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Abstract Pruss (Thought 1:81–89, 2012) uses an example of Lester Dubins to argue
against the claim that appealing to hyperreal-valued probabilities saves probabilistic
regularity from the objection that in continuum outcome-spaces and with standard
probability functions all save countably many possibilities must be assigned prob-
ability 0. Dubins’s example seems to show that merely finitely additive standard
probability functions allow reasoning to a foregone conclusion, and Pruss argues that
hyperreal-valued probability functions are vulnerable to the same charge. However,
Pruss’s argument relies on the rule of conditionalisation, but I show that in examples
like Dubins’s involving nonconglomerable probabilities, conditionalisation is self-
defeating.

Keywords Probability · Hyperreal · Nonconglomerability · Conditionalisation

1 Introduction

Halfway through the last century Abraham Robinson showed that there is an ele-
mentary extension of the first-order structure of the ordered field of real numbers,
containing infinitesimal1 and, because of the field axioms, infinitely large numbers.
The members of such a nonstandard extension, of which there are infinitely many

1 Infinitesimals are the numbers in such an extension with absolute value smaller than every positive
real number.
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and infinitely many of different cardinalities,2 are known as hyperreals. Because the
extension is elementarily equivalent to the reals, any first-order sentence true in one
is also true in the other, a result baptised ‘the Transfer Principle’. If the hyperreals
are constructed ‘concretely’ as an ultrapower of the reals, the Transfer Principle is an
immediate corollary of Łoś’s Theorem.

The hyperreals, and more generally a version of the cumulative hierarchy based on
them (a rank superstructure of so-called internal sets), have turned out to be extremely
useful in mathematical applications. Philosophers have also sought to exploit them in
various ways, one of which has been an attempt to salvage the doctrine of probabilistic
regularity. This is the demand that probabilities should be strictly positive, i.e. only
the impossible event should receive zero probability, which runs up against the math-
ematical fact that only countably many members of an uncountable disjoint family
can be assigned positive probability. Once the range of a probability function consists
of some hyperreal extension, however, the objection no longer has force because all
those outcomes can be assigned a positive infinitesimal probability, even in principle
the same infinitesimal probability.3

This way of defending regularity has been challenged by Williamson (2007) and
with different arguments by Pruss (2012, 2013) and Alan Hájek (2013). Williamson’s
paper considers an infinitely-tossed fair coin to attempt a reductio from assuming
that the probability of any infinite sequences of head-outcomes can be assigned an
infinitesimal positive probability. The reductio proceeds by arguing that the sequence
of outcomes starting from the second toss is isomorphic to that starting from the
first and therefore both merit the same probability, from which a contradiction eas-
ily follows. Pruss (2013) contains an elegant mathematical argument which in effect
extends to non-standard probability functions the fact mentioned earlier that for any
standard probability function which includes in its domain a partition of the power
of the continuum, only countably many cells can in principle have positive mea-
sure. Pruss shows that however (infinitely) big the hyperreal field H one selects
to be one’s set of probability-values, there is always some algebra of events which
for that choice of H will require infinitely many events to be assigned probability
0. Hájek shows that if the event-algebra is the power set of the nonstandard unit
interval (in any given hyperreal extension), and any point receives a positive infinites-
imal probability then the latter must exceed the length of some infinitesimal interval
containing the point, violating, Hájek claims, possibly appropriate constraints (e.g.
uniformity).

All these arguments have been challenged in the literature: in Williamson’s case
by Weintraub (2008), who argues that it begs the question that isomorphism merits
identical probabilities, and by Howson (2016) who argues that the claim of isomor-
phism is anyway mistaken; and in Pruss’s and Hájek’s cases by Hofweber (2014a, b).
In both the Pruss and Hájek examples the choice of a sufficiently larger set of hyperre-
als could in principle restore regularity (in Hájek’s by admitting smaller infinitesimals

2 The hyperreals are to this extent not as ‘real’ as the real numbers themselves, which are unique up to
isomorphism in the standard model of set theory. The hyperreals can be seen as vindicating Leibniz’s view
of infinitesimals as ideal elements facilitating standard calculations.
3 Bernstein and Wattenberg (1969), p. 176.

123



Synthese

smaller than any in the original field),4 and in a careful discussion Hofweber argues
that such a strategy is entirely compatible with a view of measurement in which the
choice of value-range is not something that should be seen as fixed independently
of the purpose it is intended to serve in any given case (2014b). Hájek responded
(2013) by arguing that such an approach amounts to abandoning anything resem-
bling a Kolmogorovian framework for probability which, he claims, requires that the
range of the probability function must be fixed, and at the real numbers themselves
since only for these is there an unambiguously meaningful notion of additivity (p.
20): countable additivity.5 This claim seems to me highly questionable. Ever since
Abraham Robinson developed the modern theory of non-standard analysis, proba-
bilists have been very successfully using hyperreal-valued probabilities, either defined
on internal algebras, where hyperfinite additivity replaces countable, or on standard
algebras, where the existence of a regular, hyperreal-valued finitely additive proba-
bility measure on an arbitrary Boolean algebra was proved first (to the best of my
knowledge) sixty years ago by Nikodým.6 Moreover, for any specified real-valued
measure there is a regular hyperreal-valued measure agreeing with it up to an infini-
tesimal.

These are all recognisably generalisations of the classical measure-theoretic frame-
work in which Kolmogorov embedded probability theory7, with a stable notion of
additivity for all hyperreal extensions, finite additivity. To insist that Kolmogorovian-
style probability theorymust employ countable additivity, and hence be defined on the
real, runs counter not only to the belief of people like de Finetti and Savage, for whom
only finite additivity is the correct form of additivity for Bayesian probability, but also
possibly to that of Kolmogorov himself, who separated off countable additivity (in
the form of an axiom of continuity) from the other, basic axioms, claiming no more
for it than mathematical expediency.8 If I am correct, then, Hájek’s parting challenge
‘Just try providing an axiomatisation along the lines of Kolmogorov’s that has any
flexibility in the range built into it’ (p. 22) has already been answered.9

It is also worth pointing out that the idea that Kolmogorov’s axioms are to be
regarded as written in stone, so to speak, is not one to which probabilists themselves

4 Though it is not obvious to me why a symmetry constraint thought to authorise uniformity over the reals
should also be obliged to carry over to infinitesimal intervals.
5 Hyperreal probabilities are not countably additive because the usual limit procedure for defining infinite
sums is not available (the least upper bound principle fails for hyperreal numbers).
6 Nikodým (1956). A simplified proof is in Luxemburg (1962).
7 By regarding a probability as a non-negative function on an algebra of events (which can always be
identified with an algebra of subsets of a basic possibility-space, called by Kolmogorov a set of ‘elementary
events’ (1950, p. 2).
8 ‘We limit ourselves, arbitrarily, to only those models which satisfy Axiom VI (equivalent to countable
additivity]’ (1950, p. 15; emphasis in original). To inject a personal anecdote into the discussion, I regularly
see in the philosophical literature references to ‘Kolmogorov’s axioms’ in which only binary, and hence
finite, additivity is assumed. One could see this as mere inaccuracy, but I think a more plausible view is
that finite additivity is generally thought to be the fundamental additivity rule (it doesn’t of course prohibit
countable additivity).
9 Although I believe that these counters are successful, this should not be taken as a positive endorsement
of attempts to save regularity by appeal to the hyperreals, and I will argue in the concluding section of this
paper that trying to save regularity in this—or any other—way is misconceived.
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by and large seem to subscribe, including, perhaps surprisingly, Kolmogorov him-
self. In a later paper (1995; published originally in 1948) he listed what he thought
were the defects of the formalism presented in his original monograph (among them
the presence of the underlying set of ‘elementary outcomes’ in which the algebra of
events/subsets are defined, which he now regards as a purely ‘artificial superstruc-
ture’).10 In the decades following the publication of that monograph the discipline
has seen many experimental variations on Kolmogorov’s original presentation: Kol-
mogorov’s own, just described; others in which probabilities are defined directly
on formulas from an appropriate, possibly infinitary language (Scott and Krauss
1966); de Finetti’s approach (1974), which rejects countable additivity and in which
coherent probabilities are defined on any arbitrary set of events (which must how-
ever include the certain event); non-standard probabilities; and some discussions
of quantum mechanics in which negative probabilities have been seriously consid-
ered.

Somuch byway of introduction: I now turn to themain focus of this paper, the argu-
ment of Pruss (2012), exploiting a notorious problem with finitely additive standard
probability functions: non-conglomerability. I will show that this argument, ingenious
though it is, does not prove what its author claims it does.

2 Pruss’s argument

It is well known that merely finitely additive (standard) probability functions can
always have as their domain the full power-set of a possibility-spaces, however big
it might be. This is nice; not so nice is that in an infinite possibility-space S these
probabilities are non-conglomerable along some countably infinite margin: that is to
say, for any such function P there is a countably infinite partition {Ci : i ∈ Z+} of S and
real numbers a,b such that for some eventD, P(D|Ci) ∈ [a, b] for all i ∈ Z+ andP(D) /∈
[a, b]; by contrast, countably additive probability functions are conglomerable in every
countable margin11. This feature of finitely additive functions was acknowledged by
de Finetti, who first identified it but nevertheless still rejected the rule of countable
additivity. What might seem even more problematic from his point of view is that any
such probability function seems easily Dutch-Bookable and hence incoherent: one of
the Ci must occur, suppose Cm, leaving the ‘owner’ of these probabilities in effect
citing two different odds on D, namely P(D|Cm) and P(D). One of these is always
larger or always smaller than the other. Under the usual assumption that this person
is willing to bet indifferently on or against any proposition at their fair-betting rate
(with the stakes in utiles), it is easy to see that they can be made to lose a positive
amount in any case. But despite appearances there is no incoherence here. De Finetti,
who introduced the concept of incoherence into probabilistic discourse and whom we
should presumably therefore trust for a correct understanding of it, defined it as the

10 Its original function was presumably to support a class of random variables, but these can be identified
with homomorphisms from the event algebra into the algebra of Borel sets.
11 More precisely, a full conditional probability P on the power set of S is conglomerable along every
countable partition of S just in case the unconditional function P( .

∣
∣S) is countably additive.
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vulnerability of a finite set of bets to a Dutch Book (1972, p. 79). In the present case,
by contrast, infinitely many bets are required to ensure a certain loss.12

Incoherence may not be an issue for non-conglomerable probabilities, but in a
letter to de Finetti Lester Dubins presented an example in which they appear to have
genuinely pathological, if not paradoxical, consequences. Dubins’s example consists
of two procedures, A and B, which generate positive integers as the values of some
random variable X, and A and B are selected each with the probability 1/2. It is
assumed that the chance of any given integer n being selected by A is identically 0
(so the probability function is assumed to be only finitely additive), and the chance
of it being selected by B is 2−n.13 A simple Bayes’s Theorem calculation shows
that P(A|X = n) = 0 and P(B|X = n) = 1 for every n ∈ Z+ (read A and B as
corresponding propositions saying that A is selected, B is selected). Thus we have the
nonconglomerability of P along the margin {X = n : n = 1, 2, 3, . . .} since P(A) =
P(B) = 1/2. Assuming that you were to adopt the Bayesian rule of conditionalisation
after observing X, you would be certain that it is B that was selectedwhichever integer
had been observed. The paradoxical character of the example lies in the fact that, as
has just been done, you can work all this out in advance of observing X; in Kadane et
al.’s nice phrase (1996), you can ‘reason to a foregone conclusion’. This is clearly not a
formal paradox, i.e. a contradiction (modulo the rules of finitely additive probability).
But it is a paradox in the informal sense that it challenges a basic intuition, namely
that you can predict with certainty exactly how your belief will change, and in this
case change radically, before you are even aware of the evidence that will cause the
change.

Though such fatalistic reasoning is, in the context of standard probability functions
and the rule of conditionalisation, a consequence of rejecting countable additivity, it
is, as Pruss points out, easily reproducible in a nonstandard setting. Wenmackers and
Horsten (2013) have presented one method (based on what they call a ‘numerosity’
measure) of assigning infinitesimal probabilities to the positive integers in which they
(hyperfinitely) sum to 1. So suppose that procedure A above assigns such an infin-
itesimal probability to the (standard) integer n, with B assigning the value 2−n as
before. Involving as they do only arithmetical operations, similar Bayes’s Theorem
calculations to those above show that P(A|X = n) is infinitesimal for every n, while
P(B|X = n) is infinitely close to 1 for all n. Again, you know in advance that condi-
tionalisation will give you these updated probabilities whichever n is generated: you
will be practically certain that n was generated by B. Pruss’s conclusion is that if you
look to infinitesimals to escape failures of regularity you will end up with something
as, or even more, unpalatable.

12 The apparently ad hoc finiteness condition does have an important proof-theoretic rationale: another
of de Finetti’s major results (he called it ‘the fundamental theorem’) is that any coherent probability on
any arbitrary set of events containing the certain event can be extended to any including algebra, including
a power-set algebra (1974, p. 112). This is of course in sharp contrast to countably additive probability
measures, where for example not all subsets of [0,1] are measurable.
13 In his discussion of the example (1972, p. 205, 206), de Finetti suggested the procedure of flipping a
fair coin until the first tail comes up as a model for B, and a fair infinite lottery as a model for A.
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3 The diagnosis

Given either the assumption of merely finite additivity for standard probabilities, or
the extension of the range of standard probability functions to hyperreal values, con-
ditionalisation is the necessary and sufficient condition for the generation of these
apparently paradoxical results. In other words if and only if you know that you will
conditionalise, given those other assumptions, can you say that you know in advance
how your belief will change. Thus neither finite additivity alone nor the assumption of
hyperreal probability-values alone is culpable: the pathology only emerges with the
complicity of conditionalisation. However, a little reflection arguably shows that given
those same assumptions, conditionalisation is actually an inappropriate updating strat-
egy: if you know that whichever value of X might be observed, conditionalisation on
it will lead you to conclude that A is practically certain, and you nevertheless maintain
your prior of 1/2, then it would seem that you have implicitly rejected conditional-
isation as an appropriate policy (since the implicit possibility-space comprises both
‘possible worlds’ determining which of A and B are selected and also the possible
values of X, that prior already implicitly considers the later). Jos Uffink observed in a
different context that ‘if it is certain beforehand that a probability value will be revised
downward, this value must have been too high to start with, and could not have been
a faithful representation of our opinion’ (1996, p. 68). Conversely, if the prior for A
is a faithful representation of our opinion, and its revision downward is due to the
presence of a particular assumption or rule of inference (the rule in the present case
being conditionalisation), then the assumption is false or the rule invalid or otherwise
inappropriate. This is not at all to impugn the inference via Bayes’s Theorem to the
conditional probabilities P(A|X = n) = 0, P(B|X = n) = 1, which of course remains
valid since it is a condition of coherence. What is impugned is the appropriateness of
conditionalising on those probabilities (as we shall see shortly, in his own discussion of
this example de Finetti himself came close to explicitly rejecting conditionalisation).

Here, then, we have a situation where finite additivity or hyperreal probabilities
appear to generate a paradoxical conclusion, but only in conjunction with an updat-
ing rule, conditionalisation, which in this context seems to be self-undermining.14

According to a well-known argument, however, adopting any other policy falls prey
to incoherence: anyone announcing a different updating strategy, and is willing to bet
either way at their fair-betting rate, is easily shown to be vulnerable to what is called
in the Bayesian vernacular a ‘dynamic’ Dutch Book. In the present context we can
forget the qualifier ‘dynamic’, since the Dutch Book to which a non-conditionalising
strategy in the present context is vulnerable is a quite ordinary, ‘synchronic’ one. Sup-
pose my updated degree of belief in A after observing that X=n is some number qn,
where qn is positive for every n, while, of course, P(A|X = n) = 0. Then given that
only one value of X will be recorded, anyone who is willing to bet indifferently on
or against A at any or all their fair-betting quotients can of course be Dutch Booked,
using the same sort of Dutch Book as in Sect. 2. Unfortunately (or not) as with that

14 Kadane et al. state that repudiating conditionalisation is just one possible way, among others, to avoid
that conclusion (1996, p. 1235), but if the foregoing is correct the prior distribution over A and B implicitly
rules it out anyway.
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earlier Dutch Book this one also is no evidence of incoherence, since as with the first
it requires an infinity of bets being made, and as we know from the earlier discussion
the incoherence of any set of betting quotients requires that a finite subset must be
Dutch Bookable.

This is of course not the only argument in the literature for conditionalisation.
Another popular candidate appeals to expectations: there is a a well-known theorem
that any act which maximises utility relative to a conditionalisation-updated belief
function has at least as great a utility with respect to your prior distribution as a utility-
maximising act computed relative to any other updating rule, and is strictly greater
if there is a unique such act. In other words, conditionalisation maintains, in this
sense, your current utility ranking. A corresponding ‘non-pragmatic’ result transfers
the expectations in question from utilities to measures of inaccuracy,15 subject to
an important condition (the belief function must be ‘immodest’).16,17 It might of
course be questioned why it should be automatically desirable to have your current
expectations/estimates preserved in this way on learning new information. Be that
as it may, there is a more immediate objection: these results, pragmatic and non-
pragmatic, are proved for the restricted case where the possible evidence reports to be
updated on form a finite partition. Easwaran has shown (2013) that they are preserved
in the infinite case if the probability function is countably additive. In the present
context, of course, the information updated on is a member of the countable partition
{X = i : i = 1, 2, . . .} and the probability function is not countably additive.18

And in the context of Dubins’s example the (allegedly) optimising character of
conditionalisation-updated belief functions does indeed fail to be preserved: de Finetti
himself in effect presented an infinite family of posterior distributions yielding superior
expected gains by comparison with that generated by conditionalising, when judged
from the prior standpoint. In his discussion of the Dubins example (1972, p. 205) he
pointed out that the strategy of betting on B if the observed value n is less than or
equal to k, and on A otherwise, gives a probability of winning, namely 1 − 2−k, that
tends to 1 as k tends to infinity (it is not difficult to see that varying the value of the
prior probability within (0,1) doesn’t change the limit probability of 1). There is no
optimal member of this family, and setting the value of k at infinity (bet on all finite
values) is just the strategy based on conditionalising (always bet on B whatever the
value of X observed) which as judged from the prior standpoint only a half chance of
winning, whereas for all values of k greater than 1 that chance exceeds 1/2. Judged
from the prior standpoint, the betting strategy recommended by conditionalisation
thus has a smaller expected value than the other. Implicit in the latter is a family of

15 Of the type James Joyce introduced into the Bayesian literature; see Joyce (2009).
16 Greaves and Wallace (2006).
17 A function is immodest if it assigns maximum expected accuracy just to itself. The well-known Brier
score is one such immodest measure.
18 There are other purported justifications of conditionalisation, but they are to my mind all question-
begging in one way or another. For example, another often-canvassed candidate appeals to the fact that
minimising Kullback–Leibler divergence, subject to the constraint that the new evidence E is learned with
probability 1, selects P(.|E) as the closest probability function to the prior P( . ). K–L divergence is a
(directed) distance measure in function space, but as such it is far from unique, and in any case it is not clear
why minimising distance from the prior distribution is the appropriate criterion of choice for the posterior.
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belief functions Pk,n(B), constant on the set {n : n < k} and dropping to some small
value for large k. In fact, such a function is uniquely determined by the condition that
the prior expectation of any bet at the corresponding odds is zero: then we must have
Pn(B) = P(B|X ≤ k) = 1 if n ≤ k and equals P(B|X > k) = (1 + 2k)−1 if n > k.19

This is of course not the only such updating function for B: another which is nowhere
constant and satisfies the same intuition that smaller values count more heavily in
favour of B is the function Pn(B) := P(X = n|B) = 2−n.

All in all, then, it seems that the verdict must be that the Dubins example fails to
demonstrate Pruss’s claim that although infinitesimal probabilities are mathematically
well-defined they

allow one to have an event whose credence …is significantly less than one half
and a set-up where nomatter what results, one will end upwithin an infinitesimal
of certainty that the event occurred (2012, p. 9)

A claim which anyway is strictly speaking incorrect. Infinitesimal probabilities
do not generate that pathological result by themselves, any more than a standard
non-conglomerable probability function does: they generate it only in conjunction
with conditionalisation. But since conditionalisation is implicitly denied where non-
conglomerable probabilities are involved, any result obtained by its means can be
viewed as akin to one produced trivially from an inconsistency. Hyperreal-valued
probability functions behave in many ways like finitely additive standard functions,
and it has often been observed that the class of merely finitely additive probabilities is
a sort of wild place where the comfortable certainties of countably additive functions
no longer hold. But I think that up to now it has not been generally realised that, as
far as epistemic probability is concerned, conditionalisation is one of them.20

4 Conclusion

If the foregoing is correct then Pruss’s objection may fail to show that appealing to
hyperreal probabilities to salvage regularity brings in its train reasoning to a foregone
conclusion, but it certainly has other consequences scarcely more palatable. As to
regularity, it is far from clear to me what dividends if any accrue to salvaging it
by appeal to the hyperreals, other than the mathematical satisfaction of knowing that
howevermany possible contingent events we can conjure, there will always be positive
numbers enough to measure them. By comparison with what has to be foregone that
seems scant justification, a sort of l’art pour l’art when compared with the wealth
of results of classical mathematical probability on the reals in which regularity is

19 This function, or family of functions, is noted by Kadane et al. (1996, p. 1232), who also point out that
taking k as infinite leads back to the conditionalised updating function, though they nowhere mention de
Finetti’s own discussion.
20 This doesn’t imply that conditionalisation is problematic in typicalBayesian inductive scenarios,whether
in the context of countable additivity, where of course its use seems entirely straightforward, or even in the
finitely additive context where examples like Dubins’s are highly atypical and can be regarded as isolated
pathologies. Even under finite additivity quite strong versions of the classical limit theorems remain provable
(see for example Chen 1977).
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violated systematically, not just in the powerful ‘almost surely’ theorems but also in
the ubiquitous continuous distributions which make up the bulk of applied probability.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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