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Abstract We consider the problem of estimating the joint distribution of a contin-
uous-time perpetuity and the underlying factors which govern the cash flow rate, in
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The first identifies a partial differential equation for the conditional cumulative dis-
tribution function of the perpetuity given the initial factor value, which under cer-
tain conditions ensures the existence of a density for the perpetuity. The second (and
more general) approach, using techniques of time reversal, identifies the joint law as
the stationary distribution of an ergodic multidimensional diffusion. This latter ap-
proach allows efficient use of Monte Carlo simulation, as the distribution is obtained
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1 Introduction

1.1 Discussion

In this article, we consider a continuous-time perpetuity given by the random variable

X0 :=
∫ ∞

0
Dtf (Zt )dt. (1.1)

Above, Z = (Zt )t∈R+ represents the value of an economic factor that determines a
cash flow rate (f (Zt ))t∈R+ . Cash flows are discounted according to D = (Dt )t∈R+ ;
therefore, X0 represents the whole payment in units of account at time zero. Our
main concern is the identification of an efficient way to obtain the joint distribution
of (Z0,X0), as naive estimation of the distribution by simulating sample paths of Z

and approximating X0 through numerical integration may be prohibitively slow. As
Z0 is typically observable, the joint distribution of (Z0,X0) also allows us to obtain
the conditional distribution of X0 given Z0.

In order to make the problem tractable, we work in a diffusive, Markovian environ-
ment where Z and D are solutions to the respective stochastic differential equations
(written in integrated form)1

Z = Z0 +
∫ ·

0
m(Zt)dt +

∫ ·

0
σ(Zt )dWt, (1.2)

D = 1 −
∫ ·

0
Dt

(
a(Zt )dt + θ(Zt )

′σ(Zt )dWt + η(Zt )
′ dBt

)
. (1.3)

In the above equations, W and B are independent Brownian motions of dimension d

and k, respectively, while m, σ , a, θ and η are given functions. (Precise assumptions
on all the model coefficients are given in Sect. 2.) We assume Z is stationary and
ergodic with invariant density p. Equation (1.3) includes in particular the case when
D is smooth, in other words, D = exp(− ∫ ·

0 a(Zt )dt), where a represents a short-rate
function. However, the more general form of (1.3) is considered to accommodate a
broader range of situations; for example,

– when payment streams are denominated in different units of account (for example,
another currency, or financial assets), in which case discounting has to take into
account the “exchange rate”;

– when for pricing purposes, the payment stream, though denominated in domes-
tic currency, must incorporate both traditional discounting and the density of the
pricing kernel.

The two main results of the paper—Theorems 3.1 and 3.4—identify the distribu-
tion of (Z0,X0) in different ways. First, in the case where η in (1.3) is non-degenerate
and f in (1.1) is sufficiently regular, the conditional cumulative distribution function
of X0 given Z0 is shown to coincide with the explosion probability of an associated
locally elliptic diffusion and hence, through the Feynman–Kac formula, satisfies a

1Throughout the text, the prime symbol ′ denotes transposition.
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partial differential equation (PDE); see Theorem 3.1. Second, for general η and f ,
using methods of diffusion time reversal, we identify an “ergodic” process (ζ,χ)

whose invariant distribution coincides with the joint distribution of (Z0,X0). In par-
ticular, for any fixed starting point x > 0 of χ , the (random) empirical time-average
law of (ζ,χ) on [0, T ] almost surely converges to the joint distribution of (Z0,X0)

in the weak topology; see Theorem 3.4. The time-reversal result has the advantage
of leading to an efficient method for obtaining the distribution via simulation, as
the ergodic theorem enables estimation of the entire distribution based upon a sin-
gle realization of (ζ,χ); a numerical example in Sect. 4 dramatically reinforces this
point. However, it must be noted that the invariant distribution p for Z appears in
the reversed dynamics, and hence must be known to perform simulation. When Z is
one-dimensional, or more generally reversing, in the sense that the second order lin-
ear differential operator associated to its generator is symmetric on a certain Hilbert
space (see [27, Sect. 4.10]), p is given in explicit form with respect to the model pa-
rameters. In the general multidimensional setup, lack of knowledge of p could pose
an issue; however, we provide a potential way to amend the situation in the discus-
sion after Theorem 3.4. Note also that in the PDE result in Theorem 3.1, explicit
knowledge of p is not necessary.

1.2 Existing literature and connections

Obtaining the distribution of the perpetuity X0 is of great importance in the areas of
finance and actuarial science; for this reason, perpetuities with a form similar to X0
have been extensively studied. For example, [11] deals with the case where

X0 =
∫ ∞

0
e−σBt−νt dt,

establishing that X0 has an inverse gamma distribution. This fits into the setup of
(1.2), (1.3) by taking a = ν − σ 2/2, f = 1, θ = 0 and η = σ . Note that here Z plays
no role. In a similar manner, [31, Chap. 5] and [9, 10] consider the case

X0 =
∫ ∞

0
e− ∫ t

0 Zu du dt, dZt = κ(θ − Zt)dt + ξ
√

ZtdWt,

and obtain the first moment, along with bounds for other moments, of X0. In [16],
the perpetuity takes the form

X0 =
∫ ∞

0
e−Qt dPt , with P and Q being independent Lévy processes. (1.4)

Under certain conditions on P and Q, the distribution of X0 is implicitly calculated
by identifying the characteristic function and/or Laplace transform for X0. In fact,
the results of [16] are pre-dated (for highly particular P and Q) in [24, 21]. The
Laplace transform method is also used in [26, 25] to treat (1.4) when Pt = t and
Q is a diffusion. In addition to identifying a degenerate elliptic partial differential
equation for the Laplace transform, they propose a candidate recurrent Markov chain
whose invariant distribution has the law of X0. Lastly, the setup of [16] is significantly
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extended in [6] where under minimal assumptions on P and Q, the distribution of
X0 is shown to coincide with the unique invariant measure for a certain generalized
Ornstein–Uhlenbeck process, a relationship that is confirmed in our current setting in
Proposition 9.2.

The use of time reversal to identify the distribution of a discrete-time perpetuity is
well known, dating at least back to [12], where X0 takes the form

X0 =
∞∑

n=1

( n∏
i=1

Di

)
fn,

where the discount factors (Dn)n∈N and cash flows (fn)n∈N are two independent
sequences of independent, identically distributed (iid) random variables. To provide
insight, the time-reversal argument in [12] is briefly presented here. With

X
(N)
0 :=

N∑
n=1

( n∏
i=1

Di

)
fn,

it is clear by the iid property that X
(N)
0 has the same distribution as

X̃N := DNfN + DNDN−1fN−1 + · · · +
( N∏

j=1

Dj

)
f1.

Straightforward calculations show that the reversed process (X̃n)n∈N satisfies the
recursive equation X̃n = Dn(X̃n−1 + fn). Thus, assuming that (X̃n)n∈N converges
to a random variable X̃ in distribution, X̃ must solve the distributional equation
X̃ = D(X̃ + f ), where D, f and X̃ are independent, D has the same law as D1

and f has the same law as f1. In [30], solutions to that distributional equation are
obtained based upon the expectation of log |D| and log+ |Df |. The tails of X̃, as
well as convergence of iterative schemes, are studied in [14]; furthermore, [17] gives
“almost” if and only if conditions for the convergence of iterative schemes.

In a continuous-time setting, we employ an argument similar in spirit, but rather
different in execution, to [12]. Specifically, we extend X0 to a whole “forward” pro-
cess X := (1/D)

∫∞
· Dtf (Zt )dt , and then for each T > 0 define the reversed process

(ζ T ,χT ) on [0, T ] by ζ T
t := ZT −t , χT

t := XT −t ; see (3.6), (3.7). Using results on
time reversal of diffusions from [19] (alternatively, see [23, 3, 7, 13]) as well as addi-
tional elementary calculations, we obtain the dynamics for (ζ T ,χT ). In fact, Proposi-
tion 8.5 shows that the generator of (ζ T ,χT ) does not depend upon T and ergodicity
can be studied for the process (ζ,χ) with the given generator. When |η| > 0 and f is
sufficiently regular, this generator is locally elliptic and the associated process (ζ,χ)

is ergodic with invariant distribution equal to that of (Z0,X0); see Proposition 9.2. In
the general case, a slightly weaker (but still sufficient) form of ergodicity still holds:
starting ζ from its invariant distribution p and χ from any starting point x > 0, the
(random) empirical time-average laws of (ζ,χ) converge almost surely in the weak
topology to the distribution of (Z0,X0).



Continuous-time perpetuities

1.3 Structure

This paper is organized as follows. In Sect. 2, we precisely state the assumptions on
the processes Z and D, as well as the function f , paying particular attention to de-
riving sharp conditions under which X0 is almost surely finite or infinite. The main
results are then presented in Sect. 3. First, when |η| > 0 and f is sufficiently regular,
the conditional cumulative distribution function of X given Z0 = z is shown to sat-
isfy a certain partial differential equation. Then, using the method of time reversal, we
construct a probability space and diffusion (ζ,χ) such that with probability one, its
empirical time-average laws weakly converge to the joint distribution of (Z0,X0) for
all starting points of χ . Section 3 concludes with a brief discussion how the distribu-
tion may be estimated via simulation, in particular proposing a method for obtaining
the desired distribution when the invariant density p for Z is not explicitly known.
Section 4 provides a numerical example in a specific case where the joint distribution
of (Z0,X0) is explicitly identifiable. Here, we compare the performance of the rever-
sal method versus the direct method for obtaining the distribution of X0. In particular,
we show that for a given desired level of accuracy (see Sect. 4 for a more precise def-
inition), the method of time reversal is approximately 175 to 300 times faster than
the direct method. The remaining sections contain the proofs. Section 6 proves the
statements regarding the finiteness of X0; Sect. 7 proves the partial differential equa-
tion result; Sect. 8 obtains the dynamics for the time-reversed process (ζ,χ); Sect. 9
proves the (weak) ergodicity with the correct invariant distribution. Finally, a number
of technical supporting results are included in the Appendix.

2 Problem setup

2.1 Well-posedness and ergodicity

The first order of business is to specify precise coefficient assumptions so that Z in
(1.2) and D in (1.3) are well defined. As for Z, we work in the standard locally elliptic
setup for diffusions; for more information, see [27, Chaps. 3.7, 4.1]. Let E ⊆ R

d be
an open, connected region. We assume the existence of γ ∈ (0,1] such that

(A1) there exists a sequence of regions (En)n∈N such that E =⋃∞
n=1 En, with

each En being open, connected, bounded, with ∂En being C2,γ and satisfying
Ēn ⊂ En+1 for all n ∈N;

(A2) m ∈ C1,γ (E;Rd) and c ∈ C2,γ (E;Sd++), where S
d++ is the space of sym-

metric and strictly positive definite (d × d)-dimensional matrices.
With the provisos in (A1) and (A2), define LZ as the generator associated to

(m, c), i.e.,2

LZ := 1

2

d∑
i,j=1

cij ∂2
ij +

d∑
i=1

mi∂i .

2In the sequel, the summation indices will be omitted using Einstein’s convention; therefore, LZ will be

written as LZ = (1/2)cij ∂2
ij

+ mi∂i .
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Under (A1) and (A2), one can infer the existence of a solution to the martingale
problem for LZ on E, with the possibility of explosion to the boundary of E; see
[27, Chap. 1.13]. We wish for something stronger, namely, to construct a filtered
probability space (Ω, F, P) on which there is a strong, stationary, ergodic solution to
the SDE in (1.2) with invariant density p. In (1.2), W is a d-dimensional Brownian
motion and σ = √

c, the unique positive definite symmetric matrix such that σ 2 = c.
In order to achieve this, we ask that

(A3) the martingale problem for LZ on E is well posed and the corresponding
solution is recurrent. Furthermore, there exists a strictly positive p ∈ C2,γ (E,R) with∫
E

p(z)dz = 1 and satisfying L̃Zp = 0, where L̃Z is the formal adjoint of LZ given
by

L̃Z := 1

2
cij ∂2

ij − (mi − ∂j c
ij )∂i −

(
∂im

i − 1

2
∂2
ij c

ij

)
. (2.1)

We summarize the situation in the following result; the extra Brownian motion B

in its statement will be used to define the process D via (1.3) later on.

Theorem 2.1 Under Assumptions (A1)–(A3), there exists a filtered probability space
(Ω, F, P) satisfying the usual conditions and supporting two independent Brownian
motions W and B , d-dimensional and k-dimensional, respectively, such that Z satis-
fies (1.2) and is stationary and ergodic with invariant density p.

Remark 2.2 According to [27, Corollary 5.1.11], in the one-dimensional case where
E = (α,β) for −∞ ≤ α < β ≤ ∞, the above Assumption (A3) is true if and only if
for some z0 ∈ E,

∫ z0

α

exp

(
−2
∫ z

z0

m(s)

c(s)
ds

)
dz = ∞,

∫ β

z0

exp

(
−2
∫ z

z0

m(s)

c(s)
ds

)
dz = ∞,

∫ β

α

1

c(z)
exp

(
2
∫ z

z0

m(s)

c(s)
ds

)
dz < ∞.

In this case, it holds that

p(z) = Kc−1(z) exp

(
2
∫ z

z0

m(s)

c(s)
ds

)
, z ∈ (α,β),

where K > 0 is a normalizing constant.
In the multidimensional case, suppose that there exists a function H : E →R with

the property that c−1(2m − div c) = ∇H , where div c is the (matrix) divergence de-
fined by3 (div c)i = ∂j c

ij , i = 1, . . . , d . Then Z from Theorem 2.1 is a reversing

3This definition is equivalent to the standard definition of divergence for matrices, where the divergence
operator is applied to the columns, by the symmetry of c. Also, to differentiate the matrix divergence from
its vector counterpart, we write divA for symmetric matrices A and ∇ · v for vector-valued functions v.
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Markov process in the sense that the time-reversed process on any interval [0, T ] has
the same dynamics as Z; see [19]. Furthermore, Assumption (A3) follows if it can be
shown that Z does not explode to the boundary of E and K := ∫

E
exp(H(z))dz < ∞.

Indeed, by construction, p = eH /K satisfies L̃Zp = 0 and
∫
E

p(z)dz = 1. Thus if Z

does not explode, it follows from [27, Theorem 2.8.1, Corollary 4.9.4] that Z is re-
current. In fact, Z is ergodic, as shown in [27, Theorems 4.3.3, 4.9.5]. If we are not
in the reversing case, there are many known techniques for checking ergodicity; see
[5, 27]. For example, if there exist a smooth function u : E → R, an integer N and
constants ε > 0 and C > 0 such that LZu ≤ −ε and u ≥ −C on E \ EN , then (A3)
holds.

In order to ensure that D in (1.3) is well defined, we assume that
(A4) a ∈ C1,γ (E;R+), η ∈ C2,γ (E;Rk) and θ ∈ C2,γ (E;Rd).
Given (A4) and all previous assumptions, it follows that (1.3) possesses a strong

solution on (Ω, F, P) from Theorem 2.1; in fact, defining R := − logD, it holds that

R =
∫ ·

0

(
a + 1

2
(θ ′cθ + |η|2)

)
(Zt )dt +

∫ ·

0
θ(Zt )

′σ(Zt )dWt +
∫ ·

0
η(Zt )

′ dBt .

(2.2)

2.2 Finiteness of X0

Having the setup for the existence of Z and D, we proceed to X0. For the time being,
we just assume4 that the function f : E → R+ is in L

1(E,p). For the PDE results
of Theorem 3.1 below, we require a slightly stronger regularity assumption on f ,
although the time-reversal results of Theorem 3.4 make no additional assumptions.
Now, for f not necessarily in L

1(E,p), it is entirely possible that X0 takes infinite
values with positive probability. In this section, conditions are given under which
P[X0 < ∞] = 1 or, conversely, when P[X0 < ∞] = 0.

Lemma 2.3 Let (A1)–(A4) hold. For the invariant density p of Z, assume there exists
ε > 0 such that

(
a + 1 − ε

2
(θ ′cθ + η′η)

)−
∈ L

1(E,p),

∫
E

(
a + 1 − ε

2
(θ ′cθ + η′η)

)
(z)p(z)dz > 0.

(2.3)

Then the following hold:

(i) There exists κ > 0 such that for all z ∈ E, P[limt→∞ eκtDt = 0 | Z0 = z] = 1. In
particular, limt→∞ eκtDt = 0 P-a.s.

(ii) For any f ∈ L
1(E,p), it holds that P[X0 < ∞] = 1.

4We define L
1(E,p) to be those Borel-measurable functions g on E so that

∫
D |g(z)|p(z)dz < ∞. Thus,

Borel-measurability is implicitly assumed throughout.
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Remark 2.4 Note that (2.3) holds if a > 0 on E. The more complicated form in
(2.3) allows a to take (unbounded) negative values. Furthermore, in the case where
(θ ′cθ + η′η) ∈ L

1(E,p), (2.3) is equivalent to

(
a + 1

2
(θ ′cθ + η′η)

)−
∈ L

1(E,p),

∫
E

(
a + 1

2
(θ ′cθ + η′η)

)
(z)p(z)dz > 0.

As a partial converse to Lemma 2.3, we have

Lemma 2.5 Let (A1)–(A4) hold. For the invariant density p of Z, assume there exists
ε > 0 such that

(
a + 1 + ε

2
(θ ′cθ + η′η)

)+
∈ L

1(E,p),

∫
E

(
a + 1 + ε

2
(θ ′cθ + η′η)

)
(z)p(z)dz ≤ 0.

(If θ ′cθ + η′η ≡ 0, then assume that a+ ∈ L
1(E,p) and

∫
E

a(z)p(z)dz < 0.) If f is
such that

∫
E

f (z)p(z)dz > 0, then P[X0 < ∞] = 0.

Remark 2.6 Let (A1)–(A4) hold and assume that a is nonnegative. A combination
of Lemmas 2.3 and 2.5 yields sharp conditions for the finiteness of X0 that do not
require knowledge of p, at least for bounded f :

– If a + (1/2)(θ ′cθ + η′η) ≡ 0, then P[X0 < ∞] = 1 holds if f ∈ L
1(E,p).

– If a + (1/2)(θ ′cθ + η′η) ≡ 0, then P[X0 < ∞] = 0 holds if
∫
E

f (z)p(z)dz > 0.

In view of Lemma 2.3, we ask that

(A5) f ∈ L
1+(E,p),

∫
E

f (z)p(z)dz > 0 and there exists ε > 0 such that

(
a + 1 − ε

2
(θ ′cθ + η′η)

)−
∈ L

1(E,p),

∫
E

(
a + 1 − ε

2
(θ ′cθ + η′η)

)
(z)p(z)dz > 0.

To recapitulate, for the remainder of the article, the following is assumed:

Assumption 2.7 We enforce throughout all the above Assumptions (A1)–(A5).

3 Main results

3.1 The distribution of X0 via a partial differential equation

Define the cumulative distribution function g of X0 given Z0 by

g(z, x) := P [X0 ≤ x | Z0 = z] , (z, x) ∈ F := E × (0,∞). (3.1)
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Next, recall that Assumption 2.7 implies that Z0 has a density p, and define the joint
distribution π of (Z0,X0) by

π(A) :=
∫∫

A

p(z)g(z,dx)dz, A ∈ B(F ). (3.2)

Under Assumption 2.7, as well as an additional smoothness requirement on f and
non-degeneracy requirement on η, the first main result (Theorem 3.1 below) shows
that g solves a certain PDE on the state space F . This will imply that the joint dis-
tribution of (Z0,X0) has a density (still labeled π ) and the law of X0 charges all of
(0,∞).

To motivate the result as well as to fix notation, for each x ∈ (0,∞), consider the
process

Yx := 1

D

(
x −
∫ ·

0
Dtf (Zt )dt

)
.

Since Assumption 2.7 implies that P[limt→∞ Dt = 0 | Z0 = z] = 1 for all z ∈ E, it
is clear that given Z0 = z, the process Yx tends to ∞ on {X0 < x}. Alternatively,
on {X0 > x}, Yx will hit 0 at some finite time. What happens on {X0 = x} is not
immediately clear, but it will be shown under the given assumptions that there is
probability zero of this occurring. For fixed (z, x) ∈ F , it follows that 1 − g(z, x)

equals the probability that Yx hits zero, given Z0 = z. According to the Feynman–
Kac formula, such probabilities “should” solve a PDE. To identify the PDE, note that
the joint equations governing Z and Yx are

Z = Z0 +
∫ ·

0
m(Zt)dt +

∫ ·

0
σ(Zt )dWt,

Y x = x +
∫ ·

0

(
− f (Zt ) + Yx

t

(
a(Zt ) + θ ′cθ(Zt ) + η′η(Zt )

))
dt

+
∫ ·

0
Yx

t

(
θ ′σ(Zt )dWu + η(Zt )

′ dBt

)
.

Define b : F →R
d+1 and A : F → S

d+1++ by

b(z, x) :=
(

m(z)

−f (z) + x(a + θ ′cθ + η′η)(z)

)
,

A(z, x) :=
(

c(z) xcθ(z)

xθ ′c(z) x2(θ ′cθ + η′η)(z)

)
,

(3.3)

for all (z, x) ∈ F . Note that if in addition to Assumption 2.7, |η|(z) > 0 for z ∈ E,
then A is locally elliptic. Let L be the second order differential operator associated
to (A,b), i.e.,

L := 1

2
Aij ∂2

ij + bi∂i . (3.4)

Note that Lφ = LZφ for functions φ of z ∈ E alone. With the previous notation, the
first main result now follows.
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Theorem 3.1 Let Assumption 2.7 hold, and suppose further that
(a) f ∈ C1,γ (E;R+),
(b) |η(z)| > 0 for all z ∈ E.
Then g is in C2,γ (F ) and satisfies Lg = 0 with the “locally uniform” boundary
conditions

lim
n→∞ sup

x≤n−1,z∈Ek

g(z, x) = 0, lim
n→∞ inf

x≥n,z∈Ek

g(z, x) = 1, ∀k ∈ N. (3.5)

Furthermore, g is the unique function satisfying Lg = 0 with the above boundary
conditions, in the set of functions {g̃ ∈ C2(F ) : 0 ≤ g̃ ≤ 1}.

Remark 3.2 The non-degeneracy assumption on η is essential for the existence of
a density; if η ≡ 0, it may be that the distribution of X0 has an atom. Indeed, take
f ≡ 1, a ≡ 1, η ≡ 0, θ ≡ 0. Then X0 = ∫∞

0 e−t dt = 1 with probability one.

Remark 3.3 Theorem 3.1 implies that the law of X0 charges all of (0,∞), even for
those functions f which are bounded from above. Theorem 3.1 also implies that
X0 has a density without imposing Hörmander’s condition [22, Chap. 2] on the co-
efficients in (3.3). Rather, the infinite horizon combined with the presence of the
independent Brownian motion B “smooth out” the distribution of X0.

Theorem 3.1 is certainly important from a theoretical viewpoint. However, it ap-
pears to be of limited practical use. Even under the extra non-degeneracy condition
|η| > 0, it is unclear how to numerically solve the PDE Lg = 0 with the given bound-
ary conditions (3.5), as there are no natural auxiliary boundary conditions in the spa-
tial domain of z ∈ E. In Sect. 3.2 that follows, we provide an alternative, more useful
method for estimating numerically the law of (Z0,X0).

3.2 The distribution of (Z0,X0) via diffusion time reversal

The goal here is to show that the distribution of (Z0,X0) coincides with the invariant
distribution of a positive recurrent process (ζ,χ). In order to see the connection,
extend X0 to a process (Xt )t∈R+ defined via

X := 1

D

∫ ∞

·
Dtf (Zt )dt, (3.6)

and note that (Zt ,Xt )t∈R+ is a stationary process under P. Fix T > 0 and define the
process (ζ T

t , χT
t )t∈[0,T ] via time reversal, i.e.,

ζ T
t := ZT −t , χT

t := XT −t , t ∈ [0, T ]. (3.7)

It still follows that (ζ T ,χT ) is stationary under P, with the same one-dimensional
marginal distribution as (Z0,X0). Furthermore, stationarity of (Z,X) clearly implies
that the law of the process (ζ T ,χT ) does not depend on T (except for its time-domain
of definition). Therefore, one may create a new process (ζt , χt )t∈R+ , on a potentially
different probability space (e.g. the space of continuous functions), such that the law
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of (ζ T ,χT ) is the same as the law of (ζt , χt )t∈[0,T ] for all t ∈ T . If one can establish
that (ζ,χ) is ergodic, then the distribution of (Z0,X0) may be efficiently estimated
via the ergodic theorem.

Towards this end, one needs to understand the behavior of (ζ,χ). Standard results
(e.g. [19]) in the theory of time reversal imply that ζ is a diffusion in its own filtration,
and identify the corresponding coefficients. In order to deal with χ , we return to the
definition of χT and define yet one more process (ΔT

t )t∈[0,T ] via

ΔT
t = DT

DT −t

, t ∈ [0, T ]. (3.8)

Using all previous definitions, we obtain that

χT
t = XT −t = 1

DT −t

∫ ∞

T −t

Duf (Zu)du

= DT

DT −t

(
XT +

∫ T

T −t

Du

DT

f (Zu)du

)

= ΔT
t

(
χT

0 +
∫ t

0

1

ΔT
u

f (ζ T
u )du

)
, t ∈ [0, T ]. (3.9)

As it turns out, one can describe the joint dynamics of (ζ T ,ΔT ) in appropriate filtra-
tions (and these dynamics do not depend on T , as expected). To ease the presentation,
recall from Sect. 2 that for any S

d++-valued smooth function A on E, the (matrix) di-
vergence is defined by (divA)i = ∂jA

ij for i = 1, . . . , d . It is then shown in Sect. 8
that (ζ T ,ΔT ) is such that

ζ T = ζ T
0 +

∫ ·

0

(
c
∇p

p
+ div c − m

)
(ζ T

t )dt +
∫ ·

0
σ(ζ T

t )dWT
t ,

ΔT = 1 +
∫ ·

0
ΔT

t

(
θ ′c∇p

p
+ ∇ · (cθ) − a

)
(ζ T

t )dt

+
∫ ·

0
ΔT

t

(
η(ζ T

t )′ dBT
t + θ ′σ(ζ T

t )dWT
t

)

= 1 +
∫ ·

0
ΔT

t

(
θ ′(m − div c) + ∇ · (cθ) − a

)
(ζ T

t )dt

+
∫ ·

0
ΔT

t

(
η(ζ T

t )′ dBT
t + θ(ζ T

t )′ dζ T
t

)

for independent Brownian motions (WT ,BT ) in an appropriate filtration.
From the joint dynamics of (ζ T ,ΔT ), one obtains the joint dynamics of (ζ T ,χT ),

which again do not depend on T . In particular, since ΔT is a semimartingale,
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(3.9) yields that

ζ T = ζ T
0 +

∫ ·

0

(
c
∇p

p
+ div c − m

)
(ζ T

t )dt +
∫ ·

0
σ(ζ T

t )dWT
t ,

χT = χT
0 +
∫ ·

0

(
f (ζ T

t ) − χT
t

(
a − θ ′c∇p

p
− ∇ · (cθ)

)
(ζ T

t )

)
dt

+
∫ ·

0
χT

t

(
η(ζ T

t )′ dBT
t + θ ′c(ζ T

t )′ dWT
t

)
.

For a generic version (ζ,χ) with the same generator (which does not depend upon
time) as (ζ T ,χT ) above, ergodicity of Z implies ergodicity of ζ (see Proposition 8.1
below). Furthermore, χ is “mean reverting” as can easily be seen when θ ≡ 0 and
a > 0, and as continues to be true in the general case. Thus, one expects the empirical
laws of (ζ,χ) to satisfy a certain strong law of large numbers, an intuition that is
made precise in the following result.

Theorem 3.4 If Assumption 2.7 holds, there exists a filtered probability space
(Ω,F,Q) supporting independent d- and k-dimensional Brownian motions W and
B as well as a process ζ satisfying

ζ = ζ0 +
∫ ·

0

(
c
∇p

p
+ div c − m

)
(ζt )dt +

∫ ·

0
σ(ζt )dWt,

where ζ0 is an F0-measurable random variable with density p.
Define the process Δ as the solution to the linear differential equation

Δ = 1 +
∫ ·

0
Δt

(
θ ′(m − div c) + ∇ · (cθ) − a

)
(ζt )dt

+
∫ ·

0
Δt

(
η(ζt )

′ dBt + θ(ζt )
′ dζt

)
, (3.10)

and then for any x ∈ (0,∞), define χx as the solution to the linear differential equa-
tion

χx = x +
∫ ·

0
χx

t

dΔt

Δt

+
∫ ·

0
f (ζt )dt. (3.11)

Finally, let x ∈ (0,∞), T ∈ (0,∞) and set F = E × (0,∞) as in (3.1). Define the
(random) empirical measure π̂x

T on B(F ) by

π̂x
T [A] := 1

T

∫ T

0
IA(ζt , χ

x
t )dt, A ∈ B(F ). (3.12)

With the above notation, there exists a set Ω0 ∈F∞ with Q[Ω0] = 1 such that

lim
T →∞ π̂x

T (ω) = π weakly, for all x ∈ (0,∞) and ω ∈ Ω0, (3.13)

where π is the joint distribution of (Z0,X0) under P given in (3.2).
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Remark 3.5 In the context of Theorem 3.4, note that the processes Δ and χx can be
given in closed form in terms of ζ ; indeed,

Δ = exp

(∫ ·

0

(
θ ′(m − div c) + ∇ · (cθ) − a

)
(ζt )dt

)

× E
(∫ ·

0

(
η(ζt )

′ dBt + θ(ζt )
′ dζt

))
·
,

χx = Δ

(
x +
∫ ·

0

1

Δt

f (ζt )dt

)
, x ∈ (0,∞).

Theorem 3.4 provides a way to estimate the joint distribution of (Z0,X0) effi-
ciently through Monte Carlo simulation. Indeed, one need only obtain a single path
of the reversed process (ζ,χx) to recover the distribution π . However, the applica-
bility of the result above depends heavily on whether or not the distribution p for
Z0 is known, as it (together with its gradient) appears in the dynamics of ζ . In the
case where Z is one-dimensional, or more generally reversing, p can be expressed in
closed form from the model coefficients m and c in the dynamics for Z. Furthermore,
there are certain cases of non-reversing, multidimensional diffusions where p can be
(semi-)explicitly computed, as the next example shows.

Example 3.6 Assume that Z is a multidimensional Ornstein–Uhlenbeck process with
dynamics

dZt = −γ (Zt − Θ)dt + σ dWt, t ∈R+,

where γ ∈ R
d×d , Θ ∈ R

d and σ ∈ R
d×d . Here, E = R

d and (A1) clearly holds.
Furthermore, (A2) is satisfied when c = σσ ′ is (strictly) positive definite; in fact, we
take σ as the unique positive definite square root of c. The process Z need not be
reversing, as can clearly be seen when σ is the identity matrix, Θ = 0 and γ is not
symmetric. However, as will be argued below, the ergodicity assumption (A3) holds
when all eigenvalues of γ have strictly positive real parts, and one may identify the
invariant density “almost” explicitly. To see this, a direct calculation shows that if a
symmetric matrix J satisfies the Riccati equation

JJ = σγ ′σ−1J + Jσ−1γ σ, (3.14)

then the function

p(z) = exp

(
−1

2
(z − Θ)′σ−1Jσ−1(z − Θ)

)
, z ∈R

d,

satisfies L̃Zp = 0 where L̃Z is as in (2.1). If J is additionally positive definite, then
up to a normalizing constant, p is the density for a normal random variable with mean
Θ and covariance matrix Σ = σJ−1σ . Thus p is integrable on R

d and (A3) follows
from [27, Corollary 4.9.4], which proves recurrence for Z.

It thus remains to construct a symmetric, positive definite solution to (3.14). From
[1, Lemma 2.4.1, Theorem 2.4.25], such a solution (called the “stabilizing solution”
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therein) exists if (a) the pair (σ−1γ σ,1d) is stabilizable, in the sense that there exists
a matrix F such that σ−1γ σ − F has eigenvalues with strictly negative real parts,
and (b) the eigenvalues of σ−1γ σ have strictly positive real parts. In the present
case, each of these statements readily follows. Indeed, for the first statement, one
can take F = σ−1γ σ + 1d ; for the second statement, note that the eigenvalues of
σ−1γ σ coincide with those of γ , which by assumption have strictly positive real
parts. Therefore, even in this non-reversing case, one may still identify p.

The previous interesting Example 3.6 notwithstanding, for non-reversing, multi-
dimensional diffusions, even after verifying the ergodicity of Z (and hence the ex-
istence of p), one typically does not know p explicitly. In such cases, the following
simulation method is proposed. Fix a large enough T and first simulate (Zt )t∈[0,2T ]
via (1.2), starting from any point Z0 (since the invariant density is unknown). If the
choice of T is large enough, the process (Zt )t∈[T ,2T ] will behave as the stationary
version in (1.2), since ZT will have approximately density p. In that case, defining
(ζt )t∈[0,T ] via ζt = Z2T −t for t ∈ [0, T ], ζ should behave as it should in the dynamics
(8.6), even with ζ0 having (approximate) density p. Now, given ζ , χx may be defined
via the formulas of Remark 3.5; therefore, for large enough T , the empirical measure
π̂x

T should approximate in the weak sense the joint law π .
Note finally that when p is known and |η| > 0, and under certain mixing condi-

tions (see [29, 28]), one can also obtain uniform estimates for the speed at which the
above convergence takes place.

Remark 3.7 In the case where θ = η ≡ 0 and f ∈ C1,γ (E;R+), one can explicitly
identify the support of π . Such an identification follows from more general ergodic
results on “stochastic differential systems” obtained in [4, Sects. IIIA, IIIB]. To iden-
tify the support, note that when θ = η ≡ 0, it follows that Δt = exp(− ∫ T

0 a(ζu)du).
A direct calculation using Remark 3.5 shows that χx has dynamics

dχx
t = (f (ζt ) − χx

t a(ζt )
)

dt. (3.15)

Hence, the paths of χx are of bounded variation. Now define

û := inf

{
x : sup

z∈E

(
f (z) − xa(z)

)≤ 0

}
,

�̂ := sup

{
x : inf

z∈E

(
f (z) − xa(z)

)≥ 0

}
.

Assumption 2.7 implies a(z0) > 0 for some z0 ∈ E and thus 0 ≤ �̂ ≤ û ≤ ∞, with
�̂ = û if and only if for some constant c, f (z) = ca(z) for all z ∈ E. In this case,
X = c P

z-almost surely for all z ∈ E. With this notation, [4] proves the following
result.

Proposition 3.8 ([4, Sects. IIIA, IIIB]) Let Assumption 2.7 hold. Assume also that
f ∈ C1,γ (E;R+) and η, θ ≡ 0. Then the support of π is Ē×[�̂, û] ([�̂,∞) if û = ∞).
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4 A numerical example

We now provide an example which highlights the superiority (in terms of computa-
tional efficiency) of the time-reversal method over the naive method for obtaining the
distribution of X0. Consider the case E = R and

dZt = −γZt dt + dWt, X0 =
∫ ∞

0
Zte

−at dt, γ, a > 0. (4.1)

Note that the function R � z �→ f (z) = z fails to be nonnegative. However, as
argued below, the results of Theorem 3.4 still hold. As Z is a mean-reverting
Ornstein–Uhlenbeck process, it is straightforward to verify Assumption (A3) with
p(z) = √

γ /π e−γ z2
, so that Z0 ∼ N(0,1/(2γ )). We claim that (Z0,X0) is normally

distributed with mean vector (0,0) and covariance matrix

Σ =
⎛
⎝

1
2γ

1
2γ (a+γ )

1
2γ (a+γ )

1
2γ a(a+γ )

⎞
⎠ .

Indeed, integration by parts shows that for T > 0,

∫ T

0
e−atZt dt = Z0

a + γ
+ 1

a + γ

∫ T

0
e−at dWt − 1

a + γ
e−aT ZT .

The ergodicity of Z implies that limT →∞(ZT /T ) = −γ
∫
R

zp(z)dz = 0 almost
surely; therefore, it follows that limT →∞ e−aT ZT = 0 holds almost surely. Next,
note that YT := ∫ T

0 e−at dWt is independent of Z0 and normally distributed with
mean 0 and variance (1 − e−2aT )/(2a). Finally, as a process, Y = (YT )T ≥0 is an
L2-bounded martingale and hence Y∞ := limT →∞ YT almost surely exists, where
Y∞ is independent of Z0 and normally distributed with mean 0 and variance 1/(2a).
Thus X0 = limT →∞

∫ T

0 e−atZt dt exists almost surely and

X0 = Z0

a + γ
+ Y∞

a + γ
, Z0 ⊥⊥ Y∞, Z0 ∼ N

(
0,

1

2γ

)
, Y∞ ∼ N

(
0,

1

2a

)
,

from which the joint distribution follows. Now, even though f (z) = z can take nega-
tive values, the time-reversal dynamics in (3.15) still hold, taking the form

dζt = −γ ζt dt + dWt, dχt = (a − ζtχt ) dt.

Lastly, even though Theorem 3.4 no longer directly applies, it is shown in [4, Theo-
rem 3.3, Sect. 3.D, Proposition 3.15] that (ζ,χ) is still ergodic,5 in that (3.13) holds.

For these dynamics, we performed the following test. For a fixed terminal time T

and mesh size δ, we estimated the distribution of X0 in two ways. First (“Method A”)
by sampling ζ0 ∼ p and setting χ0 = 1, and second (“Method B”) by running the
forward process Z until 2T and then setting ζt = Z2T −t , χ0 = 1. For each simulation,

5The tightness condition in [4, Proposition 3.15] is straightforward to verify.
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Fig. 1 Kolmogorov–Smirnov distances between the empirical and the true distribution for X0. The solid
line is for the time-reversal method starting with ζ0 ∼ p, and the dashed line for the time-reversal method
running Z0 to 2T and setting ζt = Z2T −t . Here, T = 10’000, δ = 1/24, γ = 2 and a = 1. Compu-
tations were performed using Mathematica and the code can be found on the second author’s website
www.math.cmu.edu/users/scottrob/research

Table 1 Statistics on
Kolmogorov–Smirnov distances
between the empirical and the
true distribution for X0 using
Methods A and B

Method A Method B

median distance 0.00887 0.00882

standard deviation 0.00405 0.00413

99th percentile 0.02168 0.02255

1st percentile 0.00405 0.00290

median time (seconds) 2.694 8.766

we computed the empirical distribution along a single path and then estimated the
Kolmogorov–Smirnov distance (dKS(F,G) = supx |F(x) − G(x)|, for distribution
functions F,G) between the empirical and the true distribution for X0. The parameter
values were γ = 2, a = 1, T = 10’000 and δ = 1/24.

Figure 1 shows the resulting Kolmogorov–Smirnov distances for 500 sample
paths. The plot gives a (smoothed) histogram comparing the distances using the two
methods described above. As can be seen, the two methods give comparable results;
this is not surprising given the rapid convergence of the distribution of ζ to its in-
variant distribution [8]. Table 1 provides summary statistics regarding the median
distances and simulation times, as well as the standard deviation and tail data.

Having obtained Kolmogorov–Smirnov distances using time-reversal methods, we
next compared our results to a naive simulation of X0, obtained by sampling Z0 ∼ p

and computing X0 directly via (4.1). Here, for the median distance d using Method A
from Table 1, we sampled X0 stopping at the first instance N so that the Kolmogorov–
Smirnov distance between the empirical and the true distribution for X0 fell below d .
As can be seen from Fig. 2 and the summary statistics in Table 2, the naive simulation
performs significantly worse; at the median, it took 7’002 paths and a simulation time
of 8.66 minutes to achieve the same level of accuracy as 1 path (2.94 seconds) of
the time-reversed process. Further, the histogram shows the presence of a significant

http://www.math.cmu.edu/users/scottrob/research
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Fig. 2 Histogram for the number N of paths necessary so that using the naive simulation for X0,
the Kolmogorov–Smirnov distance between the empirical distribution and the true distribution for X0
fell below the median distance d using Method A from Table 1. The integral was computed using
T = 100 with mesh size of δ = 1/24; furthermore, the values γ = 2 and a = 1 we used. Computa-
tions were performed using Mathematica and the code can be found on the second author’s website
www.math.cmu.edu/users/scottrob/research

Table 2 Summary statistics
using the naive forward
simulation method

Summary for the forward simulation

median number of paths 7’002

mean number of paths 11’446

standard deviation 10’165

minimum number of paths 1’846

maximum number of paths 45’004

median simulation time (minutes) 8.66

mean simulation time (minutes) 14.34

number of trials where significantly more than the median number of paths were
needed to achieve the given accuracy.

5 Conclusion

In this work, using the method of time reversal, an efficient method for simulating
the joint distribution of (Z0,X0) for perpetuities of the form (1.1) is obtained. The
joint distribution may be obtained by sampling a single path of the reversed process,
as opposed to sampling numerous paths of X0 using the naive method. However, the
effectiveness of the proposed method depends on being able to obtain analytic repre-
sentations for the distribution p of Z0—an undertaking that, though always possible
in the one-dimensional case, is often not possible for non-reversing multidimensional
diffusions. Furthermore, results are presented for perpetuities with nonnegative un-
derlying cash flow rates. More research is needed to identify an effective time-reversal

http://www.math.cmu.edu/users/scottrob/research
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method for perpetuities of the form

X0 =
∫ ∞

0
Dt dFt

for general Markovian processes F (i.e., not just dFt = f (Zt )dt) containing both
jumps and diffusive terms. Additionally, the performance of the method where Z is
run until a large time 2T and then setting ζt = Z2T −t must be thoroughly analyzed;
in particular, how fast does the distribution of Z2T converge to p given a fixed start-
ing point? To answer these questions, one must first analyze the resultant backward
dynamics and associated PDEs for the invariant density, obtaining rates of conver-
gence.

6 Proofs for Sect. 2.2

We present here the proofs of Lemmas 2.3 and 2.5.

Proof of Lemma 2.3 Let ε > 0 be as in (2.3). We first treat the case θ ′cθ + η′η ≡ 0.
Then R = ∫ ·

0 a(Zt )dt and (2.3) specifies to a− ∈ L
1(E,p) and

∫
E

a(z)p(z)dz > 0.
Set κ := (1/4)

∫
E

a(z)p(z)dz > 0. Fix z ∈ E and denote by P
z the probability ob-

tained by conditioning upon Z0 = z. The positive recurrence of Z implies ([27, The-
orem 4.9.5]) that there exists a P

z-a.s. finite random variable T (z) such that t ≥ T (z)

implies that Rt = ∫ t

0 a(Zu)du ≥ 2κt , and hence the first conclusion of Lemma 2.3
holds. Furthermore, since Z is stationary and ergodic under P, the ergodic theorem
implies there is a P-a.s. finite random variable T such that t ≥ T implies Rt ≥ 2κt .
Now, let n ∈ N be such that n > 1/(2κ). We have

sup
t≥0

(t/n − Rt) ≤ sup
t≤T

(t/n − Rt) < ∞,

where the last inequality follows by the regularity of a and the non-explositivity of Z.
Thus

X0 =
∫ ∞

0
e−Rt f (Zt )dt ≤ esupt≤T (t/n−Rt )

∫ ∞

0
e−t/nf (Zt )dt.

By the stationarity of Z,

E

[∫ ∞

0
e−t/nf (Zt )dt

]
=
∫ ∞

0
e−t/n

E[f (Zt )]dt = n

∫
E

f (z)p(z)dz < ∞,

hence P[∫∞
0 e−t/nf (Zt )dt < ∞] = 1, which in turn implies that P[X0 < ∞] = 1.

Assume now that θ ′cθ + η′η ≡ 0, which by continuity of all involved functions
implies that

∫
E
(θ ′cθ + η′η)(z)p(z)dz > 0. Fix z ∈ E. Positive recurrence of Z

gives that limt→∞
∫ t

0 (θ ′cθ +η′η)(Zu)du = ∞ with P
z-probability one. On the event
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{∫ t

0 (θ ′cθ + η′η)(Zu)du > 0}, note that

−Rt = −
∫ t

0
a(Zu)du

+
∫ t

0
(θ ′cθ + η′η)(Zu)du

(
− 1

2
−
∫ t

0 θ ′σ(Zu)dWu + η(Zu)dBu∫ t

0 (θ ′cθ + η′η)(Zu)du

)
.

By the Dambis/Dubins/Schwarz theorem and the strong law of large numbers for
Brownian motion, it follows that there exists a P

z-a.s. finite random variable T (z)

such that

t ≥ T (z) =⇒ −
∫ t

0 θ ′σ(Zu)dWu + η(Zu)dBu∫ t

0 (θ ′cθ + η′η)(Zu)du
≤ ε

2
;

therefore,

t ≥ T (z) =⇒ −Rt ≤ −
∫ t

0

(
a + 1 − ε

2
(θ ′cθ + η′η)

)
(Zu)du.

With κ := (1/4)
∫
E
(a + (1− ε)(θ ′cθ +η′η)/2)(z)p(z)dz > 0, and increasing T (z) if

necessary (still keeping it Pz-a.s. finite), it follows that t ≥ T (z) implies −Rt ≤ −2κt .
Hence the first part of Lemma 2.3 holds true again. Additionally, the ergodic theo-
rem applied with P gives a P-a.s. finite random variable T such that t ≥ T implies
−Rt ≤ −2κt . Again, for n ∈ N such that n > 1/(2κ), we have

X0 =
∫ ∞

0
e−Rt f (Zt )dt ≤ esupt≤T (t/n−Rt )

∫ ∞

0
e−t/nf (Zt )dt,

from which P[X0 < ∞] = 1 follows by the same line of reasoning as above. �

Proof of Lemma 2.5 The proof is nearly identical to that of Lemma 2.3. Namely,
in each of the cases θ ′cθ + η′η ≡ 0 and θ ′cθ + η′η ≡ 0, there are under the given
hypothesis a constant κ ≥ 0 and a P-a.s. finite random variable T such that −Rt ≥ κt

holds for t ≥ T . This gives that

X0 ≥
∫ ∞

T

eκtf (Zt )dt ≥
∫ ∞

T

eκt (f ∧ N)(Zt )dt,

where N is large enough so that
∫
E
(f (z) ∧ N)p(z)dz > 0. We thus have

X0 ≥
∫ ∞

0
eκt (f ∧ N)(Zt )dt − N

κ
(eκT − 1).

Ergodicity of Z implies that P-almost surely,

lim
u→∞

1

u

∫ u

0
(f ∧ N)(Zt )dt =

∫
E

(
f (z) ∧ N

)
p(z)dz > 0,

so that limu→∞
∫ u

0 eκt (f ∧ N)(Zt )dt = ∞, proving the result. �
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7 Proof of Theorem 3.1

Under the given assumptions, there exists a unique solution (Pz,x)(z,x)∈F to the gen-
eralized martingale problem for L on F , where L is from (3.4). Here, the measure
space is (Ω̃, F̃), where Ω̃ = (C[0,∞); F̂ ), with F̂ being the one-point compacti-
fication of F . The filtration F̃ is the right-continuous enlargement of the filtration
generated by the coordinate process (Z̃, Ỹ ) on Ω̃ .

Let (Fn)n∈N be an increasing sequence of smooth, bounded, open, connected do-
mains of F such that F =⋃n Fn. Note that Fn can be obtained by smoothing out
the boundary of En × (1/n,n). By uniqueness of solutions to the generalized mar-
tingale problem, for each n, the law of (Z̃, Ỹ ) is the same as the law of (Z,Y x)

under P[· | Z0 = z] (where the latter will always denote a version of the conditional
probability) up until the first exit time of Fn. Furthermore, since the process Z is re-
current, with (Pz)z∈E being the restriction of (Pz,x)(z,x)∈F to the first d coordinates,
for z ∈ E, the law of Z̃ under Pz is the same as the law of Z under P[ · | Z0 = z].
For these reasons, and in order to ease the reading, we abuse notation and still use
(Z,Y ) instead of (Z̃, Ỹ ) for the coordinate process on Ω̃ . The underlying space we
are working on will be clear from the context.

Denote by τn the first exit time of (Z,Y ) from Fn. Assumption 2.7 implies that
Z does not explode under Pz,x , and Y cannot explode to infinity since D is strictly
positive almost surely under P[ · | Z0 = z] for all z ∈ E. Therefore, the explosion time
τ := limn→∞ τn for (Z,Y ) is the first hitting time of Y to 0, and the law of τ under
P

z,x is the same as the law of the first hitting of Yx to 0 under P[ · | Z0 = z].
Note that Yx

t = D−1
t (x − X0 + ∫∞

t
Duf (Zu)du). Assumption 2.7 implies6

P

[∫ ∞

t

Duf (Zu)du > 0

∣∣∣∣ Z0 = z

]
= 1, z ∈ E, t ≥ 0. (7.1)

Therefore,

g(z, x) = P [X0 ≤ x | Z0 = z] = P
z,x[Yx

t > 0, ∀t ≥ 0] = P
z,x [τ = ∞] .

Define

h(z, x) := P
z,x
[

lim
t→∞Yt = ∞

]
, (z, x) ∈ F. (7.2)

Fix (z, x) ∈ F and let 0 < ε < x. Note that Yx
t = Yx−ε

t +ε/Dt . Since limt→∞ Dt = 0
holds P[· | Z0 = z]-a.s., it follows that

P
z,x−ε [τ = ∞] = P[Yx−ε

t > 0, ∀t ≥ 0 | Z0 = z]
≤ P[Yx

t ≥ ε/Dt , ∀t ≥ 0 | Z0 = z]
≤ P

[
lim

t→∞Yx
t = ∞

∣∣∣ Z0 = z
]

= P
z,x
[

lim
t→∞Yt = ∞

]
≤ P

z,x [τ = ∞] . (7.3)

6This follows from the ergodic theorem by using that we have the set inclusion

{∫∞
t f (Zu)Du du = 0} ⊂ {limk→∞(1/k)

∫ t+k
t f (Zu)du = 0}.
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Therefore, g(z, x − ε) ≤ h(z, x) ≤ g(z, x). By definition, g(z, x) is right-continuous
in x for a fixed z, and so

g(z, x) ≤ lim inf
ε→0

h(z, x + ε) ≤ lim sup
ε→0

h(z, x + ε) ≤ lim sup
ε→0

g(z, x + ε) = g(z, x).

Therefore, if h(z, x) is continuous, it follows that h(z, x) = g(z, x). We now show
that in fact h is in C2,γ (F ) and satisfies Lh = 0. This gives the desired result for g

since g = h.
Let ψ : (0,∞) → (0,1) be a smooth function satisfying limx→0 ψ(x) = 0 and

limx→∞ ψ(x) = 1. By the classical Feynman–Kac formula,

un(z, x) := E
P

z,x [ψ(Yτn)]
satisfies Lun = 0 in Fn with un(z, x) = ψ(x) on ∂Fn. As P[X0 < ∞ | Z0 = z] = 1,
there exists a pair (z0, x0) ∈ F with P[X0 < x0 | Z0 = z0] > 0. Using (7.3), this gives

h(z0, x0) ≥ P [X0 < x0 | Z0 = z0] > 0. (7.4)

Therefore, (Pz,x)(z,x)∈F is transient [27, Chap. 2], and since (Pz)z∈E is positive recur-
rent, this implies that for all (z, x), with P

z,x -probability one, either limt→τ Yt = 0 or
limt→τ Yt = ∞, where in the latter case, τ = ∞ since Y cannot explode to ∞. This
in turn yields that Yτn → 0 or Yτn → ∞ with P

z,x -probability one and hence by the
dominated convergence theorem,

lim
n→∞un(z, x) = P

z,x
[

lim
t→τ

Yt = ∞
]

= P
z,x
[

lim
t→∞Yt = ∞

]
= h(z, x). (7.5)

For (z0, x0) from (7.4), g(z0, x0) ≥ h(z0, x0) > 0 and hence g(z, x) > 0 for all
(z, x) ∈ F [27, Theorem 1.15.1]. But this implies h(z, x) ≥ g(z, x/2) > 0, and so
from (7.5), the un are converging pointwise to a strictly positive function. Thus, by
the interior Schauder estimates and Harnack’s inequality, it follows by “the standard
compactness argument” (see [27, p. 147]) that there exists a strictly positive function
u in C2,γ (F ) such that un converges to u in the C2,γ (D)-Hölder space for all com-
pact D ⊂ F . Clearly, this function u satisfies Lu = 0 in F . In fact, since un converges
to h pointwise, h = u and hence Lh = 0.

We now consider the boundary conditions for g. Let the integer k be given. It
suffices to show that for each ε > 0, there is some n(ε) such that

sup
x≤n(ε)−1,z∈Ek

g(z, x) ≤ ε, inf
x≥n(ε),z∈Ek

g(z, x) ≥ 1 − ε.

The condition near x = 0 is handled first. By way of contradiction, assume there
exists some ε > 0 such that for all integers n, there exist zn ∈ Ek , xn ≤ 1/n such that
g(zn, xn) > ε. Since the zn are all contained within Ek , there is a subsequence (still
labeled n) such that zn → z for z ∈ Ēk . Let δ > 0 and choose Nδ such that n ≥ Nδ

implies n−1 ≤ δ. Since g is increasing in x, ε < g(zn, δ). Since g is continuous,
ε ≤ g(z, δ). Since this is true for all δ > 0, limx→0 g(z, x) ≥ ε. But this is a contra-
diction because limx→0 g(z, x) = 0 for each z ∈ E. To see this, let δ > 0 and choose
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β > 0 such that P[X0 ≥ β | Z0 = z] ≥ 1 − δ. This is possible in view of (7.1). Thus,
for x < β , g(z, x) ≤ P[X0 < β | Z0 = z] ≤ δ, and hence lim supx→0 g(z, x) ≤ δ. Tak-
ing δ → 0 gives the result.

The proof for x → ∞ is very similar. Assume by contradiction that there is
some ε > 0 such that for all integers n, there exist zn ∈ Ek , xn ≥ n such that
g(zn, xn) < 1 − ε. Again, by taking subsequences, we can assume zn → z ∈ Ēk . Fix
M > 0. For n ≥ M , since g is increasing in x, g(zn,M) < 1 − ε. Since g is contin-
uous, g(z,M) ≤ 1 − ε. Since this holds for all M , limx→∞ g(z, x) ≤ 1 − ε. But this
violates the condition that under P[· | Z0 = z], X0 < ∞ almost surely.

The uniqueness claim is now proved. Let g̃ be a C2(F ) solution of Lg̃ = 0 such
that 0 ≤ g̃ ≤ 1 and such that (3.5) holds. Define the stopping times

σk := inf {t ≥ 0 : Zt /∈ Ek} , ρk := inf {t ≥ 0 : Yt = k} .

By Itô’s formula, for any k,n,m,

g̃(z, x) = E
P

z,x [
g
(
Zσk∧ρ1/n∧ρm,Yσk∧ρ1/n∧ρm

)

× (1{ρ1/n<σk∧ρm} + 1{ρ1/n≥σk∧ρm}(1{τ<∞} + 1{τ=∞})
)]

.

Since limm→∞ ρm = ∞ P
z,x -almost surely, taking m → ∞ yields

g̃(z, x) = Ê
P

z,x [
g
(
Zσk∧ρ1/n

, Yσk∧ρ1/n

)(
1{ρ1/n<σk} + 1{ρ1/n≥σk}(1{τ<∞} + 1{τ=∞})

)]
.

On {ρ1/n < σk}, we have Zρ1/n
∈ Ek , Yρ1/n

≤ 1/n and hence by 0 ≤ g̃ ≤ 1 and (3.5),
for any ε > 0, there is an n(ε) such that for n ≥ n(ε),

g̃(z, x) ≤ ε + P
z,x[ρ1/n ≥ σk, τ < ∞] + P

z,x[ρ1/n ≥ σk, τ = ∞].

Taking n → ∞ thus gives

g̃(z, x) ≤ ε + P
z,x [τ ≥ σk, τ < ∞] + P

z,x [τ = ∞] .

Taking k → ∞ gives

g̃(z, x) ≤ ε + P
z,x [τ = ∞] ,

and hence taking ε → 0 gives g̃(z, x) ≤ P
z,x[τ = ∞] = g(z, x). Similarly, for

k,n,m,

g̃(z, x) = E
P

z,x [
g
(
Zσk∧ρ1/n∧ρm,Yσk∧ρ1/n∧ρm

)
(1{ρm<σk∧ρ1/n} + 1{ρm≥σk∧ρ1/n})

]
,

≥ (1 − ε)P̂z,x
[
ρm < σk ∧ ρ1/n, lim

t→∞Yt = ∞
]
,

for all ε > 0 and m ≥ m(ε) for some m(ε). Note that the set {ρm < σk ∧ ρ1/n} is
restricted to include {limt→∞ Yt = ∞}, but this is fine since lower bounds are con-
sidered. Now, on the event {limt→∞ Yt = ∞}, it holds that ρ1/n → ∞. Thus, taking
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n → ∞,

g̃(z, x) ≥ (1 − ε)Pz,x
[
ρm < σk, lim

t→∞Yt = ∞
]
.

Taking k → ∞ gives

g̃(z, x) ≥ (1 − ε)Pz,x
[
ρm < ∞, lim

t→∞Yt = ∞
]
.

Taking m → ∞ and noting that for m large enough, ρm < ∞ on {limt→∞ Yt = ∞},
it holds that

g̃(z, x) ≥ (1 − ε)Pz,x
[

lim
t→∞Yt = ∞

]
= (1 − ε)h(z, x),

where the last equality follows by the definition of h in (7.2). Now, in proving Lg = 0
it was shown that g = h and hence g̃(z, x) ≥ (1 − ε)g(z, x). Taking ε → 0 gives that
g̃(z, x) ≥ g(z, x), finishing the proof. �

8 Dynamics for the time-reversed process

The goal of the next two sections is to prove Theorem 3.4. We keep all notation from
Sect. 3.2. We first identify the dynamics for ζ T .

Proposition 8.1 Suppose that Assumption 2.7 holds. Then for each T > 0, the law
of ζ T under P solves the martingale problem on E (for t ≤ T ) for the operator
Lζ := (1/2)cij ∂2

ij + μi∂i , where

μ := c
∇p

p
+ div c − m. (8.1)

The operator Lζ does not depend upon T . Thus, if (Qz)z∈E denotes the solution of
the generalized martingale problem for Lζ on E, then in fact (Qz)ζ∈E solves the
martingale problem for Lζ on E and is positive recurrent.

Remark 8.2 If Z is reversing, then p satisfies m = (1/2)(c∇p/p + div c). Thus, in
this instance, μ = m and as the name suggests, ζ T has the same dynamics as Z.

Proof of Proposition 8.1 The first statement regarding the martingale problem is
based on the argument in [19]. Since Z is positive recurrent with invariant measure
p and Z0 has initial distribution p under P, Z is stationary with distribution p. Since
L̃Zp = 0, Eq. (2.5) in [19] holds, noting that p does not depend upon t .

For 0 ≤ s ≤ t and g ∈ C∞
c (E), define the function v(s, z) := E[g(Xt ) |Zs = z].

The Feynman–Kac formula implies that v satisfies vs +Lzv = 0 for 0 < s < t , z ∈ E,
with v(t, z) = g(z); see [20, 18] for an extension of the classical Feynman–Kac for-
mula to the current setup. Therefore, the condition in Eq. (2.7) of [19] holds as well.
Thus, the formal argument on p. 1191 of [19] is rigorous, and the law of ζ T under P
solves the martingale problem for Lζ .
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Turning to the statement regarding (Qz)z∈E , set L̃ζ as the formal adjoint to Lζ .
L̃ζ is given by (2.1) with μ replacing m therein. Using the formula for μ in (8.1) and
for L̃Z in (2.1), calculation shows that

L̃ζ f = L̃Zf − 2∇ ·
(

f

p

(1

2
(c∇p + p div c) − pm

))
.

Since

0 = L̃Zp = ∇ ·
(

1

2
(c∇p + p div c) − pm

)
, (8.2)

it follows by considering f = p above that L̃ζ p = 0. Therefore, p is an invariant
density for Lζ if and only if the diffusion corresponding to the operator L̃ζ,p does
not explode, where L̃ζ,p is the h-transform of L̃ζ [27, Theorem 4.8.5]. But by the
definition of the h-transform [27, Sect. 4.1] and (2.1) with μ replacing m,

L̃ζ,pf := 1

p
L̃ζ (fp) = 1

2
cij ∂2

ij f −
(

μi − div ci −
(
c
∇p

p

)i)
∂if + f

p
L̃ζ p

= 1

2
cij ∂2

ij f + mi∂if = LZf,

where the third equality follows from (8.1). Thus Assumption 2.7 (specifically the
fact that Z is ergodic and

∫
E

p(z)dz = 1) implies that the diffusion for L̃ζ,p not only
does not explode, but is also positive recurrent, finishing the proof. �

In preparation for the proof of the main result of this section, which is Propo-
sition 8.5, we first need to define a certain “backward” filtration GT and present
two lemmas. Fix T ∈ (0,∞), t ∈ [0, T ] and let G̃T

t be the σ -field generated
by XT , (ZT −u)u∈[0,t], (WT − WT −u)u∈[0,t] and (BT − BT −u)u∈[0,t]. Then denote
by GT := (GT

t )t∈[0,T ] the usual augmentation of (G̃T
t )t∈[0,T ]. It is easy to check that

(χT , ζ T ) is GT -adapted for all T ∈ R+, as well as that the process BT defined via
BT

t := BT −t − BT is a k-dimensional Brownian motion on (Ω,GT ,P), independent
of (χT

0 , ζ T
0 ) = (XT ,ZT ). However, the GT -adapted process (WT −t − WT )t∈[0,T ] is

not necessarily a Brownian motion on (Ω,GT ,P).
With this notation, the following two lemmas are essential for proving Proposi-

tion 8.5.

Lemma 8.3 If Assumption 2.7 holds, then for any locally bounded Borel function
η : E →R and 0 ≤ s ≤ t ≤ T , it holds that

−
∫ T −s

T −t

η(Zu)
′ dBu =

∫ t

s

η(ζ T
u )′ dBT

u . (8.3)

Furthermore, if θ : E → R
d is continuously differentiable, then

−
∫ T −s

T −t

θ ′(Zu)dZu =
∫ t

s

θ ′(ζ T
u )dζ T

u +
∫ t

s

(∇ · (cθ) − θ ′ div c
)
(ζ T

u )du. (8.4)
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Proof Fix 0 ≤ s ≤ t ≤ T . For each n ∈N and i ∈ {0, . . . , n}, let

un
i := T − t + i(t − s)/n.

First, assume that η is twice continuously differentiable. The standard convergence
theorem for stochastic integrals implies that (the following limit is to be understood
in measure for P)

∫ t

s

η(ζ T
u )′ dBT

u +
∫ T −s

T −t

η(Zu)
′ dBu

= − lim
n→∞

( n∑
i=1

(
η(Zun

i
) − η(Zun

i−1
)
)′
(Bun

i
− Bun

i−1
)

)
.

Since B and Z are independent, Itô’s formula implies that the last quadratic covari-
ation is zero. Therefore, (8.3) holds for twice continuously differentiable η. The fact
that (8.3) holds whenever η is locally bounded follows from a monotone class argu-
ment.

In a similar manner, assume that θ is twice continuously differentiable. The stan-
dard convergence theorem for stochastic integrals implies that

∫ t

s

θ ′(ζ T
u )dζ T

u +
∫ T −s

T −t

θ ′(Zu)dZu

= − lim
n→∞

( n∑
i=1

(
θ(Zun

i
) − θ(Zun

i−1
)
)′
(Zun

i
− Zun

i−1
)

)
.

The last quadratic covariation process (without the minus sign) is equal to

∫ T −s

T −t

F̃ (c, θ)(Zu)du =
∫ t

s

F̃ (c, θ)(ζ T
u )du,

where F̃ (c, θ) : E → R is given by

F̃ (c, θ) =
d∑

i,j=1

cij ∂zi
θj =

d∑
i,j=1

(
∂zi

(cij θj ) − θj ∂zi

(
(c′)ji

))= ∇ · (cθ) − θ ′ div c,

since c′ = c. Thus, (8.4) is established in the case where θ is twice continuously
differentiable. The fact that (8.4) holds whenever θ is continuously differentiable
follows from a density argument, noting that there exists a sequence (θn)n∈N of poly-
nomials such that limn→∞ θn = θ and limn→∞ ∇θn = ∇θ both hold, where the con-
vergence is uniform on compact subsets of E. �

Lemma 8.4 Let Assumption 2.7 hold. For each T ∈ R+, define the GT -adapted
continuous-path ΔT as in (3.8). Then ΔT is a semimartingale on (Ω,GT ,P). More
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precisely, for t ∈ [0, T ],

ΔT
t = 1 +

∫ t

0
ΔT

u

(
θ ′c∇p

p
+ ∇ · (cθ) − a

)
(ζ T

u )du

+
∫ t

0
ΔT

u

(
η(ζ T

u )′ dBT
u + θ ′σ(ζ T

u )dWT
u

)
. (8.5)

Proof Define (ρT
t )t∈[0,T ] by ρT

t := RT − RT −t for t ∈ [0, T ]. In view of (1.2), (2.2),
(8.1) and Lemma 8.3,

ρT =
∫ T

T −·

(
a + 1

2
(θ ′cθ + η′η)

)
(Zt )dt +

∫ T

T −·
(
η(Zt )

′ dBt + θ ′σ(Zt )dWt

)

=
∫ T

T −·

(
a − θ ′m + 1

2
(θ ′cθ + η′η)

)
(Zt )dt +

∫ T

T −·
(
η(Zt )

′ dBt + θ ′(Zt )dZt

)

=
∫ ·

0

(
a − θ ′m + θ ′ div c − ∇ · (cθ) + 1

2
(θ ′cθ + η′η)

)
(ζ T

t )dt

−
∫ ·

0

(
η(ζ T

t )′ dBT
t + θ ′(ζ T

t )dζ T
t

)
,

=
∫ ·

0

(
a − θ ′c∇p

p
− ∇ · (cθ) + 1

2
(θ ′cθ + η′η)

)
(ζ T

t )dt

−
∫ ·

0

(
η(ζ T

t )′ dBT
t + θ ′σ(ζ T

t )dWT
t

)
.

The fact that D = exp(−R) gives ΔT = exp(−ρT ). Then the dynamics for ΔT follow
from the dynamics of ρT . �

Proposition 8.5 Let Assumption 2.7 hold. Then for each T > 0, there are a fil-
tration GT satisfying the usual conditions and d- and k-dimensional independent
(P,GT )-Brownian motions WT ,BT on [0, T ] so that the pair (ζ T ,χT ) has dynamics

ζ T
t = ζ T

0 +
∫ T

0

(
c
∇p

p
+ div c − m

)
(ζ T

u )du +
∫ T

0
σ(ζ T

u )dWT
u ,

χT
t = χT

0 +
∫ T

0

(
f (ζ T

u ) − χT
u

(
a − θ ′c∇p

p
− ∇ · (cθ)

)
(ζ T

u )

)
du

+
∫ T

0
χT

u

(
θ ′σ(ζ T

u )dWT
u + η(ζ T

u )′ dBT
u

)
.

(8.6)

Proof Proposition 8.1 immediately implies that under P, ζ T has the dynamics

ζ T
t = ζ T

0 +
∫ t

0

(
c
∇p

p
+ div c − m

)
(ζ T

u )du +
∫ t

0
σ(ζ T

u )dWT
u , t ∈ [0, T ],
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where (WT
t )t∈[0,T ] is a Brownian motion on (Ω,GT ,P). In order to specify the dy-

namics for χT , recall the definition of ΔT from (3.8). Observe that

XT −t = 1

DT −t

∫ ∞

T −t

Duf (Zu)du = DT

DT −t

(
XT +

∫ T

T −t

Du

DT

f (Zu)du

)
, t ∈ [0, T ].

Then, using the definitions of χT , ζ T and ΔT , the above is rewritten as

χT
t = ΔT

t

(
χT

0 +
∫ t

0

1

ΔT
u

f (ζ T
u )du

)
, t ∈ [0, T ]. (8.7)

Lemma 8.4 implies that ΔT is a semimartingale, and hence (8.7) yields

χT
t = χT

0 +
∫ t

0
χT

u

dΔT
u

ΔT
u

+
∫ t

0
f (ζ T

u )du, t ∈ [0, T ].

The result now follows by plugging in for dΔT
u /ΔT

u from (8.5). �

9 Proof of Theorem 3.4

9.1 Preliminaries

We first prove two technical results. The first asserts the existence of a probability
space and stationary processes (ζ,χ) consistent with (ζ,χx) from Theorem 3.4 in
the sense that given χ0 = x, it holds that χt = χx

t , t ≥ 0. The second proposition
shows that under the non-degeneracy assumption |η|(z) > 0, z ∈ E, and the regularity
assumption f ∈ C2(E;R+), it follows that (ζ,χ) is ergodic.

Lemma 9.1 If Assumption 2.7 holds, there is a filtered probability space (Ω,F,Q)

supporting independent d- and k-dimensional Brownian motions W and B , F0-mea-
surable random variables ζ0, χ0 with joint distribution π , as well as a stationary
process ζ with dynamics

ζ = ζ0 +
∫ ·

0

(
c
∇p

p
+ div c − m

)
(ζt )dt +

∫ ·

0
σ(ζt )dWt. (9.1)

Furthermore, with Δ,χx defined as in (3.10), (3.11), if the process χ is defined by
χt := χ

χ0
t (see Remark 3.5), then (ζ,χ) is stationary with invariant measure π and

joint dynamics

dζt =
(

c
∇p

p
+ div c − m

)
(ζt )dt + σ(ζt )dWt, t ∈ R+,

dχt =
(

f (ζt ) − χt

(
a − θ ′c∇p

p
− ∇ · (cθ)

)
(ζt )

)
dt

+ χt

(
θ ′σ(ζt )dWt + η(ζt )

′ dBt

)
, t ∈R+.

(9.2)
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Proof This follows from Proposition 8.1. Indeed, one can start with a probability
space (Ω,F,Q) supporting independent d- and k-dimensional Brownian motions
W and B , respectively, as well as an F0-measurable random variable (ζ0, χ0) ∼ π

(hence independent of W and B). Under the given regularity assumptions, Proposi-
tion 8.1 yields a strong, stationary solution ζ satisfying (9.1). Then, defining Δ as
in (3.8) and, for x > 0, χx as in (3.11), it follows that (ζ,χx) and hence (ζ,χ) sat-
isfy the SDE in (9.2). Under the given regularity assumptions, the law under P of
(ζ T ,χT ) given ζ T

0 = z,χT
0 = x coincides with the law under Q of (ζ,χx) given

that ζ0 = z. Since by construction, π is an invariant measure for (ζ T ,χT ), it follows
from the Markov property that π is invariant for (ζ,χ) under Q and hence (ζ,χ) is
stationary with invariant measure π . �

Define the measures Qz,x for (z, x) ∈ F via

Q
z,x [A] = Q[A | ζ0 = z,χ0 = x], A ∈F∞.

We now consider when |η| > 0 on E and f ∈ C2(E;R+). According to Theo-
rem 3.1, g ∈ C2,γ (F ) and hence π possesses a density satisfying

π(z, x) = p(z)∂xg(z, x); (z, x) ∈ F. (9.3)

Additionally, we have the following result.

Proposition 9.2 Let Assumption 2.7 hold, and additionally suppose that |η|(z) > 0
for z ∈ E and that f ∈ C2(E;R+). Then the process (ζ,χ) from Lemma 9.1 is er-
godic. Thus, for all bounded measurable functions h on F and all (z, x) ∈ F ,

lim
T →∞

1

T

∫ T

0
h(ζt , χt )dt =

∫
F

hdπ Q
z,x-a.s. (9.4)

Proof Recall A from (3.3) and define bR : F →R
d+1 by

bR(z, x) :=
(

(c(∇p/p) + div c − m)(z)

f (z) − x(a − θ ′c (∇p/p) − ∇ · (cθ))(z)

)
. (9.5)

From (9.2), it is clear that the generator for (ζ,χ) is LR := (1/2)Aij ∂2
ij + (bR)i∂i .

In an abuse of notation, let (Qz,x)(z,x)∈F also denote the solution to the general-
ized martingale problem for LR on F . Using Theorem 3.1 and the fact that under
the given coefficient regularity assumptions, g ∈ C3(F ) (see [15, Theorem 6.17]),
a lengthy calculation performed in Lemma A.1 below shows that the density π

from (9.3) solves L̃Rπ = 0, where L̃R is the formal adjoint to L. Since by con-
struction,

∫∫
F

π(z, x)dzdx = 1, positive recurrence will follow once it is shown that
(Qz,x)(z,x)∈F is recurrent. By Proposition 8.1, the restriction of Q

z,x to the first d

coordinates (i.e., the part for ζ ) is positive recurrent. Since by (3.11) it is evident
that χ does not hit 0 in finite time, it follows that χ does not explode under Qz,x .
Thus, [27, Corollary 4.9.4] shows that (ζ,χ) is recurrent. Now (9.4) follows from
[27, Theorem 4.9.5]. �
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9.2 Proof of Theorem 3.4

The proof of Theorem 3.4 uses a number of approximation arguments. To make these
precise, we first enlarge the original probability space (Ω, F, P) so that it contains a
one-dimensional Brownian motion B̂ which is independent of Z0,W and B . Let D

be as in (1.3), and for ε > 0, define Dε := DE(
√

εB̂). Similarly to (1.1), define

Xε
0 :=

∫ ∞

0
Dε

t f (Zt )dt. (9.6)

Note that Dε takes the form (1.3) for ηε(z) = (η(z),
√

ε) and when the Brownian
motion B therein is the (k + 1)-dimensional Brownian motion (B, B̂). Note that
|ηε|2 = |η|2 + ε > 0. Denote by πε the joint distribution of (Z0,X

ε
0) under P and

by gε the conditional cumulative distribution function of Xε
0 given Z0 = z. By Theo-

rem 3.1, it follows that gε ∈ C2,γ (F ) and hence πε admits a density.
In a similar manner, by enlarging the probability space (Ω,F,Q) of Lemma 9.1 to

include a Brownian motion (still labeled B̂) which is independent of ζ0, χ0, W and B ,
and defining the family of processes (Δε)ε>0 and (χε,x)ε>0 for x > 0 according to

Δε
t := ΔtE(

√
εB̂)t , t ≥ 0,

χ
ε,x
t := Δε

t

(
x +
∫ t

0

1

Δε
u

f (ζu)du

)
, t ≥ 0,

(9.7)

it follows that (ζ,χx,ε) solves the SDE

dζt = (m + 2ξ) (ζt )dt + σ(ζt )dWt,

dχ
ε,x
t =

(
f (ζt ) − χε

t

(
a − θ ′c∇p

p
− ∇ · (cθ)

)
(ζt )

)
dt

+ χε
t

(
θ ′σ(ζt )dWu + ηε(ζt )

′(dBt ,dB̂t )
)
. (9.8)

Since |ηε| ≥ √
ε > 0, Proposition 9.2 shows that for f ∈ C2(E;R+), the generator

Lε,R associated to (9.8) is positive recurrent with invariant density πε and thus for all
(z, x) ∈ F and all bounded measurable functions h on F (note that conditioned upon
χ0 = x, we have χ

ε,x
0 = χx

0 = x = χ0),

lim
T →∞

1

T

∫ T

0
h(ζt , χ

x,ε
t )dt =

∫
F

hdπε, Q
z,x-a.s. (9.9)

With all the notation in place, Theorem 3.4 is the culmination of a number of
lemmas, which are now presented. The first lemma implies that πε converges weakly
to π as ε ↓ 0.

Lemma 9.3 Let Assumption 2.7 hold. Define Xε
0 as in (9.6). Then Xε

0 converges to
X in P-measure as ε → 0.
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Proof Denote by G the sigma-field generated by Z0, W and B and define the process
δε by δε

t := Dε
t /Dt = E(

√
εB̂t ). By the independence of δε and G,

E
[|Xε

0 − X0|
∣∣ G]≤

∫ ∞

0
E
[|δε

t − 1| ∣∣ G]Dtf (Zt )dt =
∫ ∞

0
E[|δε

t − 1|]Dtf (Zt )dt.

Now set hε
t := √

eεt − 1. Note that hε is increasing in ε with limε→0 hε = 0. Further-
more,

E[|δε
t − 1|] ≤ (E[|δε

t − 1|2])1/2 =√exp(εt) − 1 = hε
t .

By assumption, P[X0 < ∞] = 1. Since for any ε > 0, supt≥0 δε
t < ∞ P-a.s., it thus

follows that P[Xε
0 < ∞] = 1. The dominated convergence theorem applied path-

wise (recall that there exists a κ > 0 so that eκtDt → 0 P-a.s.) then gives that
limε→0 E[|Xε

0 − X0| | G] = 0, which shows that the pair (Z0,X
ε
0) converges in prob-

ability to (Z0,X0), finishing the proof. �

Next, define C as the class of (Borel-measurable) functions h which are bounded
and Lipschitz in x, uniformly in z; in other words,

C :=
{
h ∈ B(F ;R) : sup

z∈E

|h(z, x1) − h(z, x2)| ≤ K(h) (1 ∧ |x1 − x2|)
}

(9.10)

for some K(h) > 0 (which may depend upon h) and all x1, x2 > 0. The next lemma
gives a weak form of the convergence in Theorem 3.4 for regular f . Note that the
notation Q- limT →∞ stands for the limit in Q-probability as T → ∞.

Lemma 9.4 Let Assumption 2.7 hold. Assume additionally that f ∈ C2(E;R+).
Then for all x > 0 and all h ∈ C,

Q- lim
T →∞

1

T

∫ T

0
h(ζt , χ

x
t )dt =

∫
F

hdπ. (9.11)

Proof For ease of presentation, we adopt the following notational conventions. First,
for any measurable function f and probability measure ν on F , set

〈h, ν〉 :=
∫

F

hdν. (9.12)

Next, similarly to π̂x
T in (3.12), we define π̂

ε,x
T to be the empirical measure of

(ζ,χε,x) on [0, T ] for χε,x as in (9.7). Thus, we write

1

T

∫ T

0
h(ζt , χ

x
t )dt = 〈h, π̂x

T 〉, 1

T

∫ T

0
h(ζt , χ

ε,x
t )dt = 〈h, π̂

ε,x
T 〉. (9.13)

Proposition 9.2 implies for all x > 0 and ε > 0 that

Q- lim
T →∞〈h, π̂

ε,x
T 〉 = 〈h,πε〉.
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Indeed, (9.9) gives for all (z, x) ∈ F that

lim
T →∞〈h, π̂

ε,x
T 〉 = 〈h,πε〉 Q

z,x-a.s.

Thus, the above limit holds Q-almost surely and hence in probability.
To prove (9.11), we need to show that for any increasing R+-valued sequence

(Tn)n∈N such that limn→∞ Tn = ∞, there is a subsequence (Tnk
)k∈N such that

Q- lim
k→∞〈h, π̂x

Tnk
〉 = 〈h,π〉,

as this implies (9.11) by considering double subsequences. To this end, let (εk)k∈N be
any strictly positive sequence that converges to zero, and assume that ε1 < κ , where
κ > 0 is from Assumption (A5). Next, pick Tnk

large enough so that k/Tnk
→ 0 and

such that

Q

[
|〈h, π̂

εk,x
Tnk

〉 − 〈h,πεk 〉| > 1

k

]
≤ 1

k
.

As argued above, this is possible since 〈h, π̂
εk,x
T 〉 converges to 〈h,πεk 〉 in Q-proba-

bility. Since Lemma 9.3 implies limε→0〈h,πεk 〉 = 〈h,π〉, it follows that

Q- lim
k→∞〈h, π̂

εk,x
Tnk

〉 = 〈h,π〉.

Since

|〈h, π̂x
Tnk

〉 − 〈h,π〉| ≤ |〈h, π̂x
Tnk

〉 − 〈h, π̂
εk,x
Tnk

〉| + |〈h, π̂
εk,x
Tnk

〉 − 〈h,π〉|,

it suffices to show

Q- lim
k→∞|〈h, π̂

εk,x
Tnk

〉 − 〈h, π̂x
Tnk

〉| = 0.

In fact, the claim is that

lim
k→∞E

Q
[|〈h, π̂

εk,x
Tnk

〉 − 〈h, π̂x
Tnk

〉|]= 0,

or the even stronger (recall (9.13)) result

lim
k→∞

(
1

Tnk

∫ Tnk

0
E
Q
[|h(ζt , χ

εk,x
t ) − h(ζt , χ

x
t )|] dt

)
= 0. (9.14)

From (9.10),

1

Tnk

∫ Tnk

0
E
Q
[|h(ζt , χ

εk,x
t ) − h(ζt , χ

x
t )|] dt ≤ K

Tnk

∫ Tnk

0
E
Q
[
1 ∧ |χεk,x

t − χx
t |] dt.

(9.15)
Furthermore, recall that

χx
t = Δt

(
x +
∫ t

0

1

Δu

f (ζu)du

)
, χ

εk,x
t = Δ

εk,x
t

(
x +
∫ t

0

1

Δ
εk
u

f (ζu)du

)
,



C. Kardaras, S. Robertson

where Δεk is from (9.7). With δεk := E(
√

εkB̂), it follows that under Q,

|χεk,x
t − χx

t | ≤ x|Δεk
t − Δt | +

∫ t

0

∣∣∣∣Δ
εk
t

Δ
εk
u

− Δt

Δu

∣∣∣∣f (ζu)du

= xΔt |δεk
t − 1| +

∫ t

0

Δt

Δu

∣∣∣∣δ
εk
t

δ
εk
u

− 1

∣∣∣∣f (ζu)du.

With G now denoting the σ -field generated by ζ0, W and B , the independence of B̂

and G implies that

E
Q
[|χεk,x

t − χx
t | ∣∣ G]≤ xΔth

εk
t +

∫ t

0

Δt

Δu

h
εk
t−uf (ζu)du, (9.16)

where for any ε > 0, hε is from Lemma 9.3. Since ζ is stationary under Q, it holds
for all t > 0 that the distribution of Δt under Q coincides with the distribution of Dt

under P, and the distribution of
∫ t

0 (Δt/Δu)h
εk
t−uf (ζu)du under Q is the same as the

distribution of
∫ t

0 Duh
εk
u f (Zu)du under P.

We next claim that there exists a sequence δk → 0 such that

sup
t∈[k,∞)

P

[
1 ∧
(

xDth
εk
t +

∫ t

0
Duh

εk
u f (Zu)du

)
> δk

]
≤ δk, ∀k ∈N. (9.17)

This is shown at the end of the proof. Admitting this, from

E
Q
[
1 ∧ |χεk,x

t − χx
t | ∣∣ G]≤ 1 ∧E

Q
[|χx,εk

t − χx
t | ∣∣ G],

it follows that

lim
k→∞

(
sup

t∈[k,∞)

E
Q
[
1 ∧ |χεk,x

t − χx
t |]
)

= lim
k→∞

(
sup

t∈[k,∞)

E
Q

[
E
Q
[
1 ∧ |χεk,x

t − χx
t | ∣∣ G]]

)

≤ lim
k→∞

(
sup

t∈[k,∞)

E

[
1 ∧
(
xDth

εk
t +

∫ t

0
Duh

εk
u f (Zu)du

)])

≤ lim
k→∞ 2δk = 0.

Above, the first inequality holds because of (9.16) and the second by (9.17) and
the fact that for any random variable Y , E[1 ∧ Y ] ≤ δ + P[1 ∧ Y > δ]. The last
equality follows by the construction of δk . Recall that Tnk

was chosen so that
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limk→∞(k/Tnk
) = 0; so it follows that

lim sup
k→∞

(
1

Tnk

∫ Tnk

0
E
Q
[
1 ∧ |χεk,x

t − χx
t |] dt

)

≤ lim sup
k→∞

(
k

Tnk

+ Tnk
− k

Tnk

sup
t∈[k,∞)

E
Q
[
1 ∧ |χεk,x

t − χx
t |]
)

= 0,

which in view of (9.15) implies (9.14), finishing the proof.
It remains to show (9.17). Since 1 ∧ (a + b) ≤ 1 ∧ a + 1 ∧ b for any a, b > 0, the

two terms on the right-hand side of (9.17) are treated separately. Let δk > 0. First we
have

P[1 ∧ xDth
εk
t > δk] ≤ P[xDth

εk
t > δk] = P[xDte

κt > δke
κt/h

εk
t ]

Now, h
εk
t ≤ eεk/2t so that for t ≥ k, eκt /h

εk
t ≥ e(κ−εk/2)t ≥ e(κ−εk/2)k since εk/2 < κ .

So, for any δk > e−(κ−εk/2)(k/2), it follows that

P[xDth
εk
t > δk] ≤ P

[
xDte

κt ≥ e(κ−εk/2)(k/2)
]

Set δ̃k := supt≥k P[xDte
κt ≥ e(κ−εk/2)(k/2)]. Since Dte

κt goes to 0 in P-probability,
it follows that δ̃k → 0. Thus, taking δk to be the maximum of δ̃k and e−(κ−εk/2)(k/2),
it follows that

P[1 ∧ χDth
εk
t > δk] ≤ δk.

Turning to the second term in (9.17), it is clear that

1 ∧
∫ t

0
Duh

εk
u f (Zu)du ≤ 1 ∧

∫ ∞

0
Duh

εk
u f (Zu)du.

As shown in the proof of Lemma 9.3,
∫∞

0 Duh
εk
u f (Zu)du goes to 0 almost surely as

k → ∞. Thus by the bounded convergence theorem, E[1∧∫∞
0 Duh

εk
u f (Zu)du] → 0

as k → ∞. Since

P

[
1 ∧
∫ ∞

0
Duh

εk
u f (Zu)du > δk

]
≤ 1

δk

E

[
1 ∧
∫ ∞

0
Duh

εk
u f (Zu)du

]
,

upon defining δk :=
√
E[1 ∧ ∫∞

0 Duh
εk
u f (Zu)du], it follows that

P

[
1 ∧
∫ ∞

0
Duh

εk
u f (Zu)du > δk

]
≤ δk,

and δk → 0. This concludes the proof since to combine the two terms one can take δk

to be twice the maximum of the δk for the individual terms. �

The next lemma proves the convergence in Lemma 9.4 for f ∈ L
1(E,p), not just

f ∈ C2(E;R+).
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Lemma 9.5 Let Assumption 2.7 hold. Then for all x > 0 and all h ∈ C,

Q- lim
T →∞

1

T

∫ T

0
h(ζt , χ

x
t )dt =

∫
F

hdπ. (9.18)

Proof By mollifying f , since p is tight in E, there exists a sequence of functions
f n ∈ C2(E) ∩L

1(E,p) with f n ≥ 0 such that
∫

E

|f n(z) − f (z)|p(z)dz ≤ n−22−n.

Note that

E

[∫ ∞

0
ne−t/n|f n(Zt ) − f (Zt )|dt

]
=
∫ ∞

0
ne−t/n

E[|f n(Zt ) − f (Zt )|]dt

=
∫ ∞

0
ne−t/n

(∫
E

|f n(z) − f (z)|p(z)dz

)
dt

≤
∫ ∞

0
n−1e−t/n2−n dt

= 2−n.

Thus, by the Borel–Cantelli lemma, it follows that P-almost surely

lim
n→∞

∫ ∞

0
ne−t/n|f n(Zt ) − f (Zt )|dt = 0.

For n > κ from Assumption 2.7, let An = n−1 supt∈R+(et/nDt ). Note that we have
limn→∞ An = 0 almost surely since for each δ > 0, we can find a P-almost surely
finite random variable T = T (δ) so that Dt ≤ δe−κt for t ≥ T , and hence

An = 1

n
sup

t∈t∈R+
(et/nDt ) ≤ 1

n
eT/n sup

t≤T

Dt + δ

n
.

Since
∫ ∞

0
Dt |f n(Zt ) − f (Zt )|dt ≤ An

∫ ∞

0
ne−t/n|f n(Zt ) − f (Zt )|dt,

we see that

lim
n→∞

∫ ∞

0
Dt |f n(Zt ) − f (Zt )|dt = 0 P-a.s. (9.19)

Thus, with Xn
0 := ∫∞

0 Dtf
n(Zt )dt , we get limn→∞ Xn

0 = X0 almost surely, and
hence if πn is the joint distribution of (Z0,X

n
0 ), then πn converges to π weakly

as n → ∞. Now, on the same probability space as in Lemma 9.1, define

χ
x,n
t := Δt

(
x +
∫ t

0
Δ−1

t f n(ζt )dt

)
, t ≥ 0.
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Note that

|χn,x
t − χx

t | ≤ Δt

∫ t

0
Δ−1

u |f n(ζu) − f (ζu)|du, ∀ t ≥ 0,

and by construction the law of the process on the right-hand side above under Q is
the same as the law of

∫ ·
0 Du |f n(Zu) − f (Zu)| du under P. It thus follows that for

δ > 0,

sup
t∈R+

Q[|χn,x
t − χx

t | > δ] ≤ P

[∫ ∞

0
Du|f n(Zu) − f (Zu)|du > δ

]
=: φn(δ).

By (9.19), we can find a nonnegative sequence δn → 0 with limn→∞ φn(δn) = 0.
Now, for h ∈ C, we have almost surely for t ≥ 0 that

|h(ζt , χ
n,x
t ) − h(ζt , χ

x
t )| ≤ K(1 ∧ |χn,x

t − χx
t |).

Therefore, with π̂
x,n
T denoting the empirical law of (ζ,χn,x), we have

E
Q
[|〈h, π̂

x,n
T 〉 − 〈h, π̂x

T 〉|]≤ K

T

∫ T

0
E
Q
[
1 ∧ |χn,x

t − χx
t |]dt.

Since for any 0 < δ < 1 and random variable Y , we have E[1∧|Y |] ≤ δ +P[|Y | > δ],
it follows that for any n,

sup
T ∈R+

E
Q
[|〈h, π̂

x,n
T 〉 − 〈h, π̂x

T 〉|]≤ K
(
φn(δ) + δ

)
,

and hence for the given sequence (δn) that

lim sup
n→∞

sup
T ∈R+

E
Q
[|〈h, π̂

x,n
T 〉 − 〈h, π̂x

T 〉|]≤ lim sup
n→∞

K
(
φn(δn) + δn

)= 0. (9.20)

Now fix a sequence (Tk) such that limk→∞ Tk = ∞. Since Lemma 9.4 implies for
each n that Q- limT →∞ |〈h, π̂

x,n
T 〉− 〈h,πn〉| = 0 for each n, we can find a Tkn so that

Q

[
|〈h, π̂

x,n
Tkn

〉 − 〈h,πn〉| > 1

n

]
<

1

n
.

It thus follows that

Q- lim
n→∞|〈h, π̂

n,x
Tkn

〉 − 〈h,πn〉| = 0.
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Since limn→∞ |〈h,πn〉 − 〈h,π〉| = 0, it follows by (9.20) for each γ > 0 that

Q
[|〈h, π̂x

Tkn
〉 − 〈h,π〉| > γ

]

≤ Q

[
|〈h, π̂x

Tkn
〉 − 〈h, π̂

x,n
Tkn

〉| > γ

3

]
+Q

[
|〈h, π̂

x,n
Tkn

〉 − 〈h,πn〉| > γ

3

]

+ 1{|〈h,πn〉−〈h,π〉|> γ
3 }

≤ 3

γ
sup

T ∈R+
E
Q
[|〈h, π̂x

T

〉− 〈h, π̂
x,n
T 〉|]+Q

[
|〈h, π̂

x,n
Tkn

〉 − 〈h,πn〉| > γ

3

]

+ 1{|〈h,πn〉−〈h,π〉|> γ
3 }

−→ 0 as n → ∞.

We have just shown that for any sequence (〈h, π̂x
Tk

〉), there is a subsequence
(〈h, π̂x

Tkn
〉) which converges in Q-probability to 〈h,π〉, which proves that (〈h, π̂x

T 〉)
converges in Q-probability to 〈h,π〉, proving (9.18). �

The next lemma strengthens the convergence in Lemma 9.5 to almost sure conver-
gence under Q, but for π -almost every x > 0, for h ∈ C from (9.10).

Lemma 9.6 Let Assumption 2.7 hold. Then for all h ∈ C and π -almost every x > 0,

lim
T →∞

1

T

∫ T

0
h(ζt , χ

x
t )dt =

∫
F

hdπ, Q-a.s. (9.21)

Proof We again use the notation in (9.12). Recall χ from Lemma 9.1 and define π̂T

as the empirical law of (ζ,χ) on [0, T ]. Given that (ζ,χ) is stationary under Q, the
ergodic theorem implies for all bounded measurable functions h on F that there is a
random variable Y such that

lim
T →∞〈h, π̂T 〉 = Y Q-a.s. (9.22)

By Lemma 9.5, it holds that for h ∈ C, Y = 〈h,π〉 with Q-probability one. Indeed,
let δ > 0 and note that

Q[|Y − 〈h,π〉| ≥ δ] ≤ Q[|Y − 〈h, π̂T 〉| + |〈h, π̂T 〉 − 〈h,π〉| ≥ δ]

≤ Q

[
|Y − 〈h, π̂T 〉| ≥ δ

2

]
+Q

[
|〈h, π̂T 〉 − 〈h,π〉| ≥ δ

2

]
.

The first of these two terms goes to 0 by (9.22). As for the second, denote by π |x the
marginal of π with respect to χ . Then

Q

[
|〈h, π̂T 〉 − 〈h,π〉| ≥ δ

2

]
=
∫ ∞

0
π |x(dx)Q

[
|〈h, π̂x

T 〉 − 〈h,π〉| ≥ δ

2

]
.
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By Lemma 9.4, the integrand goes to 0 as T → ∞ for all x > 0, and thus the result
follows by the bounded convergence theorem. Next, we have

1 = Q

[
lim

T →∞〈h, π̂T 〉 = 〈h,π〉
]

=
∫ ∞

0
π |x(dx)Q

[
lim

T →∞〈h, π̂x
T 〉 = 〈h,π〉

]
,

and thus (9.21) holds for π -a.e. x > 0, finishing the proof. �

The last preparatory lemma strengthens Lemma 9.6 to show almost sure conver-
gence for all starting points x > 0, not just π -almost every x > 0.

Lemma 9.7 Let Assumption 2.7 hold. Then for all h ∈ C and all x > 0,

lim
T →∞

1

T

∫ T

0
h(ζt , χ

x
t )dt =

∫
F

hdπ Q-a.s. (9.23)

Proof Recall from Remark 3.5 that χx takes the form

χx
t = Δt

(
x +
∫ t

0

1

Δt

f (ζt )dt

)
, t ≥ 0. (9.24)

Let h ∈ C. By Lemma 9.6, there is some x0 > 0 such that (9.23) holds. Using the
notation in (9.12) and (9.24), it easily follows for any x > 0 that

|〈h, π̂x
T 〉 − 〈h, π̂

x0
T 〉| ≤ 1

T

∫ T

0
|h(ζt , χ

x
t ) − h(ζt , χ

x0
t )|dt

≤ K

T

∫ T

0
(1 ∧ |χx

t − χ
x0
t |)dt

= K

T

∫ T

0
(1 ∧ Δt |x − x0|)dt ≤ K|x − x0|

T

∫ ∞

0
Δt dt.

We show below that Q[∫∞
0 Δt dt < ∞] = 1. Admitting this, it holds that Q-almost

surely, limT →∞ |〈h, π̂x
T 〉 − 〈h, π̂

x0
T 〉| = 0, and hence the result follows since (9.23)

holds for x0.
It remains to prove that Q[∫∞

0 Δt dt < ∞] = 1. By way of contradiction, assume
there is some 0 < δ ≤ 1 so that Q[∫∞

0 Δt dt = ∞] = δ. Then, for each N it holds

that Q[∫∞
0 Δt dt > N] ≥ δ, which in turn implies limT →∞ Q[∫ T

0 Δt dt > N ] ≥ δ. By
construction, for any fixed T > 0, the law of Δ on [0, T ] under Q coincides with the
law of D under P on [0, T ]. It thus holds that limT →∞ P[∫ T

0 Dt dt > N ] ≥ δ. But
this gives P[∫∞

0 Dt dt > N ] ≥ δ for all N and hence P[∫∞
0 Dt dt = ∞] > 0. But this

violates Assumption 2.7 since limt→∞ eκtDt = 0 P-almost surely for some κ > 0.
Thus Q[∫∞

0 Δt dt < ∞] = 1, finishing the proof. �
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With all the above lemmas, the proof of Theorem 3.4 is now given.

Proof of Theorem 3.4 We again adopt the notation in (9.12). In view of Lemma 9.1,
the remaining statement in Theorem 3.4 which must be proved is that there is a set
Ω0 ∈ F∞ with Q[Ω0] = 1 such that (3.13) holds, i.e.,

ω ∈ Ω0 =⇒ lim
T →∞〈h, π̂x

T 〉(ω) = 〈h,π〉, for all x > 0, h ∈ Cb(F ;R).

Recall the definition of C from (9.10) and let h ∈ Cb(F ;R) ∩ C. In view of
Lemma 9.7, there is a set Ωh ∈ F∞ such that Q[Ωh] = 1 and

ω ∈ Ωh =⇒ lim
T →∞〈h, π̂x

T 〉(ω) = 〈h,π〉, for all x > 0.

Let the (countable) subset C̃ ⊂ C be as in the technical Lemma A.2 below and
set Ω0 = ⋂

h∈C̃ Ωh. Clearly, Q[Ω0] = 1. Let ω ∈ Ω0 and h ∈ Cb(F ;R) with
C = supy∈F |h(y)|. Let ε > 0 and for n ≥ 5 take as in Lemma A.2 ↑φn

m,k,
↓φn

m,k and
θn such that (A.7) holds. In what follows, the ω will be suppressed, but all evaluations
are understood to hold for this ω.

Let x > 0. With ν from (A.7) equal to π̂x
T , it follows that

〈↑φn
m,k, π̂

x
T

〉− 2C〈1 − θn−4, π̂x
T 〉 − 2ε ≤ 〈h, π̂x

T 〉
≤ 〈↓φn

m,k, π̂
x
T

〉+ 2C〈1 − θn−4, π̂x
T 〉 + 2ε.

With ν from (A.7) equal to π , one obtains

〈↑φn
m,k,π

〉− 2C〈1 − θn−4,π〉 − 2ε ≤ 〈h,π〉 ≤ 〈↓φn
m,k,π

〉+ 2C〈1 − θn−4,π〉 + 2ε.

Putting these two together yields

〈h, π̂x
T 〉 − 〈h,π〉 ≥ 〈↑φn

m,k, π̂
x
T

〉− 2C〈1 − θn−4, π̂x
T 〉 − 2ε

− (〈↓φn
m,k,π

〉+ 2C〈1 − θn−4,π〉 + 2ε
)

= 〈↑φn
m,k, π̂

x
T

〉− 〈↓φn
m,k,π

〉

− 2C
(〈1 − θn−4, π̂x

T 〉 + 〈1 − θn−4,π〉)− 4ε.

Since θn−4,↑φn
m,k,

↓φn
m,k ∈ C̃ ⊂ C, taking T → ∞ gives

lim inf
T →∞ 〈h, π̂x

T 〉 − 〈h,π〉 ≥ 〈↑φn
m,k,π

〉− 〈↓φn
m,k,π

〉− 4C〈1 − θn−4,π〉 − 4ε.

Now by Lemma A.2, for fixed m,n, the functions ↑φn
m,k and ↓φn

m,k are increasing and

decreasing, respectively, in k and such that both a) limk→∞ ↓φn
m,k(y) − ↑φn

m,k(y) = 0

for y ∈ F̄n−2, and b) |↑φn
m,k(y) − ↑φn

m,k(y)| ≤ 2C + 2ε for all y ∈ F and n,m,k.
Therefore, taking k → ∞ in the above and using the monotone convergence theorem,
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we obtain

lim inf
T →∞ 〈h, π̂x

T 〉 − 〈h,π〉 ≥ −2(C + ε)π[F̄ c
n−2] − 4C〈1 − θn−4,π〉 − 4ε.

From Lemma A.2, we know that 0 ≤ θn(y) ≤ 1, limn→∞ θn(y) = 1 for all y ∈ F .
Thus, by the bounded convergence theorem and the fact that π is tight in F , it follows
by taking n ↑ ∞ that

lim inf
T →∞ 〈h, π̂x

T 〉 − 〈h,π〉 ≥ −4ε.

Taking ε ↓ 0 gives that lim infT →∞〈h, π̂x
T 〉 − 〈h,π〉 ≥ 0. Thus, we have just shown

for ω ∈ Ω0, x > 0 and h ∈ Cb(F ;R) that

lim inf
T →∞ 〈h, π̂x

T 〉(ω) − 〈h,π〉 ≥ 0.

By applying the above to ĥ = −h ∈ Cb(F ;R), we see that

lim sup
T →∞

〈h, π̂x
T 〉(ω) − 〈h,π〉 ≤ 0,

which finishes the proof. �

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
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Appendix: Some technical results

Lemma A.1 Let Assumption 2.7 hold, and additionally assume that |η| > 0 and
f ∈ C2(E;R+). Recall F from (3.1) and the invariant density p for Z. Let h ∈ C2(F )

be given and set

φ(z, x) := p(z)h(z, x), ψ(z, x) :=
∫ x

0
h(z, y)dy.

Let the operator L be as in (3.4) and the operator LR = Aij ∂2
ij + (bR)i∂i as in the

proof of Proposition 9.2, where A is from (3.3) and bR is from (9.5). Let L̃R be
the formal adjoint of LR . Then L̃Rφ = p ∂x(Lψ). In particular, if Lψ = 0, then
L̃Rφ = 0.

Proof For notational ease, the arguments will be suppressed when writing functions
except for the x appearing in the drifts and volatilities of the operators. Now, recall
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that the dynamics for the reversed process (ζ,χ) in (9.2) are

dζt =
(

c
∇p

p
+ div c − m

)
(ζt )dt + σ(ζt )dWt,

dχt =
(

f (ζt ) − χt

(
a − θ ′c∇p

p
− ∇ · (cθ)

)
(ζt )

)
dt

+ χt

(
θ ′c(ζt )dWt + η(ζt )

′ dBt

)
,

and note, as mentioned in the proof of Proposition 9.2, that LR is the generator for
(ζ,χ). To further simplify the calculations, set

ξ := 1

2

(
c
∇p

p
+ div c

)
− m (A.1)

and

H(c, θ) := ∇ · (cθ) − θ ′ div c.

Note that by (8.2), it follows that 0 = ∇ · (pξ). With this notation, we have that

dζt = (m + 2ξ)(ζt )dt + σ(ζt )dWt,

dχt =
(
f (ζt ) − χt

(
a − 2θ ′(m + ξ) − H(c, θ)

)
(ζt )
)

dt

+ χt

(
θ ′c(ζt )dWt + η(ζt )

′ dBt

)
,

which in turn yields that

A =
(

c xcθ

xθ ′c x2(θ ′cθ + η′η)

)
,

bR =
(

m + 2ξ

f − x(a − 2θ ′(m + ξ) − H(c, θ))

)
,

(A.2)

along with

b =
(

m

−f + x(a + θ ′cθ + η′η)

)
.

Finally, multivariate notation will be used for derivatives with respect to z and uni-
variate notation for derivatives with respect to x. Thus, for the given φ,

∇(z,x)φ = (∇φ, φ̇), D2
(z,x)φ =

(
D2φ ∇(φ̇)

∇(φ̇)′ φ̈

)
.

Since φ = ph and p is not a function of x,

∇(z,x)φ =
(

p∇h + h∇p

pḣ

)
.
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By definition, L̃Rφ = ∇(z,x) · ((1/2)(A∇(z,x)φ + φdiv(z,x)A) − bRφ). Using (A.2),

A∇(z,x)φ =
(

pc∇h + hc∇p + pxḣcθ

pxθ ′c∇h + hxθ ′c∇p + px2ḣ(θ ′cθ + η′η)

)
.

Calculation shows that

div(z,x)A =
(

div c + cθ

x∇ · (cθ) + 2x(θ ′cθ + η′η)

)
,

so that

A∇(z,x)φ + φdiv(z,x)A

=
(

pc∇h + hc∇p + pxḣcθ + phdiv c + phcθ

pxθ ′c∇h + hxθ ′c∇p + px2ḣ(θ ′cθ + η′η) + pxh∇ · (cθ) + 2pxh(θ ′cθ + η′η)

)
.

This gives (1/2)(A∇(z,x)φ + φdiv(z,x)A) − bRφ = (A,B)′, where

A = 1

2
(pc∇h + hc∇p + pxḣcθ + phdiv c + phcθ) − phm − 2phξ,

B = 1

2

(
pxθ ′c∇h + hxθ ′c∇p + px2ḣ(θ ′cθ + η′η)

+ pxh∇ · (cθ) + 2pxh(θ ′cθ + η′η)
)

− phf + pxha − 2pxhθ ′(m + ξ) − pxhH(c, θ). (A.3)

Now, L̃Rφ = ∇ · A + Ḃ. A is treated first. (A.1) gives p div c + c∇p = 2p(m + ξ)

and hence

2A = pc∇h + pxḣcθ + phcθ − 2phξ.

For a scalar function f and R
d -valued function g, ∇ · (fg) = f ∇ · g + ∇f ′g. Using

this,

2∇ · A = p∇ · (c∇h) + ∇h′c∇p + pxḣ∇ · (cθ) + x∇(pḣ)′cθ

+ ph∇ · (cθ) + ∇(ph)′cθ − 2h∇ · (pξ) − 2p∇h′ξ

= p∇ · (c∇h) + ∇h′c∇p + pxḣ∇ · (cθ) + px∇(ḣ)′cθ + xḣ∇p′cθ

+ ph∇ · (cθ) + p∇h′cθ + h∇p′cθ − 2h∇ · (pξ) − 2p∇h′ξ.

Using that ∇ · (c∇h) = tr(cD2h) + ∇h′ div c and collecting terms by derivatives of h

gives

2∇ · A = ptr(cD2h) + px∇(ḣ)′cθ + ∇h′(p div c + c∇p + pcθ − 2pξ)

+ ḣ
(
px∇ · (cθ) + x∇p′cθ

)+ h
(
p∇ · (cθ) + ∇p′cθ − 2∇ · (pξ)

)
.
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Since p div c + c∇p = 2p(m + ξ), ∇ · (pξ) = 0 and ∇ · (cθ) = H(c, θ) + θ ′ div c,

p div c + c∇p + pcθ − 2pξ = 2pm + pcθ,

px∇ · (cθ) + x∇p′cθ = 2pxθ ′(m + ξ) + pxH(c, θ),

p∇ · (cθ) + ∇p′cθ − 2∇ · (pξ) = 2pθ ′(m + ξ) + pH(c, θ).

Plugging this in and factoring out the p yields

2

p
∇ · A = tr(cD2h) + x∇(ḣ)′cθ + ∇h′(2m + cθ) + ḣ

(
2xθ ′(m + ξ) + xH(c, θ)

)

+ h
(
2θ ′(m + ξ) + H(c, θ)

)
. (A.4)

We next turn to B in (A.3). Using the relations p div c + c∇p = 2p(m + ξ) and
∇ · (cθ) = H(c, θ) + θ ′ div c yields

2B = pxθ ′c∇h − 2pxhθ ′(m + ξ) + px2ḣ(θ ′cθ + η′η) + 2pxh(θ ′cθ + η′η)

− 2phf + 2pxha − pxhH(c, θ).

Since only h depends upon x,

2Ḃ = pθ ′c∇h + px∇(ḣ)′cθ − 2phθ ′(m + ξ) − 2pxḣθ ′(m + ξ)

+ 2pxḣ(θ ′cθ + η′η) + px2ḧ(θ ′cθ + η′η) + 2ph(θ ′cθ + η′η)

+ 2pxḣ(θ ′cθ + η′η) − 2pḣf

+ 2pha + 2pxḣa − phH(c, θ) − pxḣH(c, θ).

Grouping terms by derivatives of h and factoring out the p yields

2

p
Ḃ = xḧ(θ ′cθ + η′η) + x∇(ḣ)′cθ

+ h
(− 2θ ′(m + ξ) + 2(θ ′cθ + η′η) + 2a − hH(c, θ)

)+ ∇h′cθ

+ ḣ
(− 2xθ ′(m + ξ) + 4x(θ ′cθ + η′η) − 2f + 2xa − xH(c, θ)

)
. (A.5)

Putting together (A.4) and (A.5) and using that L̃Rφ = ∇ · A + Ḃ, we obtain

1

p
L̃Rφ = 1

2
tr(cD2h) + x∇(ḣ)′cθ + 1

2
x2ḧ(θ ′cθ + η′η) + ∇h′(m + cθ)

+ ḣ
(
2x(θ ′cθ + η′η) − f + xa

)+ h(θ ′cθ + η′η + a). (A.6)

Turning now to ψ , since

Lψ = 1

2
tr(cD2ψ) + x∇(ψ̇)′cθ + 1

2
x2ψ̈(θ ′cθ + η′η) + ∇ψ ′m

+ ψ̇
(− f + xa + x(θ ′cθ + η′η)

)
,
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it follows that (note that only ψ depends upon x and ψ̇ = h)

L̇ψ = 1

2
tr(cD2ψ̇) + x∇(ψ̈)′cθ + ∇(ψ̇)′cθ + xψ̈(θ ′cθ + η′η)

+ 1

2
x2

...
ψ(θ ′cθ + η′η) + ∇(ψ̇)′m + ψ̈

(− f + xa + x(θ ′cθ + η′η)
)

+ ψ̇(a + θ ′cθ + η′η)

= 1

2
tr(cD2ψ̇) + x∇(ψ̈)′cθ + 1

2
x2

...
ψ(θ ′cθ + η′η)

+ ∇(ψ̇)′(m + cθ) + ψ̈
(
2x(θ ′cθ + η′η) − f + xa

)+ ψ̇(a + θ ′cθ + η′η)

= 1

2
tr(cD2h) + x∇(ḣ)′cθ + 1

2
x2ḧ(θ ′cθ + η′η)

+ ∇h′(m + cθ) + ḣ
(
2x(θ ′cθ + η′η) − f + xa

)+ h(a + θ ′cθ + η′η).

But from (A.6), this last term is precisely (1/p)L̃Rφ. �

Lemma A.2 Let Assumption 2.7 hold. Let C be as in (9.10). Recall that we have set
F = E × (0,∞) and let (Fn)n∈N be a family of open, bounded, increasing subsets
of F with smooth boundary such that F =⋃n Fn. There exists a countable family of
functions

C̃ := {↑φn
m,k,

↓φn
m,k, θ

n : n,m,k ∈ N, n ≥ 3
}⊂ C

such that

(i) for each n ≥ 3, 0 ≤ θn ≤ 1 with θn = 1 on F̄n and θn = 0 on Fc
n+1;

(ii) for each n ≥ 3 and m, the functions ↑φn
m,k are increasing in k and the functions

↓φn
m,k are decreasing in k. Furthermore, for any n ≥ 3 and m, we have that

limk→∞ |↑φn
m,k(y) − ↓φn

m,k(y)| = 0 for y ∈ F̄n−2.

Additionally, for any h ∈ Cb(F ;R), set C = C(h) := supy∈F |h(y)|. Then, for any
ε > 0 and any integer n ≥ 5, there exists an integer m = m(ε,n) such that for all
k ∈ N, supy∈F |↑φn

m,k(y)| ≤ C + ε, supy∈F |↓φn
m,k(y)| ≤ C + ε. Furthermore, for any

Borel measure ν on F ,

∫
F

↑φn
m,k dν − 2C

∫
F

(1 − θn−4)dν − 2ε

≤
∫

F

hdν

≤
∫

F

↓φn
m,k dν + 2C

∫
F

(1 − θn−4)dν + 2ε. (A.7)
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Proof Fix n ∈ N and let (φn
m)m∈M be a countable dense (with respect to the supre-

mum norm) subset of Cb(F̄n;R). Now, let k ∈ N and define for y ∈ F̄n

↑φ̃n
m,k(y) := inf

y0∈F̄n

(
φn

m(y0) + k|y − y0|
)
,

↓φ̃n
m,k(y) := sup

y0∈F̄n

(
φn

m(y0) − k|y − y0|
)
.

(A.8)

As shown in [2, Chap. 3.4], ↑φ̃n
m,k and ↓φ̃n

m,k are increasing and decreasing, respec-

tively, in k, and Lipschitz-continuous in F̄n with Lipschitz constant k. Furthermore,
as k ↑ ∞, ↑φ̃n

m,k ↗ φn
m and ↓φn

m,k ↘ φn
m on F̄n.

Next, let θn ∈ C∞(F ;R) be such that 0 ≤ θn ≤ 1, θn(y) = 1 on F̄n and θn(y) = 0
on Fc

n+1. Clearly, θn ∈ C for each n. Now assume n ≥ 3 and extend ↑φ̃n
m,k and ↓φ̃n

m,k

from functions on F̄n to all of F via

↑φn
m,k(y) =

{↑φ̃n
m,k(y)θn−2(y) y ∈ F̄n,

0 else,

↓φn
m,k(y) =

{↓φ̃n
m,k(y)θn−2(y) y ∈ F̄n,

0 else.

Clearly, ↑φn
m,k and ↓φn

m,k are Lipschitz on F , and since Fn is bounded, it also holds

that ↑φn
m,k and ↓φn

m,k are in C. Note also that ↑φn
m,k and ↓φn

m,k increase and de-

crease, respectively, as k ↑ ∞ to a function which is equal to φn
m on F̄n−2 and that

↑φn
m,k,

↓φn
m,k are bounded on all of F by supy∈F̄n

|↑φ̃n
m,k(y)| and supy∈F̄n

|↓φ̃n
m.k(y)|,

respectively. This proves (i) and (ii) above.
Now, let h ∈ Cb(F ;R) with C = supy∈F |h(y)|. Let ε > 0 and for n ≥ 5, choose

m = m(ε,n) so that supy∈F̄n
|h(y) − φn

m(y)| ≤ ε. By the construction of ↑φ̃n
m,k in

(A.8), it follows for each k that

−(C + ε) ≤ inf
y0∈F̄n

φn
m(y0) ≤ ↑φ̃n

m,k(y) ≤ φn
m(y) ≤ h(y) + ε ≤ C + ε, y ∈ F̄n.

By the definition of ↑φn
m,k , this gives supy∈F |↑φn

m,k(y)| ≤ C + ε. Furthermore, as

θn−2(y) = 1 on F̄n−2, we have h(y) ≥ ↑φn
m,k(y) − ε on F̄n−2. Therefore, for any

Borel measure ν, using the notation in (9.12),

〈h, ν〉 ≥ 〈(↑φn
m,k − ε

)
1F̄n−2

, ν
〉− Cν[F̄ c

n−2]
≥ 〈↑φn

m,k, ν
〉− 〈↑φn

m,k1F̄ c
n−2

, ν
〉− ε − Cν[F̄ c

n−2]
≥ 〈↑φn

m,k, ν
〉− (C + ε)ν[F̄ c

n−2] − ε − Cν[F̄ c
n−2]

≥ 〈↑φn
m,k, ν

〉− 2Cν[F̄ c
n−2] − 2ε

≥ 〈↑φn
m,k, ν

〉− 2C

∫
F

(1 − θn−4)dν − 2ε,
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where the last inequality follows since 1F̄ c
n−2(y) ≤ 1 − θn−4(y). This gives the lower

bound in (A.7). A similar calculation shows for all k that

−(C + ε) ≤ h(y) − ε ≤ φn
m(y) ≤ ↓φ̃n

m,k(y) ≤ sup
y0∈F̄n

φn
m(y0) ≤ C + ε, y ∈ F̄n.

This gives supy∈F |↓φn
m,k(y)| ≤ C + ε and h(y) ≤ ↓φn

m,k(y) + ε on F̄n−2. Thus

〈h, ν〉 ≤ 〈(↓φn
m,k + ε

)
1F̄n−2

, ν
〉+ Cν[F̄ c

n−2]
≤ 〈↓φn

m,k, ν
〉− 〈↓φn

m,k1F̄ c
n−2

, ν
〉+ ε + Cν[F̄ c

n−2]
≤ 〈↓φn

m,k, ν
〉+ (C + ε)ν[F̄ c

n−2] + ε + Cν[F̄ c
n−2]

≤ 〈↓φn
m,k, ν

〉+ 2Cν[F̄ c
n−2] + 2ε

≤ 〈↓φn
m,k, ν

〉+ 2C

∫
F

(1 − θn−4)dν + 2ε.

Therefore, the upper bound in (A.7) is established. �

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems
Theory. Birkhäuser Verlag, Basel (2003)

2. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn.
Springer, Berlin (2006)

3. Anderson, t.: Reverse-time diffusion equation models. Stoch. Process. Appl. 12, 313–326 (1982)
4. Arnold, L., Kliemann, W.: Qualitative theory of stochastic systems. In: Bharucha-Reid, A.T. (ed.)

Probabilistic Analysis and Related Topics, vol. 3, pp. 1–79. Academic Press, New York (1983)
5. Bhattacharya, R.N.: Criteria for recurrence and existence of invariant measures for multidimensional

diffusions. Ann. Probab. 6, 541–553 (1978)
6. Carmona, P., Petit, F., Yor, M.: Exponential functionals of Lévy processes. In: Barndorff-Nielsen,

O.E., et al. (eds.) Lévy Processes, pp. 41–55. Birkhäuser Boston, Boston (2001)
7. Castañon, D.A.: Reverse-time diffusion processes. IEEE Trans. Inf. Theory 28, 953–956 (1982)
8. Chen, M.F., Li, S.F.: Coupling methods for multidimensional diffusion processes. Ann. Probab. 17,

151–177 (1989)
9. De Schepper, A., Goovaerts, M., Delbaen, F.: The Laplace transform of annuities certain with expo-

nential time distribution. Insur. Math. Econ. 11, 291–294 (1992)
10. Delbaen, F.: Consols in the CIR model. Math. Finance 3, 125–134 (1993)
11. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding.

Scand. Actuar. J. 1990, 39–79 (1990)
12. Dufresne, D.: Distributions of discounted values. Actuarial Research Clearing House 1, 11–24 (1992)
13. Elliott, R.J., Anderson, B.D.O.: Reverse time diffusions. Stoch. Process. Appl. 19, 327–339 (1985)
14. Embrechts, P., Goldie, C.M.: Perpetuities and random equations. In: Mandl, P., Hušková, M. (eds.)

Asymptotic Statistics, Prague, 1993. Contrib. Statist., pp. 75–86. Physica, Heidelberg (1994)
15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Math-

ematics. Springer, Berlin (2001). Reprint of the 1998 edition
16. Gjessing, H.K., Paulsen, J.: Present value distributions with applications to ruin theory and stochastic

equations. Stoch. Process. Appl. 71, 123–144 (1997)
17. Goldie, C.M., Maller, R.A.: Stability of perpetuities. Ann. Probab. 28, 1195–1218 (2000)
18. Guasoni, P., Kardaras, C., Robertson, S., Xing, H.: Abstract, classic, and explicit turnpikes. Finance

Stoch. 18, 75–114 (2014)



C. Kardaras, S. Robertson

19. Haussmann, U.G., Pardoux, É.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)
20. Heath, D., Schweizer, M.: Martingales versus PDEs in finance: an equivalence result with examples.

J. Appl. Probab. 37, 947–957 (2000)
21. Nilsen, T., Paulsen, J.: On the distribution of a randomly discounted compound Poisson process.

Stoch. Process. Appl. 61, 305–310 (1996)
22. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)
23. Pardoux, É.: Smoothing of a diffusion process conditioned at final time. In: Kohlmann, M.,

Christopeit, N. (eds.) Stochastic Differential Systems, Bad Honnef, 1982. Lecture Notes in Control
and Inform. Sci., vol. 43, pp. 187–196. Springer, Berlin (1982)

24. Paulsen, J.: Risk theory in a stochastic economic environment. Stoch. Process. Appl. 46, 327–361
(1993)

25. Paulsen, J.: Present value of some insurance portfolios. Scand. Actuar. J. 1997, 11–37 (1997)
26. Paulsen, J., Hove, A.: Markov chain Monte Carlo simulation of the distribution of some perpetuities.

Adv. Appl. Probab. 31, 112–134 (1999)
27. Pinsky, R.G.: Positive Harmonic Functions and Diffusion. Cambridge Studies in Advanced Mathe-

matics, vol. 45. Cambridge University Press, Cambridge (1995)
28. Veretennikov, A.Y.: Bounds for the mixing rate in the theory of stochastic equations. Theory Probab.

Appl. 32, 273–281 (1984)
29. Veretennikov, A.Y.: Estimates for the mixing rate for Markov processes. Liet. Mat. Rink. 31, 40–49

(1991)
30. Vervaat, W.: On a stochastic difference equation and a representation of nonnegative infinitely divisi-

ble random variables. Adv. Appl. Probab. 11, 750–783 (1979)
31. Yor, M.: Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin (2001)


	kardaras_Continuous-time_perpetuities_cover
	kardaras_Continuous-time_perpetuities_author
	Continuous-time perpetuities and time reversal of diffusions
	Abstract
	Introduction
	Discussion
	Existing literature and connections
	Structure

	Problem setup
	Well-posedness and ergodicity
	Finiteness of X0

	Main results
	The distribution of X0 via a partial differential equation
	The distribution of (Z0, X0) via diffusion time reversal

	A numerical example
	Conclusion
	Proofs for Sect. 2.2
	Proof of Theorem 3.1
	Dynamics for the time-reversed process
	Proof of Theorem 3.4
	Preliminaries
	Proof of Theorem 3.4

	Appendix: Some technical results
	References



