has a

transition (s′0, type
−, d+ cr6, h) (respectively h, type, d+ cr6, s

′) where s′0 ∈ S0

(respectively s′ ∈ Sf ) and is annotated with c, and hence replacing (s0, a, d, h)
(respectively (h, a−, d, s)) by (s′0, type

−, d + cr6, h) (respectively h, type, d +
cr6, s

′) in rn yields a run for Pn+1.
Thus, we have shown that, in all cases, there is a run in MK

Q corresponding to

Tp. By the construction of H from MK
Q and G, if we have the run (s0, l1, c1, s1)

, . . . , (sn−1, ln, cn, sn) in MK
Q and the semipath p = (v0, l1, . . . , ln, vn) in G, we

have a run r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H,
where s0 ∈ S0 and sn ∈ Sf .

(⇐) Let r be a run ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn))
in H, where s0 ∈ S0 and sn ∈ Sf . By the construction of H from MK

Q and G,
there must be a semipath p = (v0, l1, . . . , ln, vn) in G and a run (s0, l1, c1, s1),
. . . , (sn−1, ln, cn, sn) in MK

Q . Let Tp be a triple form of p.

We know that there is a run from s0 ∈ S0 to sn ∈ Sf in MK
Q corresponding
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to Tp. By the construction of MK
Q , we also know that the transitions added

to the transition relation τ correspond to the relaxation operations induced by
the rules in Figure 6. Thus, each transition in any run in MK

Q corresponds to
either a transition in MR or a relaxation of one of the transitions in MR. By
definition, we also know that every run in MR corresponds to an acceptance of
a sequence of labels q ∈ L(R).

We therefore need to show that every run in MK
Q corresponds to a sequence

of direct relaxations of the triple form of some sequence of labels q ∈ L(R); i.e.
that a run in MK

Q corresponds to Tp.

For the purposes of the proof, we assume that each transition in MK
Q is

assigned a derivation number. Each transition in MR is assigned a derivation
number of zero. Then, each application of rule 2, 4, 5 or 6 will result in a new
transition t′, derived from an existing transition t, where the derivation number
of t′ is the derivation number of t plus one. The derivation length of a run r
is then the sum of the derivation numbers of the transitions comprising r. The
proof proceeds by induction on the derivation length of a run.

Basis: For the base case, we consider runs having a derivation length of
zero; i.e. runs only containing transitions with a derivation number of zero,
which are present in MR. Thus, Tq = P0 = Tp (no relaxation has occurred),
and every run in MR corresponds to Tq, as in Definition 8.

Induction: For the inductive step, assume that there is an n ≥ 0 such that,
for all m ≤ n, if m is the derivation length of a run r in MK

Q , then r corresponds
to a sequence of m direct relaxations which yields Tp from Tq.

Now let rn+1 be a run in MK
Q with derivation length n+1. We need to show

how rn+1 corresponds to a triple form representing a sequence of n + 1 direct
relaxations, given by Tq = P0 �R P1 �R · · · �R Pn �R Pn+1 = Tp.

Since rn+1 has derivation length n+ 1, there must be a transition t in rn+1

with a non-zero derivation number λ. Below, we consider each rule that may
have given rise to t in MK

Q . In all cases, d indicates the cost of the transition.
Rule 2: Suppose that t = (h, b, d, s). Because t was added using rule 2,

there must be a transition t′ = (h, a, d− cr2, s) in MK
Q for some (a, sp, b) ∈ K,

with a derivation number of λ − 1. Replacing t in rn+1 by t′ gives rise to a
run rn with a derivation length of n. From the induction hypothesis, there is a
sequence of n direct relaxations P0 �R P1 �R · · · �R Pn and a triple pattern
f = (Wm−1, a,Wm) in Pn matched by t′. Applying rule 2 to f will give rise to a
triple form Pn+1 corresponding to a sequence of n+ 1 direct relaxations having
been applied to q.

By an analogous process where t = (h, b−, d, s), we can show that its match-
ing triple pattern (Wm, b,Wm−1) is in Pn+1.

Rule 4: Suppose that t = (h, type, d, s′n) where s′n ∈ Sf and is annotated
with c′. Because t was added using rule 4, there must be a transition t′ =
(h, type, d− cr4, sn) in MK

Q for some (c, sc, c′) ∈ K, with a derivation number
of λ − 1, and where sn ∈ Sf and is annotated with c. Replacing t in rn+1

by t′ gives rise to a run rn with a derivation length of n. From the induction
hypothesis, there is a sequence of n direct relaxations P0 �R P1 �R · · · �R Pn
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and a triple pattern f = (Wm, type, c) in Pn matched by t′. Applying rule 4 to
f will give rise to a triple form Pn+1 corresponding to a sequence of n+ 1 direct
relaxations having been applied to q.

By an analogous process where t = (s′0, type
−, d, h), and s′0 ∈ S0 and is

annotated with c′, we can show that its matching triple pattern (c′, type,Wm),
where Wm is a constant, is in Pn+1.

Rule 5: Suppose that t = (h, type, d, s′n) (respectively (s′0, type
−, d, h))

where s′n ∈ Sf (respectively s′0 ∈ S0). Because t was added using rule 5, there
must be a transition t′ = (h, a, d − cr5, sn) (respectively (s0, a

−, d − cr5, h)) in
MK
Q for some (a, dom, c) ∈ K, with a derivation number of λ − 1, and where

sn ∈ Sf (respectively s0 ∈ S0). Replacing t in rn+1 by t′ gives rise to a run
rn with a derivation length of n. From the induction hypothesis, there is a
sequence of n direct relaxations P0 �R P1 �R · · · �R Pn and a triple pattern
f in Pn matched by t′. Because applying relaxation requires that the variables
between pairs of triple patterns remain the same, and from the fact that f is
matched by t′ which leads to a final state (respectively starts from an initial
state), it must be the case that f is of the form (W,a, z), where z = θ(Y ) or
z = vn (respectively z = θ(X) or z = v0), and W is a variable. Applying rule
5 to f will give rise to a triple form Pn+1 corresponding to a sequence of n+ 1
direct relaxations having been applied to q.

Rule 6: Suppose that t = (s′0, type
−, d, h) (respectively (h, type, d, s′n))

where s′0 ∈ S0 (respectively s′n ∈ Sf ). Because t was added using rule 6, there
must be a transition t′ = (s0, a, d − cr6, h) (respectively (h, a−, d − cr6, sn)) in
MK
Q for some (a, range, c) ∈ K, with a derivation number of λ− 1, and where

s0 ∈ S0 (respectively sn ∈ Sf ). Replacing t in rn+1 by t′ gives rise to a run
rn with a derivation length of n. From the induction hypothesis, there is a
sequence of n direct relaxations P0 �R P1 �R · · · �R Pn and a triple pattern
f in Pn matched by t′. Because applying relaxation requires that the variables
between pairs of triple patterns remain the same, and from the fact that f is
matched by t′ which starts from an initial state (respectively leads to a final
state), it must be the case that f is of the form (z, a,W ), where z = θ(X) or
z = v0 (respectively z = θ(Y ) or z = vn), and W is a variable. Applying rule
6 to f will give rise to a triple form Pn+1 corresponding to a sequence of n+ 1
direct relaxations having been applied to q.

Part (2): (⇒) Let θ be a matching mapping X to v0 and Y to vn in G, r be a
run ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) in H, where s0 ∈
S0 and sn ∈ Sf , and let the relaxation distance of θ(Q) be given by c1 + · · ·+cn.
By definition, we know that the relaxation distance of θ(Q) is the minimum
relaxation distance to θ(Q) from any semipath p that r-conforms to θ(Q). By
the construction of H from MK

Q and G, there is a semipath p = (v0, l1, . . . , ln, vn)

in G and a run (s0, l1, c1, s1), . . . , (sn−1, ln, cn, sn) in MK
Q . From Part (1), we

know that p r-conforms to θ(Q). Thus, we have that c1+· · ·+cn is the minimum
relaxation distance to θ(Q) from p.

Also by definition, we have that c1 + · · · + cn is the minimum relaxation
distance from p to (θ(Q), q) for any sequence of labels q ∈ L(R) and that, for
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any such q, c1+ · · ·+cn is the minimum cost of any sequence of direct relaxation
operations which yields p from q. Thus, there can be no run of cost less than
c1 + · · ·+ cn for p in H as this would contradict the fact that p is of relaxation
distance c1 + · · ·+ cn from θ(Q). Hence, r is a minimum cost run over all runs
from (s0, v0) to (sn, vn).

(⇐) We assume that r is a minimum cost run in H over all runs from
some (s0, v0) to some (sn, vn), where s0 ∈ S0 and sn ∈ Sf . This means, by
construction, that the minimum cost of any run is c1 + · · · + cn. Also by the
construction of H, there is a semipath p = (v0, l1, . . . , ln, vn) in G. But Part (1)
shows us that p r-conforms to θ(Q). Thus, the relaxation distance of θ(Q) is
c1 + · · ·+ cn. �

The following two propositions show firstly an upper bound for the size of
the relaxed automaton, MK

Q ; and secondly that the relaxed answer of a single-
conjunct query Q on the closure of a graph G can be computed in time that is
polynomial in the size of Q, G and the ontology K.

Proposition 4. Let Q be a query comprising a single conjunct (X,R, Y ), MK
Q =

(S′,Σ∪Σ−∪{type, type−}, τ, S0, Sf , ξ) be the relaxed automaton for Q and on-
tology K = extRed(K), where K = (VK , EK). MK

Q has at most 2|R|(|VK |+ 1)

states and 2|R|2(|EK ||VK |+ 8|EK |+ 8) transitions.

Proof. From [16] and [18], we have that MR = (S,Σ ∪ {type}, δ, s0, Sf , ξ)
contains at most 2|R| states and 4|R| transitions. The subsequent removal of
ε-transitions as described in [18] may result in at most 16|R|2 transitions. We
recall that MK

Q initially consists of all states S in MR and all these transitions.
We know that each node in the set VK is either a class node or a property

node in K. From the construction of MK
Q — in particular, by the application

of rules 4, 5 and 6 — we can see that, for each class node in VK , at most one
new state, corresponding to the class node, is added for any existing state s,
provided that s ∈ S0 or s ∈ Sf . Hence, we can see that no more than |VK | new
states may be added for each of the original states in S, which results in at most
2|R||VK | new states in total. Thus, MK

Q has at most 2|R|(|VK |+ 1) states.
Since there are at most |EK | edges in K with label sp, rule 2 adds at most

16|R|2|EK | transitions to MK
Q . Rules 4, 5 and 6 can collectively be applied

no more than |EK | times. Each application results, in the worst case, in
|R| transitions being added for each of the 2|R||VK | new, cloned states, giv-
ing rise to at most 2|R|2|VK ||EK | transitions. Thus, overall MK

Q has at most

2|R|2(|EK ||VK |+ 8|EK |+ 8) transitions. �

Proposition 5. Let K = (VK , EK) be an ontology such that k = extRed(K),
G = (VG, EG) be a graph such that G = closureK(G), and Q be a single-conjunct
query using regular expression R over alphabet Σ ∪ Σ− ∪ {type, type−}. The
relaxed answer of Q on G can be found in time O(|R|2|VK |2|VG|(|R||EK ||EG|+
|VG| log(|R||VK ||VG|))).
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Proof. Let MK
Q be the relaxed automaton constructed from R and K, and H

be the product automaton constructed from MK
Q and G. Proposition 3 shows

that traversing H yields all relaxed answers to Q. Proposition 4 tells us that MK
Q

has at most 2|R|(|VK |+ 1) states and 2|R|2(|EK ||VK |+ 8|EK |+ 8) transitions.
Therefore H has at most 2|R||VG|(|VK | + 1) nodes and 2|R|2|EG|(|EK ||VK | +
8|EK |+8) edges. If we assume that H is sparse (which is highly likely), then run-
ning Dijkstra’s algorithm on each node of a graph with node set N and edge set
A can be done in time O(|N ||A|+ |N |2 log |N |). So, for graph H, the combined
time complexity is O(|R|3|EK ||VK |2|VG||EG|+ |R|2|VK |2|VG|2 log(|R||VK ||VG|))
which is equal to O(|R|2|VK |2|VG|(|R||EK ||EG|+ |VG| log(|R||VK ||VG|))). �

As a corollary, it is easy to see that the data complexity is O(|VK |2|VG|(|EK |
|EG| + |VG| log(|VK ||VG|))) and the query complexity is O(|R|3). The space
complexity is dominated by the space requirements of H given in the proof
above.

3.6. Incremental Evaluation of RELAX Conjuncts

In order to compute the relaxed answers to a single-conjunct regular path
query incrementally, we can use the getNext function from Section 3.2 along
with the same initialisations of the algorithm’s variables. The only difference is
that the Succ function now uses the automaton MK

Q rather than the automaton
AQ.

3.7. Multi-Conjunct Queries

Recall the general form of a CRPQ Q from Section 2:

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where any of the conjuncts may have the APPROX or RELAX operator applied
to them. Let θ be a (Q,G)-matching. If conjuncts i1, . . . , ij , j ≤ n, have
APPROX or RELAX applied to them, the distance from θ to Q, dist(θ,Q), is
defined as

dist(θ, (Xi1 , Ri1 , Yi1)) + · · ·+ dist(θ, (Xij , Rij , Yij ))

where dist(θ, (Xik , Rik , Yik)) is the approximation distance if conjunct ik has
APPROX applied to it and is the relaxation distance if ik has RELAX applied
to it.

Let θ(Z1, . . . , Zm) = (a1, . . . , am). θ is a minimum-distance matching if for
all (Q,G)-matchings φ such that φ(Z1, . . . , Zm) = (a1, . . . , am), dist(θ,Q) ≤
dist(φ,Q).

The answer of Q on G is the list of pairs (θ(Z1, . . . , Zm), dist(θ,Q)), for some
minimum-distance matching θ, ranked in order of non-decreasing distance. The
top-k answer of Q on G comprises the first k tuples in the answer of Q on G.

The query Q can be evaluated by joining the answers arising from the eval-
uation of each of its conjuncts. For each conjunct with APPROX or RELAX
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applied to it we can use the techniques described in previous sections to incre-
mentally compute a relation ri with scheme (Xi, Yi, Distance). A query evalu-
ation tree can be constructed for Q, consisting of nodes denoting join operators
and nodes representing conjuncts of Q. Since the answers for single conjuncts
are ordered by non-decreasing distance, pipelined execution of any rank-join
operator (see e.g. [22]) can be used to output the answers to Q in order of non-
decreasing distance. If the conjuncts of Q are acyclic, the evaluation can be
accomplished in polynomial time [23], since there are a fixed number of head
variables in Q and we process leaf nodes (denoting conjuncts) in a bottom-up
manner (beginning at the leaf nodes) by executing a sequence of semi-joins.

4. The FLEX Operator

We now combine the use of both query approximation and query relaxation
within one integrated FLEX operator that applies both techniques at the same
time. This aims to allow greater ease of querying for users, in that they do not
need to be aware of the ontology structure and to identify explicitly which parts
of their overall query are amenable to relaxation and which to approximation.
As we will see below, it also allows answers to be returned that cannot be
obtained by applying only APPROX or RELAX to individual query conjuncts.

Definition 13. Let K = extRed(K) be an ontology. A flex operation is either
an edit operation on a symbol in Σ ∪ Σ− or a direct relaxation using K13.

Example 10. Referring to the same data graph and ontology as in the exam-
ples in Section 2, the user may pose the following query which uses the new
FLEX operator to apply both approximation and relaxation simultaneously to
both conjuncts:

Y ← FLEX(‘FL56’, fn1.ppn1.pn
−
1 , Y ), FLEX(Y, n1.type,N1)

By replacing fn1 by fn−1 and inserting ie1 after pn−1 (at a cost of cs + ci), the
result e1 is returned. By replacing fn1 by fn−1 , relaxing pn−1 to pn−, replacing
n1 by n2, and relaxing N1 to N , (at an overall cost of 2cs + cr2 + cr4), the
result p2 is returned. We note that result p2 could not have been returned
by applying only APPROX or RELAX to the two conjuncts — it requires the
FLEX operator in order to be returned. �

Definition 14. LetK = extRed(K) be an ontology, G = closureK(G) a graph,
p a semipath in G, Q a query with single conjunct (X,R, Y ), θ a (Q,G)-
matching, q ∈ L(R), Tq a triple form for (θ(Q), q), and Tp a triple form for

13Edit operations on labels in {type, type−} are not allowed for FLEX because, as we will
see below, allowing such edits would require multiple rounds of approximation and relaxation
to be applied to yield a final automaton, rather than a simple two-step process that we describe
below.
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p. We write Tq � Tp, if Tq can be transformed to Tp (up to variable renaming)
by a sequence of flex operations. The cost of the sequence of flex operations
is the sum of the costs of each operation. The distance from p to (θ(Q), q) is
the minimum cost of any sequence of flex operations which yields Tp from Tq.
The cost of the empty sequence of flex operations (so Tq is already a triple form
of p) is zero. The distance from p to θ(Q) is the minimum distance from p to
(θ(Q), q) for any string q ∈ L(R). �

Definition 15. Given ontology K = extRed(K), graph G = closureK(G),
single-conjunct query Q to which FLEX has been applied, and (Q,G)-matching
θ, the distance of θ(Q), denoted dist(θ,Q), is the minimum distance to θ(Q) from
any semipath p in G. The answer of Q on G is a list of pairs (θ(vars), dist(θ,Q)),
where θ is a (Q,G)-matching, ranked in order of non-decreasing distance. The
top-k answer of Q on G is a list containing the first k tuples in the answer of Q
on G. �

Example 11. Consider the conjunct (‘FL56’, fn1.ppn1.pn
−
1 , Y ) of the query

from Example 10. There is only one sequence q of labels denoted by the regular
expression of the conjunct, so a triple form of q is:

(‘FL56’, fn1, X1), (X1, ppn1, X2), (X2, pn
−
1 , Y )

Replacing fn1 by fn−1 and inserting ie1 after pn−1 gives rise to

(‘FL56’, fn−1 , X1), (X1, ppn1, X2), (X2, pn
−
1 , X3), (X3, ie1, Y )

with cost cs+ ci. This will match the semipath p from ‘FL56’ to e1 in the graph
of Figure 1, thereby instantiating Y to e1. Since p cannot be matched by q with
fewer flex operations, the distance from p to q is cs + ci. For example, relaxing
pn−1 to pn− will also instantiate Y to e1, but at a cost of cs + ci + cr2. �

The answer of a single-conjunct query Q to which FLEX has been applied
on a graph G can be computed by using an automaton AKQ constructed from the
approximate automaton AQ and ontologyK which captures both approximation
and relaxation with respect to K, as follows:

Step 1: We construct a weighted automaton MR from R (in which all weights
are zero), and then the approximate automaton AQ, using essentially the same
process as described in Section 3.2 (we describe the distinction after the following
example).

Step 2: We construct the relaxed automaton AKQ from AQ, applying relax-
ation using rules 2, 4, 5 and 6 from Figure 6, following the same process as
described in Section 3.5.

Example 12. Figure 11 shows the automaton corresponding to the conjunct
(‘FL56’, fn1.ppn1.pn

−
1 .Y ) of the query from Example 10 (only those transitions

that contribute to finding answers in the data graph are shown).
The transition with cost cs results from replacing fn1 with fn−1 and the

transition with cost ci results from inserting ie1. The transition with cost cr2
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fn1, 0

fn−1 , cs

ppn1, 0
pn−1 , 0

pn−, cr2

ie1, ci
FL56

Figure 11: Automaton for conjunct (‘FL56’, fn1.ppn1.pn
−
1 , Y ).

n1, 0

type, 0

type, cr4

N1

N

Figure 12: Automaton for conjunct (Y, n1.type, N1).

results from applying rule (2) from Figure 6 to the transition for pn−1 and the
triple (pn1, sp, pn) in K.

The automaton for conjunct (Y, n1.type, N1) is shown in Figure 12. In this
case, the type transition with cost cr4 has been added as a result of applying
rule (4) to the other type transition using triple (N1, sc, N) from K, which
results in a cloned final state annotated with N . �

The answer to a single-conjunct CRPQ Q is obtained by constructing and
traversing the weighted product automaton, H, of AKQ with the closure of the
data graph G = (VG, EG), viewing each node in VG as both an initial and final
state: The process is the same as described in Section 3.2. To evaluate Q on
G, if X is a node v ∈ VG, a shortest path traversal of H is undertaken starting
from each state (s0, v) such that s0 ∈ S0. If X is a variable, these shortest path
traversals are undertaken for each v ∈ VG. In each case, the answers to Q on G
are given by the bindings for Y found from the final states reached during the
traversal of H.

As stated earlier, the automaton AKQ is constructed by applying relaxation
to the approximate automaton AQ. However, in contrast to Definition 9 in Sec-
tion 3.2, the edit operations used in the construction of AQ are confined to those
on labels in Σ ∪ Σ−, i.e., we do not allow edits to the labels in {type, type−}.
Henceforth in this section, we make this assumption about the approximate
automaton AQ. Allowing edits to the labels in {type, type−} would require
multiple rounds of approximation and relaxation to be applied to yield a final
automaton, rather than the simple two-step process described above. Deter-
mining an upper bound for the number of rounds of approximation/relaxation
that would be needed for the construction of the automaton to reach a fixed
point is an open problem. This is illustrated in the following example.

Example 13. Suppose we have the queryQ with single conjunct (?X, e.type, c),
the labels a, b, e ∈ Σ, and the triples (c, sc, c′) ∈ K and (a, sp, b) ∈ K. The two
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s0 s1

sf

s′f

e, 0

b, cr4 + cs + cr4

a, cr4 + cs

type, cr4

type, 0

c

c′

Figure 13: Automaton for (X, e.type, ‘c’).

transitions with cost zero in Figure 13 arise from the original query Q. Ap-
proximation would add various transitions not shown in Figure 13. Then in
the relaxation phase, we apply rule 4(i) which creates a final state s′f , anno-
tated with c′, and a transition (s1, type, cr4, s

′
f ). However, the presence of

(s1, type, cr4, s
′
f ) means we are able to apply more edit operations to the au-

tomaton to produce, say, the transition (s1, a, cr4 + cs, s
′
f ) by replacing type

with a. But, by once again applying relaxation operations to the automaton, a
new transition (s1, b, cr4 + cs + cr2, s

′
f ) induced by rule 2 would be created. The

resulting automaton is shown in Figure 13 (only those transitions and states
explicitly mentioned are shown).

Thus, for the purposes of the FLEX operator, we do not allow edit operations
on type or type− labels. �

In Theorem 2 below, we show that using automaton AKQ is sufficient to find
all sequences of labels generated by flex operations at distance k from a given
query; i.e. that applying a second approximation step after the relaxation step
does not (i) yield any additional answers, and (ii) yield any answers previously
obtained at cost k, at some cost j < k.

We first have the following lemma that shows that for semipath p, sequence
of labels q ∈ L(R), and (Q,G)-matching θ such that the distance from p to
(θ(Q), q) is k, there is a cost-k sequence of flex operations yielding triple form Tp
from triple form Tq in which all edit operations precede all relaxation operations.

Lemma 6. Let Q be a query comprising a single conjunct (X,R, Y ), K =
extRed(K) be an ontology, G = (VG, EG) be the closure of a data graph with
respect to K, p be a semipath (v0, l1, . . . , ln, vn) in G, θ be a (Q,G)-matching
such that θ(X) = v0 and θ(Y ) = vn, and q ∈ L(R).

Let Tp be a triple form for p and Tq a triple form for (θ(Q), q) such that the
distance from p to (θ(Q), q) is k. There is a sequence of flex operations of cost
k, yielding Tp from Tq, in which all the edit operations (applied to symbols in
Σ ∪ Σ−) precede all the relaxation operations.

Proof. Let the sequence of flex operations of cost k, yielding Tp from Tq,
consist of n flex operations, where n ≤ k. Let this sequence, flexn, be given by
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Tq = P0 � P1 � · · · � Pn = Tp, in which the edit and relaxation operations have
been applied in an arbitrary order. We need to show that there is an alternative
sequence of flex operations, flex′n, also of cost k, yielding Tp from Tq, and
comprising the same operations as those in flexn, but where all edit operations
(considering only symbols in Σ ∪ Σ−) have been applied prior to all relaxation
operations. That is, flex′n is given by Tq = P0 �A · · · �A Pλ �R · · · �R Pn =
Tp. The proof proceeds by induction on the number of flex operations applied
to Tq.

Basis: For the base case, we assume no flex operations have been applied;
hence, Tq = P0 = Tp and all edits precede all relaxations.

Induction: For the inductive step, suppose that there is an n ≥ 0 such that,
for all m ≤ n, any sequence of m flex operations of cost k yielding Tp from Tq
can be rewritten as a sequence (also yielding Tp from Tq at cost k) in which all
edit operations precede all relaxation operations.

Now consider sequence flexn+1 of n+ 1 flex operations in which the last is
an edit operation. We show that this edit operation can be moved before all the
relaxations. If there are no relaxations in the sequence, this is trivial, so assume
there is at least one relaxation. By the induction hypothesis, the sequence up
to Pn can be rewritten so that relaxations follow edits. Hence flexn+1 can be
rewritten as ψ given by Tq = P0 � · · · �R Pn �A Pn+1 = Tp where n + 1 flex
operations have been applied to the sequence and the n + 1th operation is an
edit operation, denoted by opE .

First suppose opE is applied to a triple pattern present in Tq. Clearly, opE
can be applied to P0 and hence can precede relaxations.

Next suppose opE is applied to a triple pattern resulting from an edit oper-
ation. As this operation precedes all relaxations, opE can follow it directly and
hence it too can precede all relaxations.

In the case where opE is an insertion operation, it is straightforward to see
that the result also follows, as insertion is not dependent on the presence of any
triple pattern and so can be placed before all relaxations.

Thus, we now need to consider the cases in which opE is a substitution or
deletion operation applied to a triple pattern t of triple form Pn, such that t
was the result of having applied some relaxation operation opR to some triple
pattern t′ in Pn−1. We show below that in fact these are not possible, given
that the distance from p to (θ(Q), q) is k.

We note that t may only be in one of the following forms, depending on
which relaxation operation was applied: (i) (Wm−1, a,Wm), where Wm−1 and
Wm are variables or constants, (ii) (W, type, c), or (iii) (c, type,W ), where W
is a variable and c a constant. As edit operations are not applied to the type

label, we only need consider what happens when applying opE to Pn if t is of
the form (Wm−1, a,Wm). By definition, such a t could only have been produced
as a result of applying the relaxation operation induced by Rule 2 to t′ in Pn−1;
thus, opR may only ever be a Rule 2 relaxation operation.

Suppose that t′ = (Wm−1, b,Wm) and t = (Wm−1, a,Wm), where there is a
triple (b, sp, a) ∈ K. Let the cost of the sequence ψ be k = C + cr2 + ce, where
cr2 denotes the cost of opR, ce denotes the cost of opE (and is thus either cs or
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cd) and C is the cost of the remaining operators used in ψ. We now consider
the following possibilities for opE applied to t:

• Substitution: Suppose opE substitutes t in Pn by (Wm−1, e,Wm) in Pn+1,
for some e ∈ Σ. However, we could replace opR by a substitution of b
by e in t′ in order to obtain (Wm−1, e,Wm) and hence Tp at a cost of
C + cs < k. This contradicts the assumption that the distance from p to
(θ(Q), q) is k; hence, opE cannot be substitution.

• Deletion: Suppose Pn is given by

· · · , (Wm−2, g,Wm−1), t = (Wm−1, a,Wm), (Wm, f,Wm+1), · · ·

and opE deletes t to obtain Pn+1, given by

· · · , (Wm−2, g,Wm−1), (Wm−1, f,Wm+1), · · ·

However, we could replace the application of opR on t′ (in Pn−1) by delet-
ing t′ instead, in order to obtain a sequence yielding Tp at cost C+cd < k.
This contradicts the assumption that the distance from p to (θ(Q), q) is
k; hence, opE cannot be deletion.

Thus, we have shown that, for all allowable operations opE , the sequence
ψ can be rewritten to a sequence of the same cost in which all edit operations
precede all relaxation operations. �

Theorem 2. Let Q be a query comprising a single conjunct (X,R, Y ) and K =
extRed(K) be an ontology. Let AKQ be the automaton constructed for Q as
described above, where the ε-transitions have been removed. Let G = (VG, EG)
be the closure of a data graph with respect to K, H be the product automaton of
G and AKQ , p be a semipath (v0, l1, . . . , ln, vn) in G, and θ be a (Q,G)-matching
such that θ(X) = v0 and θ(Y ) = vn. The distance from p to θ(Q) is k if and
only if k is the minimum cost of a run for the sequence of labels comprising p
from (s0, v0) to (sn, vn) in H, where s0 is an initial state and sn a final state
in AKQ .

Proof. (⇒) By Lemma 6, we know that if the distance from p to (θ(Q), q) is k,
for any q ∈ L(R), then k is the minimum cost of any sequence of flex operations
yielding the triple form Tp from the triple form Tq, where the flex operations
have been applied in an analogous manner to the construction of AKQ .

The result then follows from the construction of AKQ , and by Lemma 3 (as

AKQ contains AQ as a subautomaton) and Proposition 3 (as AKQ contains MK
Q

as a subautomaton).
(⇐) Let r = ((s0, v0), l1, c1, (s1, v1)), . . . , ((sn−1, vn−1), ln, cn, (sn, vn)) be a

minimum cost run of cost k in H for the sequence of labels l1, . . . , ln of p, where
s0 is an initial state and sn a final state in AKQ . From the construction of H from

AKQ and G, there must be a semipath p = (v0, l1, . . . , ln, vn) in G and a minimum
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cost run (s0, l1, c1, s1), . . . , (sn−1, ln, cn, sn) of cost k in AKQ , corresponding to

Tp, a triple form of p. From the construction of AKQ , we also know that the
transitions added to those transitions originally present in MR correspond to
flex operations. By definition, we also know that every run in MR corresponds
to an acceptance of a sequence of labels q ∈ L(R). Let the triple form of such
a q be Tq.

But, by Lemma 3 (for edit operations) and Proposition 3 (for relaxation
operations), it follows that the minimum cost of any sequence of flex opera-
tions yielding Tp from Tq is k. The result then follows straightforwardly from
Lemma 6. �

The following proposition shows that if FLEX has been applied to a single-
conjunct query Q, the answers on the closure of a graph G can be computed in
time that is polynomial in the size of Q, G and the ontology K.

Proposition 6. Let K = extRed(K) be an ontology, where K = (VK , EK),
G = (VG, EG) be the closure of a data graph with respect to K, and Q be a single-
conjunct query using regular expression R over alphabet Σ∪Σ−∪{type, type−}.
If FLEX has been applied to Q, the answer of Q on G can be found in time
O(|R|3|VG||VK ||EG||EK |(|VK |+ |Σ|) + |R|2|VG|2|VK |2(log|R||VG||VK)).

Proof. Let AKQ be the automaton constructed from Q and K which captures
both approximation and relaxation with respect to K, and H be the product
graph constructed from AKQ and G. Lemma 3 and Proposition 3 show that
traversing H correctly yields all answers to Q. Lemma 4 tells us that AQ has
at most 2|R| states and 4|R|2|Σ| transitions.

By the construction of AKQ from AQ, the application of rules 4, 5 and 6
results in at most one new state for each class node in VK being added for any
existing state s, where s ∈ S0 or s ∈ Sf . Hence, we can see that no more than
|VK | new states may be added for each of the original states in AQ, resulting
in at most 2|R||VK | new states in total. Thus, AKQ has at most 2|R|(|VK | + 1)
states.

Since there are at most |EK | edges in K with label sp, rule 2 adds at
most 4|R|2|Σ||EK | transitions to AKQ . Rules 4, 5 and 6 can collectively be
applied no more than |EK | times. Each application results, in the worst case,
in |R| transitions being added for each of the 2|R||VK | new, cloned states, giv-
ing rise to at most 2|R|2|VK ||EK | transitions. Thus, overall AKQ has at most

2|R|2(|EK ||VK |+ 2|Σ|+ |Σ||EK |) transitions.
Therefore H has at most 2|R||VG|(|VK |+1) nodes and 2|R|2|EG|(|EK ||VK |+

2|Σ| + |Σ||EK |) edges. If we assume that H is sparse (which is highly likely),
then running Dijkstra’s algorithm on each node of a graph with node set N
and edge set A can be done in time O(|N ||A|+ |N |2 log |N |). So, for graph H,
the combined time complexity is O(|R|3|VG||VK ||EG|(|VK ||EK |+|Σ|+|Σ||EK |)+
|R|2|VG|2|VK |2 log(|R||VG||VK |)) which simplifies toO(|R|3|VG||VK ||EG||EK |(|VK |
+|Σ|) + |R|2|VG|2|VK |2(log|R||VG||VK)).

�
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As a corollary, it is easy to see that the data complexity isO(|VG||VK ||EG||EK |
(|VK |+|Σ|)+|VG|2|VK |2(log |VG||VK)) and the query complexity is O(|R|3). The
space complexity is dominated by the space requirements of H given in the proof
above.

The above query evaluation can also be accomplished “on-demand” by incre-
mentally constructing the edges of H as required, thus avoiding precomputation
and materialisation of the entire graph H. The incremental evaluation process
is the same as described earlier for the cases of approximation and relaxation,
considered separately.

It is easy to show that if the ontology K is empty and there are no type edges
in the data graph G, then FLEX semantics reduce to approximate matching
of CRPQs, as in Section 3.2. Similarly, if only ontology-based relaxation is
permitted, and the queries over G are limited to be simple conjunctive queries,
then this reduces to the query processing semantics with ontology relaxation
presented in [11].

4.1. Multi-Conjunct FLEX Queries and Comparison with APPROX/RELAX

A general FLEX query Q is of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where any conjuncts may in addition have the FLEX operator applied to them.
Let θ be a (Q,G)-matching. If conjuncts i1, . . . , ij , j ≤ n, have FLEX applied
to them, then the distance from θ to Q, dist(θ,Q), is defined as

dist(θ, (Xi1 , Ri1 , Yi1)) + · · ·+ dist(θ, (Xij , Rij , Yij ))

The definitions of minimum-distance matching, answer of Q on G, and top-k
answer of Q on G are as in Section 3.7 for multi-conjunct APPROX/RELAX
queries.

The evaluation of a multi-conjunct query FLEX Q can be undertaken in-
crementally in the same way as described in Section 3.7 for multi-conjunct
APPROX/RELAX queries, joining the answers arising from the incremental
evaluation of each of its conjuncts using a rank-join algorithm.

Considering the complexity of FLEX queries compared to APPROX/RELAX
queries, Proposition 2, Proposition 5 and Proposition 6 state the relative com-
plexities of evaluating APPROX, RELAX and FLEX single-conjunct CRPQs,
from which it can be observed that FLEX has higher complexity than both
APPROX and RELAX. This is to be expected as the automaton AKQ used to
evaluate a FLEX single-conjunct CRPQ contains all the states and transitions
that would appear in the approximate automaton derived directly from MR for
evaluating APPROX (limited to labels in Σ ∪ Σ−) as well as all the states and
transitions in the relaxed automaton derived from MR, for evaluating RELAX.

Considering the expressiveness of FLEX queries compared to APPROX /
RELAX queries, it is easy to see that given any graph G, ontology K and
CRPQ Q over G that has APPROX or RELAX applied to any of its conjuncts
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(with APPROX limited to labels in Σ∪Σ−) then any answer that is returned at
distance k would also be returned, at the same or a lower distance, by a query
that has the same conjuncts as Q but with FLEX in place of any occurrence
of APPROX or RELAX. Again, this is because any automaton AKQ contains
all the states and transitions that would appear in the approximate automaton
derived from MR for evaluating APPROX (limited to labels in Σ ∪Σ−) as well
as all the states and transitions that appear in the relaxed automaton derived
from MR. An answer that is returned using FLEX semantics may be at a lower
distance than the same answer returned using APPROX/RELAX semantics if
an APPROX were replaced by a FLEX in the query and if cr2 were less than
cs, because in this case a property relaxation (if applicable) would be less costly
than substitution.

Conversely, there exist CRPQs that return answers using FLEX semantics
which cannot be returned by any query under APPROX/RELAX semantics, as
noted in Example 10.

As a final remark, we would argue that the availability of FLEX does not
render APPROX and RELAX redundant. Firstly, FLEX does not apply edit op-
erations to labels in {type, type−}, whereas APPROX does. Secondly, the user
may only want to consider in some given setting the application of (syntactic)
edits — and hence use APPROX, or the application of (semantic) relaxations
— and hence use RELAX.

5. Related Work

5.1. Graph-modelled data and graph query languages

The work described in this paper has considered the simple graph data model
introduced in Section 2, and a general survey of graph data models can be found
in [24]. Likewise, a survey of graph query languages can be found in [25], and
we focus here on languages that support regular path queries and on flexible
query processing for graph-structured data.

Using regular expressions to specify path queries on graph-structured data
has been studied for over 20 years, having been introduced in the languages G,
G+ and Graphlog [3, 26, 17]. More recently, conjunctive regular path queries
are supported in NAGA [27], SPARQLeR [5], PSPARQL [28] and SPARQL
1.1 [7]. nSPARQL [6] adds nested regular expressions to SPARQL, showing
that these are necessary in order to answer queries using the semantics of the
RDFS vocabulary by directly traversing the RDF graph, without materialising
the closure of the graph.

The Cypher query language of the Neo4j graph database system14 can ex-
press a restricted form of regular path queries: concatenation and disjunction
of single edge types, as well as variable length paths in which optional upper
and lower bounds may be set; nested regular expressions are not allowed.

14http://neo4j.com/
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Kasneci et al. [29] discuss the importance of finding relationships between
nodes in a graph-modelled data structure; the nodes are connected via weighted
edges which represent the relationships between the nodes. The authors present
the STAR algorithm to determine relationships over large graphs. STAR returns
approximations of the original (exact) query, by using the original query as tem-
plate for an optimal Steiner tree. In addition, if the graph contains information
pertaining to the classification hierarchy of the nodes, this is exploited by the
algorithm.

Zhou et al. [30] explore the idea of achieving query relaxation by using mal-
leable entity-relationship schemas, which contain multiple, overlapping defini-
tions of data structures and attributes, and are intended to capture more fully
the diverse semantics of a complex, heterogeneous domain. The approach is
grounded in a statistics-based model, in contrast to our work.

5.2. Flexible querying in XML and semi-structured data

Work has been done on relaxing tree pattern queries for XML, e.g. in [31,
32, 33] and more recently in [34]. Liu et al. [34] use an XML schema to relax
queries; [33] implements relaxation by utilising IR-style techniques; and [32]
achieves query relaxation through the removal of conditions within the XPath
expression.

Concerning query approximation, [35] considers querying semi-structured
data using flexible matchings which allow paths whose edge labels contain those
appearing in the query to be matched. Such semantics can be captured by
transposition and insertion edit operations on edge labels. More generally,
Grahne and Thomo [8, 9] explore approximate matching of single-conjunct regu-
lar path queries, using a weighted regular transducer to perform transformations
to RPQs for approximately matching semistructured data. In other work [36],
Grahne and Thomo introduce preferential RPQs where users can specify the
relative importance of symbols appearing in the query by annotating them with
weights.

Buratti et al. [37] discuss use of the notion of a cost-based edit distance
to transform one path into another within an XQuery FullText expression.
The answers are ranked according to a ‘satisfaction’ ratio, computed using a
statistical scoring method for numeric values and similarity metrics calculated
from an ontology for string values.

Within the context of combined XML and relational data, Yu et al. [38]
discuss a flexible query model using the notion of a schema summary. This is
a condensed description of the full database or XML document schema. The
schema summary is used to construct a new model called the Meaningful Sum-
mary Query (MSQ). Such a query requires the user only to have knowledge of
the schema summary. From there, the MSQ query is evaluated by making use
of schema-matching semantics.

5.3. Flexible querying in SPARQL and RDF

There have been several proposals that use similarity measures to retrieve ad-
ditional relevant answers to semantic web queries. For example, in iSPARQL [39]
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similarity measures are applied to resources (rather than the paths connecting
resources), e.g. by using the edit distance between the names of the resources;
in [40] similarity functions are applied to constants such as strings and numeric
values; in [41] a structural similarity approach is proposed that exploits the
graph structure of the data; and in [42, 43, 44] ontology-driven similarity mea-
sures are developed, using the RDFS ontology to retrieve additional answers
and assign a score to them.

Elbassuoni et al. [45] propose an extension to SPARQL with keyword search
capabilities. They also discuss the relaxation of triple patterns by replacing
constants with variables. The larger the number of relaxations, the lower the
rank of any answers arising from the (relaxed) query. The relaxation of keywords
is achieved by employing IR-based techniques, which differs from our ontology-
based approach to query relaxation.

Zauner et al. [46] present RPL (RDF Path Language), which allows condi-
tional regular expressions to be expressed over the nodes and edges appearing
on paths within RDF data. In contrast to our approach, there is no query
relaxation or approximation.

Mandreoli et al. [47] allow edges in a query to match paths in a graph that
have been semantically related, e.g. using RDFS. This requires the degree of
relationship between pairs of nodes in the graph to have been established be-
forehand, whereas our approach obtains this information automatically from the
accompanying ontology. Furthermore, our model allows for regular expression
matching, which is not provided in [47].

5.4. User preferences and domain-specific systems

Within the context of human resources and employee recruitment, Mochol
et al. [48] implement query relaxation by applying query-rewriting techniques
to SeRQL queries posed over RDF data, in which specific terms are replaced
with more general terms. The relationships between terms are derived from
subclass-superclass relationships within an accompanying ontology.

User and domain preferences play an integral part in the query relaxation
techniques described in [49, 50], in which aspects such as rewriting rules, prefer-
ences, and user-relevant dimensions are able to be configured and subsequently
applied in order to yield the best results according to what the user deems im-
portant within a particular context. Meng et al. [51] explore query relaxation by
utilising the personal preferences of the user in order to reduce the constraints of
the original query. The contextual preferences of the user are obtained by using
association-rule mining over the log of past queries. Flexible querying of RDF
using preferences expressed as fuzzy sets is investigated by Buche et al. [52].

Meng et al. [53] propose the use of conjunctive selections on attributes of
form-based web data, where value constraints can be relaxed according to their
perceived importance to the user.

5.5. Graph matching

Zhang et al. [54] present the SAPPER model, which sets out to find all
instances of a query graph within a large graph database. The model uses
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edge edit distance in order to return both exact and approximated subgraphs
matching the original query, possibly containing missing edges (provided the
edge edit distance does not exceed a certain threshold value). The TALE method
of Tiang et al. [55] uses a heuristic algorithm to match important nodes within
the graph first, after which the search is extended. Neither of these approaches
uses queries with regular expressions, and neither implements any notion of
query relaxation. Moreover, because TALE uses a heuristic algorithm, it does
not guarantee to find all or even the best matches, unlike SAPPER and our
framework in which all answers at a particular distance will always be returned.

Zhu et al. [56] also discuss approximate subgraph matching in large graph
databases. They use an index, augmented with structural and attribute infor-
mation, in order to accelerate the process of finding the best-matching answer
graph to a query. Cheng et al. [57] propose a method based on indexes to lo-
cate and retrieve subgraphs in a graph database consisting of a large number
of small graphs, which is especially prevalent in bioinformatics. Such indexing
techniques could potentially be applied in our context of approximate/relaxed
evaluation of CRPQs.

Varadarajan et al. [58] propose the GID framework for facilitating user
queries on hyperlinked data, where answers are ranked according to a user’s
input criteria. In GID a query is a series of user-defined ‘filters’. In contrast to
our approach, this does not allow for path query approximation or relaxation.

Zou et al. [59] present gStore, which stores RDF data as a large graph rather
than in an RDF repository. SPARQL queries issued to this system are trans-
formed into subgraph matching queries. A potential interface to this system
from our own Omega prototype [60] is an area of future investigation.

Other work on approximate graph matching includes [61] in which reg-
ular expressions are added as edge constraints on the graph patterns to be
matched; [62] in which in top-k matches may be found without computing the
entire graph using relevance functions based on factors such as social impact and
distance; and [63] which defines a set of criteria preserving the topology of mas-
sive graphs to rectify the problem caused by pattern matching over a data graph
whose structure differs greatly from the pattern, thereby resulting in matches
which may be difficult to comprehend and analyse. This work too has synergies
with our approach to flexible querying processing, since the techniques proposed
could potentially be applied to the evaluation of approximated/relaxed CRPQs.

5.6. Our previous work

The work in [11] introduced a RELAX clause for querying RDF/S data which
can be applied to those triple patterns of a query that the user would like to be
matched flexibly. These triple patterns are successively made more general so
that the overall query returns successively more general answers, at increasing
costs from the exact form of the query (using the entailment rules of Figure 4).
An essential aspect of this approach, which distinguishes it from earlier work
on query relaxation, is that the answers to a query are ranked based on how
closely they satisfy the original query.
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The work in [10] discusses how approximate answers can be computed for
CRPQs, based on edit operations such as insertions, deletions, inversions, sub-
stitutions and transpositions of edge labels being applied to a semipath.

The work in [12] combines within one querying framework both approxima-
tion (APPROX) and relaxation (RELAX) and applies it to CRPQs. In [64]
we describe the implementation of a prototype system that supports this func-
tionality. In [60] we describe a more mature implementation of these flexible
querying capabilities.

Approximation and relaxation of CRPQs can be applied to the more prag-
matic setting of the SPARQL 1.1 language [7] — specifically, to its property
path queries — and in [65, 66] a query rewriting approach is presented for
implementing such extensions.

6. Conclusions

We have considered approximation and relaxation of conjunctive regular
path queries and have shown how these can be combined to support users in
flexible querying of complex, irregular graph-structured data. Using the AP-
PROX and RELAX operators, users can specify approximations and relaxations
to be applied to selected conjuncts of their original query, as well as the relative
costs of these. Also, using the FLEX operator, users can specify that both ap-
proximation and relaxation should be applied to a query conjunct. In all cases,
query answers are returned incrementally, in polynomial time, ranked in order
of increasing distance from the user’s original query.

The paper makes two major contributions. Firstly, we have extended the
work in [12] on CRPQ approximation and relaxation by giving full details of the
algorithms and full proofs of the theoretical results. Secondly, we have proposed
merging the APPROX and RELAX query operators from [12] into an integrated
FLEX operator. This allows easier querying of complex heterogeneous data sets
for users as they do not have to be aware of the ontology structure and do not
have to identify explicitly which parts of their overall query may be amenable to
relaxation. It may also allow more query results to be returned, as there exist
CRPQs that return answers using FLEX semantics which cannot be returned
by any CRPQ using APPROX/RELAX semantics. Along the way, we have
introduced the notion of the ‘triple form’ of a sequence of edge labels, giving for
the first time a uniform framework for handling both query approximation and
query relaxation for CRPQs.

This paper has concentrated on theoretical aspects of approximation and
relaxation of CRPQs. In practice, a graphical front-end could allow users to
pose queries using forms, keywords, or even natural language, which the sys-
tem would then translate into CRPQs (c.f. [64]). The user would select which
approximation and relaxation operations, from the full range of operations sup-
ported by our framework, should be applied by the system to parts of their
queries in order to approximate or to relax them. The user could select which
parts of the ontology should be used for the relaxation operations (rather than
the whole ontology) and which labels for the edit operations (rather then the full
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set of edge labels in the data graph). For the substitution operation, it would be
straightforward to extend our framework to support finer-grained ranking of the
substitution of one edge label by another, e.g. through the application of lexical
or semantic similarity measures on edge labels (rather than assuming the same
cost for all substitutions). Finally, in order to help users interpret answers to
their queries, the system could provide a trace of the successive edits/relaxations
applied by the system to the original query, and the answers arising from each
modified query. Showing the sequence of changes by which the original query
was approximated or relaxed could help the user decide whether the answers
being returned are relevant to them.

As mentioned in Section 5.6, descriptions of implementations of APPROX
and RELAX (but not FLEX) appear in [60, 65, 66]. In [60] we describe an NFA-
based implementation of these flexible querying capabilities. We also report on
a performance study of single-conjunct regular path queries, with approxima-
tion and relaxation, on several datasets sourced from the L4All system [64] and
from YAGO [27]. This study showed that most of the approximated and relaxed
queries executed quickly on all datasets. However, some of the approximated
queries on YAGO either failed to terminate or did not complete in a reason-
able amount of time. This was mainly due to a large number of intermediate
results being generated when the Succ function returns a large number of tran-
sitions, which are then converted into tuples in getNext and added to queueR.
Two optimisations are explored in [60] for such queries, enabling several (but
not all) of these APPROX queries to execute faster. In [65, 66] an alternative
implementation approach based on query rewriting is presented, in the more
pragmatic setting of SPARQL 1.1. Performance studies of multi-conjunct regu-
lar path queries, with approximation and relaxation, are undertaken on several
datasets sourced from LUBM15 and from YAGO. These studies show good per-
formance for most of the queries trialled, apart from when Kleene closure (‘*’)
and the wildcard symbol(‘ ’) appear within the same regular path query. Ongo-
ing work includes the development of optimisation techniques to improve query
evaluation in these prototype systems, drawing for example from recent work
in [67, 68, 69, 70, 71, 72, 73, 14]. The FLEX operator is not yet supported by
any implementation, and extending these prototypes to support it too is an area
of future work.

Beyond centralised architectures, the area of distributed graph data pro-
cessing is increasing in importance, with the aim of handling larger volumes
of graph data than can be handled on a single server and to achieve horizon-
tal scalability16 [74, 75, 76, 77, 78]. Using distributed graph query processing
techniques to enable flexible querying of larger volumes of complex, irregular
graph-structured data is an important area of future work.

Finally, deeper investigation of the relationships between FLEX, APPROX
and RELAX would be interesting, for example to determine if there are char-

15http://swat.cse.lehigh.edu/projects/lubm/
16http://thinkaurelius.com, https://github.com/apache/giraph
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acteristics of a multi-conjunct CRPQ query, data graph or ontology that mean
that FLEX will always return more results than any combination of APPROX
or RELAX; and to investigate further integration of the automaton-based query
evaluation approaches for APPROX, RELAX and FLEX that we have presented
here, into a higher-level abstract framework of which APPROX, RELAX and
FLEX are specific instances.

Acknowledgements: We thank the reviewers of this paper for their detailed
and insightful comments, which helped to improve the paper substantially.
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