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Abstract: 

Cellular automata (CA) models have been widely employed to simulate urban growth and land 

use change. In order to represent urban space more realistically, new approaches to CA models 

have explored the use of vector data instead of traditional regular grids. However, the use of 

irregular CA-based models brings new challenges as well as opportunities. The most strongly 

affected factor when using an irregular space is neighbourhood. Although neighbourhood 

definition in an irregular environment has been reported in the literature, the question of how to 

model the neighbourhood effect remains largely unexplored. 

In order to shed light on this question, this paper proposed the use of spatial metrics to 

characterise and measure the neighbourhood effect in irregular CA-based models. These 

metrics, originally developed for raster environments, namely the enrichment factor and the 

neighbourhood index, were adapted and applied in the irregular space employed by the model. 

Using the results of these metrics, distance-decay functions were calculated to reproduce the 

push-and-pull effect between the simulated land uses. The outcomes of a total of 55 simulations 

(five sets of different distance functions and eleven different neighbourhood definition 

distances) were compared with observed changes in the study area during the calibration period. 

Our results demonstrate that the proposed methodology improves the outcomes of the urban 

growth simulation model tested and could be applied to other irregular CA-based models. 
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1. Introduction 

Simulation models are a useful tool to study, understand and explore the 

behaviour of complex systems. Cellular automata (CA) have become one of the most 

widely used modelling frameworks in recent decades and have been employed to 

simulate phenomena such as land use change or urban growth (Barredo et al., 2003; 

Batty, 2007; Santé et al., 2010; Triantakonstantis and Mountrakis, 2012). Their success 

can be attributed to their capacity to reproduce the complex behaviour of dynamic 

systems such as cities, including aspects such as emergence, self-organisation, self-

similarity and non-linear behaviour (Portugali 2000). 

In CA models, space is usually divided into regular grids where each cell can 

have one of a set of possible states. The evolution of each cell over discrete time lapses 

is based on its state and the states of its neighbours, and is controlled by a set of 

transition rules (Wolfram, 1984). For instance, in urban growth models, states tend to 

represent urban land uses which affect each other, producing a new snapshot of the 

urban growth pattern after each iteration (Benenson and Torrens, 2004). 

The rigid principles of CA models for urban systems have often been relaxed 

and their basic rules extended, generating more complex models (e.g. Stevens et al., 

2007; Petrov et al., 2009) called CA-based models (Couclelis, 1997). A wide variety of 

relaxations have been applied to traditional CA models, including: different 

neighbourhood sizes and shapes (Liao et al., 2016), different scales (Farsaie and 

Hakimpour, 2014), addition of other relevant parameters such as land suitability or 

zoning status (White et al., 1997), implementation of stochastic disturbance to 

reproduce the uncertainty related to human activities (García et al., 2011; Mustafa et al., 

2014) and alternative space representations that differ from the traditional regular grids 

(Stevens et al., 2007; Moreno et al., 2008). 

The suitability of regular grids to represent geographic space in CA-based 

models is often a subject of debate within the scientific community. It has been 

suggested that regular grid structures are more appropriate for large scale rather than 

local scale models (Pinto and Antunes, 2010). The regular grid structure as an array of 

cells not only allows for easier calculations, but is also compatible with satellite 

imagery and other raster data sources, which is a very useful advantage. Nevertheless, 

the fact that cities consist of irregular blocks or features rather than regular cells is often 

highlighted in the literature (e.g. O’Sullivan, 2001b; Dahal and Chow, 2015) and there 

have been successful attempts to employ irregular space representation in CA-based 

models (e.g. Hu and Li, 2004; Stevens and Dragicevic, 2007; Moreno et al., 2008; 

Dahal and Chow, 2014). 

In addition, the basic unit for urban planning in many countries is the ‘plot’ or 

‘parcel’, usually available in urban cadastres. As the aim of CA models is often to aid or 

improve urban planning, it would seem appropriate to adopt the same space 

representation as that used by urban planners. Early attempts to develop irregular CA-



based models of land use change and urban growth have used cadastral parcels or 

similar types of space representation (Moreno et al., 2008; Pinto and Antunes, 2010; 

Lugo and Valdivia, 2012; Dahal and Chow, 2014). 

Nevertheless, models based on irregular structures can be very slow and 

inefficient; hence, incorporating this space effectively into CA models remains a two-

fold challenge. The first of these is to deal efficiently with vector data, and the second is 

to define and calibrate parameters within this spatial structure. One solution to the 

efficiency problem, proposed by O’Sullivan (2001a) and detailed by Baetens and de 

Baets (2012), has been to use graph theory to abstract vector representation and reduce 

model processing time. This solution has also been tested and implemented by Barreira-

González et al. (2015). 

The second challenge concerns factor implementation and calibration. 

Neighbourhood, which is an intrinsic factor of CA models, is particularly affected by 

changes in spatial representation. According to O’Sullivan (2001a), neighbourhood is 

defined by relations of nearness between spatial elements (parcels in irregular space), 

where such relations depend on spatial location and the influential relationship (effects 

that one land use exerts on the others). Therefore, neighbourhood poses two problems in 

irregular CA-based models: (1) how to define neighbourhood in an irregular space and 

(2) how to model the neighbourhood effect between parcels with different land uses. 

The first problem has recently been explored using several approaches (Stevens 

and Dragicevic, 2007; Moreno et al., 2008; Baetens and de Baets, 2012; Dahal and 

Chow, 2015). In the case of CA-based models that employ regular grids, the definition 

of neighbourhood is very straightforward. The most usual types of neighbourhood 

definition are known as Von Neumann and Moore neighbourhoods, which consider 

some or all of the cells adjacent to a given cell. These neighbourhoods can also be 

extended using a radius around the central cell, as shown in Figure 1. 

Figure 1: From regular to irregular neighbourhood definition. The neighbourhood defined for raster spaces is shown 

on the left, while some examples of neighbourhood in irregular spaces are shown on the right 



 Nevertheless, the problem becomes more complex when these same definitions 

of neighbourhood are implemented in irregular spaces. Stevens and Dragicevic (2007) 

have proposed three alternative solutions to this problem, defining the neighbours of 

each parcel as: a) adjacent parcels only, b) those parcels that are totally or partially 

covered by a distance buffer, or c) the area within a buffer. Dahal and Chow (2015) 

proposed another neighbourhood definition based on topological relations, proximity 

and intercepted buffers, and the extended neighbourhood, in which the entire study area 

is considered the neighbourhood of every single parcel. Figure 1 shows some examples 

of neighbourhood definition in irregular spaces: adjacent parcels, neighbourhood 

calculated by means of a distance buffer from the centroid of the studied parcel whereby 

parcels falling totally or partially inside the buffer are considered neighbours, 

neighbourhood calculated according to a buffer from the parcel boundary and another 

neighbourhood based solely on parcels totally covered by the buffer. 

As shown in Figure 1, every cell or parcel in irregular CA-based models is 

potentially different from all the others in terms of size and shape, and consequently the 

definition of neighbourhood can also be different for each parcel: irregular parcels also 

present irregular neighbourhood definitions. Thus, for any given parcel, the nearest 

parcels would exert a greater effect than distant ones. Nevertheless, distance is not 

the only issue that influences neighbourhood. Each of the land uses present in a 

neighbourhood would exert different effects on a given cell. This combination of 

distance and the effect between land uses is known as the push-and-pull effect (or the 

neighbourhood effect). Assessment and calibration of the neighbourhood effect in 

irregular CA-based models remains largely unexplored. 

The aim of the present study was to develop a method to measure the 

neighbourhood characteristics of a study area and, based on these characteristics, to 

generate functions that can reproduce the neighbourhood effect of a study area in an 

irregular CA-based model. The overall objective is to develop an approach able to 

model neighbourhood effect in irregular CA-based models. For this purpose, spatial 

metrics originally developed for raster environments, namely the enrichment factor 

(Verburg et al., 2004a) and the neighbourhood index (Hansen, 2012), were adapted and 

applied to measure the neighbourhood effect in irregular space (Geertman et al., 2007; 

Hagoort et al., 2008) in a past time period. These metrics were calculated enabling the 

generation of functions that reproduce the neighbourhood effect that pushes parcels to 

change their land use. Obtained functions were implemented and tested in an irregular 

CA-based model.  

The following section describes the methodology, providing an explanation of 

the irregular CA-based model employed. Section 3 presents the study area as well as a 

study of urban growth between 2000 and 2010 in the same region (3.1), and then gives 

the metrics results (3.2) and reports their implementation through functions in the model 

that reproduce the neighbourhood effect (3.3). These functions were tested in the model, 

simulating urban growth and comparing the results against observed growth (3.4). 



Finally, section 4 discusses the results obtained and section 5 presents the conclusions 

of this study. 

2. Methodology 

The methodology proposed here explores the neighbourhood effect within an 

irregular CA-based model using vector spatial metrics. Configuring the neighbourhood 

effect accurately is part of the calibration process of every CA model. Thus, this study 

focuses on the period 2000–2010, which was also the model calibration period. 

The first step consisted of analysing land use change in the study area in order to 

identify parcels in which land use had changed during the study period as well as those 

which had remained stable. Spatial metrics, namely the enrichment factor (Verburg et 

al., 2004a) and the neighbourhood index (Hansen, 2012), were adapted from regular to 

irregular space and applied to measure neighbourhood characteristics. Averages were 

computed considering, a) all parcels and b) only parcels that had changed. Based on the 

results of the metrics, four sets of distance-decay functions were generated (one per 

metric and per options a and b) and implemented in the model for testing. Sensitivity 

tests were carried out by running the model for the period 2000–2010 with a 

combination of the set of functions and different distances as the neighbourhood 

definition. The results were compared with observed growth in the same period, and the 

set of functions and the distance which best fit the observed growth were then selected 

for use in the model. 

2.1. The irregular graph CA model 

The irregular CA-based model employed here (Barreira-González et al., 2015) 

was developed to simulate land use change in urban areas in Spain. The model 

simulates land use change for two urban land uses: residential and productive 

(commercial and industry). Rather than using a regular grid, it employs the irregular 

structure of cadastral parcels, where each individual plot or parcel is represented by a 

polygon. Although the version of the model used here is a prototype which has not yet 

been fully validated, it provides a suitable platform to conduct an in-depth study of the 

neighbourhood effect, which was the aim of the present study. The model uses four 

parameters (neighbourhood, accessibility, suitability and zoning status) to model urban 

growth, based on the NASZ modelling schema (White et al., 1997). 

In the model, neighbourhood effect reproduces the push-and-pull effect exerted 

by a land use in a specific location on other locations. It has two components: definition 

and effect. The model uses buffers around each parcel to define neighbourhood, which 

is computed from the intersection of the buffer with the vector dataset of parcels. 

Parcels that fall partially or completely within the buffer of a given parcel are 

considered neighbours. Distance-decay functions are used to reproduce the 

neighbourhood effect. Accessibility measures the ease with which someone could access 

the road network from a specific location. For a given parcel, the model calculates the 

Euclidean distance to the closest road network measured from the edge of the parcel. 



Suitability represents the intrinsic capacity of a given location to develop a specific land 

use due to its characteristics. In the model, a suitability map that includes factors such as 

slope, height, hydrography or current land uses yields a suitability value for each parcel. 

Finally, the zoning status specifies where the law allows land uses to be developed or 

not. This information is usually obtained from urban plans. For each parcel, the model 

assigns its real zoning status according to the current urban plan available for the 

municipality. 

The use of irregular space requires significantly more computing power and 

memory than grid-based models in order to store all relationships between parcels 

(neighbourhood definition) in the vector dataset. For this reason, the model proposed by 

Barreira-González et al. (2015), following O’Sullivan’s approach (2001a), uses graph 

theory to reduce computational time as well as to extract neighbourhood definition in 

combination with vector analysis tools, which are standard in most GIS packages. 

A graph is a combination of elements named nodes (usually denoted as V) and 

their relationships, called edges (E). Edges connect two nodes that present a relationship 

condition (Felzenszwalb and Huttenlocher, 2004). In the case of the model reported 

here, a graph was built from the cadastral structure in which each parcel is represented 

as a node and the edges in the graph represent the neighbourhood relationship between 

parcels. If two parcels are linked by a common edge, they are considered neighbours 

(Figure 2). As shown in Figure 2, nodes are located in the centroid of each parcel solely 

to provide a spatial representation. 



 

 

The first step in the model setup is to calculate suitability, accessibility and 

zoning status (which will remain stable throughout model iterations) for each parcel and 

update this information in the attribute table. A graph is then generated, creating one 

node per each parcel and saving the parcel’s attributes in the node. Next, edges are 

created to generate the neighbourhood definition. Based on a distance entered by the 

user, the model defines the neighbourhood for each parcel as those parcels that fall 

completely or partly within the buffer computed around the parcel. This neighbourhood 

definition is based on the one proposed by Stevens and Dragicevic (2007). The model 

works iteratively: each iteration corresponds to a calendar year and in every iteration, a 

fixed amount of land (demand) per land use will be developed. There is a specific 

demand for residential land use and another different for productive land use. 

The first iteration begins with the calculation of the neighbourhood effect from 

distance-decay functions. For a given parcel, each of its neighbours will exert different 

effects depending on their land use and relative distance. Subsequently, the model 

identifies parcels in the graph which are candidates for development into an urban use, 

and a potential development value is calculated for each of these candidates by 

combining the four parameters implemented (one potential value for residential land use 

and another for productive use). The model ranks potentials from the highest to the 

lowest and then decides which parcels will be converted to urban use until the annual 

Figure 2: The figure on the left represents the neighbourhood in the irregular CA-based model. The figure on the right 

represents abstraction of the neighbourhood and parcels to a graph. 



demand is met. A parcel may be developed for either residential or productive land use 

depending on which potential is higher. Parcel development is independent of its size 

(area). This version of the model does not implement a parcel subdivision algorithm. As 

the cadastre is a land property database (each parcel belongs to an individual or entity), 

the model assumes that each parcel has a single use, and this land use is assumed to be 

homogeneously distributed throughout the parcel. Parcels that are developed in each 

iteration are updated in the database, serving as input for following iterations. A more 

detailed account of model implementation is given in Barreira-González et al. (2015). 

2.2. Characterising the neighbourhood effect using spatial metrics 

Spatial metrics can be used to analyse land use patterns, spatial distribution and, 

in this case, the neighbourhood effect (Geertman et al., 2007). Verburg et al. (2004a) 

proposed the enrichment factor as a generic metric to measure, quantify and understand 

neighbourhood characteristics in regular grid spaces (raster). This metric, denoted as 

Fi,k,d in Equation (1), is defined as the occurrence of a land use type k in the 

neighbourhood defined by distance d of a location i relative to the occurrence of the 

same land use in the study area. In other words, it compares the proportion of a land use 

in the local neighbourhood with the proportion of the same land use in the entire study 

area: 

𝐹𝑖,𝑘,𝑑 =
𝑛𝑖,𝑘,𝑑/𝑛𝑖,𝑑

𝑁𝑘/𝑁
     (1) 

where ni,k,d represents the number of cells with land use k in a neighbourhood defined 

with radius d, ni,d represents the number of cells in the neighbourhood of radius d, Nk 

represents the number of cells with land use k in the entire study area and N is the 

number of cells in the study area. This metric is often used as an indicator of 

neighbourhood characteristics (see Verburg et al., 2004a; Verburg et al., 2004b; 

Geertman et al., 2007; Hansen, 2012; Pan et al., 2010; van Vliet et al., 2013) and to 

define the push-and-pull effect functions as part of the neighbourhood rules (Hagoort et 

al., 2008). 

Hansen (2012) proposed an alternative metric called the neighbourhood index 

(NI), as shown in Equation (2). This provides the proportion (values ranging from 0 to 

1) of a specific land use within a given neighbourhood definition. The metric is 

basically calculated by dividing the number of cells in the neighbourhood with a 

specific land use (ni,k,d) by the total number of cells in that neighbourhood (ni,d), as 

shown below: 

 𝑁𝐼𝑖,𝑘,𝑑 =
𝑛𝑖,𝑘,𝑑

𝑛𝑖,𝑑
      (2) 

Although F and NI have been successfully employed for raster, they have not yet 

been adapted to suit irregular structures. In a regular space, calculation of these metrics 

is merely a question of counting cells, but in irregular spaces the number of cells can be 

replaced by the amount of area measured with vector analysis tools: a distance buffer 



(reproducing the extended neighbourhood definition) can be generated from the edge of 

the parcel in question and the area that each land use occupies within the buffer can be 

quantified through the intersection of the buffer and the parcels shapefiles. Equations 

(3) and (4) show how the enrichment factor and neighbourhood index have been 

adapted to irregular space and renamed the vector enrichment factor (vF) and vector 

neighbourhood index (vNI). 

𝑣𝐹𝑖,𝑘,𝑑 =
𝑎𝑖,𝑘,𝑑/𝑎𝑖,𝑑

𝐴𝑘/𝐴
     (3) 

𝑣𝑁𝐼𝑖,𝑘,𝑑 =
𝑎𝑖,𝑘,𝑑

𝑎𝑖,𝑑
      (4) 

In Equations (3) and (4), for a given parcel i, a buffer is generated with radius d 

measured from the parcel boundary (Ballestores and Qiu, 2012). The area a specific 

land use k occupies in the buffer is calculated (ai,k,d), where ai,d is the total area covered 

by the buffer. For the vector enrichment factor, Ak represents the total area occupied by 

land use k in the study area, and A is the total area of the study area. Figure 3 shows an 

example of how the original metrics would be calculated (on the left hand side) and how 

they would be adapted to vector spaces. 

 

 

It is important to note that the use of F to measure the neighbourhood 

characteristics of a cell can generate biased results. The values obtained for this metric 

can be read as over- or under-representing a land use in a specific location in relation to 

the proportion of the same land use in the overall study area. Thus, when the study area 

presents a dominant land use, the values derived from F for land uses with a lower 

presence can be extremely high. Therefore, although the use of two metrics might 

initially seem redundant, their results are complementary. In other words, the combined 

results of these two metrics facilitate accurate measurement and understanding of 

neighbourhood characteristics from both global (vF) and local (vNI) perspectives. 

2.3. Converting spatial metrics results into neighbourhood effect functions 

The neighbourhood characteristics and metrics serve as basis for developing 

neighbourhood rules in the irregular CA-based model, following the methodology 

Figure 3: Spatial metrics calculation in regular and irregular environments. 



proposed by Hagoort et al. (2008). The model includes the neighbourhood effect 

implemented through distance-decay functions which attempt to reproduce the effect 

that land uses exert on neighbouring locations. These functions can be obtained from 

the spatial metrics results, where a polynomial function is adjusted to the distribution of 

the values of a spatial metric over different distances. The function is different for every 

land use simulated (e.g. one function can represent the effect that residential use has on 

other parcels as regards development for residential use). 

Distance-decay functions are easily entered into the model code. To assess the 

model’s capacity to accurately reproduce urban growth between 2000 and 2010, four 

sets of distance-decay functions were entered: A) functions derived from vNI values for 

parcels that had changed during the calibration period per land use; B) functions derived 

from vNI values obtained for all parcels per land use; C) functions derived from log(vF) 

values for parcels that had changed during the calibration period per land use, and 

finally; D) functions derived from log(vF) values obtained for all parcels per land use. 

2.4. Implementing neighbourhood effect functions in the simulation model 

The four sets of functions (A, B, C and D) were tested in the model in 

combination with different neighbourhood definitions (by using different buffer 

distances), which can highlight the sensitivity of the model to changes in this parameter 

(Al-Ahmadi et al., 2009). This can also be seen as the calibration process for the 

neighbourhood effect. Calibration can be understood as adjusting the parameters to 

improve the model’s goodness of fit (Rykiel Jr., 1996; Petrov et al., 2009; van Vliet et 

al., 2011). In the case of the model employed here, the aim of calibration was to obtain 

the most suitable values for the transition rule parameters in order to reproduce the land 

use change processes that had occurred in the past (Santé et al., 2010). 

In this case, the most suitable values depended on the distance selected for the 

neighbourhood definition and on the set of functions employed to reproduce the 

neighbourhood effect. A total of 11 different distances combined with the 4 sets of 

functions (A, B, C and D) yielded 44 simulations for 2010 that were then compared 

against observed growth for the period 2000–2010. In order to demonstrate model 

performance using neighbourhood metrics as the calibration method, results from a 

previous version of the model, the Business as Usual simulation (BAU), were also 

compared against observed growth. For the BAU, the same definition of neighbourhood 

was employed. The neighbourhood effect functions were derived from neighbourhood 

effect masks implemented in a previous version of this CA-based model, which 

employed a regular grid to represent space and was used to analyse the same study area 

(see Barreira-González et al., 2015). 

A number of methods can be used to compare the model’s resulting maps 

against reality, including visual comparison, which can be used to conduct an 

exploratory analysis (Pinto and Antunes, 2007). For the present analysis, a quantitative 

method was deemed necessary to evaluate model performance appropriately. Thus, the 

percentage of agreement (PA) shown in Equation (5), similar to producer’s and user’s 



accuracies (Congalton and Green, 2008), was adopted to quantify agreement between 

simulated and observed growth.  

𝑃𝐴𝑘 =
∑ 𝐴𝑟𝑒𝑎𝑖,𝑘,𝑠𝑖𝑚

𝑖=𝑚
𝑖=𝑜

∑ 𝐴𝑟𝑒𝑎𝑗,𝑘,𝑜𝑏𝑠
𝑗=𝑛
𝑗=𝑜

   ;    𝑃𝑎𝑟𝑐𝑒𝑙 𝑤ℎ𝑒𝑟𝑒 𝑘, 𝑠𝑖𝑚 = 𝑘, 𝑜𝑏𝑠  (5) 

 

In Equation (5), PA for a land use k is calculated as the sum of the areas of those 

parcels in which observed and simulated growth for 2010 of land use k coincides, 

divided by the total area of observed growth for the same land use for 2010. PA was 

selected for this study, rather than producer’s and user’s accuracies, because the results 

obtained by the latter would have the same value for both indices in each simulation 

(see Barreira-González et al., 2012), whereas PA provides a single value. 

3. Results 

3.1.Land use change 

Los Santos de la Humosa is a municipality located in a region of Spain which 

has experienced intense urban sprawl in recent decades (Díaz-Pacheco and García-

Palomares, 2014), rendering it particularly suitable for the study of urban growth. Its 

size allows for a detailed study and measurement of neighbourhood characteristics. This 

municipality, shown in the map in Figure 4, has a total area of 34.9 km
2 

and contains 

approximately 4,000 parcels. 

 

Figure 4: Study area. Source: compiled from Open Street Maps 2015. 

The data source employed is the cadastral database in shapefile format provided 

by General Directorate for Cadastre (2013), which corresponds with land registry, each 

parcel represents an administrative unit that belongs to an owner, who pays taxes that 

vary according to its size and land use. The information contained includes area, 

cadastral ID and the year of development of each parcel, enabling identification of land 

use change in each parcel over the period 2000–2010. Historical satellite imagery 

(Nomecalles, 2015) was employed to determine the land use present in each parcel in 

the years 2000 and 2010. Zoning status areas were obtained from the Urban 



Development Plan (Gómez-Vilarino and Gómez-Orea, 2013), commonly named as 

PGOU in Spain, and then assigned to each parcel in the municipality. 

During this period, cumulative urban growth for the study area was over 38%, of 

which 88% was residential growth and 12% was productive growth (industrial and 

commercial areas) (see Figure 5). Most of the new residential parcels are located in the 

urban centre, infilling previously existing gaps, but there are also new residential areas 

in the surroundings of the urban centre, where vacant land has been converted into 

urban land. The growth of industry was not very significant between 2000 and 2010, 

and the few new industrial parcels are all located outside the urban centre. 

 

Figure 5: Urban land use changes over the period 2000–2010. The amount of area that has changed is shown in the 

table, where “No. of Parcels” refers to the number of cadastral parcels. Source: General Directorate for Cadastre 

(2013). 

3.2.Spatial metrics results 

Both spatial metrics (vF and vNI) were calculated for each urban cadastral parcel 

in the study area. Different distances ranging from 25 m to 500 m were selected for 

buffers in order to gain a better understanding of how distance affects the tendency 

towards land use change. Values of vF are presented in logarithmic scale for ease of 

understanding: values over 0 indicate that a land use is over-represented in a specific 

neighbourhood and values below 0 indicate that it is under-represented in the same 



neighbourhood. Figure 6 shows the global tendency of these spatial metrics for the 

urban parcels in the study area. 

 

 

In this study, residential land use was over-represented in the neighbourhood of 

parcels up to a distance of 300 m (values of log(vF) over 0). Values for non-urban land 

use were close to 0 until reaching 300 m, where the line for non-urban land use 

intersected with that for residential land use. This could be related to the size and shape 

of the urban centre. Values of log(vF) for productive use showed that this land use was 

under-represented throughout the entire range of distances as a consequence of its low 

presence in the study area. The proportion of these three land uses over the distances 25 

m to 500 m is represented by the vNI metric: productive land use appeared stable 

throughout the entire range of distances, residential use varied from 32% to 17% and 

non-urban use varied from 65% to 78%. 

Figure 7 shows the metrics which were calculated differentiating parcels by their 

land use. Parcels with a non-urban land use presented a high proportion of the same 

land use at any distance, as shown in the vNI metric as an almost horizontal line (80% 

of the land in the neighbourhood was non-urban). Within their neighbourhood 

definition, they also presented the same proportion at any distance of residential (18%) 

and productive (2%) land uses. Parcels with a residential land use showed a constant 

decrease in terms of vNI and vF throughout the selected range of distances. This 

indicates that residential parcels tend to be located close together, and these values fall 

when the urban centre boundaries are examined. The vF values obtained indicate that 

residential land use was over-represented until reaching a distance of 400 m, which 

would be the urban boundary. They also revealed that productive land use was 

considerably under-represented, suggesting that productive parcels tend to be located 

outside the urban centre. Finally, parcels with a productive land use were also under-

represented in their neighbourhood (vF values below 0), which suggests they are 

dispersed, but that they also have some residential areas nearby (vF value of 0.2 from 25 

m to 200 m). 

Figure 6:  Average of vF and vNI for urban parcels. Each line represents trends in each land use in the 

neighbourhood of parcels from distance 25 m to 500 m. 



 

The metrics employed seem to provide a good basis for calibrating the push-and-

pull effect in the model. Figure 8 shows the spatial metrics vF and vNI for parcels that 

were developed for urban land uses over the period 2000–2010. 

 

 

Parcels that were converted into residential land use showed neighbourhoods in 

which the most representative use was non-urban (see non-urban values of vNI over 

0.80 throughout the range of distances). This could be interpreted as indicating 

dispersed growth: new residential or productive parcels are not located adjacent to pre-

existing urban uses, but seem instead to be more isolated. Nevertheless, the high 

proportion of non-urban land use in relation to the other land uses in the study area 

explains these high values of non-urban land use for vNI. 

Figure 7: Average of vF and vNI for urban parcels divided into the land use that they present. 

Figure 8: Average of vF and vNI for parcels that were developed for an urban 

use between 2000 and 2010. 



Similarly, parcels which were converted into productive land use also presented 

vNI values over 0.75. However, residential land use was slightly over-represented in 

their neighbourhood (vF value of 0.15 for the shortest distances), which suggests that 

productive growth is located close to the urban centre. In this case, vNI values were also 

higher for residential land use. 

3.3. Generating neighbourhood effect functions 

Four sets of functions were tested in the model. In order to explain how they 

were obtained, the set of functions A will be used as example. Note that the same 

methodology was employed to obtain the other sets of functions (B, C and D). The set 

of functions A consists of 4 functions (1, 2, 3 and 4). The neighbourhood effect 

measured by vNI in parcels developed for a residential land use (Figure 8, bottom left) 

provided two functions (1, 2): the residential line (in red) was used to obtain the 

function that reproduces the effect exerted by a residential use on a given location in 

favour of developing a residential land use, while the productive line (in blue) was used 

to obtain the function that reproduces the effect exerted by parcels with a productive use 

on a given location in favour of developing a residential land use. The neighbourhood 

effect measured by vNI in parcels developed for a productive land use (Figure 8, bottom 

right) provided two more functions (3,4): the function which reproduces the effect 

exerted by residential use on a given location in favour of developing a productive land 

use was obtained from the residential line, while the function that reproduces the effect 

exerted by parcels with a productive use on a given location in favour of developing a 

productive land use was obtained from the productive line (Figure 9). 

 

 

These four functions constitute the set of functions A. The model was run using 

one set of functions at a time (A, B, C or D). Initially, the model identifies the 

neighbours of a given parcel, and calculates each neighbour’s effect on the parcel in 

favour of developing a residential land use (Ei,R), and a productive use (Ei,P), using the 

corresponding function according to its land use. Each neighbour is located at a 

different distance and has a different land use, so each one will exert a different effect 

on the given parcel ‘i’. Effects exerted by non-urban land use remain constant in this 

version of the model. As there is more than one value of Ei,R and Ei,P per parcel, these 

must be summed to obtain a global value that expresses the neighbourhood effect that 

Figure 9: Set of functions A, derived from values of vNI for parcels developed for an urban use between 2000 and 

2010. Each equation expresses the effect that a location with a land use (residential or productive) at a distance ‘d’ 

exerts on a given location ‘i’ 



contributes to developing a residential use (Ni,R, Figure 9). The same calculation would 

be performed for productive land use (Ni,P). 

3.4. Testing the neighbourhood effect functions and simulation results 

Table 1 shows the percentage of agreement between each simulation for 2010 

and observed urban use in the same year. The best PA values for residential use were 

obtained at medium distances. The values for productive use were distorted by two 

large parcels that represented 95.90% of productive growth, which is why PA values 

were only 0%, 52.98% and 95.90%. Overall, the best agreement for both land uses was 

given by the set of functions B at a distance of 200 m, in which the PA between 

simulated land uses and real growth was 64% and over 90% for residential and 

productive uses, respectively. The model reproduced almost 68% of the real growth. 

When stable residential and productive land uses were included in the comparison, PA 

values increased up to 88% and 99%, respectively. A comparison of the results obtained 

for functions A, B, C and D, with those obtained using the BAU model clearly shows 

that the methodology improved overall model performance. 

Table 1: PA between simulated and real urban growth for 2010. Four different sets of functions were tested (A, B, C 

and D). A previous version of the model (BAU) was also compared against real growth, using different 

neighbourhood definitions from 25 m 

Distance(m) 

25 50 75 100 125 150 175 200 250 300 500 Functions 

Set 

A 
13.31 19.64 26.96 53.87 46.75 61.19 63.20 52.40 53.31 45.88 35.22 

0 0 0 0 0 0 52.98 0 52.98 52.98 52.98 

B 
15.39 31.06 44.03 55.78 55.46 60.92 52.06 64.12 55.90 49.50 37.08 

0 0 0 52.98 95.90 95.90 95.90 95.90 52.98 52.98 52.98 

C 
45.54 42.99 42.47 42.59 42.59 42.80 42.18 42.16 41.99 43.93 42.14 

95.90 95.90 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 

D 
40.51 40.02 46.01 35.93 36.51 56.83 48.55 41.25 42.56 39.21 41.80 

52.98 95.90 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 

BAU 32.12 32.13 32.19 31.59 31.59 31.59 31.59 31.59 31.59 32.13 32.13 

52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 52.98 

 

Figure 10 shows the spatial location of the best PA values (200 m and set of 

functions B), combining both simulated land uses into what we have called urban. In 

terms of location, agreement was mostly located on the eastern side of the urban centre, 

where new concentrated residential areas were built. However, the model failed to 

simulate growth filling gaps in the urban centre. 



 

 

 

4. Discussion 

This study has explored the ability of vector spatial metrics to capture 

neighbourhood characteristics in an irregular urban environment and how their results 

can be translated into neighbourhood effect functions with CA modelling and 

simulation purposes. Using the proposed methodology, the average neighbourhood 

conditions for residential or productive parcels were quantified. The results obtained for 

non-urban use remained almost stable regardless of distance variations. Such results, 

however, were obtained using a small municipality as case study area. In order to obtain 

more robust results, in the next stage of this research the study area will be extended. 

Another possible improvement concerns the neighbourhood effect functions, 

which were obtained from the metrics results taking into account: (1) the distance 

between the studied parcel and each of its neighbours, and (2) the land use of the 

neighbour. An alternative method would be to calculate the neighbourhood effect using 

a weighted system which considers the area of each parcel covered by the 

neighbourhood buffer. The inclusion of barriers such as roads, as proposed by Dahal 

and Chow (2015), could also be useful to simulate urban change dynamics more 

realistically. Different neighbourhood definitions, such as using people’s perception of 

neighbourhood (defining parcels along the same road as neighbours rather than ones 

backing onto a parcel), could also be explored. 

Figure 10: Comparison of the agreement between real and simulated growth 

in 2010 using the 200 m neighbourhood and the set of functions B. 



The neighbourhood effect functions were tested by running the model under four 

different sets of functions as well as running a BAU simulation. The results were 

compared against observed urban growth using PA. Although PA has been useful in 

demonstrating the degree of agreement with observed reality, other metrics and indices 

could have been used. Landscape metrics (generally known as spatial metrics) such as 

number of patches, shape indices or relative distance indices, could also be applied to 

compare results by measuring fragmentation, dispersion or relative distance between 

simulated parcels (see McGarigal et al., 2002; Geertman et al., 2007). Landscape 

metrics can be particularly useful when comparing different simulations with similar PA 

values. For example, when the amount of area simulated that coincides with observed 

growth is the same, thus resulting in similar PA values, change can be located in 

different places. Landscape metrics can be useful in those cases and, thus, should be 

included on the validation procedures for such models. Other metrics such as Khisto or 

Kloc (Hagen 2002; van Vliet et al., 2009; van Vliet et al., 2011) could be also adapted 

to an irregular environment. They would also contribute to detect differences in terms of 

location when simulations present differences in the amount of area developed.  

 Regarding the spatial structure, irregular CA-based models allow for a more 

realistic representation of the urban environment, where the spatial unit corresponds to 

the unit used in urban planning: a parcel or plot. Land use data at cadastral level allow 

for individual units to be represented, avoiding the use of aggregate data which is 

typical of socio-economic vector representations. Irregular approaches have been 

successfully adopted for other kind of land uses, such as agricultural, based on the 

understanding that ‘decisions underlying these changes are typically not made for 

pixels, but for all parcels managed by a single actor or institution’ (Zelaya et al., 2016, 

pages 95-96). However, models using irregular structures entail some technical and 

conceptual limitations. 

Technically, very large study areas might be computationally demanding and 

time intensive, even when using graph representation. Vector representation at this level 

of detail also presents a considerable challenge when modelling urban expansion, since 

the difficulties entailed in simulating urban morphology realistically are avoided when 

using raster representation. Larger parcels might be subdivided into smaller ones when 

developing a new urban use or even when remaining stable. This issue combined with 

changes in roads and plot layout, are very difficult to simulate realistically. A possible 

avenue for future research is to explore the parcel subdivision algorithm. 

One of the benefits of working at such detailed scale is that by avoiding the use 

of aggregate data, the modifiable areal unit problem (MAUP) is also avoided. It is 

important to note that the methodology proposed here to study the neighbourhood effect 

on land use change could also be used with aggregate data, in which case the MAUP 

effects would have to be considered in the results. 

Conceptually, it is important to reflect on the benefits that working at this level 

of detail entail. The parcel level makes it possible to study urban growth and change 



making use of the planning smallest unit as well as analysing the neighbourhood effect 

more realistically than using regular cells. The use of the parcel could help to achieve 

better communication between modellers and planners, and consequently more effective 

use of models as tools to support decision-making (Pinto and Antunes, 2010).  

5. Conclusions 

This paper proposes a methodology to implement the neighbourhood effect in an 

irregular CA-based model based on the neighbourhood characteristics of parcels. 

Neighbourhood effect functions can be obtained from the results of spatial metrics that 

characterise the local neighbourhood of each parcel. The functions were introduced in a 

model in order to test its ability to reproduce past urban growth. A comparison of the 

spatial outcomes of the model with and without the implementation of these functions 

provides evidence that using the proposed methodology the model results improve. 

Nevertheless, it is necessary to expand the study area in order to obtain more robust 

results that support the applicability of the methodology presented here. 

The results obtained suggest that this methodology could be used as part of the 

calibration process in other models employing irregular spatial representation, such as 

CA- and agent-based models. Furthermore, the methodology could also serve as a 

standalone method for land use change studies using land use data at cadastral (plot) 

level. Quantitative studies of neighbourhood dynamics are often limited by the 

availability of data at parcel level, but could nevertheless provide a very useful 

contribution to our understanding of local urban dynamics. 

Acknowledgements 

This research was performed within the context of SIMURBAN2 project 

(Geosimulation and environmental planning on metropolitan spatial decision making. 

Implementation to intermediate scales) (CSO2012-38158-C02-01), funded by the 

Spanish Ministry of Economy and Competitiveness. The Universidad de Alcalá 

supports the first author within the “Ayudas para la Formación de Personal Investigador 

(FPI) 2012” framework and the “Ayudas de Movilidad para el personal Investigador en 

Formación 2014” to perform the research at Birkbeck College, University of London. 

The authors would also like to thank the “Servicio de Traducción de la Universidad de 

Alcalá” which provided language help and to the anonymous reviewers for their very 

helpful comments. 

 

References 
 

Al-Ahmadi, K. et al., 2009. Calibration of a fuzzy cellular automata model of urban dynamics in 

Saudi Arabia. Ecological Complexity, 6(2), pp.80–101.  

Baetens, J. M., and De Baets, B., 2012. Cellular automata on irregular tessellations. Dynamical 
Systems, 27(4), pp. 411-430. 



 
Ballestores, F. and Qiu, Z., 2012. An integrated parcel-based land use change model using 

cellular automata and decision tree. Proceedings of the  International Academy of Ecology and 

Environmental Sciences, 2 (2), pp. 53-69. 

Barredo, J.I. et al., 2003. Modelling dynamic spatial processes: simulation or urban future 
scenarios through cellular automata. Landscape and Urban Planning, 64(3), pp .145–160. 
 
Barreira-González, P., González Cascón, V. and Bosque Sendra, J., 2012. Detección de errores 
temáticos en el CORINE Land Cover a través del estudio de cambios: Comunidad de Madrid 
(2000-2006). Estudios Geográficos, 73(272), pp.7–34. 
 
Barreira-González, P., Gómez-Delgado, M. and Aguilera-Benavente, F., 2015. From raster to 
vector cellular automata models: A new approach to simulate urban growth with the help of 
graph theory. Computers, Environment and Urban Systems, 54, pp.119–131.  
 
Batty, M. 2007. Cities and complexity: understanding cities with cellular automata, agent-
based models, and fractals. The MIT press. 
 

Benenson, I. and Torrens, P.M., 2004. Geosimulation : automata-based modelling of urban 

phenomena, Hoboken, NJ: John Wiley & Sons.  

Congalton, R. G., & Green, K., 2008. Assessing the accuracy of remotely sensed data: principles 
and practices. CRC press. 

 
Couclelis, H., 1997. From cellular automata to urban models: new principles for model 
development and implementation. Environment and Planning B: Planning and Design, 24, 
pp.165–174. 

 
Dahal, K.R. and Chow, T.E., 2014. An agent-integrated irregular automata model of urban land-

use dynamics. International Journal of Geographical Information Science, 28(11), pp. 2281–

2303. 

Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular 

cellular automata model of urban growth. International Journal of Geographical Information 

Science, 29(3), pp.475-497. 

Díaz-Pacheco, J. and García-Palomares, J., 2014. Urban Sprawl in the Mediterranean Urban 

Regions in Europe and the Crisis Effect on the Urban Land Development: Madrid as Study Case. 

Urban Studies Research, 2014.  

Farsaie, M., and Hakimpour, F., 2014. Evaluation of Scale Change Effect on Simulating Urban 

Expansion Using Continuous Cellular Automata. Journal of Geomatics Science and Technology, 

4(1), pp. 67-78. 

Felzenszwalb, P.F. and Huttenlocher, D.P., 2004. Efficient Graph-Based Image Segmentation. 

International Journal of Computer Vision, 59(2), pp.167–181.  

García, A.M. et al., 2011. An analysis of the effect of the stochastic component of urban 

cellular automata models. Computers Environment and Urban Systems, 35(4), pp.289–296.  



Geertman, S., Hagoort, M. and Ottens, H., 2007. Spatial‐temporal specific neighbourhood rules 

for cellular automata land‐use modelling. International Journal of Geographical Information 

Science, 21(5), pp.547–568. 

General Directorate for Cadastre, Ministry of Finance and Public Administration, Government 

of Spain. Available from: http://www.catastro.meh.es/ [Accessed October 2013]. 

Gómez-Vilarino, A. and Gómez-Orea, D., 2013. Ordenación Territorial. Mundi-Prensa Libros. 

Hagen, A., 2002. Multi-method assessment of map similarity. In Proceedings of the 5th AGILE 

Conference on Geographic Information Science. Mallorca (SPAIN): Universitat de les Illes 

Balears Palma, pp. 171–182. 

Hagoort, M., Geertman, S. and Ottens, H., 2008. Spatial externalities, neighbourhood rules and 

CA land-use modelling. The Annals of Regional Science, 42(1), pp.39–56. 

Hansen, H.S., 2012. Empirically derived neighbourhood rules for urban land-use modelling. 

Environment and Planning B: Planning and Design, 39(2), p.213-228. 

Hu, S. and Li, D., 2004. Vector cellular automata based geographical entity. In 12th Int. Conf on 

Geoinformatics - Geospatial Information Research: Brindging the Pacific and Atlantic. 

University of Gävle, Sweden, pp. 249–256. 

Liao, J. et al., 2016. Incorporation of extended neighborhood mechanisms and its impact on 

urban land-use cellular automata simulations. Environmental Modelling & Software, 75, pp. 

163-175. 

Lugo, I. and Valdivia, M., 2012. Geospatial cellular automata programmed in python for social 

sciences. In N. Norte Pinto, J. Dourado, and A. Natálio, eds. International Symposium on 

Cellular Automata Modeling for Urban and Spatial Systems (CAMUSS). Oporto, Portugal: 

Department of Civil Engineering of the University of Coimbra, pp. 39–52. 

McGarigal, K. et al., 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. 

Moreno, N., Ménard, A. and Marceau, D.J., 2008. VecGCA: a vector-based geographic cellular 

automata model allowing geometric transformations of objects. Environment and Planning B: 

Planning and Design, 35(4), pp.647–665.  

Mustafa, A. et al., 2014. Measuring the effect of stochastic perturbation component in cellular 

automata urban growth model. Procedia Environmental Sciences, 22, pp. 156-168. 

Nomecalles , Nomenclátor Oficial y Callejero, 2015. Instituto de Estadística, Comunidad de 

Madrid. Available from: http://www.madrid.org/nomecalles/Inicio.icm [Accessed June 2015] 

O’Sullivan, D., 2001a. Graph-cellular automata: a generalised discrete urban and regional 

model. Environment and Planning B: Planning and Design, 28(5), pp.687–706. 

O’Sullivan, D., 2001b. Exploring spatial process dynamics using irregular cellular automaton 

models. Geographical Analysis, 33(1), pp.1–18. 

http://www.madrid.org/nomecalles/Inicio.icm


Pan, Y. et al., 2010. The impact of variation in scale on the behavior of a cellular automata used 

for land use change modeling. Computers, Environment and Urban Systems, 34(5), pp.400–

408. 

Petrov, L.O., Lavalle, C. and Kasanko, M., 2009. Urban land use scenarios for a tourist region in 

Europe: Applying the MOLAND model to Algarve, Portugal. Landscape and Urban Planning, 

92(1), pp. 10-23.  

Pinto, N.N. and Antunes, A.P., 2007. Cellular automata and urban studies: A literature survey. 

ACE: Arquitectura, Ciudad y Entorno, 1(3), pp. 367-398. 

Pinto, N.N. and Antunes, A.P., 2010. A cellular automata model based on irregular cells: 

application to small urban areas. Environment and Planning B:Planning and Design, 37(6), 

pp.1095–1114.  

Portugali, J., 2000. Self-organization and the city. Springer. 

Rykiel Jr, E.J., 1996. Testing ecological models: the meaning of validation. Ecological Modelling, 

90(3), pp.229–244. 

Santé, I. et al., 2010. Cellular automata models for the simulation of real-world urban 

processes: A review and analysis. Landscape and Urban Planning, 96(2), pp.108–122.  

Stevens, D. and Dragicevic, S., 2007. A GIS-based irregular cellular automata model of land-use 

change. Environment and Planning B:Planning and Design, 34(4), pp.708–724.  

Stevens, D., Dragicevic, S. and Rothley, K., 2007. iCity: A GIS-CA modelling tool for urban 

planning and decision making. Environmental Modelling and Software, 22, pp. 761-773. 

Triantakonstantis, D. and Mountrakis, G., 2012. Urban Growth Prediction: A Review of 

Computational Models and Human Perceptions. Journal of Geographic Information System, 

4(6), pp.555–587. 

Verburg, P.H.et al., 2004a. A method to analyse neighbourhood characteristics of land use 

patterns. Computers, Environment and Urban Systems, 28(6), pp.667–690. 

Verburg, P.H., et al., 2004b. Land use change modelling: current practice and research 

priorities. GeoJournal, 61(4), pp.309–324. 

van Vliet, J. et al., 2013. Measuring the neighbourhood effect to calibrate land use models. 

Computers, Environment and Urban Systems, 41, pp.55–64. 

van Vliet, J., Bregt, A.K. and Hagen-Zanker, A., 2011. Revisiting Kappa to account for change in 

the accuracy assessment of land-use change models. Ecological Modelling, 222(8), pp.1367–

1375. 

van Vliet, J., White, R. and Dragicevic, S., 2009. Modeling urban growth using a variable grid 

cellular automaton. Computers Environment and Urban Systems, 33(1), pp.35–43. 



White, R., Engelen, G. and Uljee, I., 1997. The use of constrained cellular automata for high-

resolution modelling of urban land-use dynamics. Environment and Planning B: Planning and 

Design, 24(3), pp.323–343. 

Wolfram, S., 1984. Cellular Automata as Models of Complexity. Nature, 311(5985), pp.419–

424. 

Zelaya, K., van Vliet, J. and Verburg, P.H. 2016. Characterization and analysis of farm system 

changes in the Mar Chiquita basin, Argentina. Applied Geography, 68, pp. 95–103. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


