
I·--

Investigation Into The Applications
Of Genetic Algorithms to Control

Engineering

Thabang lgnatious Thithi

Supervisor: Associate Professor Martin Braae

This thesis is submitted in complete fulfilment of the requirements
of the degree of Master of Science in Engineering in Electrical
Engineering

August 1996

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Declaration

I hereby declare that the work presented in this report is my own original work I

undertook whilst reading for the degree of Master of Science in Engineering in

Electrical Engineering at the University of Cape Town. Where help has been

sought, proper acknowledgments and references to all literature articles have been

made. References, whether primary or secondary, have been fully documented. This

work has not been submitted to any other university, nationally or internationally,

for the purpose of qualifying for a degree or for any other purpose.

Signed: on this date:

Thabang lgnatious Thithi

Acknowledgments

The author takes this opportunity to thank his supervisor Professor Martin Braae for
all his guidance, invaluable suggestions, constructive criticisms he made and
enthusiasm he showed in this work. I am particularly indebted to Professor John
Greene who was instrumental in the area of genetic algorithms and pointed me in the
right direction for the search of the literature material and genetic algorithms research

in general.

Thanks is due to Warren Carew whose help was invaluable with all my computer and
software problems. Monique has been a darling and she and Warren have been really

great friends when one needed them most.

I would like to thank Mr. Malcolm Attfield for all his help with setting up the two tank
model and for all other countless occasions when he offered his help. Karl Prince was
very helpful in suggestions and a great partner for our lab cricket league. His
suggestions provided may breakthroughs and I will forever be grateful for that.

I am indebted to MINTEK for their financial support towards the completion of this

project.

ii .

Synopsis

This thesis report presents the results of a study carried out to determine possible
uses of genetic algorithms to problems in control engineering.

This thesis reviewed the literature on the subject of genetics and genetic algorithms
and applied the algorithms to the problems of systems parameter identification and
Pl/D controller tuning. More specifically, the study had the following objectives:

+ To investigate possible uses of genetic algorithms to the task of system
identification and Pl/D controller tuning.

+ To do an in depth comparison of the proposed uses with orthodox traditional
engineering thinking which is based on mathematical optimisation and
empirical studies.

+ To draw conclusions and present the findings in the form of a thesis.

Genetic algorithms are a class of artificial intelligence methods inspired by the
Darwinian principles of natural selection and survival of the fittest. The algorithm
encodes potential solutions into chromosome-like data structures that. are evolved
using genetic ·operators to determine the optimal solution of the problem.
Fundamentally, the evolutionary nature of the algorithm is introduced through the
operators called crossover and mutation. Crossover fundamentally takes two strings,
selects a crossing point randomly and swaps segments of the strings on either side of
the crossover point to create two new individuals. There are three variations of
crossover which were considered in this thesis: single point crossover, two point
crossover and uniform crossover. It was important that these be given careful
consideration since much of the outcome of the algorithm is influenced by both the
choice and the amount with which they are applied.

Mutation has a biological role of producing new alleles and in the genetic algorithm it
has a role of introducing new chromosomes into the pool through random alteration of
the already existing ones. Mutation is often applied with a small probability, typically
less than one percent, to every bit in the population. When the mutation is to be
applied, a bit is probabilistically toggled from its state to the opposite one, hence
changing the value of the chromosome at that point. Other elements of the GA such
as selection techniques are also presented. Three different kinds of selections are
presented and it is shown that the use of either can result in the bias towards the best
solutions in the genetic processing. The complete structure of the GA is presented
and a pseudo code in C++ is presented to shown how the algorithm would be
implemented in practice.

iii

In chapter 3 more advanced issues on genetic algorithms are handled. The questions
of the fundamental workings of the algorithm and its convergence properties are
tackled. Holland's schema model is presented and it is shown that according to his
view, the workings of the algorithm simply amounts to sampling of hyperplanes by
crossover to reveal new and untouched areas of the search space. The convergence
of the canonical genetic algorithm, the simplest form of the GA, is addressed within
the chapter. It is shown that the algorithm, as it stands, does not have satisfactory
convergence properties and in fact will never converge to find a global optima of a
problem being solved. Variations of this algorithm however, introduced as
modifications, do converge to globally optimal solutions. The view is therefore taken
that the canonical GA as it stands will not be used further in the investigation, but

rather modified versions will.

The first application of the algorithm to control problems is presented in chapter 4.
The presentation was divided into two parts. First, the theoretical aspects of the work
were presented highlighting the formulation of the cost function used and secondly, a
practical application of this was carried out using a DC servo motor as a model to be
estimated. The results hereof are presented in chapter 5. The model was chosen for
its simplicity, and avoided cluttering the problems to be investigated with its
peculiarities. The work compared this proposed estimation technique to a more
established Recursive Least Squares (RLS) method with the comparison between the
two methods being carried out with two consideration in mind:

+ First, the two algorithms were to be compared in terms of accuracy of the
parameters established when running using the same data set. Since the
genetic estimation was carried out in the continuous domain, it was necessary
to convert the model to the discrete domain for comparison with the model
found using the RLS.

+ Secondly, the algorithms were compared in terms of their noise handling
capability. Only one topological structure for the RLS was considered in this
case as being the more practical: The case of noise corrupting the process
output and not the input.

It was generally found that for this application, both algorithms (with the GA being
tuned optimally) were comparable in terms of the accuracy. It is rather difficult to say
that one better than the other since both methods were subject to experimental error.
The difference between estimated parameters by both models was typically less than
1 % with different running conditions being induced.

For levels of noise less than 10% of the setpoint in the output, both routines seemed
unperturbed by its presence, with deviations between base parameters (those chosen
for a noiseless situation) and noise induced parameters being minimal. The recursive
least squares model however underwent a more accelerated deterioration in
parameters compared to the GA model as the noise content of the signal was

iv

increased. The genetic algorithm showed more robustness even with the levels of
noise exceeding 50% of the input signal amplitude, the parameters found were still
sound. Also found, was the sensitivity of the RLS algorithm to the perturbation signals
used in the motor input. Generally, on paper the RLS requires signals which are
reasonably excited to improve its estimation characteristics. It was however found,
that as a comparison with the genetic algorithm, as the nature of the signal changes
from being a simple square wave to a ramp input and then a sine wave, more

adjustments needed to be made to the RLS sampling time to accommodate this

change. This in itself was difficult to carry out.
An interesting observation was made on the performance of the cost function with
respect to the noise signal. As far as the magnitude was concerned, the individual
values of the GA estimated parameters changed less compared the change in the
objective function suggesting that the real defining factor of goodness might in fact be

the cost function and not the method used to process it.

In chapter 5 work on Pl/D controller tuning is presented from a theoretical point. A
comprehensive tuning criterion is established using the method of constraints. Very
simply, the development formulated the objective on the basis of an articulation that a
designer may have from personnel more familiar with the process that is to be
optimised by proper tuning. The response is then squeezed into this frame which
defines the constraints in the response such as the stability of the system, overshoot
in the response, the settling time, and other considerations are obeyed. The output
was not considered in isolation, the input, the main effector of control change, was
also constrained in such a way that safety margins were observed and respected. The
framework developed showed how the system can be optimised. by considering the
effects of the stability of the system, the overshoot and the input constraints. Although
these were the only considerations explored thoroughly, more considerations could be
given to the character of both the system response and the input and appropriate
constraints and penalty functions formulated. A comprehensive table summarising
these considerations was drawn up and presented.

A thorough application of this proposal was applied to a laboratory model of coupled
tanks. The system was chosen for its dynamics which emulated those of typical
industrial applications having relatively long time constants. Since the object of the
exercise was not the modeling application, the system was modeled using the laws of
physics governing the flows of liquids and a second order transfer function was found.
Several considerations from the comprehensive table in chapter 6 were applied to this
model as constraints of tuning the PIO controller used. The following conditions of
tuning were investigated fully.

+ The algorithm was applied to the model to tune its PIO controller for setpoint
tracking or least error. Although this was achieved, the controller demanded
plant input values which were above the limitations of the system. This to some
extent was a side effect of this tuning criterion and resulted in steady state
errors since the controller could not sustain the demand from the plant.

v

+ The algorithm was further applied with a view of tuning the controller for least
input. This once more was achieved within the framework developed earlier. It
was found that although this condition was met, the system suffered from slow
convergence times in catching up with the setpoint and sometimes overshoots
which were difficult to eliminate resulted.

• In the third application, both the conditions highlighted above were applied to
the controller as a multi-objective tuning case. The results here were
interesting as the controller signals highlighted both the properties of the least
tuned controller in the speed of convergence the system attained whilst the well
bounded input was a result of the least input tuning. Should the need have
arisen, it could be shown that more conditions could be added to the controller
as cases of more objectives the user may impose on the system.

An unsettling fact about the steep tuning curve of the algorithm that the user has to
negotiate was highlighted. in chapter 8. Although the GA works well in cases when it is
optimally tuned, arriving at the optimal settings proved to be a daunting task in most
applications, particularly where there could be a close coupling between the algorithm
settings and the problem that is being solved. An abstraction of the genetic algorithm,
dubbed the Population Based Incremental Learning (PBIL), was presented as
introduced by Shumeet Saluja. In essence, the PBIL aims to create a real value
vector which when sampled, reveals regions of high evaluation solutions with high
probability. This algorithm exploits the statistical properties of a GA whilst relieving the
designer of the tuning overhead imposed by the GA.

The development of this algorithm is shown and is applied to a problem of system
identification already tackled by a GA. The work on the PBIL is fairly new, having
been presented formally for the first time in 1995 by Saluja. There has been however
many reports about the its performance, with claims that it outperforms even some of
the best tuned GAs in problems which are designed to be GA friendly. On the.
problem it was applied to in this thesis, numerous trials had to be taken to get a feel
for its tuning criterion. Because there were relatively few parameters to be tuned, the
task was not as daunting as was in tuning the GA, a feature which gives it a clear
advantage.

In chapter 9 the conclusions on the work presented are made. A holistic view on the
algorithm is taken and view about the uses of the GA are expressed.

vi

Table of Contents

Acknowledgments

Synopsis ii

vi

ix

xvi

Table of contents

List of figures

List of tables

Glossary of terms xv

1 Introduction.. 1

2 Fundamentals of Genetic Algorithms. 5

2.1 Introduction.. 5

2.2 Inheritance: The basis of evolution and successful adaptation....................... 5

2.3 The canonical genetic algorithm (CGA) ·.... 7

2.3.1 The history of the GA ... ·............... 7

2.3.2 The algorithm... 8

2.3.3 Genetic algorithm implementation... 9

a) The chromosome data structure.. 9

b) The individual data structure.. 10

c) Reproduction and crossover... 11

d) Evaluation and fitness functions.. 12

e) Selection and selection techniques....................................... 13

f) Crossover and genetic recombination.................................... 14

g) Types of crossover techniques.. 15

h) Mutation.. 17

2.4 The algorithm implementation.. 18

2.4.1 The genetic algorithm. 18

2.5 Summary of important points.. 20

3 Advanced Genetic Algorithms. 21

3.1 Introduction ... :..................................... 21

3.2 The workings of a genetic algorithm: The schema model............................ 22

3.2.1 The schema model of genetic algorithms..................................... 22

3.2.2 The role of crossover in revealing new planes................................ 23

3.3 Convergence analysis of a canonical genetic algorithm (CGA).. 25

3.3.1 Markov chains... 26

3.3.2 Population transition through selection foto the next generation.......... 28

3.3.3 Population transition through mutation of chromosomes.................... 28

3.3.4 Population transition through crossover of chromosomes.................. 29

3.4 Population sizing for serial genetic algorithms... 32

3.4.1 Setting the population size.. . 32

3.5 Issues on stagnation of the algorithm-................... 34

Vil

3.5.1 Effect of the population size on convergence................................. 34

3.5.2 Effect of selection of convergence... 35

3.5.3 Effects of crossover on convergence... 36

3.6 The issue of resolution: how deep can we go?... 37

3.7 Chapter summary... 39

4 Systems Identification Using Genetic Algorithms... 40

5

4.1 Introduction.. 40

4.2 System identification.. 41

4.3 Genetic Modeling... 42

4.3.1 Setting up the algorithm... 44

4.4 Genetic estimation.. 44

4.4.1 A class of input perturbing signals.. 45

4.4.2 Performing the estimation and the results..................................... 46

4.5 Chapter summary and highlights.. 49

Application of Genetic Estimation to a Servo DC Motor

5.1 Introduction .. .

51

51

5.2 DC servo motor physical description.. 52

5.3 Recursive Least Squares as a comparative method.................................... 53

5.3.1 The basis of the RLS... 53

a) Output error minimisation.. 54

b) Generalised error model. 54

5.4 Experimentation.. 55

5.4.1 Data sampling and modeling... 56

a) Performance of a GA with noiseless signals........................... 57

b) Genetic estimation with noise injected in the motor output.......... 61

c) The algorithm performance... 62

5.5 Comparative performance between the RLS and the GA estimator................. 66

5.6 Chapter summary and conclusions... 67

6 PIO Controller Tuning Using Genetic Algorithms.. 68

6.1 Introduction... 68

6.2 Topology of PID controllers.. 69

6.3 The genetic tuning framework.. 70

6. 3 .1 The PID genetic data structure. 71

6.3.2 Control cost function and penalty functions.................................. 71

a) Stability check.. 72

b) Control input check.. 72

c) maximum overshoot checks... 73

6.4 Illustrative example: Tuning of a PID controller for an oscillatory system......... 74

Vlll

6.4.1 Setting up the algorithm.. 76

6.5 Summary and chapter highlights.. 79

7 Application of Genetic Tuning to a Coupled Tank Apparatus System 81

7.1 Introduction... 81

7 .2 The coupled tanks apparatus.. 82

7 .3 The device instrumentation and calibration of sensors................................ 83

7 .3.1 The mechanism of flow measurement and calibration of flow meters.... 83

7 .3.2 The depth sensors and their calibration....................................... 84

7 .4 Coupled tanks modeling... 85

7 .5 PID controller design and tuning using the genetic algorithm........................ 86

7 .5.1 Tuning objective 1: Tuning the PID controller for setpoint tracking...... 87
a) Controller performance for least error tuning......................... 88

b) Controller pole placement in the s-plane.............................. 90

7 .5.2 Tuning objective 2: Tuning the PID controller for least input............. 90

a) Controller performance for least input tuning......................... 91

7 .5.3 · Tuning objective 3: Tuning the PID for both least error and least input.. 94

7.6 Classical control tuning techniques: A case for comparison......................... 96
7 .6.1 Optimum controller settings from transient response........................ 96
7 .6.2 Two tank PID controller settings... 97

7. 7 Summary and highlights of the chapter.. 99

8 Removing Genetics from GAs: The PBIL... 101

8.1 Introduction.. 101
8.2 The Population Based Incremental Leaming.. 103

8.2.1 The algorithm.. 103
8.3 An application example: Systems parameter identification........................... 108

8.4 Chapter summary and conclusions.. 109

9 Conclusions. 111

Reference Appendix.. 117

Appendix A... 121

Appendix B............. 126

Appendix C... 129

Appendix D.. 132

Index.. 139

IX

List of Figures
Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Chromosome alignment before the exchange of genetic material. The

lines show the segments which will be exchanged.
The tree of inheritance showing the passing of blood from one

generation to the next.
Black box view of the function to be optimised.

Illustration of a 9 bit chromosome containing three genes.

The encoded chromosome with genes extracted to indicate each of

the parameters.

6

7
8

9

10

Figure 2.6 An illustration of an individual's data structure. 11

Figure 2.7 Useful view if genetic reproduction as the creation of an intermediate
population and the selection of better individuals for mating forming

the next generation. 12

Figure 2.8 Roulette wheel selection illustrations. 13

Figure 2.9 Illustration of crossover of two chromosomes to produce two new
individual chromosomes. 14

Figure 2.10 An illustration of the aligned chromosome showing the chosen
crossover point. This is before the genetic material are exchanged

between them. 15

Figure 2.11 Exchange of genetic materials between two chromosomes in a single
point crossover. 15

Figure 2.12 Loop view of a chromosome showing two crossover points. 16

Figure 2.13. Exchange of genetic material between two chromosomes in a two

pint crossover technique. 16

Figure 2.14 Illustration of uniform crossover for the creation of a single offspring
with a randomly generated mask. 17

Figure 2.15 Application of mutation to a chromosome. 17

Figure 2.16 The cycle of evolution in the genetic algorithm. 18

Figure 3.1 A cube model of genetic algorithm showing several faces sampled by

the same string. 22

Figure 3.2

Figure 3.3

x

Contour map depicting the parameters to be optimised and their state

space.

A depiction of the transition from state to a state with a

25

transformation probability tii· 25

Figure 3.4 Illustration of the progress towards convergence of a population
evolved by a GA. 35

Figure 3.5 Adaptive crossover and mutation schemes applied to reverse the
roles of mutation and crossover. 36

Figure 3.6 . Depiction of a resolution consideration for the search space. Shown
above is the bin size defining the resolution of search and also the
domain of possible search 38

Figure 4.1 System Identification block for the use of a genetic estimator. 42

Figure 4.2 A depiction of the class of signal used to excite both the simulated

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

plant and the models. 46

Plot showing the convergence movement of the process estimated
parameters.

A magnified view of the movement of parameter in the first 40
generations.

Plot of the movement of the performance index J as parameters are

46

47

m~m~. ~

Magnitude frequency response for both real plant model and
geometrically estimated model. 48

Phase frequency response for both the real model and the
geometrically estimated model. 49

The schematic circuit diagram of the DC servo motor used for
practical application of a genetic estimator. 52

An illustration of regions of pole dominance in the s-plane. 53

Recursive estimation model for the forward difference error criterion. 54

Recursive estimation model for the generalised error criterion. 55

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Fi.gure 5.15

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

xi

The linearity profile of the servo motor used for the GA system

identification experiment. 55

Excitation and response signals of the servo motor for a noiseless

experiment.

Motor excitation and response with the DC offset removed for .

noiseless experimentation.

Convergence of the parameters of the motor for noiseless GA

search.

The convergence plot of the RLS estimated system showing both the
movement of the discrete pole and discrete gain.

The convergence plot of the RLS estimated system showing both the
movement of the discrete pole and gain for the first 40 samples taken
from the motor.

Genetic estimation schematic diagram with a Gaussian noise source.

Genetic estimation schematic diagram with a band limited Gaussian
white noise source.

Illustration of the corrupting effect of noise on the process output for
varying degrees of noise.

A graphic view of the effect if noise on the search conducted by the
genetic algorithm for the optimal parameter point.

Depiction of the movement of the performance index with varying
levels of noise injected into the system.

Process boundaries used to articulate the desired process response.

Topology of a PIO controller in line with a process to be controlled.

A system response showing the limiting case of the process output.

Modified PIO controller including a filter on the derivative term.

Open loop response of the process to be controller by a GA tuned Pl
controller.

57

58

58

60

60

. 61

61.

62

62

65

68

69

70

71

74

Xll

Figure 6.6a Root locus of a system with a proportional (P) controller. 75

Figure 6.6b Root locus of a system with a proportional-integral (Pl) controller. 75

Figure 6.7a Genetic algorithm tuning progress at generation 0. 76

Figure 6.7b Genetic algorithm tuning progress at generation 5. 76

Figure 6.7c Genetic algorithm tuning progress at generation 20. 77

Figure 6.8 Plot showing the end of the algorithms tuning exercise for an

Figure 6.9

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

oscillating system. 77

The root locus plot resulting from the parameters of the PID controller
as tuned for least error case. 78

Schematic diagram of the coupled tanks apparatus system. 82

Sketch of the flow measuring instrumentation device. 83

Calibration curve determining the relationship between the motor
drive input voltage and the flow rate developed. 84

Calibration of the tank depth sensor and the plot showing the linearity
character.

Step response of the second tank when flow rate is stepped up and
down.

A magnified view of the second tank's level response when the flow
rate is stepped up and down.

Level control signals of the second tank showing the set-point and
the response of the tank level for a PID controller tuned for least
error.

The activity of the process input signal driving the tank pump for a
PID controller tuned for least error.

A histogram of the distribution of the control input signal for a PID
controller tuned for least error.

The root locus of the control process resulting from a least error
tuning exercise.

84

85

85

88

89

89

90

Xlll

Figure 7 .11 Level control signals of the second tank showing the setpoint and the
response of the tank level for a PIO controller tuned for least input. 92

Figure 7.12 The activity of the input signal driving the tank pump for a PIO
controller tuned for least input. 92

Figure 7.13 A histogram of the distribution of the control input signal for a PIO
controller tuned for least input. 93

Figure 7.14 Level control of the second tank showing the setpoint and the
response of the tank level for a PIO controller tuned for multi-
objective tuning criterion. 95

Figure 7.15 The activity of the process input signal driving the tank pump for a
PIO controller tuned for multi-objective tuning criterion. 95

Figure 7.16 A histogram of the distribution of the control signal for a PIO
controller tuned for the multi-objective tuning criterion. 95

Figure 7.17 Process reaction curve from the open loop step test of the two tank
plant model. 97

Figure 7.18 Process response after tuning using the Cohen-Coon suggested
settings. 98

Figure 7.19 Process input movement for the Cohen-Coon settings. 98

Figure 7.20 A histogram showing the distribution of the control signal for a case
of a Cohen-Coon tuned PIO controller. 98

Figure 8.1 Decision tree for running a typical genetic algorithm. 100

Figure 8.2 Geometrical interpretation of the learning rule and updating of the
probability vector. The vector w' lies inside the region on the straight
line between a and w. 105

Figure 8.3 Traces of the convergence characteristics of the probability vector
showing the bounds both below and above starting probability 0.5. 109

XlY

List of Tables

Table 4.1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 6.1

Table 6.2

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Search parameters of the estimation genetic algorithm.

Parameter settings of the genetic algorithm for model estimation.

Sensitivity analysis table for the varying degrees of noise for the GA
estimator.

Sensitivity analysis table for the varying degrees of noise for the

45

57

63

RLS estimator. 64

Movement of the objective function with varying noise levels. 64

Constraint-Penalty table for cost function optimisation. 73

Parameter settings of the GA tuning the PIO controller. 76

Parameter settings used in the GA for the tuning case studies. 87

Descriptive statistics of the least error tuning criterion case study. 89

Descriptive statistics of the least input tuning criterion. 96

Descriptive statistics of the multi-objective tuning criterion. 99

xv

Glossary of Terms

Crossover Crossover is a technique used to exchange the genetic material
between two parent chromosomes to produce two new
offspring. There are three fundamental types: single point, two
point and uniform crossover. Crossover is usually applied with a
high probability to force the algorithm to explore unknown
schemata.

Elitism Elitism is a genetic operation that encourages the carrying over
of a proportion of the best solutions from the current generation
into the next generation. The proportion to be carried over is
user definable and defines the generation gap of the GA.

Extremum/extrema The extremum of a differentiable function refers to the point
where the function takes either a maximum or a minimum
depending upon the extremum defined. The first derivatives of
the function at this point are all equal to zero. This is assuming
that the function is differentiable at all points.

Fitness Fitness is a measure that transforms the measure of
performance (i.e. the evaluation of a population member) into
allocations of reproduction opportunities.

Generation Gap The generation gap refers to the proportion of the population
that will get replaced by offspring when mating of individuals is
carried out. The elite members are inserted as they are into the
next generation.

Genetic Algorithm A class of artificial intelligence methods inspired by the
Darwinian principles of natural selection and survival of the
fittest.

Genotype A genotype in the context of a genetic algorithm is a set of
parameters specifying a particular domain of a problem. This is
merely decoded and mapped into genes which will contain
specific values of the domain.

Hamming Distance The Hamming distance between any two binary strings is the
count of the number of places in which the two strings differ.
The calculation is effected using a modulo two addition. d = b1
EE> b2 will be defined as a Hamming distance between binary
strings b1 and b2.

Hamming Weight The Hamming weight of any single binary string is count of the
number of ones '1 s' contained in the string.

Mutation Mutation is the systematic toggling of bits in a chromosome to
alter the state of the chromosome. It is viewed as a source of
new schemata. Mutation is usually applied with a small
probability, typically less than 1%.

Phenotype The finished construction of the genotype, i.e. in chromosomal

Population Based
Incremental
Learning

Schema I Schemata

System
identification

Allele

XVI

format is referred to as the phenotype. The phenotype will be a
chromosome which contains information about the population
member. It is the phenotype that is evaluated against objective
functions to determine the performance of the individual and
hence its fitness.

An abstraction of a genetic algorithm using only the GA
statistical properties but no recombination operators or mutation
of bits. First introduced by Shumeet Saluja and Rich Caruana in
1994.

'
The fundamental building block(s) of genetic representation of
binary strings. Schemata of different planes reveal different
planes where solutions of the process have a chance of lying.

I

System identification is a process of modeling systems from
input-output data to determine the mathematical equation
relating them. It is usually done from modeling which will
determine the rough form of the model, and the identification
then identifies the parameters of the model.

A traditional biological term for a chromosome.

Chapter 1
Introduction
~-:~E;:iB'm'illli!fRfitW:•.kJD1 .. :a)JEr•1 iillifmli!lliiiB··MJ&ulllfilllii.'.:.21'B-:~

This thesis report presents the results of a research work carried out to investigate possible

applications of genetic algorithms to process control engineering.

Simulated evolution and stochastic search techniques off er great promise in the automation of

engineering design[Greene, 1996]. In addition to multiple choices and constraints faced by

engineering designers, there are more subtle design problems relating to habit, conventional

wisdom and comprehensibility. Designs of dynamic systems rely mostly on the existence of

linear control theory developed for such problems which, in most occasions, are not as frequent.

The quest for simplicity and habit therefore, often compels designers to use linear theory to solve

problems encountered even if the problem is non-linear and conventional methods of solving it

exist. This is not because linear systems theory closely models the problem at hand in reality, or

that the results of such a treatment are optimal, but because the theory is powerful enough to be

trusted if the problem is formulated to be linear in nature.

Similarly, good engineering practice depends on concepts of systems theory. These emphasise the

need for modularity and hierarchies in process structures. Concepts of structured methodologies,

viz. structured analysis, structured design and structured implementation often surface and are

emphasised as the bare necessities to enhance and simplify design[Whitten et al, 1989]. This

again is not because these considerations offer any better performance to trial-and-error

approaches, but are often concessions to demands of design, maintenance and human

intelligence. Concessions like these often deny the designer the chance to explore vast spaces of

the solution of the problem often opting for exploitation of the known rather the exploration of
the unknown.

There is no reason at all why engineering designers have to impose such stringent limitations on

their work. Exploitation coupled with intelligent exploration of the unknown often presents more

"startling" results, revealing deeper intricacies about systems thought to be well known. It is then

easier for the an astute designer to follow on from where the exploration left off and exploit a

much smaller space in the neighborhood of the solution produced by an explorative approach.

Often the imposition of the constraints on the design is forced by the type of parameter space th~t

. is to be exploited for solutions. For realistic problems, the cost function, reflecting the goodness

of the design, is often not a smooth continuous surface found in textbooks of design. It is usually

a non-linear, discontinuous, non-differentiable surface, full of bumps and pitfalls. In such cases

therefore, the use of simplified approaches of calculus stops. Non-linear mathematical

considerations in these cases often are not even a consideration for reasons of habit, difficulty

Chapter 1 Introduction

and comprehension[Greene, 1996].

In trying to deal with these complications that arise from "ill-conditioned" problems, design has

often stretched its horizons to tap into other domains of knowledge. Biological metaphors have

been targeted as possible solution routes, mimicking nature and the functioning of its different

aspects. Algorithms have been invented to emulate these aspects and apply them to problem

solving hoping that the results would be as good as in nature. This is of course based on the

assumption that species get better and better at survival and learning as they adapt more to their

surroundings. In recent years, neural networks have come to the front as the more promising of

the biologically metaphoric solutions. These rely on the fact that, like a brain neural network, the

algorithm can learn from previous errors in order to influence the decisions of the future. Often

there is no need to know complex mathematical structures defining the problem, but only what

has been learnt about it in the past. The network will then continue to be trained on the basis of

historical results until a predetermined termination criterion indicating the depth and goodness of

its knowledge is reached.

Fuzzy logic, although not biological in its inception, is another method that has been invented to

solve complex problems encountered in engineering. One of the strong points of the method is

that it removes strict boundaries and restrictions in the variables making up the solution space.

Variables are interpreted not to have discrete digital states, but memberships that could span

many possible states. This is different to conventional logic that says a variable is either on or off,

1 or 0, dead or alive, etc.

This thesis presents and explores an additional method to the list of ·biologically metaphoric

methods: Genetic Algorithms (GAs). Also to be presented is an abstraction of this method

known as the Population Based Incremental Learning (PBIL) aimed at simplifying GAs in

respects to be presented. These two techniques are explored with the aim of investigating their

application to process control engineering. As a prime objective of this thesis, the following

question is asked: "Is there room for the genetic algorithm as a tool for tackling control

engineering problems, and under what conditions can this be done?"

Very briefly, genetic algorithms are a class of stochastic computational models inspired by the

Darwinian theory of evolution[Whitley, 1993]. These algorithms encode a potential solution to a

specific problem on a simple chromosome-like data structure and apply genetic recombination

operators to a collection of such structures representing multiple trials to the problem 'solution.

Critical information is preserved in each trial and more recombinations are carried out to search

possible parameter spaces of the problem. Over many generations, natural populations evolve

according to the principle of natural selection and survival of the fittest. By recombination and

selection, genetic algorithms therefore try to mimic this process by "evolving" solutions to the

real world problems, in the hope that as populations evolve they become better adapted to the
environment.

The basic prineiple of genetic algorithms was laid down rigorously by John Holland and his

students in 1962. It was however only after 1975 that the technique surfaced as a possible

2

Chapter I Introduction

optimisation method [Jenning, 1992]. Since then, more research has been carried out by many of

Holland's students and Holland himself to establish the current theory.

The basic principle on which Holland's theory is based requires one to understand the concept

inheritance and genetics. These will be presented in chapter 2 on the fundamentals of GAs.

With this background in genetics and the problems presented, the objectives of this thesis and the

study were thus:

+ To do a complete review of the literature and the algorithm's theory and that of the

Population Based Incremental Learning (PBIL).

+ To investigate possible uses of the algorithm to the problem of control system parameter

identification and that of PI/D controller tuning.

+ To do an in depth comparison of the uses mentioned above to classical methods based on

mathematical optimisation and traditional engineering thinking.

+ To draw conclusions and present the findings as a thesis report.

Limitations of the work

Because genetic algorithms are inherently slow in their processing, most of the work was carried

out under a digital computer simulation environment. For rigorous testing and comparisons

however, two laboratory model processes were used as tools for the practical applications of the

theoretical and simulated work. The author, with reference to the existing literature and public

domain programs, decided to develop and write his own genetic algorithm in C++. This was

motivated by the need to gain a deeper understanding of the algorithm and its processing powers

and limitations. The algorithm was therefore not viewed as a black box as will be shown in

chapters 2 and 3.

Scope of the research and investigation

Due to time constraints, the research conducted focused on the application of genetic algorithm to

system parameter identification and tuning of Pl/D controllers.

This report will start by presenting a background on genetics and genetic algorithms in chapter 2.

The chapter will present the algorithm from its historical perspective. It will discuss components

of the algorithm and their impact on the final GA functioning. Chapter 2 will end by presenting

the complete algorithm using C++ pseudo code and mathematical representations. In chapter 3

the topic of advanced genetic algorithms will be presented. This chapter explores in greater depth

aspects of the algorithm related to its efficiency and its functioning. Issues and components of the

GA introduced in chapter 2 are investigated in depth to reveal to the reader the underlying details

of the algorithm. It is important to inspect these issues for several reasons:

+ Should the algorithm fail to perform to the user's expectations then s/he should know that

there is an array of possibilities as to why the failure might have been experienced. The

algorithm, as will be shown in the next chapter, has a complex array of variables to be tuned

before a problem is solved. Although no guidelines exist as to how these are to be set, it still

important to have an idea of where to investigate should the performance ~f the algorithm be

3

Chapter 1 Introduction

less than optimal.

• The presentation aims to explain the role of some of the GA components such as crossover

and the effect each variation of this property will have on the search process. This

knowledge, although not crucial for the beginner user, is invaluable for experienced users.

These are users interested in the function of the algorithm rather than just the array of

problems of problems that could be solved with it.

In particular, issues relating to the basis model of the algorithm function, the schema model, and

the convergence issues will be probed. The ever recurring problem of stagnation and the dilemma

about the sizing of the population will also be presented and discussed. This chapter presents no

new algorithms and should rather be viewed as a continuation of chapter 2, tackling more

technical issues.

In chapter 4 the first of the control focuses of the algorithm will be presented. This will present

the problem of system parameter identification. In this chapter mainly the theory and principles

of the formulation of its use will be presented. This is done to separate the issues of the algorithm

from the peculiarities of the problems to be tackled. Chapter 5 will investigate this theme when

viewed from a more practical perspective. In this work, the algorithm used as an estimator, is

compared to a classical Recursive Least Squares (RLS) estimation method. The two algorithms

are compared on the basis of the accuracy of the search and the comparative accuracy iri the

parameters together with the noise handling characteristics. The latter consideration is based on

the knowledge and literature reviews that the RLS is prone to estimator bias (errors in estimation)

if the system is subject to noise on the signals used.

In chapter 6 the question of controller tuning will be investigated. The PI/D controller class will

be considered since it is the most versatile controller used in mineral's extraction and

petrochemical industries. Although the control algorithm has been in existence for a long time,

there are no satisfactory methods for tuning its parameters. Although the Ziegler-Nichols has

been the most widely used of the classical tuning methods, it has a problem with its use of the

control signals and makes its use problematic where limits exist on the actuators[Smith, 1972].

The Cohen-Coon tuning is considered and applied as a comparative case to the genetic algorithm.

A framework for tuning the controller based on the limits that the process is to obey, is developed

in chapter 6 and a practical application of this is reported in chapter 7. The application uses a

two-tank laboratory model as process emulating slow dynamics of real plants more closely. Three

considerations were given for tuning the controller to control the level of the second tank. The

controller was then tuned to realise these objectives.

In chapter 8 the abstraction of the genetic algorithm, the Population Based Incremental Learning

(PBIL) is· introduced. The development of this algorithm has been motivated by the problem

encountered with the setting up of the genetic control parameters to be explained in the next

chapter. Its development and application to a problem of system parameter identification are

reported. Chapter 9 presents the conclusions the author draws and closes the report.

4

Chapter 2
Fundamentals of Genetic Algorithms

2.1 Introduction

This chapter is an introduction to the background on genetics and how they relate to genetic

algorithms. In order to an appreciation of the model of genetic algorithms it is important to have a

basic understanding of the concept of general genetics. To this end, a brief background on genetics

is presented. It will be shown how GAs are evolved from this model. This chapter will however not

attempt to be a tutorial on either general genetics or genetic algorithms themselves, but will rather

serve as a guide to the link between the two concepts.

This chapter will start with the fundamentals of the algorithm by briefly presenting the general

genetics background. The Canonical Genetic Algorithm(CGA), being the direct technical

descendent of genetics, will then be described in detail. The description will include a history of the

algorithm and how it was developed. The algorithm itself will then be presented by breaking it up

into its constituent parts, with each component, and the mechanism of its implementation, being

discussed. The elements of the algorithm will then be drawn together into a composite GA. A short

summary of the chapter highlighting the main features, will then be presented.

2.2 Inheritance: The basis of evolution and successful adaptation

Whether we are aware of it or not, species have evolved from their original forms of creation to

what they appear to be in our eyes today. Evolution continues even in our life time, and although it

is a slow process which is difficult to appreciate, it is occurring and continues to be a mechanism

through which adaptation occurs. Different species, be they plant or animal, have acquired some

individuality in our eyes. Consciously or unconsciously then, we have begun to describe them in

terms of certain of their qualities, such as color, shape, size or activities(Shorrocks, 1978].

According to Edward Darwin, all of these species appear to coexist harmoniously in their

ecosystems. What we are not aware of though, is the fierce competition going on for mere survival.

Competition could be as visible as between lions and hyenas for scares food, or it could be as

invisible as between beautiful roses and weeds in a garden.

Chapter 2 Fundamentals of Genetic Algorithms

Competition between species can also be between members of the same species. For example, there

could be inter-species competition for limited food, water, shelter or even mates. It i's thus an

inevitable fact that members of the species who cannot adapt to changing conditions will eventually

be "wiped" off and cease to exist. Stronger individuals will survive and multiply better than weaker

ones. Life then becomes in the words of Darwin "A struggle in which only the fittest will survive to

reproduce"[Riolo, 1992]. Depending on the composition of the mating parents, offspring can

become better or worse off than their parents. This is usually a process of· chance since genetically

an offspring inherits half of its defining characters from one parent and half from the other. Thus, if

"bad" properties are inherited from both parents, such an offspring will be doomed die.

It is instructive to examine how nature decides survival patterns of species, that is the decision

"who shall live and who shall die?" In short, the instinct and ability to survive is passed through

generations in the genetic codes inherited by off springs from parents. Offspring will inherit some of

their characters from the fathers, these being encoded in the blue prints of life found in the sperm

DNA. In the same way, some of its properties are inherited from the mothers and passed through the

codes found in the ovum.

Although the sperm and ovum are the most mentally conceivable entities of pro-creation and serve

as transport media for characters, what defines the character of the individual coming from the

fusion process is not as obvious. During the mating process, fusion of sperm and ova occurs and

through this, chromosomes from both parents align to exchange their genetic material, the

composite being inherited by the offspring.

Figure 2.1 Chromosome alignment before the exchange of genetic material. The lines show the

segments which will be exchanged.

Chromosomes are themselves made of subsections referred to as genes. Each gene has nucleic

acids, the Deoxy-Ribonucleic acids (DNA) and the Ribonucleic acid (RNA). Each gene through the

composition of its DNA determines specific features and attributes of an individual. They contain

important character codes such as sex, height, color of eyes, hair texture, etc about the individual.

As a feature which will determine the chances of survival, they may contain features such as

muscle build, skeletal structure. Depending upon the composite features inherited, the off spring

could be doomed to die due to the inability to adapt or could be the opposite. Inheritance, and hence

the passing of properties down, progresses through many generations down the line as suggested in

the figure below an sets the trend for all the other generations.

6

Chapter 2 Fundamentals of Genetic Algorithms

OUsprlnK.11

Figure 2.2 The tree of inheritance showing the passing of "blood" from one generation to the next.

2.3 The Canonical Genetic Algorithm (CGA)
In this section the fundamentals of genetic algorithms are presented. The presentation focuses on

the fundamental genetic algorithm model known as the canonical genetic algorithms created by

John Holland and his research students in 1962.

2.3.1 The history of the GA
A parallel situation between inheritance as a means of successful adaptation and the a new

biological metaphor for problem solving dubbed the genetic algorithm(GA) was created by John

Holland in 1962. Holland, as a pragmatic researcher, saw the science of genetics as "something to

be emulated rather than envied"[Holland, 1992]. He noted that learning can occur not only by

adaptation of a single organism, but also by evolutionary adaptation over many generations of a

species. Carrying on from his research into machines that could learn, he proposed that learning

machine's search for a good learning strategy be organised as the breeding of many strategies in a

population of candidates, rather than as a refinement of a single strategy[Jenning, 1992]. More

research work was carried out to explore this idea further and it was not until 1975 that it produced

results and was presented in the publication of the book Adaptation in Natural and Artificial

Systems. This was to become a standard text on which future research was to be based. The book

presented the idea in a manner of being a principle and suggested numerous avenues in which the

knowledge could be used.

The ground breaking practical application suggestions and work were done and presented by

Kenneth de Jong, Holland's doctoral student in his thesis. De Jong published numerous articles

where he proposed that GAs could be used as function optimisers. Ironically though, de Jong was

also the first to question the effectiveness of the algorithm as optimisers and went to publish a paper

entitled "Are genetic algorithms function optimisers"[Manner and Manderick, 1992]. Researchers at

the forefront of GAs today include people such as David Goldberg who has emerged as the most

celebrated genetic theorist and practitioner. Greffenstete is also an active researcher based in the

navy service of the United States.

7

Chapter 2 Fundamentals of Genetic Algorithms

2.3.2 The algorithm
Essentially, genetic algorithms are a class of artificial intelligence methods inspired by the

Darwinian principles of natural selection and survival of the fittest(Whitley, 1993]. These

algorithms encode potential solutions to problems in chromosome-like data structures. Genetic

recombination operators are then applied to these structures so that they evolve them towards

optimal solutions. In doing this, care is taken to preserve critical information which could be

contained in the structures. Genetic algorithms are applied mostly to problems of optimisation

although they have been shown to be equally good in problems of pure search as in pattern

recognition. For this presentation, it is assumed that the algorithm is to be used in an optimisation

task. The explanation and the presentation will however also be valid for search tasks. It is assumed

that a function of several variables/(x1, xi, ... xn) is to be optimised. Without any loss of generality,

it is further assumed that the function is in fact to be maximised. This task and condition translates

to the task of finding those values of XJ. x2, •••• Xn such that the function f's peak is located.

In Holland's terms, the search for a good solution is a search for a particular binary string(Holland,

1992]. To this end, a genetic algorithm encodes each of the variables in the domain of the function/

as a series of binary bit strings. Each variable x1 is encoded as a bit string of length l that maps into a

domain X; E [Xmim Xmar1· The exact choice of the alphabet used to encode the domain of the

function has not been clear until recently presented works(Goldberg, 1989a].

With the encoding of parameters done, the problem at this stage is viewed simply as a black box

with a series of digital switches which could either be ON (1) or OFF (0). The aim of the algorithm

is then to find the optimal settings of the dials (bits in the string) such that the output of the black

box (function}) is as desired. The use of a black boxt here is deliberate to illustrate that to a large

extent the nature of the function does not matter to the GA.

Figure 2.3 Black box view of the function to be optimised.

At this stage some of the "orthodox" optimisation methods have to be discarded as invalid for the

sake of the illustration. To continue and justify the application of the algorithm, we make the

following assumptions about the maximisation problem:

+ It is assumed that the problem is non-linear and that conventional linear calculus
optimisation cannot be used.

+ It is further assumed that there are interactions between variables x1, x2, •••• xn and that no

t Figure redrawn from Goldberg, Goldberg[1989]

8

Chapter 2 Fundamentals of Genetic Algorithms

variable can be treated and solved independently of others.

• The function is multimodal and has functional discontinuities which, once more, renders the

use of calculus out of scope.

• For many problems in science and engineering, the only sure way to find an optimal solution

is to search through the entire space of all possible solutions. Such an exhaustive search will

explore the parameter space fully. The disadvantage however, is that the search is of order

O(i), where l is the length of the bit string. For moderate problems, say the bit string of 30

bits, which is considered moderate and reasonable in the literature[Whitley, 1993], then the

parameter space will have 230 (over 1 billion) possibilities. For large problems, we may

encounter strings of length l = 400, which again, is considered reasonable, and the search

space will have 2400 possibilities. Exhaustive search therefore is discarded as a possibility

as well.

2.3.3 Genetic algorithm implementation
An implementation of any genetic algorithm begins with a population of randomly generated binary

string solutions. A population in this context, will simply be a collection of samples encoded as

possible solutions to the problem. It is parallel therefore, to populations in natural habitat. Each

probable solution is encoded as a "chromosome" which, when decoded, will present the evaluation

or fitness of the population member. The evaluation function will present the measure of

performance of the chromosome with respect to a particular set of parameters.

2.3.3 a) The chromosome data structure

A chromosome, and hence a chromosome data structure(in program implementation), is viewed as a

fundamental building block of any genetic algorithm. Typically, a chromosome will be a

concatenation of parameter variables from the function to be optimised. The encoding used employs

the binary alphabet as the most efficient coding scheme[Goldberg, 1989a]. Depending upon the

problem at hand, a chromosome will be subdivided into a number of genes where each gene will

represent a particular parameter within the domain of solutions. As an illustration, suppose that for

a function being optimised, it is decided to encode each of the variables xi as a three digit binary

code ranging from 000 to 111, mapping them into a real valued domain [Xm;,., Xmarl The

concatenation of all these encoded variables will simply be an instance of one trial (chromosome)

that is tried as a solution as illustrated below.
c::n= _ _!L_ Y I I

where 8, indicates a 'l' bit and

CID indicates a 0 bit

Figure 2.4 Illustration of a 9 bit chromosome containing three genes.

For the 9 bit chromosome shown in figure 2.4, discrete segments of the string will be extracted and

interpreted as genes of the chromosome, and hence encoded parameters of a function as shown in

figure 2.5.

9

Chapter 2 Fundamentals of Genetic Algorithms

Figure 2.5 The encoded chromosome with genes extracted to indicate each of the parameters.

In general, each of the genes will have its own length, depending on the precision of each of the

parameters. At this stage, the genes, and thus the chromosome, are raw data that have no

information in them. To add an information content to a chromosome, it is decoded into an

unsigned integer (unsigned here is in the context of the complement of binary alphabets) and then

mapped into a domain representing its desired span. Variables need not have the same domain. Each

gene will be mapped into a real floating point number

xi = xmin + xm,-xmin z : .. 2.1
2 -1

where Z is a unsigned integer. The domain boundaries, Xmin and Xm= are user defined and form the

boundaries of search for each variable. The entire chromosome will then be decoded according to

an iterative decoding equation going through all the genes

ri (ail> ai2 .••• ail) Xmin + Xm!IXI - Xmin (~ aij 2j-l J : 2.2
, 2'-1 f:t '

where (au, a;2, ail:.) denotes the i1
h segment of an individual chromosome.

At this stage the chromosome will contain information about the domain of the variables that are to

be searched for. In genetic terms, and as it will be used from here onwards, these variables

containing the information will be referred to as the genotype. Genotypes will be inserted into a

chromosomal string that will be referred to as the phenotype and evaluated against the objective

function f(xi, x 2, x 3). The value returned by the evaluating function will be an indication of the

performance of the phenotype and hence its fitness.

2.3.3 b) The individual data structure

The individual data structure is the next level of abstraction aimed at giving meaning to

chromosomes or phenotypes. It was mentioned that chromosomes themselves will contain raw data

that has no meaning about the problem. The data structure for the individual incorporates the

chromosome as it lowest level. On top of that, it keeps a copy of the information contained in the ·

chromosome as it is decoded. To add value to the chromosome, the individual is supplied with the

information about the boundaries of the chromosomal values.

10

Chapter 2 Fundamentals of Genetic Algorithms

Figure 2.6 An illustration of an individual's data structure.

An individual, both as a component of the algorithm and an object data structure, is aware of the

following attributes it has:

+ Its chromosome: This is a raw piece of data made up of genes which are meaningle~s by

themselves. The data is a series of bits concatenated into a string which can be manipulated.

+ ·'value (Property) of each gene: This is the decoded gene that has been mapped into its

appropriate domain. As a parallel to _general genetics, each value of the· gene could be

viewed as defining a specific attribute of a member of a species. The actual numerical ,value

itself defines the extent of the attribute.

+ Boundaries: These define the extent of the search which is carried out on each gene value.

Genes need not have similar domains of search. The extent of the boundaries of search for

each variable is based on empirical observations and knowledge based settings.

+ Value: This is an individual's value when evaluated against the cost function f For real

species, this could define the ability of an individual to withstand and survive environmental

conditions. This property by itself has no meaning until an individual is compared with

others.

The genetic search conducted by the algorithm depends as mentioned on its ability to mimic

evolution and apply the Darwinian principles of survival of the fittest. These evolutionary

capabilities are built into the GA through operators responsible for revealing new individuals. These

operators are dubbed crossover and mutation, as in genetics.

2.3.3 c) Reproduction and crossover
During the reproductive phase of the GA, individuals are selected from the population and

recombined using crossover, producing offspring which will constitute the next generation. The

selection is conducted randomly from within the population in a scheme which will favour better

individuals. The selection chances of parents for mating depends on their evaluation and fitness.

The differences between these two notions will be discussed below.

11

Chapter 2 Fundamentals of Genetic Algorithms

2.3.3 d) Evaluation and fitness functions
The evaluation function, or objective function, provides a measure of performance of a

chromosome, and thus the individual with respect to a particular set of parameters. For our

illustrative example, the evaluation or objective function will be the defined as /(xi, x:z, Xn)· When

the parameters are all found, they will be evaluated for goodness against this function. The fitness

function on the other hand, transforms the objective function into a reproduction opportunity for

every individual. It is instructive then to measure the fitness of each individual relative to all the

others in the population. In canonical genetic algorithms (CGA), fitness is defined as

J;cxl' X 2 , x3) f,. ·
F = ---'--"-:;__..:;;__ =!.. ... 2.3

I 1 n f
- Lfk(x.,x2,X3).
n k=l

where fi is an evaluation associated with string i and f is the average evaluation of all the strings

in the population. This fitness will then be used to determine reproductive opportunity of the

individual.

The execution of reproduction can be viewed as a two stage process: The first stage involves the

selection of individuals from an old population into an intermediate population purely on the basis

of merit(fitness). Good individuals are duplicated as shown below and bad ones are discarded as the

population size is kept constant. The second stage involves the random mating of individuals in the

intermediate population to create the next or new generation.

Strin_g 1
String 2 -
String 3 -
String 4

Generation t

Selection

~::::- -
-----­ ·-- ---

----........ ---·--
Strin
Strin

Intermediate
Generation

Crossover

Generation (t+ 1)

Figure 2.7 A view of genetic reproduction as the creation of an intermediate population and then

the selection of better individuals for mating to form the next generation.

Selection itself is a process influenced by several factors, the prime one being the fitness of an

individual. Logic therefore, dictates that the fittest individual should survive. Several selection

techniques have been proposed with a view of emphasising fitness as a prime selection factor, and

yet, be flexible enough to take deviations from norms. Several of these selection techniques are

presented in the next subsection.

12

Chapter 2 Fundamentals of Genetic Algorithms

2.3.3 e) Selection and selection techniques
The selection of individuals into the intermediate population is based on their fitness relative to the

rest of the population. There are a number of ways of performing a selection. It is important to be

aware of these techniques since the performance of any GA will have them as a variable which will

influence the outcome of search to a considerable degree. Three of the most popular selection

techniques are:

i) Roulette wheel selection,

ii) stochastic universal sampling and

iii) remainder stochastic sampling with replacement[Beasley et al, 1993a].

i) Roulette wheel selection techniques

In this technique, a real valued interval, Sum, is determined as either the sum of the individuals

expected selection probabilities or the sum of the raw fitness values over all the individuals in the

current population. Individuals are then mapped one-to-one into contiguous intervals in the range

[O, Sum]. The size of each individual interval corresponds to the fitness value of the associated

individual. For example, if the figure below the circumference of the roulette wheel is the sum of

individuals fitness. For this case six individuals are chosen where each will occupy a slice of the pie

as illustrated below.

6

1
4% 2

5
34%

3
12%

4
4%

Figure 2.8 Roulette wheel selection illustration.

To select an individual, the wheel is spun and the individual whose number lands on the number

selection pointer is selected. This is done by simply generating a random number in the domain [O,

Sum]. The individual whose segment spans the number is selected. The procedure is repeated until

the intermediate generation of figure 2.7 is full.

It should be evident that the roulette wheel selection technique will favour the selection of those

individuals who have a high degree of fitness. Exceptional performers in the first few generations

will thus tend to dominate the rest of the generations as the algorithm progresses and hence push the

selection pressure towards them. As an alternative and an improvement on this basic technique, the

remainder stochastic sampling is used.

13

Chapter 2 Fundamentals of Genetic Algorithms

ii) Remainder stochastic sampling
The bias of roulette wheel selection is evident from the previous paragraph. A selection procedure

that closely matches the expected fitness is the "remainder stochastic sampling". For each string i
'

with a fitness ~ greater than 1.0, the integer portion of this number will indicate how many copies
f

of the string will be directly placed into the intermediate population. All strings (including those

with ~ greater than 1.0) then place an additional copy with a probability equal to the fractional
f

part of this number. As an example, a string having a fitness ~ = 1.89 will get to place one copy of
f

its chromosome in the intermediate population and a probability of 0.89 of placing the next copy.

Random selection of mates is carried out from the intermediate population generated using any of

the selection techniques. Mates are mated using genetic recombination operators to produce two

new individuals which will be inserted into the next generation. There are variations as to how the

insertion of members into the next generation is carried out. Some techniques employ methods

where offspring are used to replace parents in the next population[Back and Schwefel, 1994]. Some

replace the worst members of the population so far. Other techniques employ random replacement.

These once more have an effect on the outcome of the search for parameters. Having selected the

mates for recombination, the process of mating itself can be carried out.

2.3.3 f) Crossover and genetic recombination
Crossover takes two individuals from the individual population and cuts their chromosome strings

at a randomly chosen point to produce two "head" segments and two "tail" segments. The tails are

then swapped over to produce two new full length chromosomes as shown in figure 2.9. In this

figure, two 12 bit strings are mated by choosing a crossing point at a "randomly" selected to be at

the seventh bit and then exchanging the genetic material on either side of the point.

Parent I

Parent 2

Kid 1

Kid2

Figure 2.9 Illustration of crossover of two chromosomes to produce two new individual

chromosomes.

Crossover of chromosomes comes in different variations. The operator is probably the single most

14

Chapter 2 Fundamentals of Genetic Algorithms

important feature of the algorithm which determines the success or failure of the search. In chapter

three the role of crossover and different types will be discussed in detail to outline their effect.

2.3.3 g) Types of crossover techniques

Fundamentally, there are three types of crossover, with numerous variations of these. The three

most prominent are:

i) Single Point Crossover,

ii) two point crossover and

iii) uniform crossover.

There have a been a number of schools of thought as to which crossover technique works better

than the others. The arguments mainly rested on the amount and degree of disruptions crossover

causes over bit strings[Beasley et al, 1993b]. Before those issues are discussed in detail, the three

types of crossover will be presented briefly.

i) Single point crossover

Single point crossover is the most fundamental of the three types of crossover techniques.

Crossover is performed by exchanging genetic material between two chromosomes selected for

mating. These align next to each other as shown in figure 2.9(repeated as figure 2.10 below).

I~··-.;;
C rossoveT Pt

Figure 2.10 An illustration of the aligned chromosomes showing the chosen crossover point. This

is before the genetic materials are exchanged between them.

A crossover point is then selected randomly. This naturally will have to between the beginning of

each bit string and its end. The chromosome is divided into a "head" and "tail" segment and genetic

material is exchanged between the two by swapping the tail segments of the parent strings. The

offspring may or may not look like their original parents depending on the parental make up.

Figure 2.11 Exchange of genetic materials between two chromosomes in a single point crossover.

The new individuals inherit parts of parents and thus produce entirely new individuals different to

the respective parents.

15

Chapter 2 Fundamentals of Genetic Algorithms

ii) Two point crossover

In two point crossover, chromosomes are viewed as loops rather than linear strings. As far as

implementation goes, this view does not offer any advantage over linear view used in single point

crossover.

Parent I Parent 2

Figure 2.12 Loop view of a chromosome showing two crossover points.

To exchange a segment from one loop with that of the another loop requires the selection of two

cut-off or crossover points, C1 and C2• Genetic material between the two crossover points are

swapped between the two strings to produce offspring as in the case of single point crossover. Two

point crossover is considered to be a superset of single point and is thus said to be more general.

The illustration of two point crossover exchange of material between two chromosomes can be seen

in the next figure.

Kid I Kid 2

Inserted segrnenl lnscrled segment

Figure 2.13 Exchange of genetic material between two chromosomes in a two point crossover

technique.

More variations of the two above mentioned crossovers are also applied. Multi-point crossover,

with even and odd selection points, is the ultimate in generality in the crossover used.

iii) Uniform crossover

Uniform crossover is a radical departure from the two general crossover techniques presented so

far. Each gene is created by copying corresponding 'ls' and 'Os' from either parent depending on

some crossover mask generated[Syswerda, 1989]. The technique essentially works as follows:

Two chromosomes align for crossover. A random binary mask is generated as a crossover mask. For

each bit in the crossover mask, where there is a '1', a bit inherited from parent #1, where there is a

'O' a bit is inherited from parent #2, with a pointer running through the mask until it is depleted.

This is done for the generation of a single offspring. To generate a second offspring, the parents are

exchanged and a new crossover mask is generated and the procedure is repeated once more. This

will then generate the second offspring. To clarify the algorithm, an illustration of uniform

16

Chapter 2 - Fundamentals of Genetic Algorithms

crossover is shown in the figure below.

Random Mask

Parent 1

Generated Offspring
i i i

Parent 2

Figure 2.14 Illustration of uniform crossover for the creation of a single offspring with a

randomly generated mask.

It can thus be seen that uniform crossover causes the offspring to inherit bits from parents

independent of any other bit[Whitley, 1993]. There is thus no linkage between each of the offspring

bits due to this independent inheritance. In chapter 3, it will be argued that this technique is in fact

the most disruptive of any order of any population of samples.

Arguments as to which technique is the best still continue[Beasley et al, 1993b]. The basis thereof,

seems to be the question of which crossover technique will increase the entropyt of the system

being optimised. There is a need to maintain order in a search so that the algorithm is guided

systematically towards the most optimal solutions, whilst maintaining sufficient diversity of the

samples.

2.3.3 h) Mutation
Mutation in general genetics is viewed as a source of new chromosomes[Srb and Owen, 1952]. The

operation alters the state of a gene by toggling each bit in the chromosome with a small probability

(typically less than 1 % probability) as shown in figure 2.15. After crossover is applied and two new

offspring are produced, each will then be mutated with a small pre-defined probability. If the

mutation rate is set relatively high (> 5%), then there usually is a danger that a GA will never

converge. Too low a rate however, can result in the stagnation of the search a local optima. The

choice of the mutation rate therefore, has an overwhelming outcome on the result of the search.

Figure 2.15 Application of mutation to a chromosome.

Off spring produced by one of the crossover techniques and the application of mutation are inserted

into the population by some replacement scheme as alluded to before. Replacement schemes are

usually not too significant and will thus not be discussed.

t An entropy of any system is defined as a measure of disorder of that system. A term most used in thermodynamics, it
defined the orderedness of molecules in a gas and gassified liquids as their temperatures are varied.

17

Chapter 2 Fundamentals of Genetic Algorithms

The above section described individual components of the algorithm from the perspective of their

mechanics. What has to be done therefore is the presentation of the complete algorithm that makes

use of all the above mentioned properties. The next section presents a complete genetic algorithm

and its mathematical implementation. To aid in the construction, a C++ pseudo code would be used

in the implementation.

2.4 The algorithm implementation

The previous sections of this chapter presented the bare bones of each of the components of the

genetic algorithm and highlighted the differences between "dialects" of the same operators. In this

section a unifying view showing how these components are combined to formulate the complete

genetic algorithm is presented.

2.4.1 The genetic algorithm
The basis of the genetic algorithms, in particular the canonical genetic algorithm, is based on the

following fundamental sequence of operations[Filho et al, 1995]:

i) Creation of the population of strings.

ii) The evaluation of each string and hence the entire population.

iii) The selection of the best string to serve as a mile stone which all the other members have to ·

try to achieve.

iv) Genetic manipulation of the current population to create the next generation of strings.

The figure below shows these four operations using biologically inspired GA terminology. In each

cycle, a new generation of possible solutions for a given problem is produced.

Reproduction

Figure 2.16 The cycle of evolution in the genetic algorithm.

At the first stage, an initial population of potential solutions is created as a starting point of the

search process. Each member of this population is encoded into a bit string to be manipulated as

described before. These strings have an ability to be stripped of their genes which will be mapped

into appropriate domains and then evaluated against the objective function.

The performance of each of the members is then evaluated with respect to the cost function of the

process. Based on the performance of each individual, mates are chosen for manipulation by

18

Chapter 2 Fundamentals of Genetic Algorithms

crossover and mutation to form the next generation of solutions. The algorithm repeats this cycle

until some measure of convergence, determining the goodness of the search, defined by the user,

has been satisfied.

A mathematical model of the algorithm is shown below with the computer implementation

following it immediately.

Computer implementation algorithm

t = O;
initialise the population: P(O) = { a1(0), a2(0), all(O)} E r

where I= {0,1}1
;

evaluate the population: <1>(0) = { <p(a1(0)), <p(a2(0)), <p(a"(O))}
where <I> is the evaluated population and <p the objective functions

while(t(P(t)) :;r: true){
select P(t+ 1) = s(P(t))
perform recombination (crossover): a'kft) = rrpcJ (P(t)) Ve {1,2, µ}
perform mutation: a"k (t) = m'fpmJ (a.it)) Ve {1,2, µ}

evaluate: p'(t) = {a"i(t), a"it), , a"J :
<l>(t) = {<p(a"i(t)), <p(a"i(t)), <p(a"Jt))}

t=t+l;

The above algorithm captures the essence of the implementation of the algorithm. It is translated

into simple computer code below.

Pascal/C++ pseudo code of the application of the genetic algorithm

Begin: t = O;

END.

generate initial population.

Compute the value and fitness of each individual.

Whilst not done{

}

perform pre-selection - form intermediate population.

for(i = O; i <population; i = i+2){

}

*select two individuals from old generation for mating.

*recombine the two individuals with probability Pc to produce 2 offspring.

*mutate the offspring with probability Pm·

*compute fitness of the two offspring .

. *insert them into new population.

if (population has converged) END.

A complete look at how the implementation of the separate genetic data structures is done is

presented in appendix A.

19

Chapter 2 Fundamentals of Genetic Algorithms

For the proper functioning of the genetic algorithm process, few but vital decisions have to made on

the operators that are to be used. Of all the different types of genetic operators highlighted, in each

category, only one can be applied at a time. The user has to decide on the type of crossover to be

used, the amount, i.e. how frequent crossing should occur within a population, the selection

technique, the amount of mutation and many others. Also crucial, is the size of the population used.

Hence, a genetic algorithm is essentially a multivariable processing model whose goodness, if

quantifiable, can be defined by the incomplete function

GA = f (population_size, crossover_type, crossover_ rate, selection_type, mutation_ rate,)

These variables, it will be shown in the next chapter, have a profound effect on the success of the

algorithm and their selection has to be guided somehow by an intimate knowledge of the type of the

GA used and the problem being solved.

2.5 Summary of important points

This chapter presented the fundamentals of genetic algorithms from the perspective of general

genetics and some of the functions of the algorithm. Careful examination of the data structures,

procedures and details necessary to implement a simple canonical GA were presented.

The primary data structure of the algorithm, the chromosome, is a simple string of concatenated

parameters referred to as genes. The canonical GA formulation uses two members of the population

to create two offspring which are inserted into the next population and form the basis of the next

generation. The primary work of the algorithm is performed through three routines: selection,

crossover and mutation. Selection performs simple stochastic selection though any of the selection

choices the user makes. Crossover and mutation are responsible for revealing new strings to be

sampled and tested for fitness and objection.

In the next chapter, an in depth consideration of the effect of some of the operators of the algorithm

will be taken. This will focus on the workings of the algorithm and the convergence analysis. Also

to be tackled is the question of population sizing and stagnation of the algorithm when performing

optimisations.

20

Chapter 3
Advanced Genetic Algorithms

3.1 Introduction

In chapter 2 of this report the fundamentals of genetic algorithms were introduced. Several

aspects relating to the components of the algorithm were discussed at length and different

variations were presented. Different choices of operators such as crossover and selection

were introduced and it was mentioned that only one of the operators can be used at a time.

What remained an important .and an unexplored factor in the goodness of search though, was

the influence of different operators used in the algorithm and the proportion of their usage.

For example, the algorithm's outcome will depend to some extent on the type of crossover

used and the rate at which it is applied. Care should thus be taken when selecting both the

type(single point, two-point, etc) and the rate of application(0.0 - 1.0) of this operator. Also,

factors such as the population size should also be considered as strong variables influencing

the outcome.

This chapter discusses these operators and their variations in detail. In particular, an attempt

will be made to shed some light about the goodness of the genetic operators and the effect

which the quantities have on the search process. It is hoped that at the end of the treatment of

the subject, there will be full justification of the conclusions to be made in this work, these

being based on the in depth probing of the algorithm. This chapter will look at the following

functional variables of a typical genetic algorithm:

i) The subject of the working of the algorithm is explored in section 3.2. In this section,

the fundamental schema model of John Holland will be presented as a basis for

explaining the modeling and processing of a genetic algorithm. It will be shown that

in simple terms, a genetic algorithm is in fact a parallel hyperplane sampler.

ii) The subject of convergence of the genetic algorithm will be discussed in section 3.3.

A proof of non convergence formulated by the author with reference material in the

published literature will be presented. It will show that a canonical genetic algorithm

(CGA) as formulated, will never converge to a globally optimal solution. Several

authors, particularly Gunther[Gunther, 1994] and Yao [Yao, 1994], have shown

ho,wever, that variations of the GA will converge to global optima. The proof uses a

linear algebra model of population dynamics known as the Markov chain model. A

Chapter3 Advanced Genetic Algorithms

brief discussion of the model itself will be presented.

iii) In section 3.4 the question of population sizing for serial genetic algorithms will be

presented. The discussion will look at the sizing question with a view of determining

the optimal population size that leads to an optimal performance of the algorithm.

iv) Section 3.5 will discuss the question of the stagnation of the algorithm. Several

factors from facts which will already have been discussed will be highlighted and

their effect on the stagnation discussed. Several mechanisms on how research has

attempted to tackle this problem will be presented. No in depth discussion of any

particular technique will be done but rather a synoptic views of each subject will be

presented.

3.2 The workings of a genetic algorithm: The schema model
Genetic algorithms at their inception were a matter of an algorithmic principle made up of

intuitive feelings of researchers. The algorithm was to be a model which was based on the

principles of evolution which were well understood. Holland as an academic and a

researcher, was the first to produce rigorous mathematical model and treatment of the

subject[Holland, 1975]. He(Holland) proposed what he termed a schema model of the

working of the algorithm. In this section the basis of Holland's model are presented and

discussed.

3.2.1 The schema model of genetic algorithms
The schema model and theory could best be articulated by studying a simple cube model

shown below.

010

000
001

Figure 3.1 A cube model of genetic algorithms showing several faces sampled by same

strings.

Each of the faces of the cube can be represented by the face vertices. Looking at the front

plane, it is seen that it is spanned by the strings 000, 001, 011 and 010 where these are Gray

coded bit representations. Common to these four strings, is a 'O' in the first bit position of

each of the them. Thus, the plane can generally be represented by the bit string 0## where #

is a "don't care" as used in digital systems. The replacement of any "don't care" by a valid

binary digit will yield an appropriate vertex member of the plane. This plane representation

using "don't cares" is known as the schema representation of the hyperplane.

22

Chapter 3 Advanced Genetic Algoritlvns

From observations, it should be noted that the top left vertex of the front face of the cube is

also a member of the left hand plane. Therefore, 010 not only samples the front face of the

cube, but also the left and the top side. One string will therefore be representative of three

faces of the plane depending on the schema used. The representations

0##, #1#, ##0

all include the vertex 010 as their member. The representation of the problem using binary

codes therefore spreads a single bit string across many planes that it could represent. This

property of a string being a member of different hyperplanes is the one which ensures the

completeness of the search conducted by the algorithm. Holland termed this representation

implicit parallelism since the processing done is logically parallel although the structures

worked with are serial in nature[Dorigo and Bertoni, 1993].

3.2.2 The role of cross in revealing new planes
In the context of the schema representation of the hyperplanes, crossover has a special role of

revealing new structures which may not be encapsulated by schema in a current population.

There is a subtlety in the role that crossover plays in the search though. Although it has a role

of revealing new planes which may not have been explored before, crossover can also drive

the search away from regions which carry promising results. This is the disadvantage of some

of the different crossover techniques and the differences will be highlighted here.

Consider a string 11000110 which could be representative of the plane within the schema

11######. If this string is crossed with a string 00101001 being a member of the plane

00###### and the crossover point is chosen as the second point, using single point crossover,

the offspring will be of the forms

10101001 which belongs to the schemata 1 ####### or 10###### and

01000110 which belongs to the schemata 0####### or 01 ######.

It should thus be evident from the simple illustration that both the original planes and their

schema will be lost irrecoverably due to the disruptive nature of crossover. Crossover has

thus sent the search into different planes altogether. If the original planes are of importance,

the only way to preserve them is to pass them into the next generation unchanged. This

passing of significant strings into next generations without change is known as elitism and

defines the generation gap. The generation gap itself, is the percentage of the population that

will be carried over unchanged and plays a significant part in the algorithm for two reasons:

L The biological model on which the algorithm is based, has this property interwoven

into its fiber. Parents and grandparents co-exist with their off spring and pass on to

them values and norms of life, thus maintaining continuity in human trends.

ii. The capturing of the strings and passing them forward unchanged ensures a proper

mixing of the population and thus keeps the influence of good strings going on.

23

Chapter 3 Advanced Genetic Algorithms

The influence of each of the crossover techniques should therefore become eminent. Two

point crossover is likely to be much more disruptive than one point. Uniform crossover with

its action described (in section 2.3.3) inherits each of the bits independently from each parent

since it does not use the swapping mechanism of the two variations. It is thus the most

disruptive of all crossovers[Syswerda, 1989] The choice of the crossover technique has thus a

profound effect on the outcome of the search or optimisation task and thus the interest.

Modifications have been proposed by Greffenstete and Yao and Sethares independently that

elitism is the best form of maintaining monotony in the search. Although Greffenstete's work

is empirical[Greffenstete, 1986], Yao and Sethares presented a statistical proof showing that

elitism will improve the GA and result in improved convergence[Yao and Sethares, 1994].

Which crossover technigue is ultimately chosen should be based on the cost-benefit analysis

which each will deliver. More formally though, according to the schema theory[Whitley,

1993], if M(H, t) is the number of strings sampling a hyperplane Hat time t, then the number

of strings sampling the hyperplane in the intermediate population is given by

M(H, intermediate)= M(H, t) f (H, t) ... 3.1
f

To calculate M(H, t+ 1), the number of strings sampling H in the next generation, then the

effects of crossover have to be taken into consideration. Usually, crossover is applied with a

probability Pc, making the sampling of the hyperplane Hin the next sample to be given by

f(H,t) f(H,t) .
M(H,t + 1) = (1- pJM(H,t) + pJM(H,t) (I-losses)+ gains] 3.2

f f

The losses and gains in the above equation refer to those losses and gains which result from

the disruption and new and better discoveries made by a crossover technique. They are

numerical counts of the strings M lost and gained in sampling the hyperplane H at any

instant. Thus, if the string gains are more than the losses, then the crossover could be

considered to be worth the effort and would then have the revealing effect. There haven't

been any in depth studies conducted on the subject of the crossover gains and losses. From

empirical studies conducted, there is a strong lobby that aims at projecting uniform crossover

as the best of the techniques[Syswerda, 1989]. In practice however, many of the public

domain genetic algorithm utilities have increasingly used one point crossover as a standard.

This again, could be encouraged by the fact that empirically, this crossover seems to incur

fewer losses that all the other kinds. The amount of gains however are still unknown

theoretical! y.

24

Chapter 3 Advanced Genetic Algorithms

3.3 Convergence analysis of a canonical genetic algorithm(CGA)

There has been a continued concern as to whether canonical genetic algorithms can be used

for static function optimisation. Although De Jong [De Jong, 1988] was the first to show that

GAs can be used for optimisation, he was also the first to question their effectiveness in so

far as converging to a global solution of the optimisation task is concemed[Manner and

Manderick, 1992]. There have been numerous analyses of GAs and their convergence, but

none have tackled the question of convergence properties of the CGA. In this work, an

attempt is made to show that indeed a CGA will never converge to a global optima, but

modified versions will.

In this thesis the convergence properties will be analysed in terms of the Markov chain model

of population dynamics. Before this model can be applied properly, it is important to

understand how the transformation of individuals from one state to another occurs. It is easier

to visualise this transition by looking at a simple two variable problem, with variables

represented in a contour plane, that is to be optimised by a GA.

100

90

80

70

60

B 50

40

30

20

10

10 20 30 40 so 60 70 ~o go

A

Figure 3.2 Contour map depicting the parameters to be optimised and their state space.

Each point along the contour map can be viewed as a state that an individual within the

population can occur in. The entire plain can be viewed as a series of states, or more formally

discrete random processes Zn= {Z0, Z1, ••••• }constituting a state space S of the process. Zn=

r would therefore mean that after n steps, the process has attained stater [Jeffrey, 1990]. The

movement between different states within the space S is probabilistic and is denoted by a

transition probability tii . This is the probability of effecting the transformation from states i

E S to a state j E S

100

90

80

70

80

B 50

40

30

20

10

10 20 30 40 50 60 70 80 90

A

Figure 3.3 A depiction of the transition from a state i to a state j with a transformation

probability tij.

25

Chapter 3 Advanced Genetic Algorithms

In the context of genetic algorithms, the transition that each member of the population makes

between states will be a function determined by the application of mutation, the type of

selection used and the gains and losses made from the crossover. In the next section, the

composition of this transformation probability and formal Markov chain models are

presented. This will lead to the development of the proof of non-convergence of the

canonical genetic algorithm.

The proof will be divided into two distinct parts:

+ First, it will be shown how a transitional stochastic matrix is set up usmg the

evolution operators of the genetic algorithm.

+ Once this stochastic transition matrix has been set up, properties of stochastic

matrices will be defined briefly and used to prove its convergence.

3.3.1 Markov chains
Concept Illustrating Example
Markov chains arise naturally in biology, psychology, economics and other sciences[Fraleigh

and Beauregard, 1990]. They are an important application of linear algebra and of

probability. The model analyses transitions that populations undergo in their distribution

within some pre-defined states. For instance, a population can be divided into classes

according to income: poor, middle class and rich. For the purpose of this analysis, a

population will be divided into states and not classes. Depending upon the economic and

other factors, population members can make transitions between different states in a defined

period. Some members may move from the poor state to become middle class, some middle

class members will become rich while other will get poor, etc. The dynamics of these trends

can be neatly encapsulated into a single matrix which will define the state transition of each

of the state members.

As an example, suppose that the following states are as defined above(completely arbitrary):

State 1 : poor

State 2: middle class

State 3: rich

Suppose further, that over a period of Y years, the following movements occur:

Of the poor people, 19 % become middle class and 1 % rich.

Of the middle class, 15 % become poor and 10% rich

Of the rich, 5% become poor and 30 % middle class.

A transition matrix Tis then formulated to capture these population dynamics. Each entry tij

in the transition matrix T will represent the proportion of the population moving from state i
to state j. T can thus be formulated as follows:

26

Chapter 3 Advanced Genetic Algorithms

Poor Middle Rich

.80 .15 .05 Poor
T= ... 3.3

.19 .75 .30 Middle

.01 .10 .65 Rich

It should be noted that each column of the transitional matrix will have a sum equal to 1 since

this sum reflects the movement of the e~tire population for the state listed at the top matrix

column.

A row distribution vector p= [p1 p2 p3] which lists the distribution of the population

among the states at the beginning of the chosen time frame is introduced. The entries of this

vector must be non-negative and have to add up to 1, with each entry indicating the fraction

of the population that is in that particular state. After the population transition, this vector

will be updated to determine the spread of the population in the next generation amongst

states. The updating of this vector is done through its multiplication by the transition matrix

T. Therefore, if p0 was the distribution at time t = 0, then after Y years the distribution vector

will be updated to

or in detail

[
(/+!)

P1
{

.80

p~ .19

.01

.15 .05] .

:~~ :~~ 3.4

The population will now be distributed amongst the possible states according to the entries of

the vector p<1
+

1>. If the transition in the next Y years is the same, another transition matrix will

be formulated and the next distribution of the population amongst the states worked out. This

chain of transition matrices determining the population distribution in the next time span is

called the Markov chain. A formal definition of the transition matrix of the Markov chain is

given next.

Definition: Transition matrix of a Markov chain (Kobayashi, 1981)

•A transition matrix for an n-state Markov chain is an n x n matrix in which all the entries

are non-negative and in which the sum of entries in each column is 1.

In genetic algorithms, we view the transition that each population member makes as being

bounded and guided by three primary genetic operators:

+ Selection into the next generation,

+ mutation of chromosomes and

+ Crossover of population members to give new offspring.

The contribution of each of these operators will be discussed in the next three sections

27

Chapter 3 Advanced Genetic Algorithms

according to the order above. It should be noted that each of them has a probabilistic chance

of bringing about the transition of a group of individual from one state to another. Although

our rough illustration of figure 3.1 showed the movement in the contour planes of two decode

variables A and B, the analysis in this work amounts to the re-mapping of A and B back into

the domain of digital strings.

3.3.2 Population transition through selection into the next generation
When using proportional selection, the probability that an individual will be selected from a

population (bi. b2, b3, ••• bn) to take part in reproduction is given by

f(b;)
P {selection of bi} = > 0 ... 3 .5

n

Itch)
j=I

Hence, each of the population members will have a given probability to make a transition

from one functional state to another. It should be noted though that selection does not lead to

the movement of the current members per se into different regions, but rather the movement

of the offspring produced. The selection of better individuals by this probability however can

be considered to have a good chance of making movement of the off spring into better

regions. Since selection in itself is not the end, there will even be a chance of good

individuals producing movement into weaker region's through offspring movement. The

essence of the movement of members through selection between different states is captured

by a selection transition matrix S. If the evaluation function is considered to have n discrete

states, then the population movement from one state to another could be summarised by the

matrix
State_ 1 State - 2 State - n

S II S12 S In State - 1

s 21 s 22 State_ 2 3.6
S=

S nl S n2 S nn State n

where each entry Sij details the proportion of movement from states i to j.

3.3.3 Population transition through mutation of chromosomes
The application of mutation will transform a bit string bi from one state (location in the

contour plane) to another bi' with a pre-defined probability Pm· For example, to transform a

string 0000 to 1011 using mutation will occur with a probability

P{bi -7b/} =Pm (1-pm) Pm Pm··3.7
=pmk (1-pm)l-k

where it can be noted that k is simply the Hamming distance between the initial string and the

28

Chapter 3 Advanced Genetic Algorithms

final one and l is the length of the original and final bit strings. In general, the probability that

mutation will transform a chromosome from one state to another is given by

' d(b.(f)b'.) 1-d(b·ffib'.) 0 3 8
P{ bi ~ bi} = pm ' ' (1- pm) ' ' > ·· .

where d(bi$b.i) denotes the computation of the Hamming distance between bi and b'i

[Stremler,]. This transformation will usually be relatively small but still significant. As in

the case of selection movement of members between states, the transformation caused by

mutation can be captured by a mutation transition matrix M.

State_l State_2 State_ n

M=
11?.it

State_l

State 2
- 3.9

State n

3.3.4 Population transition through crossover of chromosomes
Transformations caused by crossover on the other hand, are not state transforming as in the

sense of mutation, but rather, the sampling of different hyperplanes in the solution space. If

we assume, according to the schema theory, that M(H, t) is the number of strings sampling a

hyperplane H at time t, then the number of strings sampling the hyperplane in the

intermediate population is given by

M(H, intermediate)= M(H, t) f(1!_, t) ... 3.10
. f .

To calculate M(H, t+ 1), the number of strings sampling H in the next generation, then the

effects of crossover have to be considered. Usually crossover is applied with a probability Pc
making the sampling of the hyperplane H in the next sample to be given by

H H
J(H,t) J(H,t) .

M(,t+l)=(l-pJM(,t) +pJM(H,t) · (1-losses)+gazns] 3.11
f f

Although this is not the end, the above equation spells out the effect of crossover in the

transformation of population individuals. Another transition matrix, the crossover transition

matrix C can be formulated to capture the effects of crossover. This will be given by the

matrix of the form

State_! State_2 State_ n

State_!

C=
State_2 3.12

State n

29

Clwpter 3 Advanced Genetic Algoritluns

Each of the transition matrices derived above, the selection transition matrix S, mutation

transition matrix M and the crossover transition matrix C, are all stochastic matrices since

the movement from one state to the other through a genetic operator is probabilistic. Since all

the operators will be presented in a typical GA, it should thus be evident that the transition

made by an individual from one state to another will be a collective influence of all S, Mand

C transition matrices. More specifically though, the movement made by a group of

population members from state i to state j can be thought of as collectively being influenced

by sii, mii and cii· In matrix terms, a Markov chain transition matrix will therefore be product

of all the transition matrices above

T = SMC .. 3.13

The development of the genetic transition matrix T is done from the perspective of the

genetic algorithm operators and their transformational effect. The transition matrix T is used

in the proof of convergence of stochastic matrices to show that as it stands it will never

converge. The proof of convergence of these matrices as presented by Gunther will be used

to complete this convergence analysis.

Once more if the vector p is taken to represent the distribution amongst the states that

individuals can occupy, the same distribution as before can be set up

p(t+I) =pt T

p<t+I) = pt (SMC)

with p representing the final distribution and T the transition from one state to the other. The

stochastic nature of the matrix T and its conformity to all the properties of such matrices is

shown and proved in Gunther and will thus not be repeated here.

With this information about the transitions carried in T and final states represented in p, and

all the properties of stochastic matrices, the following theorem is stated from Iosifescu.

Theorem (losifescu)

Let T be a primitive stochastic matrix. Then r converges as k ~ oo to a positive stable

stochastic matrix r = p- l'where p- = p0 limTk = p0T- has nonzero entries and is
k-+-

unique regardless of the initial distribution and 1 is a stable matrix.

where the following definitions of the stochastic matrix Tare made.

Definition 1

1. A square matrix Tis said to be positive (T> 0) if aij > 0 for all i, j.

2. A positive definite matrix A is said to be primitive if there exists a k e K such that Ak is

positive.

3. A stochastic matrix A is said to stable if it has identical rows.

30

Chapter 3 Advanced Genetic Algorithms

Although the initial theorem on stochastic matrices shows that the transition matrix T and the

distribution vector p will converge as more trials are being taken, there could still be doubt as

to whether it will converge to a global solution. Empirical results do support the above

theorem, what is needed is to find the value to which the population transition matrix T and

hence the distribution vector p will converge to. To do this we will need to have a precise

definition of what convergence is in the context of population dynamics and genetic

algorithms. The following definition is made to that effect.

Definition 2

Suppose Zr= max{f(rrfr!r (i)) J k = 1, 2, n} is a sequence of random variables, representing

the best fitness when the function/ is optimised, within each population represented by state i

of p at step t. A genetic algorithm converges to the global optimum if and only if

limP{Zr= f*}=l

where/ = max {.f{b) I b E B } is the global optimum of the problem and B is the set of binary

strings used as test population by the genetic algorithm ..

This above definition thus leads to the following theorem to prove that a canonical genetic

algorithm will never converge to a global optimum.

Theorem 2 (Gunther, p5)

The CGA with parameter transition as encapsulated by the transition matrix T as defined by

the product of the genetic operator stochastic matrices does not converge to the global

optimum.

Proof:

Let i be any population state with the maximum value the maximum value Zr= max{f(rrf11r (i))

I k = 1, 2, n} < / and p1; the probability that the GA is in such a state at step t. Clearly

then, the probability that the maximum value is not equal to the global maximum, P{Zr * /J
~pr;, implies that P{Zr = /} ~ 1-pr;. From theorem 1 the probability that the CGA is in state i

converges to pt> 0. Consequently then lim P{Zt = J*}<l-p'(< 1

so the condition of convergence as per definition 2 is not fulfilled.

This is valid when looking at the convergence within one state. Since convergence, as

defined, will not be attained as more trials are taken, the entire vector will thus not converge

to the optimal.

The CGA does not reflect the practice of genetic researchers and users. It is well known that

to induce convergence to the global optimum of the solution, the best solution of the previous

generation is carried unchanged into the next generation, thus applying elitism.

Gunther goes on to prove that as much as the CGA will not converge to a global optimum of

31

Chapter 3 Advanced Genetic Algorithms

the function, modified versions (versions using elitism and other algorithmic fixes) will

indeed do. The basis of his proof rests on the same argument made by the author about the

use of Markov chains. It however, uses modification to the Markov chain by allowing carry

over from past generation and let them have influence on the new ones. The probability of

carrying best solution from the previous generation is always set to 1 if elitism is used. What

varies is the percentage of the previous population that is to carried over. This proportion of

the population to be carried over is formally referred to as the generation gap of the GA and

is usually defined as one of the GA tuning parameters. The proof of modified GAs can be

found in the appropriate reference.

3.4 Population sizing for serial genetic algorithms

The genetic algorithm has been discussed with reference to the issues of its functionality and

the quality of search that it conducts. The concept of schemata forms a powerful cornerstone

model on which the entire algorithm is based. Logically however, not every single plane we

can think of will be covered by the pool of individuals chosen. The number of individuals and

their diversity impacts directly on the pool of schemata the algorithm will have at its disposal.

To this effect, it ·is important to investigate the question of the population sizing and its

reference to the schema theory.

3.4.1 Setting the population size
Choosing the population size in a GA is fundamental decision faced by all GA users. On the

other hand, if the population size is too small, then the algorithm will converge too quickly

with insufficient processing of too few schemata. On the other hand, a population with too

many individuals results in long delays for significant improvements to occur[Goldberg,

1989b]. The population will typically be too large to get enough mixing of the schema per

unit of computational time. A balance between these two extremes is therefore important to

establish.

The decision about the population sizing stems from the development of the figure of merit

used for optimising the population size itself. First, the number of schemata contained in a

randomly generated population has to be known. Goldberg [Goldberg, 1985) performed this

calculation and it is presented below.

To count the number of expected unique schemata in a population, consider a probability of

having a particular schema of ordert n in a population of size m when the bit positions are

equally likely (b1 = b0 = 0.5). The probability of a single match may be calculated as

P(single match of a schema of order n) = (~)°

where n is the number of fixed bits(order) in the schema.

The probability of having no match of a single schema of order n in a population of m

t The order of a schemata is defined as the number of entries which are not "don't cares" in a bit string.

32

Chapter3 Advanced Genetic Algorithms

individuals is calculated and given by

P(O(B) .. n} = [1-GJ r .. 3.14
where B is the bit string and O(B) is the order of B. The probability that there will be at least

one successful match or more of the type of schema mentioned above can be calculated form

the above probability and shown to be

P(O(B) =I or more)= 1-[1-GJ r 3.15

Using the binomial combinatorial theory it can be shown that for every string of length l with

n fixed bits forming the order of the schema, then there are (~) such combinations to fonn

schema. With this information Goldberg showed that the expected number of schemata in a

population of m individuals over a string of length l may be calculated using the following

sum

S(m,l) = t,G};{ 1-[1-(~);J"}3.16
The function of equation 3.16 is called the schema function and is synonymous with the

function of equation 3.2. This function however, gives the exact values of the schemata

which could be expected in a population of m individuals and does not map the values

probabilistically as in equation 3.2. This function has asymptotes it converges to, both as the

function of the population size m and the string length l. It can be shown [Goldberg, 1989]
that with large population

!~ S(m,l) = !~tGJz; {1-[1-Grr} ~ 3'3.17
which is the maximum possible for a binary string of length l .

For diminishing values of the population size, the schema function limit tends to the

following value

IimS(m,l) = lim ±(1.)2j{1-[1-(.!.)j]m}-7 m2 1
••• 3.18

m~O m~O j=O j 2

The above limits establish the upper and lower boundaries on the population size. It is

however not a clear cut situation how large a population has to be in practical terms for the

limiting case to take effect or how small it has to be.

Although equation 3.17 and 3.18 establish the limiting cases in terms of schemata count and

population sizing, it is still difficult to establish exactly how large a population has to be

made for in between situations, letting alone what sizes limits define the in between sizing.

Goldberg has proposed figure of merit to guide in the selection of the population sizes in

these cases. The application of this has however not proved to be as popular within the GA

community[intemet communications, comp.ai.genetic]. His work however, does answer the

33

Chapter 3 Advanced Genetic Algorithms

important question about the limiting cases which are more important. It should thus be clear

that small populations do not offer much in terms of the quantity of the schema processed

where large population offer the opposite. Values in between will remain a mystery to be

solved by the user of the algorithm.

3.5 Issues on stagnation of the algorithm

One of the most recurrent problems encountered with genetic algorithm running is the

problem of premature convergence of the search. Premature convergence is symptomatic to

the stagnation on local extrema and is a function of the settings of the algorithm parameters.

There are three basic culprits which when unchecked, would lead to the algorithm stalling.

i) The size of the population used,

ii) selection type and selection pressured and

iii) Crossover and mutation operator settings

In the following subsections the contribution of each of the operators is discussed.

3.5.1 Effect of the population size on convergence
As discussed in section 3.4, the size of the population used determines the number of

schemata that are produced by every population of n individuals. Large populations are likely

to result in slow convergence but it was noticed from imperical studies, that the stagnation of

the algorithm occurred less frequently in such settings. Small populations on the other hand,

resulted in accelerated convergence to sub-optimal solutions which, most times, were far

from the expected global optima. Stagnation in these cases was more frequent compared to

moderate setting of the algorithm. A variation of the canonical genetic algorithm termed

microGAs have been proposed to exploit the use of small populations to accelerate

convergence which avoiding stagnation. The algorithm however also makes changes to the

crossover and reproduction techniques in general.

Stagnation is a simple result where the average Hamming distance between individual

members of the population diminishes. Viewed from this perspective, once all the solutions

have converged under whatever influence, no amount of crossover will produce anything
new.

34

Chapter 3 Advanced Genetic Algorithms

Co:~.olom"

t I f I

:1 : 0 1 :1 : 0
I I I I

:1 : 0 !I ! I
t I l I

:1 : 0 I :1 : 0 0
!J ! I h ! 0
I I I I

• • J ' : 1... .
: .:4. !--i .
!1: 0 1 h: 0
I I f t
• • 1 •

•-I •-I

Figure 3.4 Illustration of the progress towards convergence of a population evolved by a

GA.

Only mutation in such cases will have a chance of revealing new planes and introducing

some diversity. More roles of crossover and mutation are discussed in section 3.5.3. Large

sizing of the population therefore will help retard the accelerated progression towards this

state.

3.5.2 Effect of selection on convergence
Selection is carried out on the basis of genotypic value and the fitness of each individual.

Ideally the value

fi F; = 1 N .. 3.21

N~fj
is used as a figure of merit determining the chances of selection given to an individual. The

above criterion if used as it is, will increases the selection pressure towards those individuals

which may be super fit at the beginning of the run. The population is therefore likely to be

dominated by these individuals and the diversity is soon lost. This reduces the pool of

individuals from which new schema will be formed.

Modified versions of the fitness functions and selection have been suggested. The most

popular selection technique and the one least susceptible to the stagnation problem is the

ranking selection[Dumont and Kristinsson, 1992). Individuals are first sorted by rank and

fitness values are allocated according to these ranks. The normalisation formula for ranking

used in this thesis work is

. 2(max- 1) . N + 1
F,, (i) = rank(i) + 1- (max-1)-- .. 3.22

N-1 N-1

The value of max is set to 1 $; max $; 2 and N is the population size. The range of normalised

fitness therefore will be [2-max, max]. This ensures that all individuals have an equal chance

of being selected. This ranking, coupled with stochastic selection with remainder of section

2.3.3, produced the best performance with the best individual set to receive at most 1.6

chances of being selected into the intermediate generation.

35

Chapter 3 Advanced Genetic Algorithms

3.5.3 Effects of crossover on convergence
Crossover when applied in insufficient quantities delays the revelation of new sample

hyperplanes. If this trend persists, then individuals which may be favored by it will soon

come to dominate the population and the search will stagnate. There have been modifications

done to the both crossover and mutation to improve the quality of the search. Adaptive

crossover and mutation[Androulakis et al, 1994] have been proposed as possible remedies

for stagnation due to crossover. According to the empirical studies they conducted, they

found that both crossover and mutation have varying degrees of impact on the search.

Conservative users of the algorithm tend to apply crossover in relatively large amounts and

mutation in values typically less than 1 %. Androulakis et al suggests the use of adaptive

crossover and adaptive mutation as replacement for conventional ones. The algorithm ideally,

would start with the values of crossover and mutation reversed to some extent. Mutation is

set high enough to maintain diversity in the population whilst crossover is set low enough not

to accelerate the search too much but still reveal new structures reasonably well. The traces

below show this reversed trend

emu

cm in

Mmin

Generation

Crossover Mutation

cm ax

cm in

Mmin

I
I
I
I
I

.................. :~.~~·i·~-~. ~~-.....

Generation

Figure 3.5 Adaptive crossover and mutation schemes applied to reverse the roles of

mutation and crossover.

As the search and processing progresses, the mutation rate is decreased and crossover is

increased. The slope of both lines for the first plot determines the rate at which both the

operator effect alters. Mutation is typically set to 100% probability at the beginning to ensure

a thorough mixing of strings and maximum diversity between the population members. As

the search continues, mutation is gradually decreased to values low enough to reduce the

chaos in the system. Mmia as shown in the plot, could be set such that as mutation reaches that

value after a predetermined number of generations no further change will occur thereafter.

A slight improvement is gained by dividing the mutation trend into regions which will

accelerate and decelerate its effect as the search changes its character. In the second plot the

mutation trend is divided into three regions. In the first region, the rate of decrease from

maximum is set to be moderate whilst in the second it is accelerated to get back to normal

values. In the last region it is once more slowed down as this is the time when the system

could be stagnating.

36

Chapter 3 Advanced Genetic Algorithms

There is a good justification of the trends used:

+ In the first region the system mutation is lowered gradually to allow pro~er mixi~g of

the population and obtain the highest average Hamming distance between the strings.

This improves the role of crossover as it will have generally more structures to

sample.

+ In the second region mutation is accelerated to reduce its value so as to reduce the

entropy of the system. This helps the algorithm consolidate what it has learned before

and search the parameter space more thoroughly. At the same time crossover is being

gradually increased so support mutation.

• In the last region as the algorithm settles down, there will be a tendency to stagnate.

To reduce this chance, mutation is decelerated and applied with lower decreasing rate

compared to the other two regions. This once more will help increase the diversity

since mutation will still be relatively high and hence slow down the stagnation.

Sigmoidal functions can also be used as mutation and crossover trajectories. These will

emphasise the smoothness with which the transitions between different regions will be made

with significant changes being in the concavity of the guiding trend[Androulakis et al, 1994].

There has been much more work done in the subject of stagnation of GAs and how they can

be the problem can be solved. It is rather a disconcerting fact that so much effort has to be

devoted to fixing elements of the algorithm which is designed to ~e robust and should not

suffer from such phenomena (on paper).

3.6 The issues of resolution: how deep can we go?

The question of resolution of the space searched remains one of the powerful factors which

can elude the algorithm completely if not set sensibly. According to the decoding function,

mapping the binary patterns into the real domain, it was shown that it can be represented as

xmax - xmin
X; = X min + 21 -1 Z 3.23

In the above equation, the factor

xmax - xmin -
21 -1 ... 3.24

defines the resolution with which the space will be searched. Two major variables determine

the resolution or the granularity _of the space being searched: Its span, [Xmin. Xmax1 and the

length of the string, l, used to represent the parameters themselves. The latter parameter

carries more weight and is in most cases limited by the implementation effects. For machines

using a 16 bit representation, the maximum divide used will be i 6-1(=65535). Hence, using

the same span on the variables, the choice of the resolution will define the accuracy of the

search, directly translating to the number of decimal places the user would like the solution to
I

37

Chapter 3 Advanced Genetic Algorithms

be accurate to.

The resolution by itself can be one factor that could lead to the algorithm stalling at what

would be considered local extrema of the problem. Consider the figure below:

c
f

B

x

1.--d x -·

X m I•

Figure 3.6 Depiction of the resolution considerations for the search space. Shown above is

the bin size defining the resolution of search and also the domain of possible search.

For the figure above, depending upon the resolution dx, the algorithm may in all probability

not be able to find the real peak of the function, being C. If the decision about the bit length

is such that the bin spacing dx does not resolve the peak C with high magnification, then no

amount of genetic manipulation will result in it being found.

Another consideration is the domain of search that has been decided upon. Keeping the

domain around the region suspected to contain the peak greatly improves the chances of

finding the solution. As the region is kept tighter and tighter, even with same bit length used,

the bin sizes will automatically reduce, hence giving the algorithm a better chance of finding

c.

As an extension to the fundamental algorithm, the author experimented with the concept of

collapsing the search region when sufficient information or stalling is detected. In cases

where no further gains are made in finding new solutions, the boundaries Xmin and Xmax are

reduced to search finer in the region believed to be the neighbourhood of the extremum. In

such cases, the bits within the population themselves do not change. To make sure that

momentum from previous runs is not carried over, the entire population, except the best

member is regenerated, effectively forcing all the other population members into extinction.

Extinction and emigration models have been proposed in genetic algorithms to solve the

stagnation problems and increase diversity. Their use however has been limited to the domain

of island modeling, a branch of genetic algorithms dealing with parallel processing of

solutions. These models were not applied to this work because of the processing limitations.

Because they are inherently parallel, their design was such that they will be used to exploit

the parallel architecture of both hardware and operating systems. Most of the utilities written

in this regard are aimed at usage in the UNIX or equivalent environments.

38

Chapter 3 Advanced Genetic Algoritluns

3.7 Chapter summary

This chapter probed some of the issues confronting the user of genetic algorithm on a day-to­

day basis. The schema model, being the fundamental model of genetic algorithms, was

presented. It was shown that through the principle of implicit parallelism of Holland, a

population of any size contains more schema than is suggested by the population size itself.

The numbers increase dramatically with increasing population sizes.

The role of crossover in the revelation of new planes, which may not have been there before,

was introduced and explored. Of particular interest, was the mixed blessing nature of the

operator. It was illustrated that through crossover, both gains and losses are made on the

information already gathered in the search. Depending on the type used, the user has an

influence on these gains and losses. Single point crossover was stated as being the least

disruptive, and hence, the least likely to result in large losses. Although there is a strong

lobby in the literature to portray uniform crossover as being the best of all crossovers, the

model presented here negates that fact, and indeed, it can be seen that most public domain

developments have not been taken over by the idea. There could be a case for uniform

crossover though: Although disruptive in a way, it can improve the diversity of the

population. The danger however, is that its high entropy denies the algorithm in general the

opportunity to consolidate on whatever it might have previously learned.

The case for the population sizing was also presented. The importance of this consideration

cannot be divorced from the optimality and diversity of the algorithm. The population size

set, determines the number of schema the algorithm will have at its disposal to sample. Limits

for both the cases of large populations and diminishing sizes were shown. Although it is clear

what these limiting cases are, there exist no clear cut way of determining the optimal settings

for in between situations.

The issues relating to the stagnation in the search were also probed. It was shown that to a

large extent, stagnation is caused by the loss in diversity of the planes the algorithm has to

sample. In particular, the contribution of the population size, the selection types and the role

of crossover and mutation were highlighted. Depending upon the selection of the these,

stagnation could be delayed, and with it, delay the convergence of the solution to the optimal

one in case the algorithm does succeed in finding them. Different techniques aiming to solve

these problems were highlighted. The use of adaptive crossover and mutation were shown by

Androulakis to be a better implementation of the technique. Essentially, these are adjusted on

line as improvements and stagnations are detected.

In the next chapter the first application of genetic algorithms to control engineering problems

will be presented. The chapter will report on the development of the framework and

objectives for the utilisation of the GA. In chapter 5 this theme will be continued with an

application comparing these proposal of chapter to recursive least squares.

39

Chapter 4
Systems Identification Using Genetic Algorithms

4.1 Introduction

System identification has been employed in many fields for building mathematical models

based on observed input and output data. Modeling is typically a stimulus-response process

that depends on the exactness of both the input and the output data of the process. The field is

mature and many powerful methods are at a disposal of control engineers and applied

mathematicians in general[Maclay and Dorey, 1993].

Central to the idea of linear systems modeling, is the inherent underlying assumption that the

parameter space of the model to be built is a smooth, continuous, analytict one. Modeling

methods devised to date therefore aim to exploit these features of the function space, and are

usually designed to be of hill-climbing nature. All of them are based on the same principle

and can be described in a unified way[Ljung and Soderstrom, 1983]. Being of a hill-climbing

nature, these techniques often fail in the search for global optimum if the function search

space is not differentiable, non-linear in parameters, or if any of the assumptions about the

function defined in the space do not hold.

The same methods are applied for on-line identification popular with techniques such as

adaptive control. Their form in such cases is based on recursive implementation of off-line

methods which may be "one-shot" in nature. It is thus not suprising that they sometimes also

fail to locate the extrema of functions, and hence, process models due to their inherent

underlying structure. Another feature of these methods is that they go from one point to

another in the search space at every data sampling point[Dumont and Kristinsson, 1992].

They do not iterate more than once on each datum received, as they need new data to direct

the search. This is the exploitation of the feature of smoothness and continuity of the data

space, a feature which could be limiting if the plant data available does not allow sufficient

movement.

In this chapter the use of a genetic algorithm as a system identification technique is

proposed. The aim is to use the non-reliance of the algorithm on the function space and to

separate the problem from the algorithm, thus fostering better and independent performance

of the modeling method. The work will primarily focus on system identification in the

continuous Laplace domain. The work to be carried out in this chapter will depend and make

' Differentiable at every point. The choice of the word is deliberate to include spaces which may be complex.

Chapter4 System Identification Using Genetic Algorithms

use of the modification made to a canonical genetic algorithm as outlined in the previous

chapter. This is done in view of the fact that it has been proved that the canonical genetic

algorithm has no satisfactory convergence properties and will thus not be explored further.

As a comparative case, the modeling using a GA will be compared to other models found

using the recursive least squares (RLS) estimation method, this being the most popular and

most widely used of the "orthodox" identification methods. A comparison between the two

techniques will be done in chapter 5 using a practical application.

This chapter presents the concept of system identification and model building developed

from a theoretical perspective. It is shown how a genetic algorithm can be set up and used in

the modeling and identification task. An example is presented to substantiate the presentation

and illustrate the principle and process. It has to be mentioned that the choice of modeling

examples was motivated by factors other than the difficulty of the problem. Simplicity was

maintained so as not to clutter the real algorithm facts with peculiarities and details of the

problem. The difficulty of problems solved successfully using genetic algorithms has been

illustrated somewhere else in the literature using dedicated bench mark problems designed to

exploit the algorithm to the fullest[Holland, 1992], [Beasley et al, 1993].

4.2 System identification

The genetic identification proposed in this work will be approached from the general

perspective. Consider a process modelled by the transfer function

2 m a 0 + a1s + a2s + +a s
() - m -ST < 4 1 gs-b b b2 bne m_n

0 + IS+ 2 S + · · · .+ n S

where a; are the coefficients of the numerator and b; are the coefficients of the denominator

and 'tis the transport delay. This model can be re-written in pole-zero format to be

- (s- Z1)(s- Z2) (s- Zm) -sT

g(s)- K (s- P1)(s- P2) (s- Pn) e4.2

Suppose that the parameters of a process having a known modelt of the form of equation 4.1

above are to be identified, then the process can be rephrased as a search for the coefficients

a;, b; and. the transport delay 't such that a pre-defined search criterion is fulfilled. The

modeling can be equally well carried out by a rather different search: It is a well known

fundamental fact that a process can attribute its behavior to its modes. These will be the

positions of its poles and zeros in the s-plane. Therefore, instead of the search for the

coefficients of equation 4.1, a search for the poles and zeros of the system can be carried out.

This simplifies the modeling since each of the different aspects of the behavior of the process

can be encapsulated in a single position that a pole or zero of the process will take. This does

t It is assumed at this stage that the problem at hand is purely that of identification of unknown parameters. The structure of the
model including its order and other attributes are assumed to be known.

41

Chapter4 System Identification Using Genetic Algorithms

not change the nature of the model since it will have as many poles as the order of the

denominator function. The same is true for the numerator function.

To this end, work in this chapter will use the model realisation of equation 4.2 as a basis on

which continuous system identification will be carried out. The identification problem will

thus be reduced to the search for poles and zeros of the process to fulfill a search criterion

that a user defines.

The use of the genetic algorithm as an identification tool, like other methods, depends on the

availability of the plant input and output data. Unlike other methods mentioned in the

introduction however, it was found that the genetic algorithm can be run with a single set of

data from the plant. Once initial samples have been taken, there is no further need to sample

more data to guide the algorithm towards the parameters. Schematically, the algorithm is

connected to the plant as follows:

Process to be identified g(s) Process Res onse

Genetic Estimator ~---'

Estimator out ut

and paramters

Identification criterion

Figure 4.1 System Identification block for the use of a genetic estimator.

Essentially, both the algorithm, which will contain different estimate models of the process,

and the plant, are perturbed with the same input data. The algorithm is further supplied with

the response signals from the real plant. As each model is perturbed using the plant data, its

output is compared to that of the plant output and the result thereof is passed through the

identification criterion which determines the goodness of the model parameters. Those

models resulting in the minimal difference between their outputs and the output of the plant,

are retained and genetic processing is applied to them to improve the overall resulting

parameters. Details of the process are presented in the next section.

4.3 Genetic modeling

To perform the task of system identification we consider an nth order model response written

in the Laplace form

(s-z1)(s-z2) •••• (s-zm) -si-
y(s) = K ()() e u(s) 4.3

s-p1 s-p2 (s-pn)

y(s) = g(s)e-si-u(s) ... 4.3a

An assumption is made that the model to be identified will have the same form. This does not

however need to be the absolute truth. The phenomenon of pole dominance has shown that

42

Chapter4 System Identification Using Genetic Algorithms

models having multiple orders can be reduced to simpler ones with less number of poles if

some of the modes of the original model are considered non-dominant, stable and

damped[Kuo, 1987]. The model to be identified will thus be of the Laplace form

" " "
" (s-z1)(s-z2) (s-zm) -s~

y(s) = " " " e u(s)4.4
(s- P1)(s- Pz) (s- Pn)

A A A

y(s) = g(s)e-s-ru(s) .. 4.4a

" " where the coefficients P; and Z; are the unknown poles and zeros to be identified. Since

both the known model response from the process and response of the estimated model are

driven by the same input u(s), the object of the matching algorithm will thus be to find the

proper poles and zeros of the model to make the two outputs to be the same. When this is

achieved, the limit between the two variables will to tend to zero. The search objective for

the genetic algorithm can thus be formally stated as follows:

Search objective:

" " Find the parameters of the unknown model response y ,and thus the model g(s), such that

the limit of the difference between the plant and the model responses vanishes.

1 N " 1 N

l=-:L<Yk -yk)2 =-:Le; .. 4.5
N k=I N k=I

" where y is the plant response, y is the response of the model and N is the number of input-

output samples taken from the plant and k is the sample counter. This has been popularised

by applications such as least squares modeling which have illustrated the efficiency of the

criterion.

This model is valid for discrete cases although it could still be used for continuous cases. For

such cases therefore, the objective function of equation 4.5 can be written as a limit using

Riemann sums[Swokowski, 1988]. This limit, as shown by Swokowski, will tend to an

integral of the form

N "
J = lim L (y- y) 2 ll.t ... 4.6a

Ll.t--+0 k=I

1 =_!_I (y - ;)2df// .. 4.6b
f// VF

where y is the plant response, y the model response and 'I' is the length of the signal

sampling window.

43

Chapter4 System Identification Using Genetic Algorithms

4.3.1 Setting up the algorithm
With the objective function, J, decided upon as m equation 4.6 above, a chromosome

representing all parameters of the model to be estimated can be assembled. For a general

model under estimation, a chromosome

e = [K, Zt. .•.. Zn, Pt •.. ···Pm. 't]

is set up and has its entries equal to the number of parameters to be estimated. Each

parameter will have a predefined domain in which it will be mapped.

Z E [Zi_mim Zi_max]

This mapping should be carried out in such a way that a desired resolution of the parameters

is obtained. This pre-definition and mapping is not an unrealistic expectation to have for two

reasons:

i) The designer usually has some intimate knowledge of the process under study. As an

example, for a simple first order model a designer could simply apply a step

perturbation to the motor input. Depending upon the shape of the response, a

conclusion could be drawn about the type of model (in this case it should be first

order). Because the attributes of the perturbing signal are known, the response could

be scrutinised roughly for the most probable range of parameter values.

ii) A genetic algorithm could be run initially with as wide a domain as practically

possible(matters of variable resolution should however be considered). As knowledge

about the process is gained from trial runs, the domain could be gradually and

systematically reduced to enclose a much smaller and tighter search space. The

algorithm could be set to perform this task automatically running a series of genetic

algorithms to decided on the domain and then the final algorithm to search finely in

the decided on.

With all the preparations made and the encoding schemes and resolutions resolved, the

algorithm could be set in motion to carry out the estimation task. An illustrative example of

these principles is presented in the next section.

4.4 Genetic estimation

The ideas presented so far were applied to a simulation example aimed at performing a

systems parameter identification using a GA to find the parameters of the process

g(s) = s 2 + ~~~ + 10 (s + 1.0~C~ + 10.0) ·················· ·4.?

The model to be estimated was set to be of the form

g(s) = p .. 4.8
(s + a)(s + y)

where~' a and y were parameters to be identified.

44

Chapter4 System Identification Using Genetic Algorithms

The model parameters ~' a and y are concatenated into a string which will form a

chromosome for the genetic algorithm. This can be represented simply as

e = [p, a,')']

It was important to determine the search boundaries for each of the parameters. For problems

where little or nothing is known about the distribution of the parameters, the search space

should be made as large as possible. The space of parameters could then be reduced as the

algorithm and the programmer learns more about the problem. This could be done manually

by the programmer. Alternatively, the search space could be collapsed or expanded

automatically as soon as stagnation is detected. If the stagnation is around the global extrema,

then collapsing the search range makes the collapsed region more refined and the resolution

increases. This effectively provides a magnification facility into the promising region.

Numerous boundary trials were conducted for the example in discussion. On the basis of

what was learnt and what is known to be the real parameters, the following parameter spans

were decided upon:

0.0 -5, p 5. 6.0

o.o 5. a 5. 15.0 : 4.9

o.o -5. r ~ 15.o

The spans for a and y were made deliberately equal to allow the system poles to switch

places if such a need came about. A genetic algorithm was tuned with the following search

parameters

Table 4.1 Search Parameters of the estimation genetic algorithm

Algorithm and Function Property Value

Population size 100

Number of generations to search 200

Crossover rate 0.80

Mutation rate 0.005

Elitism gap 4%

Chromosome length 36 - 12 bits per gene

Parameter search span and resolutions 0.0 s; ~ s; 6.0 Resolution= 0.15 %

0.0 s; as; 15.0 Resolution= 0.37 %

0.0 s; y :S;15.0 Resolution = 0.37 %

4.4.1 A class of input perturbing signals
As mentioned in the introduction, the goodness and performance of most of the orthodox

estimation methods depends on the activity of the signal used. In the practical

application(chapter 5), it will be shown that the recursive least squares to which the GA will

be compared has an inherent dependence on the class of signals used and that this property

has an effect on the accuracy and correctness of the model estimated.

For the current genetic estimation task, both the simulated plant and models were perturbed

45

Chapter4 System Identification Using Genetic Algorithms

using a random Gaussian white noise shown below. The choice of the signal was in line with

the randomness of the GA. It has a flat power spectral density, zero mean and 1 Volt standard

deviation.

~
-a;
>

.!!!
iii
c
Cl
(ij

1 .5

0.5

0

-0.5

-1

-1.5

Input signal used to perturb the plant and the
mode ls

time(sec)

Figure 4.2 A depiction of the class of signal used to excite both the simulated plant and the

models.

Although this was the most favored signal because of its statistical and random properties, it

is not usually applied to practical systems which have dead bands and saturation. In such

cases therefore, simple square waves with appropriate DC offsets and pseudo-random signals

are more useful as will be illustrated in chapter 6.

4.4.2 Performing the estimation and the results
With these parameters above, a genetic algorithm was run to estimate the parameters.

Although the algorithm found the solutions relatively early, it was allowed to run for all the

pre-specified number of generations as in table 4.1. The plot below shows the movement of

the parameters as they converged to the those of the plant.

12

II) 10

l CD
:J 8 ii
> ... 6 CD -CD
E :r ca ...
ca a.

0 I I
co

(")

Estimated parameter movement

co co
'<t co 0) C\J (") It)

Generations

co co
.....
co co

0)

--Beta

--Alpha

--Gamra

Figure 4.3 Plot showing the convergence movement of the process estimated parameters.

For the benefit of the clarity, the figure below shows the initial movement of the parameters

46

Chapter4 System Identification Using Genetic Algorithms

for the first 50 generations where there was a significant activity in the parameter movement.

g:
::I
ii
> ...
~
E
~
I'll
D..

12
Estimated parameter movement for 50 generations

--Beta

--Alpha

Gamma

Generations

Figure 4.4 A magnified view of the movement of parameters in the first 50 generations . .
The following numerical values were obtained as the parameters of the process to be

identified:

a= 1.003

~ = 3.898

y= 9.960

From the plot above, it should be evident that there is a significant amount of the trading of

places between parameters gamma (as in the plot)y and alpha, a. The freedom to allow each

parameter to move like this enhances the performance of the system greatly.

In the midst of this parameter movement, it is instructive to inspect the profile of the cost

function being minimised for two reasons:

i) The trading of places by the parameters may give an impression that the accuracy of

the system is being lost. Realising that the performance index is a function of the

combination of all variables, J = f(a,f3, y), the significant movement of each

should have a visible effect on the performance index. Although some parameters may

appear to be getting completely lost, they often make room for improvement in the'

others. This can only be captured by J.

ii) The performance index is important by itself as an indication of how quickly the

system attains its objective. Stalling or lingering around the same value of this index

usually suggests that the search is stalling and thus some modification has to be done,

or that the objective has been achieved.

Figure 4.5 below shows the performance index of the system for the first 50 generations to
correspond with figure 4.3.

47

Chapter4 System Identification Using Genetic Algorithms

Movement of the performance index with changing parameters
0.018
O.o16

)(0.014
GI

0.012 "D
.5 O.o1 GI
c.> 0.008 c:
Cll

0.006 E ..
0 0.004
't:
GI 0.002 fl.

0
-0.002 LO Ol C') ,.... LO Ol C') {;; ,....

'!J. Ol ... (\j (\j (\j C') "'2' "'2'

Generations

Figure 4.5 Plot of the movement of the performance index J as parameters are modified.

From figure 4.5, clearly then, irrespective of the movement of the parameters, the

performance index J remains a monotonically decreasing function after the third generation

although there is a slight increase at the beginning of the run. This was due to occasional

losses which occur at the beginning of the algorithm because of the way the program was

written. Evidently then, the change that occurs is for the better.

Although figures 4.3 through 4.5 show the convergence traces of the parameters estimated by

the system and their values presented, it is difficult to appreciate their accuracy and do an

objective comparison between the real plant and the model estimated. To assist in making

this decision properly, a frequency response Bode plot of the both the model and the plant are

presented in the next two figures.

1 o"'

f§ 1 0· 1

.s
~ a 10·2

·~
~ 1 o·"'

10
1 0· 1

102

Log frequency

Figure 4.6 Magnitude frequency response for both the real plant model and the genetically

estimated model.

The figure above presents a frequency domain comparative look between the real plant model

and the genetically estimated one. As can be seen, there is virtually no difference between the

two models for a wide range of frequencies tested. Once more, the small difference apparent

in the individual parameter values themselves was difficult to see. The phase response of the

48

Chapter4 System Identification Using Genetic Algorithms

system is more sensitive to the changes in the parameters and was also plotted to show these

small differences.

0

"' 0

~ -50
bO
0

"O
c: -100
0

"',
..c::
0... -150

Log frequency

Figure 4. 7 Phase frequency response for both the real plant model and the genetically

estimated model.

What stands out of this illustration, is the accuracy with which the algorithm managed to

estimate the parameters of the system. The simulation model was chosen deliberately so that

the model can be subjectively compared to the known model for features such as accuracy. In
spite of the fact that one mode (pole) of the system was nearly insignificant compared to the

more dominant pole sitting next to the origin, the algorithm still managed to find this

insignificant mode of the process. It would have been expected that due to the phenomenon

of pole dominance and model uniqueness, the model would find the dominant pole and not

the least significant pole.

4.5 Chapter summary and highlights

In this chapter, a first application of genetic algorithms to control engineering problems was

presented. The chapter focused on the use of genetic algorithms on the problem systems

parameter identification. Although the presentation focused on a simple problem and the

presentation of the algorithm, a pattern was highlighted as to how the problem has to be set

up for identification.

+ For problems of identification, either simulated or practical applications, the first stage in

the genetic estimation is to define the type of model that is to be estimated. This, as it

was shown, could be <lone as a transfer function model of the process or as a pole-zero

representation model. The latter model was chosen since the attributes of the process

which are visible by inspection could be accounted for directly.

+ The modeling however, needs to define the criterion of goodness of the poles estimated,

in the same way as it would be done for transfer function models. A simple criterion of

le~st squares estimation was used in this regard. Data was sampled from the plant, with

the models estimated by the genetic algorithm perturbed using the same input as the one

49

Chapter4 System Identification Using Genetic Algorithms

used for the plant. The output of the two were then compared under the least squares

consideration and the goodness of the poles decided. The smaller the magnitude of this

function, the better the match between the modes found and the parameters of the

process. It was shown that although the algorithm was given the liberty to estimate poles

in any order, i.e. no boundaries limited the selection of any pole, the movement of these

modes between the different parameters resulted in the cost function J being' a
monotonically decreasing function.

The one advantage offered by the GA is its ability to search for the poles and the zeros of the

system directly. In the next chapter an in depth look at this theme using a practical system

will be carried out. This will also introduce a comparison between the genetic algorithm as an

estimator to the recursive least squares as a representative of classical engineering methods.

The comparisons between the two will focus on the question of accuracy of both methods

and their performance under the conditions of signals corrupted by noise.

50

Chapter S

Application of Genetic Estimation to a Servo

.u~;z;:~~Eb&"P""H:'~ ...• 2Zf'P\~ttrstilil'W&ii0.;~:~:p::,lifill~W&l&iGi±~a,;~.::rwwtL.~
5.1 Introduction

Chapter 4 proposed the use of genetic algorithms for the modeling and identification of

control system parameters. The work presented together with an illustrative modelling

example used were based on simulated models and data generated by simulation. This

chapter presents a practical application of the ideas developed to a direct current. (DC) servo

motor. The choice of the laboratory model was motivated by several factors:

1. Since genetic algorithms are inherently slow in their processing of sample solutions,

the servo motor served as a good example because it has dynamics that are fast, and

thus, does not require long times waiting for system responses. Therefore, the genetic

algorithm required data sampled only until the system has settled down to a steady

state which was achieved in periods of less than 5 seconds.

2. The model consists of two poles[Raven, 1987]. One pole results from the electrical

circuitry of the armature and the other from the mechanical attachments to the rotor

shaft. Using the phenomenon of pole dominance, the electrical time constant is known

to be significantly shorter than that of the mechanical circuit and is thus usually

ignored in many modeling exercises. The model would thus be set up as a first order
system (purely due to a mechanical time constant).

3. A comparison will be carried out between the genetic algorithm ·as a system

identification tool, and the recursive least squares method. To simplify the

comparison and highlight factors which really matter (such as the accuracy of the two

models compared, their performance in the presence of signal corrupting noise, etc), it

was necessary to keep the model as simple as possible so as not to interfere with the
objectives of the study.

This chapter will begin by briefly describing the modeled system from a physical perspective.

The experiments carried out to model it will be described briefly. together with all the data

samples which were obtained from the experiments. The extensive use of this data in the

modeling which followed will be presented. The results of the genetic modeling will be

presented next. As a comparison, the model parameters will be compared to those found

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

using the recursive least squares (RLS). This will be preceded by a brief explanation of the

mechanism of the recursive least squares.

5.2 DC servo motor physical description

The description of the servo system used will be done with reference to a motor schematic

diagram shown in the figure below.

l
Figure 5.1 The schematic circuit diagram of the DC servo motor used for the practical

application of a genetic estimator.

Effectively, the system consists of two distinct circuits having different characteristics: The

electrical system and the attachments on the shaft forming the mechanical system. Apart from

conducting step tests to determine the process model, the balance of forces and torque for the

system can be employed to set up the physical defining equation. This model is derived using

ordinary differential equations, focusing on the balance between the torque developed by the

electrical and that resulting from the mechanical system. Braae showed that the final defining
model of this system will have the form[Braae, 1994]

where

Q(s)

e(s)

K,
BR1

------'----L- ··· · ... 5.la
s{l + s(-fr)} {1 + s(i) }

I

K
------- .. 5.lb
s{ (1 + sTm)(1 + sT1)}

K = ~ is the motor gain in [Volt-secondsr1

BR1

Tm =!_is the mechanical time constant [seconds]
B
LI

T1 = - is the field coil time constant [seconds]
Rt

The popular principle of pole dominance states that if the slowest pole of a multi-modal

system is certain orders of magnitude slower than the fastest pole, then the latter can be

replaced by its steady state gain. This applies to all systems including inherently oscillatory
ones

52

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

jw

Region of
non dominance

a

Figure 5.2 An illustration of regions of dominance in the s plane.

as shown in figure 5.2. "Insignificance" of poles is determined by their positions in the S­

plane relative to the slowest poles of the system As a rule of thumb, it is decided that if the

fastest pole is 5 to 10 times faster (or more) than the slowest pole, then it can be ignored and
replaced with its steady state gain[Kuo, 1987].

Using this principle therefore, the model derived in equation 5. lb was subject to the same

treatment. This is on the basis of experimental evidence and observations. For the correct
algebra the model of equation 5. lb is re-written as

Q(s) = g(s) = K z K 5.2
e(s) s{(l+sTm)(I+sT1)} s{I+sTm)

This makes the assumption that T1 << Tm according to pole dominance.

The equation of 5.2 therefore describes the model as derived with no assumptions made and
with the assumption that the mechanical time constant is more dominant.

5.3 Recursive Least Squares as a comparison method

The technique of genetic estimation reported here was compared to the RLS as a

representative of classical engineering thinking methods. In this section a brief presentation

. of the RLS will be made and presented in the context in which the comparison will be made.

The RLS has been well studied and extensively documented[Astrom and Wittenmark, 1984]

and this presentation should thus be viewed as a summary included for convenience and
facilitation of the discussion.

S.3.1 The basis of the RLS

Basically, the recursive least squares was established from the Gaussian principle of least

squares and is used here for systems identification [Astrom and Wittenmark, 1984].

53

Chapter 5 Ap_plication of Genetic Estimation to a Servo DC Motor

According to the Gaussian principle
" . .the sum of the squares of the difference between the actually observed and computed values
multiplied by the numbers that measure the degree of precision is a minimum."

This principle is encapsulated in the famous equation of least squares
N

1 = tllell 2 = t :Le;2
•• 5.3

i=l

used previously.

Although the principle is simple to articulate mathematically, its use in the task of estimation

has not been as simple. There are a number of ways in which this error could be formulated,

each having its merits and demerits. The decisions made as to which error condition is to be

minimised, is based on the concessions the algorithm user is prepared to make. Due to the

impact these error conditions have on the performance of the estimator, two of most prevalent

conditions will be shown below.

a) Output error minimisation
This error condition aims to minimise the square of the error between the output of the

process model and the that of the plant to be modeled.

u(t) Process

+ e(t)

Model

Figure 5.3 Recursive estimation model for the forward difference error criterion.

This forward difference model is seldom used due to the non-linearity it induces in the

parameters of the model. The advantage of this model however, is its estimator noise

handling capability. This however is outperformed by the linearity consideration and thus

does not serve as a significant advantage. A mirror image model of figure 5.3, constituting

the backward difference model, has also been proposed as a possible consideration for

estimation. Like the forward difference model, this model also suffers from the problem of

non-linearity in parameters and is thus disqualified as a possible candidate used for robust

estimation.

b) Generalised error model
The generalised error model is the combination of the output and the input error models. This

model is the most often used one and the majority of written utilities are based on it.

54

Chapter 5

u(t)

B(z)

Application of Genetic Estimation to a Servo DC Motor

Process

+
e(t)

y(t)

l+A(z

Figure 5.4 Recursive estimation model for the generalised error criterion.

This model, although linear in parameters, is known to suffer from problems of estimator bias

when the system output is perturbed with noise on the output. The consideration taken in this

thesis utilised it in comparing its performance in both the accuracy in estimation and its noise

handling capability to that of the genetic estimator.

5.4 Experimentation

Experiments were carried out to model the servo motor. Since the genetic algorithm needs the

input-output data to carry out the modeling exercise, the motor was perturbed with known

signals and the response was sampled. Unlike in the simulation example presented in chapter

4, it was not practical to perturb the motor with a Gaussian noise signal. Sufficiently random

signals, in both magnitude and frequency, were therefore used excite the motor.

Before the perturbation of the model was carried out, proper regions of operation of the

motor were determined. The servo motor was found not to respond consistently across the

range of inputs ranging from the 0 Volts to 10 Volts. Data therefore, had to be sampled so

that it was workable for the GA. The figure below shows the profile of the motor as it

responds to different levels of the input when tested for linearity.

Linearity Profile of DC Servo Motor
6 -···---- -------------

B

/
A

0-1--___,..--+----+---+---+--->----+-----<t----+----I
0 2 3 4 5 6 7 8 9 10

Motor Input Voltage [Volts]

Figure 5.5 The linearity profile of the servo motor used for the GA system identification

experiment.

55

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

The profile can be divided into three distinct sections:

A. The dead band: In this region the applied input voltage is not sufficient to overcome

the mechanical load resistance. No signal level will therefore be sufficient to move the

motor when in the dead band. This band was between 0 and 1 Volt.

B. The active linear region: This is the region where the motor responds linearly to the

input voltage. The relationship, although linear, was not a one-to-one mapping (y = x)

between the input voltage and the motor response. This band was between 1 Volt and

4 Volts on the input scale.

C. The saturation region: In the saturation region the motor simply stops responding to

any changes in the field voltage feed. Thus, linear characteristics perturbation signals

had to kept below 4 Volts as the profile suggests. The band was any voltage above 4

Volts.

It should be noted that the behavior and the profile presented in figure 5.3 resulted from the

choice of operating components. It could have been chosen to arrange the experimental set-up

such that the profile differs from the one presented. This would not change the problem as the

motor inherently has the character profile shown, although it can be induced at different

levels.

Input-output sample signals of the motor were taken between 1 Volts and 4 Volts to remain in

region B seeing that this was the most linear region of the profile that would result in the

most accurate model.

5.4.1 Data sampling and modeling
Several experiments were carried out to ,determine the performance of the genetic algorithm

as a system identification tool. For the purpose of comparison, the experiments and data

samples that were obtained were motivated by the following goals:

i) The performance of the genetic algorithm as a system identification tool was to be

investigated for ideal situations. These would be conditions where it is assumed that

all signals contain no corrupting noise (both the input and the output). This condition

could be put somehow in perspective because the experimental set-up itself has

inherent noise signals such as glitches in the power supply, the back propagation of

the motor, etc. For the current purpose however, the base signal assumed to be clean

is used.

ii) The performance of the GA in the presence of signal corrupting noise was to be

investigated. The signal noise level was increased continuously until complete failure

in the algorithm was experienced. The margins of failure in the presence of corrupting

noise were compared for both the GA and the RLS as will be shown.

56

Chapter 5 A[!plication of Genetic Estimation to a Servo DC Motor

A genetic algorithm was set up to evolve the model from the input-output data sampled. The

following tuning information was provided

Table 5.1 Parameter settings of genetic algorithm for model estimation

Property

Population size

Crossover rate

Mutation rate

Chromosome resolution

Model type

Value

80

0.80

0.005

24 bits. 12 bits per gene
Resolution: K - 0.122%

Tm - 0.122%
K

g(s)=--
I+sTm

Q:s;K:s;5

0 :s; Tm :s; 5

where the variable resolution is quoted as a percentage of the length of the domain. The

boundaries on the parameters which were to be found were determined on the basis of user

knowledge, accumulated through preliminary experimentation. This fact was fully justified in

the last chapter on the theoretical treatment of the subject. In the spirit of simplicity and to

highlight facts which really matter in the comparison to be made with the RLS, it was

decided that the model be kept as simple as possible, and thus the choice for a first order

model.

5.4.1.a Performance of a GA with noiseless signals

In this section the performance of a GA with no noise on the input or output signals is to be

presented. The focus of interest in this class of experiments was the accuracy and resolution

of a genetic algorithm in ideal conditions. The following data samples were obtained from

the servo motor and used for estimation.

Motor excitation and response signals
5 _,,.-

~ 4 / /"

'* 3 II I I/ c 1--M otorfield ttoltage I en
-·-M otorspeed response di 2 .. s 1 0

== 0
0 <t ~ a:i ... 0 <D <t !ii! <D <D ~ ill l() li! 0 N l()

0 l() g ;; <D N <D

~
<D - <'> ~ <'> <D

~ -
time (sec)

Figure 5.6 Excitation and response signals of the servo motor for a noiseless experiment.

The signals in figure 5.6 have a DC off set consistent with avoiding both the dead band and

the saturation region shown in the linearity profile of figure 5.3. This does not however, alter

the dynamics of the process or the performance of the genetic estimator since the offset is

removed from the input before the signals are used. As was mentioned in chapter 4, the class

57

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

of perturbation signals differ from case to case. For the current experiment, the magnitude

and the frequency of the signals were chosen to be sufficient to excite the motor and thus

extract a consistent response. It was experienced in the attempt to use white noise, as was

done with simulated cases, that the motor response does not give a true reflection of the

excitation signal. Also, the signal would need a relatively large deviation and would have to

force the motor to change direction frequently.

The signal of figure 5.6 was used for both the GA and RLS case in its modified form as

shown in figure 5. 7 below.

Motor excitation and response signals without the DC offset

2.5

E 2

.!!! 1.5 '" c

.!!'
Ill

Motor respDrlB& ..
~ 0.5
:ii

_...-~,"-

0
0

~ g <XI

"' "' t') ""
;!
0

"'
time (sec)

Figure 5.7 Motor excitation and response signals with the DC offset removed for noiseless

experimentation.

The signal trace above was divided into two parts: The first part being used for the estimation

of the model parameters and the second part for the model validation. In spite of the fact that

not the entire data scale was used, the little that was used, was still sufficient to be used for

the GA estimation task.

The genetic algorithm was run with this data and the convergence results shown in figure 5.8

were obtained.

.. ' T Convergence nr the pa ram •1•r• tor th• nolll•t••• 1yat•m

j ' ..
s

'·' J
1

0 .•

~
~
:i

0 ''

-Q. ,4

G•nar•tlnn•

Figure 5.8 Convergence of the parameters of the motor for noiseless GA search

Several trials were taken to obtain confidence in the results. The previous plot is a

representation of the best result obtained in a run of 20 trials for the noiseless system. The

parameters were obtained relatively early in the run due to the tuning of the algorithm. The

58

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

experiment was also subjected to different tuning criteria of the algorithm as discussed in

chapter 3 of this report. The above model found the following parameters for the motor gain
Kand time constant Tm:

Gain K: 1.103

Time constant Tm: 0.614

These parameters will be used in the analysis to follow and will form a basis for analysing

the performance of the algorithm in cases where the system output will be injected with white
Gaussian noise.

Model Comparison to the RLS found model

An RLS estimator was run for the case of no noise injection into the system. To put the

comparison between the two found model in proper perspective, it was necessary to represent

both the models in the same format. The model found using the genetic algorithm was thus

transformed to the format compatible with that used by the RLS. The model was transformed
to the discrete domain according to the transformation

gh(z) = z ~ 1 z(g~s)) 5.4a

~ z~ I~ s(c}~s)) ·······5.4b

where the model has been rewritten to fit those found in the tables of Z-transformation[Kuo,
1992]. Using the tables of z transforms the model is transformed to

gh(z) = _A_(_i_ -·-~ -_>_) ~ CD' 5.4c
-T z-

z-er

where Tis the motor sample time, A the process gain as in the continuous model case and 't =
Tm is the motor time constant.

The continuous model when transformed to the discrete domain is represented by the pulse
transfer function

0.0354
gh(z) = z-0.967 .. 5.5

with the sampling period T set to 20 milliseconds.

Using the above-mentioned sampling period, the RLS estimation was applied to the motor

and the following parameters and convergence properties were observed.

59

Chapter 5

0.2

0

i: .. -0.2 e ..
> ·0.4 0 e
.!! ·0.6
0 -a.a c ..
c • 1 'iii
Cl

·1.2

·1.4

0
N

Application of Genetic Estimation to a Servo DC Motor

Convergence plot ol the RLS estim eted system

0 0
"' co

Sam pies

0
N

5 ...

!
--Discrete Pole I

--········Discrete Gain

Figure 5.9 The convergence plot of the RLS estimated system showing both the movement

of the discrete pole and discrete gain.

The model estimated above had its parameters converging to the following values

C= 0.0352

D = -0.968

The convergence plot is magnified below for the first 40 samples to illustrate the speed of

convergence of the algorithm. Samples here, should not be confused with the number of trials

emphasised in figure 5.6. In that case, a trial constituted an entire generation of the algorithm,

with each member using the entire sampled data to detennine the model. In the case below,

sample refers to an ordered pair (input, output) comprising one input and output observation.

Convergence plot of the RLS estimated system
0.2

.....
0 c

~ •0.2 T

~ -0.4 ::i;;
GI ·0.6 0
0.. ·0.8
1::1
c

• 1 ca
c
;,; -1.2
Cl

• 1.4

L(J

v
Samples

"' N °' N

, ,, "'"" .. ,,,,.,,,

I--Discrete Polel
--Discrete Galn

Figure S.10 The convergence plot of the RLS estimated system showing both the movement

of the discrete pole and discrete gain for the first 40 data samples taken from the motor.

By the 17rh sample the system under the RLS regime had already settled down to its final

parameters.

Comparatively, when the two model are put side by side

GA

()
1.103 h 0.0354

g s = 1 +0.614s ~ g (z) = z-0.967

RLS

0.0352
g(z) = z - 0.968

the comparison shows the accuracy with which both models agree. The difference between

the parameters obtained using both methods is minimal and can be attributed to the

60

.. ------~~~~-~-

Chapters Application of Genetic Estimation to a Servo DC Motor

experimental procedures. It is difficult to make a subjective comparison of the numerics

obtained because unlike the case of simulation, there is no solution to which both the models

could be compared. As a case of demonstrating the results, the author has the taken the

liberty of including in the accompanying diskette all the data procedures and code used for

this experimentation. These could be run to confirm the results. The user will however need

to convert the transfer function model to a pulse transfer function model. Seeing that it can

done easily using equation 5.4c for this particular example, the systems once more took the

liberty of performing the computation.

b) Genetic estimation with noise injection in the motor output
As a comparative case between the genetic algorithm and the recursive least squares method,

it was decided to test the effectiveness of both methods in cases where the output of the

process is subjected to corrupting noise. Estimator bias, as is formally known, is a well

known phenomenon which could lead to erroneous results depending upon the character of

the noise (the power spectral density and its correlation characteristics with the plant signals).

The noise was injected in the output signal as the system was being sampled for both the

input perturbation and the response. The following schematic illustrates the positioning of the

noise source relative to the estimating algorithm for the output injection.

input u(s) Process to be
estimated g(s)

Estimator

injected noise
n(•)

Estimated Param ers
an 0 utput

Figure 5.11 Genetic estimation schematic diagram with a Gaussian white noise source.

Although the system shown above has noise injected directly into the process output, in

practice this is not the case. The white noise injected is usually band limited to the frequency

spectrum of the process being modeled. A low pass filter is inserted in the reverse path to

band limit the corrupt signal to the spectrum of the plant as shown in the following

figure[Oppenheim and Schafer, 1989].

input u(s) Process to be
cstim ated g(s)

Estimator

.. ...,..__
injected noise
n(s)

Figure 5.12 Genetic estimation schematic diagram with a band limited Gaussian white

noise source.

61

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

In view of the problems of estimator bias, the model was perturbed with varying degrees of

noise which was set to be a percentage of the setpoint. This was primarily done to determine

the level of noise at which the model parameters estimated by both the genetic algorithm and

the recursive least squares would significantly drift away from the noiseless parameters. The

figure below shows the effect of noise injection on the output of the process.

a) 0% (of input signal) noise injection b) 1 % (of input signal) noise injection

101 •ot UI 1101 UOl UOI tlQI fU1 1101 1001 1101 UOI

2.5% (of input signal) noise injection 5% (of input signal) noise injection

Figure 5.13 Illustration of the corrupting effect of noise on the process output for varying

degrees of injected noise.

The genetic algorithm showed a substantial amount of resistance in drift even with increasing

levels of noise. A proper analysis of these and the sensitivity of the parameters will be

presented in the next section.

c) The algorithm performance

The performance of the genetic algorithm with respect to noise was analysed by considering

the sensitivity of the of the model parameters to the changing levels of noise. Graphically, the

parameters of the system model can be viewed as constituting a point in space where both

parameters of the model result in an optimal J. The noise injection introduces a

"constellation" around this point and the algorithm has to find its way around this cluster to

get to the optimal point.

Optimal Point

A

Figure 5.14 A graphic view of the effect of noise on the search conducted by the genetic

algorithm for the optimal parameter point.

62

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

The higher the level of noise, the more dense . the constellation around the point being

searched for, and hence, the more difficult it is to establish the optimal point. The goodness

and strength of the algorithm with noise is thus analysed with regard to the sensitivity of its

ability to finding its way around this. Each of the parameters of the model is analysed using

the sensitivity formula

S
A_ Ji
N- %

JN N 5.6
Fraction_ change_ in_ A

Fractional_ change_ in_ N

In the above equation, N is the noise level (level of variance set) injected in the system and A

is the parameter affected. Although only A is shown above, the analysis with regard to the

time constant Twill have the same formula.

The partial derivatives and the fractional change requires a nominal case with which the

numerical computation will be compared. For these tests and experiments, it was decided to

use the case of the noiseless system as a starting point with all the subsequent models being

compared to it. Computations were carried out to determine the performance of different

systems with differing noise levels. The following table shows the summary of computations

and the results carried out to determine the performance of the system for varying degrees of

noise injection.

Table 5.2 Sensitivity analysis table for the varying degrees on noise for the GA estimator

Tm Fractional Sensitivity in A Sensitivity in Tm

Change in Tm

0% 1.103 0.
1% 1.103 0. 0.0049 0 0
2% 1.103 0. 0.0 0.0049 0 0

1.105 0. 0.0018 0.0049 9.54E-05 0.000257
1.106 0.617 0.0027 0.0049 6.97E-05 0.000125

20% 1.130 0.627 0.0244 0.0212 0.00031 0.000268
50% 1.150 0.642 0.0426 0.0456 0.00043 0.000461
75% 1.171 0.661 0.0617 0.0765 0.00041 0.000514
100% 1.216 0.701 0.1024 0.1469 0.00052 0.000712

For the table above the following interpretations should be made:

1. The sensitivity indicator of the parameters increases with increasing levels of noise. Higher

magnitudes therefore indicate more tendency for the parameters to change as noise is injected
into the system and less values indicate the opposite.

2. The comparative magnitudes between the columns of sensitivity indicate the comparative

sensitivities between the parameters when subjected to the same level of noise.

The sensitivity computations in the above table have been amplified to get a clearer picture of

the system performance. The numeric values themselves do not bear any stance with

63

Chapter 5 A~plication of Genetic Estimation to a Servo DC Motor

sensitivity as defined, but only the difference between them is important. Also to be noted, is

the rate of decay of these values as the noise is increased. The table below presents the results

of a similar test applied to the recursive least squares.

Table 5.3 Sensitivity analysis table for the varying degrees on noise for the RLS estimator

Noise level c , D Fractionll Fractional I Sensitivity in C I Sensitivity in D

Change in Change in D

0% 0.0352 -0.968 - - - -
1% 0.0352 -0.968 0 0 - -
2% 0.0350 -0.967 -0.00568 -0.00103 -0.00063 -0.00011

5% 0.0347 -0.966 -0.0142 -0.00207 -0.00075 -0.00011

10% 0.0331 -0.965 -0.0597 -0.0031 -0.00153 -7.9E-05

20% 0.0268 -0.967 -0.2386 -0.00103 -0.00302 -l.3E-05

50% 0.0226 -0.970 -0.3579 0.002066 -0.00362 2.09E-05

75% 0.0126 -0.971 -0.6421 0.003099 -0.00431 2.08E-05

100% 0.00597 -0.987 -0.8304 0.019628 -0.00417 9.86E-05

In the above table, the reader's attention is drawn to the magnitudes of the computed

fractional changes occurring in the parameters as the level of noise is increased. When

inspecting the table, it can be seen that there is less tendency in the parameter D to move

away from the nominal even as the noise level increases. The parameter C on the other hand

is composed of the multiplicative effect of the sensitive pole in the continuous domain and

gain in the same domain.

Table 5.2 shows an anomalous behavior of the sensitivities when judged against the values of

the parameters themselves. According to observations made and documented here, there was

more movement and hence more sensitivity in the system time constant as the level of noise

is increased. The gain showed more resistance to change at the same time. The interest

however came when the objective function J was inspected for its behavioral dynamics with

changing noise. The table below lists the values of J as used in the genetic estimation with

increasing noise.

Table 5.4 Movement of the objective function with varying noise levels

I Noise Level Obiective Function Value J
0% 0.694
1% 0.797
2% 3.324
5% 10.976
10% 55.621
20% 166.603
50% 266.207
75% 597.69
100% 1013.29

Graphically the movement is as depicted in figure 5.14

64

Chapter 5

1 1 0 0

9 0 0 .,
M . 7 0 0] .

5 0 0 g
n
~ 300 .g .
0.

1 0 0

• 1011:

Application of Genetic Estimation to a Servo DC Motor

Movementofthe performance Index with varying noise
I e v e Is

... "' "'
Percentage Nole• level

Figure 5.15 Depiction of the movement of the performance index with varying levels of

noise injected into the system.

It can be seen that the objective functions with respect to noise is less sensitive to change up

to 10% injection. Above this, there is a notable appreciation in its value. When inspecting

this function in its totality, its appreciation at higher noise levels is hardly suprising.

According to the Chain rules, the change in J with respect to the noise level is expected to be

determined by the diagram

J .,,,,,.-A --N

-"'-T · N
m

so that the appreciation of J will have the rate

a1 a1 aA a1 aTm
aN =a A aN + aTm aN 5·7

From the inspection of table 5.2, both the change in A and Tm would contribute equally to the

change in J with respect to the noise.

The movement of both the parameters and the objective function raises a rather disturbing

question from the following observation:

It is clear that there is not much of a difference in the movements of the system gain for the

case of the genetic estimation. Using the same argument, the movement of the discrete pole

when sing the recursive least squares was not as sensitive. Even with the sensitivities

computed, there was no satisfactory correlation between the system parameters, for both the

GA and RLS, and the noise level applied. For the GA however, where the objective function

could be monitored, there was a clear and unambiguous sensitivity of this function, directly

reflecting the level of noise injected. With this observation therefore, one may pose the

question: "What really determines the goodness of search when comparing the two

methods?", "Is it the manipulation carried out by both, or is it the cost function
utilised?".

65

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

5.5 Comparative performance between the RLS and the GA estimator
Comparisons between the two estimation techniques were carried out at two levels:

i) The accuracy of the estimation.

+ For this first order model, there is a good agreement between the results produced

by the modeling techniques. The results agree to within an experimental error

inherent in the sampling and the removal of offsetting signals to format the data for

the genetic estimator. It was shown that the estimated model obtained using the

genetic algorithm could be transformed to the discrete domain to be

0.0354
gh(z) = z-0.967

and compared to the parameters estimated by the RLS for the genetic model

gh(z) =_A_(I---~~_>_) - _c_
-T z-D

z-e-r

where the parameters C and D were found using the RLS to be

c = 0.0352
D = -0.968

For this simple illustration therefore, it can be seen that there is a reasonable

agreement between the two models although they are based on different

implementations. The underlying cost function for the two methods was however

set to be same being, and could thus explain the similarity in the performance.

ii) The noise handling characters.

+ The genetic estimation with the its error characteristic clearly outperforms the RLS

with increasing levels of noise being injected into the system. Although the

parameters estimated using the GA show remarkable resistance to noise, there

seems to be a more significant effect on the objective function J. This factor could

be explained in terms of the topology of the estimation model and how it is

connected to the plant to be estimated. It was mentioned in the presentation on the

RLS that two of the error methods, the forward difference and the backward

difference models were disqualified because of their non-linearity in parameters.

These however have been shown in the literature to be more resistant to the

problems of noise injection into the system.

Although the use of the error squared cost function was reported in detail here, other cost

functions such as J leldt, J leCt)ltdt and J e2tdt were used as well. All the cost functions

involving time effectively used it as a weighting factor, emphasising that as more samples are

taken, and thus more time, the difference between the samples ought to diminish as fast. For

short simulation times however, as in the case of the de motor used, the error squared

criterion proved to be more than adequate and hence, why they were not used any further.

66

Chapter 5 Application of Genetic Estimation to a Servo DC Motor

5.6 Chapter summary and conclusions

In this chapter the genetic algorithm was applied to a case of a servo motor as a system

identification tool. As a measure of comparison to classical engineering methods, it was

further compared to the Recursive Least Squares method. The comparisons between the two

focused on the issues of the accuracy of the GA when not incurring problems such as

stagnation and its capability in handling signal corrupting noise.

According to the empirical work conducted, it is clear that the GA compares favorably to the

RLS in terms of the accuracy in finding the parameters of the models. Although this is so, the

amount of time the user has to wait for the GA to complete its tasks is almost a disadvantage

when comparing it to that taken by the RLS. On the real time scale, the RLS takes typically

orders of milliseconds, if run on line with samples data, to arrive at a solution representing

optimal parameters. The genetic algorithm on the other hand, can takes orders of tens of

minutes, to hours to arrive at what can be considered reasonable enough solutions.

The performance of the algorithm in the presence of noise however does give a slight edge

over the RLS. This however can also be put in perspective of the topology of both methods,

where it was shown that the RLS by virtue of its connection, will always be prone to the

noise in either the output or the input. Although the genetic algorithm connection embraced

the topology which was supposed to put at a disadvantage in terms of the linearity in

parameters, this did not tum to be case due to the non-reliance of the algorithm on the surface

of the problem being optimised.

For problems having more than two parameters to identify however, the GA falls into a

different league of problems altogether: Stagnation due to its tuning. It was shown in chapter

2 that the GA is a multivariable technique demanding many settings to be right in order to

guide the search. These become imperative when the bit string representing the parameters of

the system increases. This tendency to be stuck as a function of the string length to some

extent is defeating of the purpose the algorithm may be used for.

The decision as to whether to use the GA as a systems identification tool for ordinary

problems should be based purely on the considerations the user has for time, accuracy, noise

handling, dependence on classes of signals used and other considerations. There is however a

wisdom of hindsight that where dedicated methods exist for the usage of any task, they
should be used as methods of first choice.

The next chapter will present the second investigated use of genetic algorithms, their

application to the problem of PID controller tuning. A framework showing how time domain

considerations and limits can be used to tune controllers will presented. The practical

application of this work was applied to a coupled tanks laboratory model apparatus and is
reported in chapter 7.

67

Chapter 6

PID Controller Tuning Using Genetic Algorithms

6.1 Introduction

The goodness of any closed loop control system can be decided through,a qualitative analysis

of its response when certain known test signals are applied to it. Depending on the objectives

of the design, these test signals are usually of the form of step or a ramp functions[Kuo,

1987]. For a step input, the percentage overshoot, rise time, and settling time are often used

to measure its performance margins of the system, whilst the damping factor and natural

under-damped frequency may be used to measure the relative stability.

Design is often a process of compromises and usage of conventions. In line with this, most of

the design methods in control systems therefore rely on the so-called fixed-configuration

design in that the designer at the outset decides the basic composition of the overall system,

and then places the controller relative to the controlled process to achieve the design

objective[Kuo, 1987]. In spite of these compromises and conventions, there is still a lack of

straight forward or unique relationships between the time domain specifications and the

transfer functions of systems having orders higher than the second order. Unfortunately, a

general design procedure in the time domain is difficult to establish[Varsek et al, 1993]

With the articulation of the desired system response in the time domain, tuning controllers to

achieve such desired responses is also a non-trivial task. As an example, process operators

can articulate very clearly and eloquently the response they would like the process to have in

cases of stepping controlled variables, or occurrence of load disturbances. Tuning could thus

be carried out to achieve the desired responses. These responses and others, can in general be

specified in a unified form, forcing them to fit the response parameters shown in the next

figure.

'

t Settling Band

.__ Rise time t.

time (sec)

Figure 6.1 Process boundaries used to articulate desired process responses

Chapter 6 PID Controller Tuning Using Genetic Algorithms

Specifications of the process response in cases where variables are being stepped from one

level to another could thus be specified to be along the lines:

+ The overshoot above the setpoint (or the undershoot) should not exceed a specified

margm.

+ The rise time of the process be within specified time constraints

+ The process settles within 2% or 5% bandt in a specified time.

+ etc.

Specifications such as these are simple to articulate in principle. It is not clear however, how

controllers have to be designed and tuned to achieve them.

This chapter focuses on the proposition that genetic algorithms can be used in controller

design to achieve the above control objectives. More specifically, the tuning of PI and PID

controllers is to be investigated. The choice of the tuning of PI and PID controllers was

motivated by the fact that ever since their inception, PI/D controllers are the most widely

used controllers of their kind in the South African petrochemical and minerals extraction

industry. Even with the long standing of their use though, their parameter tuning process

continues to be a rather unmastered task[Porter and Jones, 1992]. The use of Ziegler-Nichols

as a preferred tuning method has a few short comings which will be discussed in chapter 7 on

a practical application of the system.

This chapter will start by focusing on the broad view of PI/D controllers and their topology,

showing how the control algorithm is set up. A proposed technique of the controller tuning

will then be presented. An example study will be provided to illustrate the usage of the tuning

framework. In chapter 7 the use of the Cohen-Coon tuning criterion will be presented and

compared to the framework to developed.

6.2 Topology of PID controllers

The proportional-integral-and-derivative (PID) controller is the most versatile controller

used in chemical process industries. Its composition aims to take advantage of the

characteristic error function generated between the process setpoint and response in such a

way that it is eliminated as quickly as possible. A PID controller is composed of three parts

as shown in figure 6.2 below.
PID Controller k(s) :-- -- --- -- -- -- --- -------.

:--.i
' ' '

K

e(si
i---~-- K/s

Figure 6.2 Topology of a PID Controller in line with a process to be controlled

t 2% band and 5% band have been chosen in this case since they are the mos! quoted settling bands of variables. Other% bands
could also be specified if they have special significance.

69

Chapter 6 PID Controller Tuning Using Genetic Algorithms

The proportional term, KP' the integral term, K;ls and the derivative term, K~. These terms

combine to reduce the control error according to the formula

K.
u(s)=(KP +-1 +Kds)e(s) ... 6.1

s

which in the time domain is written as

u(t) = KPe(t) + Kj e(t)dt + Kd d~~) ..)6.2
t

where Kp, Ki and ~ are constants of the controller that are to be tuned. The object of the

tuning exercise therefore, is to find the right combination of these constants such that a

desired response is observed. The search for these constants, to a great extent, depends on the

role they play in the correction of the error. This is however not universal since they are also

a function of the dynamics of the process to be tuned[Golten and Verwer, 1991]. The

contribution of each of these constants is well documented and will not be discussed here.

When all the control actions act together, it is important that each one be applied in quantities

which will allow it to co-exist harmoniously with others and thus maintain the overall system

stability. The contribution of each determines the attributes observable in the

response[Nachtigal, 1990]. Kuo summarises the contributions of each, and shows that bad

tuning of the constants of the controller can result in an otherwise stable process becoming

unstable.

6.3 The genetic tuning framework

With the contribution of each of the controller terms well understood, a framework of tuning

PI and PID controllers using a genetic algorithm is developed. This framework uses a

graphical articulation of the response which a designer may wish the process to have. As

shown in the figure 6.3, a control system designer may want his/her system to have its

attributes to fit the response limits as defined in figure 6.1. The controller would therefore

have to be tuned so that this response is realised.

Figure 6.3 A system response showing the limiting cases of the process output.

The general shape of the response cannot be defined using definite closed form equations

valid over a wide span of frequencies. It can however, be defined as a set of constraints.

These would include features of the response such as maximum overshoots,· settling times,

maximum deviation from the setpoint, etc. [Gray et al, 1995]. The design therefore goes

through a painstaking process of making sure that the controller is tuned such that the overall

process obeys these limits.

70

Chapter 6 PID Controller Tuning Using Genetic Algorithms

6.3.l The PID genetic data structure
For a general scenario of tuning a PID controller, the starting point is the formation of the

chromosome data structure representative of the parameters to be tuned. This is accomplished

by concatenating the parameters to be tuned in a vector-like structure representing the

chromosome

8 = [Kp, Kb KcJ] ••• chromosome

For practical PID controllers, the control law of equation 6.1 cannot be implemented.

Usually, the derivative term is augmented with a fast filter that will not affect the dynamics

of the overall system but make the controller causal. The topology of the new system does

not change, as is shown in figure 6.4.

Modified PIO Controller r-------------1
I I
I I
I

y(s) - From Process

Figure 6.4 Modified PID Controller including a filter on the derivative term.

From this structure, the modified PID control law can be written as

K; Kds
u(s)=(KP +-+)e(s) ... 6.3

s sTd + 1

The chromosome to be set up as a parameter vector is thus modified to be

8 = [Kp, Kb Kci, T d] ••• chromosome.
In the genetic evolution, these parameters are encoded as a binary chromosome with each

parameter being represented by a gene. Each gene is decoded and mapped into a domain

binding the value of tt,e parameter.

6.3.2 Control cost function and penalty functions
In the work presented on system parameter identification m chapter 4, a cost function

defining the goodness of fit of parameters was presented. The same function

1 N 2 1 N 2
1 = -:L(rk - Yk) =-:Lek ... 6.4

N k=I N k=I

could be used to determine the goodness of the PID controller when acting to minimise the

error between the setpoint and the process response. This error squared function howeve~,
resulted in excessively high inputs being required to attain such minimisation goals. The

inputs were particularly excessive the moment a setpoint change is applied. For sensitive

71

Chapter6 PID Controller Tuning Using Genetic Algorithms

processes, this could lead to a totai distruction of the actuating circuits at worst, or the

saturation thereof. Pilot work using this objecti,ve was carried out and it was decided not to

use it any further due to its input characteristic. A simulation example using this cost function

would be presented later in this chapter to illustrate the functioning of a GA as a. controller

tuner. More elaborate and advanced work utilising the framework to be developed is

reported in chapter 7 of this report.

A comprehensive tuning criterion based on constraints as mentioned is used as a cost

function of the c·ontrol action. The approach analyses the response in its totality and then

makes appropriate changes to the parameters to improve it where it fails to meet control

requirements. The method of constraints uses the observable and measurable attributes of the

system to formulate the cost function[Homairfar et al, 1994]. To that extent, it was decided

that the following attributes of the response and the actuating input would be used:

+ The stability of the resulting system.

+ The magnitude of the input demanded by the process from the controller.

• The maximum overshoot and undershoots.

+ The deviation from the desired steady state position specified by the setpoint.

Each of these conditions is tested for on the resulting closed loop transfer function after

tuning for a particular set of parameters has occurred. If the system fails to satisfy any of

them, then the controller that resulted in such an action is penalised accordingly (as it will be

shown in the table of constraints and penalties to follow). The following paragraphs illustrate

how the constraints in the system are formulated and how the penalty functions are applied.

a) Stability check

The check for the stability of the system is simple. If any of the eigenvalues of the closed

loop system are positive, then the system is unstable, and the penalty equal to the degree of

instability (i.e. the real part of the pole) is applied.

Constraint: Re(A;) :5 0 \Ii :5 n

Penalty: J = L(A, +bias) 2

where the bias term in included to ensure that the penalty is always above 1.0 for cases where

pole position maybe within domain bounds 0 :5 Re(A,) < 1

b) Control input check
The check for the required input ensures that the system remains within some !lCfuator signal

boundaries specified beforehand. These are typically hard bounds specified to make sure that

the input never exceeds them.

Constraint: Umin :5 U :5 U max

max{U}-U U . -min(U)
Penalty: J = max x100% + mm x100%

U max Umin

where Umin is the minimum input limit and min(U) is the minimum of all the moduli of the

minima attained. U max is the maximum. limit not to be exceeded and max(U) is the maximum

72

Chapter6 PID Controller Tuning Using Genetic Algorithms

of all values of U.

The penalty function is composed in such a way that it uses percentage deviations from the

ideal situations. It was found that using raw values of the extreme resulted in hard penalties

and introduced anomalies in the system.

c) Maximum overshoot checks
The check for maximum overshoots (and undershoots) follows the criterion that the

overshoot is to be reduced gradually. There are not hard bounds set, although this can be

done. Where they are set, the cost function and the penalty criterion takes the same form

described for checking the control input bounds. For a gradual reduction of the overshoot, the

following constraint-penalty pair is used.

Constraint: llrmaxll ~ r

Penalty: J = llrmaxll-r x100%
r

where Y max is the maximum value attained by the process response and r is the process

setpoint.

The penalty functions for the hard bounded constrains are applied as percentage deviations

from the boundaries. More scrutiny could be applied to the process and more tuning criteria

developed. Table 6.1 summarises major consideration which may be put. This table is

presented with reference to the criteria developed by genetic researchers at the university of

Glasgow[Gray et al, 1995].

Table 6.1 Constraint-Penalty table for cost function optimisation

Response Criterion

Overshoot constraint

Maximum in the response

constraint

Minimum in the response

constraint

Steady state deviation

constraint

Stability constraint

My is the peak of the response.

Interpretation of the table:

Constraint

My< Mov

Ymax < (Yrer+ Ysserror) for all t >ts

Ymin ~ (Yrer - Ysserror) for all t >ts

y ~ y(O)

Re("1) s 0 'ef i ~ n

1. The first column lists the property of the system that is of interest.
2. The second column lists the constraint that is to be met.

Penalty Function

(My-Mov+I)2

Ymax < 100 (YmwcYreri

Ymax ~ 100 (Ymax - Yrer) + 99
2

Ymin > -98 (Yref - Ymin)
2

Ymin S -98 (Yref - Ymin) + 992

((y(O)-y)+ 1)2

L(A1 +bias)2

3. The third column lists the penalty to be applied if the constraint is not met.

These constraints and penalties can be used as stand alone objectives of optimisation or can

73

Chapter 6 PID Controller Tuning Using Genetic Algorithms

be combined with others to formulate multi-objective optimisation tasks. Genetic algorithms

offer this flexibility by merely combining each of the objectives in a summation and treating

the numerical value thereof as an objective to either maximise or minimise.

The composition of a multi-objective search objective function ·depends to a large extent on

the presentation of each of the individual objective functions. The composite objective

function is a linear combination of the different individual ones[Maciejowski, 1989]. To

make this accurate, each of the individual objectives need to be interpreted as percentage

deviations from their ideal situations. A function

· I= aJ1+ PI2 + + rln 6.5
consists of objectives J; which could be any of the ones t~bulated. The scalar values a, p ... r
are set to emphasise the importance of the contribution of each in J. If it is not possible for

the system to satisfy all constraints, then the objective function could be set such that some of

the constraints are satisfied before the others. As an example, if a= p = 100 and r= 300 then

this could be interpreted as meaning that the term multiplied by r is three times more

significant than the other terms and is thus made to have more contribution to the cost

function. The algorithm is thus set reduce the cost function as best as possible and thus the

contribution of the term multiplied by y. On the other hand, if all the scaling values are set to

the same magnitude, then this means that all the terms carry equal weight. In this

arrangement, the priority focus will shift from term to term as improvements are made in the

search. For example, if 11 is the contribution of the error and 12 the contribution of the input

deviation, then as the error content improves it will contribute less to the objective function

and the focus will shift to the input component which will now have a more significant

contribution to make. This subject is explored fully in the next chapter on a practical system

where case studies are undertaken to test different tuning strategies.

A numeric example will be presented next to illustrate the concepts discussed so far. The

example is kept simple enough so as to distinguish clearly between the algorithm and the

peculiarities of the problem. Although better controllers can be designed using class.ical

methods of pole-zero cancellation and the s-plane, it is not the purpose of this example to

make these comparisons. What will be illustrated is that within the framework of desired

responses, the genetic algorithm can be set in such a· way that graphical observations are

transformed into m~thematical equations which can be optimised. The final result, although

will be the minimum that the genetic algorithm can attain, will not mean that it is the very

best solution attainable in practice.

6.4 Illustrative example: Tuning of a PID controller for an oscillatory system

A genetic algorithm is set up to tune a PID controller for a simulated process having th~

transfer function
45 ..

g(s) = s~ + s+ 15 " ... ·· · ... " " 6·6

The process in open loop has an oscillatory response shown in figure 6.5°.

74

~'~;;.;'-~·-;:;:.:;:-·;;:;;;~=========:::.::::=.::.:::::::.:::======-=-=--~-=-....:-...::-·.:'..::··'::'::=-:::::========="""""-:=":--========-=- ·- -·--

Chapter 6

SIMULATOR S:yst:et11: G<s>

Sat:point: a Output:

/',

2.50

PID Controller Tuning Using Genetic Algorithms

5.00

Cont:rol Lab. ElecEng. UCT
HB-..ct:(c)1995

T iMe

7.50

Figure 6.5 Open loop response of the process to be controller by a GA tuned PI controller

The interest in the process is that it cannot be stabilised with either a proportional(P)

controller and a proportional-integral (Pl) controller satisfactorily as the typical root loci of

both control types indicate below. Although an attempt can be made with a carefully tuned

(Pl) controller, it is bound by the asymptotes which determine the angles of approach of the

root locus and the response could remain oscillatory and unsatisfactory.

ao .00-

... ~
nioo

-10.00-

-ao.00--

k(•): k(•h•l .. ,.,, .. ,.,=,

•'".'

f('<P.> • • • • "•••

Figure 6.6 a) Root locus of a system with a
proportional (P) controller.

Figure 6.6 b) Root locus of a system with a
proportional-integral (Pl) controller.

The root locus of figure 6.6a shows that the system will oscillate as the system gain 1s

increased in feedback whereas figure 6.6b shows that with sufficient gain the system may

ultimately become unstable. In the stable regions of this plot, the system becomes more

oscillatory with increasing gain. Hence, neither of the control strategies will deliver

satisfactory control results, and hence the choice of a PID controller to be tuned. This is also

an illustration to show that there is no limitation in the number of parameters which could be

concatenated in the search chromosome, as long as computational resources allow.

The genetic process is thus set to search for the four parameters of the control law

K; Kds
u(s) =(KP+-+)e(s) ... 6.7

s sTd + l

such that the closed loop system poles and zeros are placed where they will result in stable

and fast responses. Although not used further, the prime objective of the tuning was to reduce

the error function e(s) as best as possible, no matter what the cost of the control action.

6.4.1 Setting up the algorithm
The genetic algorithm was set up to perform the task of tuning a PID controller for the

process described. The following algorithm settings were used.

75

Chapter 6 PID Controller Tuning Using Genetic Algorithms

Table 6.2. Parameter settings of the GA tuning the PID controller

Property Value
Population size 80

Crossover type single point

Crossover rate 0.80

Mutation rate 0.005

Chromosome settings 48 bits long, 12 bits per gene

Parameter boundaries 0.1 ~KP~ 100

0.1 ~ K; ~ 100

0.1 ~ Kct ~ 100

0.005~ Tct ~ 5.0

With these settings, the algorithm was allowed to run a maximum of 30 generations to find

the solution. The figures to follow are snap shorts showing the algorithm's progress at

different stages. Only three distinct tunings have been included as an illustration. The final

plot included was not the very best the algorithm could do in this experiment, the results are

presented in the next section.

CONTROL ERROR

Figure 6.7a) Genetic algorithm tuning progress at generation 0.

Notes: The frequency of both the plant response and the plant input is very high. The magnitude of the
input signal is also completely out of bounds. Although not shown on the plot, the system reported the
maximum input to be 56V.

,,
·····--::· ... - ...

(

PLANT RESPONSE

CONTROL RAOR

I<~ = 4'9 . 402

II< :I.. = .1.4 ~ :570

Figure 6.7b) Genetic algorithm tuning progress at generation 5.

76

Chapter6 PID Controller Tuning Using Genetic Algorithms

Notes: There is a visible increase in the decay rate on both the plant input and the process response.
When looking at the s-plane, this is symptomatic of the advances of pole~ as they move further away
from the origin.

·PLANT RESPONSE P ANT INPUT

· CONTROL ERROR CONTRCll...E:J:!ROR
p_ ... ___ t m.::

Figure 6.7c) Genetic algorithm tuning progress at generation 20.

Notes: Although the signal frequency is still high, the decay rate of the response has increased even
further, showing that the system poles have made more advances in moving away from the origin of the
s-plane.

The tuning criteria for this illustration was set to be a simple error square reduction of

equation 6.4. It should be evident from the plots that although there is a reasonable amount of

progress being made from one generation to another in tuning the controller, it is made at an

unacceptably high cost in the plant input. For practical systems, this will indeed be a problem

which could lead to actuators saturating and in some cases, undergoing accelerated wear and

tear.

The final result settled for in this experiment produced the following results in controller

settings. The plot showing the control action is presented in the following figure. The final

controller settings settled for were:

Kp= 49.56
Ki= 14.60
~= 4.10
Td= 0.02

. __ --~ __ CONTROL Ji:RRO:R ...
c~~~~o~•-~ P _____ t_ ... _:

Ks:> = 4.'P,. S6CI

K9. = 14,.!S'PO

l<d = ... 09~
A-o--~-•-a P~1- = o.~•?

Figure 6.8 Plot showing the end result of t~e algorithm's tuning exercise for an oscillating

system.

77

Chapter 6 PID Controller Tuning Using Genetic Algorithms

As a comparison to the cases of Proportional (P) and Proportional-Integral(PI) controller, the

root locus of the resulting system and the final system poles and zeros are presented next.

Figure 6.9 shows the resulting root locus from the parameters of the controller presented. It

shows that the system as tuned will be stable for cases of increasing the gain. Also evident,

although the system will remain stable, the degree of oscillation will increase as a side effect

as the gain is increased without bound.
sw-t--: a<->

r~~~-~t: -cADOODO -<->: -<->
f<-.>: f<:a.>=.1.

.... ---·

c~~tr~~ L-b, E1-c:E~g, UCT
l"'IH._.c:t<c:>.199~

k<->: k<->=.1.
11'3'<-.>: P<->=.1.

Figure 6.9 The root locus plot resulting from the parameters of the PID controller as tuned

for least error case.

More specifically, the following closed loop transfer function resulted from the tuning

process:

h(s) = 1109250()()()() 6.7
s+ 0.31 s+ 10.20 s+ 20.25- l0l.6j s+ 20.25+ l0l.6j

(s + 0.3 l)(s + 9.791)

Equation 6. 7 as a closed loop characteristic function of any process is far from ideal for any

process:

i) Both zeros introduced by the PID controller induce a cancellation with the poles of

the system. The pole at s = -0.31 is completely canceled by the zero which the genetic

tuner has placed. Although the pole at s = -10.20 is not completely canceled, the effect

of a zero at s = -9. 791 is overwhelming and does in fact neutralise the action of the

pole to some extent.

ii) The only poles left in the system will be those sitting at locations s = -20.25 ± 101.6}.

Two features of this complex pole pair are worth mentioning and be linked directly to

the objective function of the algorithm.

+ The real part of the poles places them at locations in the s-plane resulting in

relatively fast decay time compared to the other two modes of the process. It

might be argued therefore, that the cancellation of the two relatively slow

modes of the system was not incidental, but rather, a strategic move in the way

the algorithm interpreted the s-plane. The decay time therefore ensures that the

process reaches steady state as fast as possible and hence nulls the average

error in as fast a time.

+ The imaginary part of the poles results in high frequencies of oscillation of the

78

Chapter 6 PID Controller Tuning Using Genetic Algorithms

system. This in simulation cases could easily be offset and compensated by the

speed of decay due to the real part placement of the pole. In practice however

wear and tear would outperform the speed advantage and render the controller

less than ideal.

The algorithm has thus succeeded in tuning the PID controller to for least error. The evident

side effect is the unlimited usage of the input, exacerbating the oscillation in the response.

The placement of pole, albeit in oscillating regions, of course resulted in the least error

manageable within the constraint of the defined parameters. With further processing the

algorithm managed to do even better in terms of the response speed, but in so doing worsened

the oscillation effect.

6.5 Summary and chapter highlights

In this chapter a proposal was made to use a genetic algorithm as a PID controller tuning

algorithm. The framework developed evolved from the use of constraints which are used to

describe graphically the limits the process response has to obey.

Most of the considerations given to the process response, when transformed to mathematical

representations, resulted in truly non-linear functions and sometimes discontinuous. With the

processing carried out by genetic algorithm, this is no bother since the algorithm has a

property of not depending on the surface properties of the function that is being processed.

The example used in this chapter, although it was non discontinuous, showed that the

requirements specified as parameter constraints in the time domain can in fact be transformed

into specific pole positions in the s-plane. This was clearly demonstrated by the placement of

the poles performed by the GA. The algorithm placed the process zeros such that the slowest

poles are canceled. The remaining poles were moved as far away from the plot origin as was

possible within the trials taken.

Although pole-zero cancellation is known to produce problems related to internal stability of

the closed loop, it was allowed in the context of this example. Inherent in the error cost

function used is the fact that it is expected to diminish. For stability therefore, a growing

error would be symbolic of the cost function which will result in an unstable system. Overall

stability is therefore inherent in the tuning process. If pole-zero cancellation is to be avoided,

the system resulting pole-zero placement can be analysed for its topological character,

determining the proximity of the zeros to the poles. The zeros can thus be restricted to certain

radii from poles, where it is known that such choices do not induce cancellation or that the

zeros will not overwhelm the poles.

In the next chapter a more elaborate look at the framework developed will be taken by

applying the control tuning schemes to a two-tank laboratory model. Furthermore, the control

scheme will be compared to more classical engineering methods such as the Ziegler-Nichols

and the Cohen-Coon tuning method.

79

Chapter 7
Application of Genetic Tuning to A Coupled
Tank Apparatus System.

7 .1 Introduction

In chapter 6 a theoretical proposal suggesting the use of genetic algorithms to a problem of

PIID controller tuning was made. The analysis and the proposal developed a theoretical

framework which could be used to exploit the attributes of the process response and its input

signals as guides for tuning the controller. Furthermore, a simulation example was presented

to Illustrate and substantiate the concepts presented.

This chapter presents a series of case studies that illustrates the use of a genetic PI/D loop

tuner to a practical system utilising a coupled tanks laboratory model. The model involving

storage of liquids, was chosen because of its time dynamics which, being slow, closely

resembles reality of industry. It was further chosen to illustrate the control of a commonly

occurring control problem in process industries, the control of fluid levels in storage tanks,

reactor vessels, etc. and how ~t is dealt with. Genetic algorithms were used here to optimise

the dynamics of this process in the way described in chapter 6.

Three tuning cases studied are reported in this chapter as illustrations of the versatility of the

genetic algorithm as the tuner for PI/D loops:

i) In the first case study, a genetic algorithm was utilised to tune a' PID controller to

achieve a minimal excursion in the error signal between the setpoint to the process

_and the system response. It will be shown that this goal was achievab_le wit?in the

framework of the problem although it had an undesirable side effect in its utilisation

of the control signal.

ii) The second case will show how a controller was tuned for minimal excursion in the

process actuating signal. A noticeable side effect in this case, was the time taken for

the process to reach the control target.

iii) The third and final case study combined the two strategies outlined above as an

illustration that a genetic algorithm can be used for multi-objective tuning purposes.

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

The emphasis on the tuning strategies lied in the formulation of objective functions and the

analysis of the results thereof. Attributes of the cost function visible in the system response

will be highlighted and so will the side effects. The case studies utilised a two-tank level

control laboratory apparatus which has slow dynamics to emulate dynamics of a slow

process.

This chapter will start by describing physically the complete coupled tanks apparatus used to

carry out the case studies. Thorough work was carried out calibrating the non-linear

instrumentation panel provided with the apparatus. Due to the impact the instrumentation has

on the control system designed, its brief description will be included as well. The

experimental modeling process of the tanks will be presented together with the dynamic

model extracted from the process using step tests and physical considerations.

7.2 The coupled tanks apparatus

Figure 7. I below is a schematic diagram of the complete coupled tanks apparatus.

Pump driving motor

Persplex partition

Tank I Tank2

Water sucking pipe

Figure 7.1 Schematic diagram of the coupled tanks apparatus system.

The apparatus consists of a transparent plexi-glass tank container having dimensions 200

millimeters (mm) long, I 00 millimeters (mm) deep and 300 millimeters (mm) high. A center

partition is used to divide the container into two tanks of equal dimension. Flow between the

tanks is by means of three holes drilled at the bottom of the partition forming the orifice

couple shown in the figure. The three holes have diameters 10.3, 9.5 and 6.4 millimeters

(mm) respectively, and are situated 30.0 millimeters above the base of the tank. A smaller

bleed hole of diameter 3 .2 millimeters is situated 15 .0 millimeters from the base. The size of

the orifice is varied by plugging and unplugging these holes using bungs. With all bungs

82

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

removed, the container can be viewed as one large tank. On the other hand, with the largest

holes plugged, the remaining holes allows for a weak interaction between the tanks.

Water is pumped from the reservoir into the first tank by a variable speed pump which is

driven by an electric motor. The pump motor drive signal is derived from a digital computer

interfaced to the system though a DT2801 ADC/DAC interface module. The water flow rate

is measured by a flow meter panel attached to the tank.

Two depth sensing tracks are mounted in each of the tanks. An alternating current signal is

applied to the tracks so that their resistance changes as the level of the water in the tanks

change. This induces a voltage across the tracks, which is detected, filtered out and amplified

to give the depth output of the sensor. All the signal processing is done inside the

instrumentation panel provided with the apparatus. Water flowing into the second tank is

allowed to drain out into the reservoir tank via an adjustable drain tap which has a diameter

of 7 millimeters when fully open.

7.3 The device instrumentation and the calibration of sensors
In this section a brief description of the instrumentation system will be presented since it was

found that their changing characters were mainly responsible for the observed peculiarities in

the control of the levels.

7.3.1 The mechanism of flow measurement and calibration of the flow meters
The water flow rate is measured by a device consisting of a cylindrical bob weight inside a

tapered tube as shown in figure 7.2 below.

Fluid out

Tapered tube

Bob weight

Fluid in

Figure 7.2 Sketch of the flow measuring instrumentation device.

As the fluid flows through the tube, the bob rises until the pressure drop associated with the

flow just balances its weight. The more the flow, the higher the bob will rise to balance the

pressure drop. Thus, the height of the bob inside the tube is a direct measure of the flow rate

and may be calibrated accordingly.

83

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

Experiments were run to determined the relationship between the pump motor drive input

voltage, V pump• and the flow rate developed. This was done with the view of calibrating the

tank flow measurement system and determine the characters of the input. The calibration

curve below shows the profile of the pump drive voltage versus the developed flow

3 0 0 0 Profile of the flow rate vs motor drive voltage

I
2500

2000

~
! 1 5-0 0

l 1000

I 500

Motor drive volta9e (V]

Figure 7.3 Calibration curve determining the relationship between the motor input drive

voltage and the flow rate developed.

Above an input voltage of 1.2 Volts, there is a fair amount of linearity in the flow rate of the

system. Errors resulting from noise in the response were usually minimal.

7 .3.2 The depth sensors and their calibration
As mentioned before the depth of the water in the tank is measured by parallel tracks placed

inside each tank. These devices exhibit electrical resistance variation depending on the level

of the water in the tank.

The analysis of the depth sensors revealed a somewhat non-linear relationship between level

and sensor voltage. As it can be seen in figure 7 .5, strict linearity of the depth sensors is

limited between 100 millimeters and 140 millimeters and between 150 and 180 millimeters

height in the tank with a definite inflection point between the regions. This means that the

modeling and the control has to be done in the range defined by the linearity of the depth

sensors. Control outside these areas will very likely be erroneous.

C 11 Ii b r 1111 t Io n o f th e 1 a co n d ta n k d e p th • e n • o r

:;:

f
l
• J

T • 11 II. h "•I (111 1!'1)

Figure 7.4 Calibration of the tank depth sensors and the plot showing their linearity

character.

When all the analysis was done, the process of modeling the system was undertaken.

84

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

7 .4 Coupled tanks modeling

In the broader context of modeling, two approaches can be taken to determine a process

transfer function: Modeling using the laws of physics and chemistry governing the

process or stimulus-response characters of the process. The coupled tanks system landed

itself well to both approaches which were used to determined the process model.

Because of the interest in the difficulty of the model and their open loop dynamics, it was

decided to do a control of the second tank level only. A stimulus-response approach was used

by running the process until it reached a steady state in the level and then stepping it by

increasing the pump drive by I Volt and observing the response.

I I

l

-lop,tflow

1

1
rate

-Tank level
response

Time(sec)

Figure 7.5 Step response of the second tank when flow rate is stepped up and down.

Figure 7 .5 presents an overall picture of the system response when the second tank 1s

considered. For closer scrutiny of the model, a magnified version of this response is extracted

and presented alone to highlight some of its peculiarities.

.'!l
0
>
1/1 ..
Gi
>
C>
..J
-"'
C ..
I-

7.4

7.2

7

6.8

6.6

6.4

6.2
L()
N

A magnified view of the second tank's level response

0 0
L() 0

L()
N

L() ... 0 L()
0 N
N N

Time (sec)

L() ...
N

8
C'l

0
L()
C'l

L() ...
C'l

Figure 7.6 A magnified view of the second tank's level response when the flow rate is

stepped up and down.

As far as possible, the above figures suggest that the model of the process is of first order. It

was however found with initial attempts in designing the level controllers, that the real-time

85

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

control of the assumed model type and calculated parameters did not match the simulation

work. After exhaustive remodeling it was found that this assumption was invalid for high

loop gains. This was confirmed by the oscillations which built up when the second tank level

was controlled with a simple proportional controller in feedback. For theoretical and practical

systems, a first order model is not expected oscillate when the feedback gain is increased.

The building up of oscillation when the feedback gain was increased suggested that the

process should be approximated by a model that was at least second order, perhaps more. The

phenomenon of pole dominance was used to resolve this contradiction between expectation

and observation. When a thorough analysis of the S-plane was done, it was found that the

model contained two modes, one being the more dominant, manifesting itself as a first order

response, and the other being a less dominant mode which was found using physical

modeling of the system.

The system was analysed using the flow-balance analysis to extract the extra mode which

was not visible before. The working of the model will not be presented here. Details are

presented in appendix B of this report. Using the flow-balance approach, a transfer function

model was found to be of the form

A
------- .. 7.1
(sI; + l)(sT2 + 1)

where h2 is the level in the second tank and qi is the flow rate.

The object of the modeling exercise was thus to find the three unknown parameters of the

above model: A, T1 and T2 . The parameter values of this model were found by experiments

and measurements of real parameters of the process. Experiments suggested by Wellstead in

the manual accompanying the apparatus were carried out to determined the numeric values of

the model of equation 7. I. The model settled for eventually was

h2 (s) 0.94
q;(s) = (184s+ 1)(22s+ l) ··7·2

The fast mode which was not observed when using the stimulus-response approach is now

clearly visible in the above model. When studying equation 7 .2, one can see that using step

tests to model the process, the dominant pole with time constant of 184 seconds will tend to

swamp the faster mode with time constant of 22 seconds.

7 .5 PID controller design and tuning using the genetic algorithm

With this process model obtained, the object of the experiment was then to design controllers

for controlling the level in the second tank using the flow into the first tank. Consistent with

the framework presented in chapter 6, different tuning strategies as outlined in the

introduction were to be applied. Each had an objective which was listed as being prime for

each of the consideration given.

For the purpose of this experimental work the modified PID to be tuned was

86

"'

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

K; Kds
k(s) =KP+-+ ... 7.3

s I+s~

The control objectives mentioned were thus to be achieved by a careful selection and tuning

of the parameters KP, Kb Kd and Td of the controller such that the control system is controller

as desired.

For all the control tuning cases studied, the same pattern in tuning the algorithm was used.

The table below outlines these settings as they were used in this thesis. In general, all the

algorithms were run for 30 generations once or more times depending on the results.

Table 7.1 Parameter settings used in the GA for tuning case studies

Property Value

Population size 120
Crossover tvoe One point crossover
Crossover rate 0.75
Mutation rate 0.005
Parameter boundaries 0.1~KP~100

0.1~Ki~100

0.1~~~100

10·4 ~ Td ~ 100

7.5.1 Tuning objective 1: Tuning the PID controller for setpoint tracking
In this work the objective was to tune the PID controller for the least error between the

setpoint and the process response. To this effect, an objective function which was simply the

error squared model criterion mentioned in chapter 5 was defined and used.

} N 2

11 = N L (rk - Yk)
k-1 - 7.4

12 = _!_ f (r~ y) 2dl/f = _!_ f e2dl/f = liml1 l/f l/f N-+0

where N and 'I' are sampling windows in both discrete and continuous domains.

To minimise this criterion, a penalty function was set simply as a square of the multiplication

factor that scales the fitness of the member functions of the GA population depending upon

their .performance on minimising equation 7.4. The fitness of the individual is scaled

proportional to the mean of the error function calculated in the simulation. Thus the

genotypic value of the member function was set to be

Genotype_ Value= (error* ~)2

where ~ is a scaling factor set to determine the severity of the tuning. For this single

objective tuning the value of ~ was set to 1000 to scale up the error which might be

diminishing. The objective was thus to minimise this Genotype_ Value of the member

function. It should be noted that ~ cart be set to any value which will ensure that the genotype

value increases progressively with an increasing error. A value greater than 1 would suffice.

87

.,
!

I
I

I

;I

'

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

The algorithm was run for 30 generations as a limit and the following controller parameters

were obtained:

KP = 68.401 [V]/[V]

Ki= 0.073 [s]

Kct = 98.043 [s]

Tct = 3.071 [s]

Even though the objective was achieved, the cost of the control remained rather prohibitive.

Proper analysis of this fact and more comments are done in the following section

7 .5.la Controller performance for setpoint tracking
The controller designed for least error tuning was analysed to determine if its objective was

achieved. The simulation model clearly achieved its objective. Although this was done, the

inputs used in the system were prohibitively large for the system to function smoothly. Figure

7. 7 below shows the resulting control action due to the parameters of the controller obtained

by the genetic algorithm.

Level control of the second tank

7.6

6.4

6.2 +--------t-----t---+--+-----+---+----t--------J----t---+--+-----+-----t-

0 0 0 0 0 0 0 0 0 0 0 0 0 0
~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~

M ~ ~ ~ m o ~ M ~ ~ oo m

time (sec)

--Tank level setpoint

--Tank level
response

Figure 7.7 Level control signals of the second tank showing the set-point and the response

of the tank level for a PID controller tuned for least error.

There is a reasonable amount of occasional excursions away from the setpoint once it was

caught by the tank response. This was due to the physical limitations of the pump drive

system. Although according to the simulated result of the tuning, the system seemed to settle

down with the least error, it however, demanded excessively high inputs to achieve the task.

The pump system was limited to a 10 Volt output and thus could not apply the control signals

outside the range. The limitation was further enforced by the programming to ensure that

system limits are not exceeded as a protection measure for the devices. Viewed in this way,

the system reduced to a simple bang-bang control strategy where the drive signal made large

excursions to either side of the mean drive signal. The figure below shows the movement of

input signal as commanded by the PID controller tuned.

88

Chapter 7 Appli~ation of Genetic Tuning to A CoupledTank'Ap,paratus System

20

~15
(!)'

~10
~
(!)

>
5

:a 0 +-Hc...;._-+'--'--+ll_._'-+~-.:..;-1---r..f--'~+<-~-+--'--+-~-w-'--~l-----''+-~-+--'---+-
Q.,

~ -5 time (sec)
-10

Figure 7.8 The activity of the process input signal driving the tank pump for a PID

controller tuned for least error.

The activity of the signal in figure 7 .8 shows that .it had occasions of going abov~ 10 Volts

and lingering around 0 Volts. Both situations were out of the ljmits of the pump drive signal

whkh was shown in figure 7.3. To gain an appreciation of the movement of the actuating

signal, a better trend of the movement of the input can be seen from its Histogram

distribution.

Input signal distribution

250
QI
u
c;

200 E
:I
u
u 150 0
0
>. 100
u
c;
QI

~1111111~1110 ••. ,
:I 50
D"
I!!
LL 0 ;- '1· 1

C\I co co <Xl <Xl <Xl <Xl <Xl <Xl co ~ co <Xl
l() ,.._ 0 M ID O> "'! II) <Xl .- ,.._ 0

1 0 ui <» <'> ,...: C\I cO ci ui <» ~ ai .- .- C\I C\I M ·M M . ':t.

.Signal Distribution

Figure 7.9 A histogram of the distribution' of the control input signal for a PID controller

tuned for least error.

From this distribution1 the following descriptive statistics were obtained:

Table 7.2 Descriptive Statistics of the least error tuning criterion case study

Property Value

Minimum input -3.515

Maximum input 51.516 ..

Mean input 4.465

Standard Deviation 4.474

From the statistics presented, both. the maximum and the minimum inputs demanded by the

process on line were unattainable. The negative voltage required translates to a condition of

89

Chapter 7 Ap,plic'ation of Genetic Tuning to A Coupled !ank Apparatus System

sucking the water out of the tanks using a mechanised technique. Since water can orily leak

out at a rate not less than 0 cc/min, this condition was not met. Although the mean value of

the controller could be comforting to some extent, the large value of the standard deviation is

reflective of the noisy movement of the pump drive which sways it around the mean at a high

frequency. This in practical terms, will result in the plant equipment, in particular the

actuators, undergoing accelerated tribology.

7 .5.1 b) C-0ntroller pole placement in. the s-,plane

In the greater control context, .the final analysis of performance can only be confidently .done

by analysing the pole positions in. the s..:plane. For this purpose, it is thus instructive to study

the placement of poles done by the genetic loop tuner. Visible attributes of the system from

its. response are low frequencies of oscillation. and a .relatively fast response compared to the

open loop step response. Figure 7 JO below shows the root locus of the resulting closed loop

system as tuned by the GA for least error. Poles and Zeros of the system are labeled <P> and

<Z> respectively pn the plot.

ROOT LOCUS: sv-.~e ... :: Q<m>

2!>

-o.:a:a -o .. :20 -D .. .1.~ -o .. .t.o

lc<:m.>:f k<•>==,1.,
r><a>: D<a>=JL

>

VOA

Figure 7.10 The root locus of the control system resulting from a least error tuning exercise.

The resulting root locus shows that the closed loop system is perfectly stable and will become

progressively more oscillatory as the loop gain increases.

7.5.2 Tuning objective 2: Tuning the PID controller for the least input
The second controller tuning objective was to achieve a good control action using as little

control effort as possible; The objective-penalty function table pres.ented in chapter 6 lists the

criterion for least input usage; The objective is simply to minimise the cost function

~ = 77.580 [s]
Td = 13.896 [s]

1 ·N

N Luk~ J utl'f/
k=I 'I'

J = U::; llmax(u)ll .. 7.4

U ~ llmin(u)ll

90

91

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

This cost function penalises the controller member function on the basis of three criteria: The

average control action, the maximum control action and the minimum control action. The

aim was therefore to minimise the objective function which is made up of the considerations

of all the above. When a controller deviates from any of the above criteria, a penalty

proportional to the amount of deviation is added to its genotypic value and thus degrading the

fitness of the genetic population member which resulted in such control action. Therefore, the

penalty function for this controller would be made up as

1 f .7.5
P = %_dev{I N £ .. Pk - uavc I}* /3+ %_dev{lmax(u)-uimx I}* y+ %_dev{lrnin(u)-urrin I}* a

k=O

where the constants ~. y and a are chosen and set to emphasise the order of importance of

each of the criteria. Uavg is the desired average for the input signal, Umax the tolerated

maximum and Umin the tolerable minimum. For instance, if it is desirable to curb the

maximum input as much as possible, then the scaling factor y would be scaled such that the

percentage deviation resulting from the maximum input is emphasised more than the other

two components of the penalty function P. If the scaling factors ~. y and a are set to the same

value, then the order of importance change from parameter to parameter as improvements in

the others are achieved.

For reasons of practicality, the consideration of the average input usually does not make

sense since it is built into the boundaries being the maximum and the minimum input. Thus,

more pressing demands of excursions outside the pump flow settings could be weighed more.

In fact, the component outlining the demand for average input could be removed from the

penalty function without much significant loss in the performance of the controller. The

modified penalty function would simply be reduced to

P = %_dev{lmax(u)-umax I}* 1 + %_dev{lmin(u)-umi
0

I} *a ······ ······· ··· ···· ··7·6

The objective then is to ensure that the control signal remains within the boundaries of the

pump drive voltage. It should be noted that although it was said that removing the average

input component from the penalty results in no significant loss in performance, there is now

an added risk that the controller tuned might result in a bang-bang control within the limits

defined by the other two criteria. Once more the algorithm was set to tune the controller to

attain the objective of equation 7 .6.

7.5.2a Controller performance for least input tuning

As in the previous tuning case, the controller designed for least input was analysed for

performance margins it achieved. The visible side effect in the case of least input tuning, was

the amount of time taken for the system to settle down to new setpoints. The controller tuned

attained the following values for the PID controller:

Kp =1.661 [V]/[V]

Ki= 0.098 [s]

~ = 77.580 [s]

Tct = 13.896 [s]

91

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

The figure below shows the resulting control action for the current tuning .

Level control of the second tank
8 'ti

C
Ill
Q)

i § 7.5 +-....,,,...---=-,j7/ c:>.-~.
i ·s 1
... Q.

"ii ti
~ u, 6 .5

~
C

~
6
~ 0 Ol

N <')
N

co (0 U") "'" U") Ol -;:::. <')
<') "'" U") co

<') N
U")
Ol 0

time (sec)

m 0 Ol co
,;; N "'" (0

~ "'" U") (0
~ ~ ~

(0 U")
co 0 ~

--Tank level
set p oint

--Tank Level
response

Figure 7.11 Level control signals of the second tank showing the setpoint and the response

of the tank level for a PID controller tuned for least input.

Evident from the figure above, is the comparative amount of time taken for the system to

reach its setpoint and the accompanying output oscillation. Unlike the previous case however,

there was a clear evidence of the declining steady state error and the system eventually settles

at the required setpoint.

The tuning was more successful in keeping the input within required limits as shown in the

figure below.

5.5

5 >
';' 4.5
g> 4 -°'g 3.5

~ 3
·;:
"D 2.5
a. 2
E
~ 1.5

e act1v1ty o t e mput sagna

time (sec)

Figure 7.12 The activity of the input signal driving the tank pump for a PID controller

tuned for least input.

The distribution of the signal shows a very tight and centered movement with no tendency to

deviate out of the region of specified design. This is true for both cases when the system is

stepped up and down. The excursion seen when the system is initially stepped should be

ignored in the analysis of the controller performance since the transient performance of any

controller is a function of the process starting modes. Only the response after the application

of the first legitimate step should be considered.

92

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

As in the previous case, it is instructive for one to inspect the statistical distribution of the

input signal movement. The figure below is a histogram showing the·distribution of the input

signal.

Actuator signal distribution
2 0 0

1 8 0

j 1 6 0

1 4 0

~ 1 2 0 0
0 1 0 0

[8 0

l 6 0

4 0

2 0

5 ~ ~
M

"
Sign al Dl•trlbutlon

Figure 7.13 A histogram of the distribution of the control input signal for a PID controller

tuned for least input.

From this distribution the following descriptive statistics were obtained

Table 7.3 Descriptive statistics of the least input tuning criterion

Property Value

Minimum input 1.227

Maximum input 5.071

Mean input 3.122

Standard Deviation 0.283

The least input tuning scheme resulted in disciplined signal levels with the least amount of

deviation from the mean. Although the average condition enforcing a particular average value

in the input was removed from the cost-penalty function, the standard deviation from the

signal mean shows coherence with the overall objective of maintaining a tight control signal.

The excursions made to either end of the signal scale were as a result of t~e application of

steps (both stepping up and stepping down the level) and the resulting initial transient. Unlike

the previous tuning case though, even with sudden changes in the setpoint, the control signal

remained within specified tuning boundaries.

The side effect of the scheme however, was the amount of time the signal takes to reach its

setpoint. This could be acceptable in practice depending upon the urgency of the control

scheme.

Between the two schemes presented so far, there is an element of practical unreality. In

principle, the illustration that the controller can be tuned for either of the control schemes

comes out clearly. In practice however, the situation is not an either-or choice, but rather a

demand that both properties outlined above be inherent in the action of the controller. To this

effect therefore, a controller has to be tuned to achieve both the least error possible within the

design scope whilst being economic on the cost of control action used. This combination was

investigated and is reported below as a case of multi-objective optimisation.

93

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

7.5.3 Tuning objective 3: Tuning the PID for both least error and least input

The scheme to attain both objectives above was tried on this system and applied. Essentially

this is a compromise scheme aiming to tune the controller for least error while at the same

time economising on the usage of the plant input. The objective function for the scheme was

constructed as follows
N 2

P = {%_dev(jjmax(u)jj+%_devjjmin(u)jj}* P+{_!_ L(rk - yk) }*y 7.7
N k=I

Both the deviations from the maximum and minimum input, and the error functions were

interpreted as percentage deviations. The compromise and priority between them is

introduced by the scaling factors ~ and y which are set to values emphasising the deviation

from the concerned penalty contribution. For example, if both ~ and y are set to 1000, then

each contribution would be weighed by that much. If there is an improvement in say, the

error function, then its contribution to the cost function will decrease and hence its

contribution multiplied by the scaling factor. Out of this then, the first term would have more

contribution due to the multiplying scaling factor and the relatively large value of the

deviation compared to the error function[Thithi and Braae, 1996].

The alternative could be the deliberate emphasis of one of the factors of P such that it will

always be the factor which really matters. In such a case then, the tendency is to set either of

the scaling factors above the other depending upon the priority with which the user needs to

tune the controller. For example, if one needs to keep the error as low as possible and to some

extent does not mind a relatively high input, then y would be set to reflect this desired trend.

Typically, the value set higher shows how much more important the factor being controlled

when compared to the other. For example, if y is set to 2000 and ~ set to 1000, then this

could be interpreted as meaning that the input tuning is twice as important as the error

condition.

For the current task of tuning the controller for the two tank system both the values of ~ and y
were set to· be equal at 1000 to put equal emphasis on both conditions. When the trend is

inspected, then it can be seen that the priority changes from one condition to the other as the

tuning process continues

7 .5.3 a) Controller performance for least error and input tuning

As in the previous two cases, the controller designed was analysed for the performance

margins achieved. The genetic tuner produced the following parameters for the controller:

Kp =13.602 [V]/[V]

Ki= 0.171 [s]

~ = 54.526 [s]

Td = 16.526 [s]

The figure below shows the response of the process when stepped from one water level to

another.

94

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

7 .80
Level control of the second tank

E
0 7 .60
~ 7 .40 ..
'D
c 7 .20 m

" :?: "' 7 .00 c
0

--Tank level utpolnt

--T11nk Level Response
c. 6 .80 "' ~
;; 6 .60
>
.!!! 6.40
c
{! 6 .20

!Im e (sec)

Figure 7.14 Level control signals of the second tank showing the setpoint and the response

of the tank level for a PID controller tuned for multi-objective optimisation.

When put in perspective, the performance of this system compared to the two other cases is

better. The only side effect of this tuning strategy which was noticed, was the amount of

overshoot and oscillation which resulted.

The tuning was also successful in keeping the control signal within specified limits of

between 2 and 9 Volts. The trace of control input signal is shown below.

8.00 The activity of the Input elgnel

7.00

~
6.0 0

~ 5 .00

'i

! 4 .00

~ 3.00

ll 2 .00

1.00

0.0 0

tlm e (sec)

Figure 7.15 The activity of the process input signal driving the tank pump for a PID
controller tuned for multi-objective tuning.

When compared to the case when the controller was tuned purely for the reduction of the

input signal of figure 7 .11, a significant difference in the signal trend can be seen in the

above signal diagram as shown in its amplitude distribution.

250

200
g
c e
" 150 8
0

0 ...
~ 100

" [...
50

...
"' "'

Actuator signal distribution

.,

..;

Sign al Distribution

<D ..
.;

Figure 7.16 A histogram of the distribution of the control signal for a PID controller tuned

for multi-objective optimisation.

95

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

From this distribution the following descriptive statistics were obtained:

Table 7.3 Descriptive statistics of the multi-objective tuning criterion

Property Value

Minimum input 2.269

Maximum input 7.149

Mean input 3.252

Standard Deviation 0.509

The process response and input signals have inherent properties which are sole properties of

the two previous tuning criteria:

+ There is a sizable amount of over.shoot in the system, a property present on the least

input tuning criterion. In satisfying the least input condition, the controller achieved

reasonable input as shown in figure 7.15 with constrained movement. Compared to

the input of the least error tuning, the current control signal is more stringent whilst

achieving a comparable tracking.

+ The input utilisation is not as conservative as in the least input criterion, and also not

as severe as in the setpoint tracking case. The speed at which the setpoint is reached

however, is characteristic of the property of least error or setpoint tracking feature

built into the objective function.

The genetic tuner was successful in meeting both the objectives of the design. The

framework outlined in chapter 6 and applied to an example reported in this chapter was

compared to classical engineering thinking for tuning PIDs. The next section highlights the

Cohen-Coon comparative method and its application use.

7.6 Classical control tuning techniques: A case for comparison

The work presented so far has dealt with the proposition and application of the genetic

algorithm as a technique for tuning PID controllers. In this section a comparison between

genetic algorithm tuning and classical tuning techniques is made. The presentation will focus

on the general framework developed for tuning and how it was later laid down solidly in the

work of Ziegler and Nichols(Ziegler-Nichols tuning) and Cohen and Coon(Cohen-Coon

tuning)[Pollard, 1971].

7.6.1 Optimum controller settings from transient response

The critical phase of the implementation of the PI/D algorithms is the selection of numerical

values of the constants of the algorithm[Srnith, 1972]. This difficulty has led to the search for

a systematic way in which the parameters of the PI/D controller could be set for optimal

96

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

control of the process. A tuning framework was developed to serve as a guideline to be used

when selecting the controller parameters. These guidelines are:

i. Approximate the process with a simple model.

11. Select the constants that give the desired behavior when controlling the model.

11i. Apply these settings to the original process.

These were applied to empirical problems studied by Ziegler and Nichols and were presented

in a unified form in the criterion known as the Ziegler-Nichols tuning. The prime aim of this

was to tune the process in such a way that the ratio of the response between successive peaks

is reduced by a quarter every cycle. The tuning however proves to be rather costly in its

utilisation of the control effort, a feature which serves a disadvantage. As a modification of

this, the Cohen-Coon criterion sets the tuning such that the quarter amplitude criterion is

maintained whilst at the same time observing the limits of the process.

These guidelines are usually followed as they are with very little deviations from the norms.

The details of their application will be highlighted in appendix C of this report. The two-tank

model was analysed using this framework and a PID controller was tuned to compare it. with

the results presented so far.

7 .6.2 Two tank PID controller tuning
The figure below shows process reaction curve for the to-tank system. The curve was

analysed as suggested in the classical analytical studies and by figure 7 .17 with the following

tuning information being extracted.

Slope of the curve N = 0.00722 [V]/[sec]

Effective delay L = 50 [sec]

Response deviation: K = .13[V]

_______________________ F _ i_n 11 I v a I u c

~
8.,7.60

i! j 7 .4 0

7.20

ln iii• Iv 1111 e

-i..;,:;.~~~~-=-'-- -
: L

ii
T i m "·

Figure 7 .17 Process reaction curve from the open loop step test of the two-tank plant

model.

This information was used to tune a PID controller according to the guidelines as suggested

by Cohen and Coon strategy. The following controller settings resulted from the tuning table:

KP = 4.052 [V]/[V]

Ki= 7.149 [s]

~ = 10·4 [s]

Tct = 5.91 [s]

97

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

The process was controlled in feedback with these settings as the following process response

was obtained.

B .O 0 Level control of the seeond tank using C oh em ·Coon

7 ,8 0

2: 7 . .6 a
Ji

t 7 .4 0
--Tank flow rate

~ 7 .2 0 --Ten1(ta'spon&e

~ 7 .0 0

§.
s .a o e

] 6 .e o

"' c 6 .4 a
{!

IS .2 0

~. 0 0
Q

tlm u (11ec}

Figure 7.18 Process response after tuning using the Cohen-Coon suggested settings.

The process response has a reasonable character which approximates the ideal Cohen-Coon

objective of a 4:1 response pattern between successive peaks. The achievement of this task

was accompanied by a modest movement of the actuating signal as shown below. This case

compares better than the Ziegler-Nichols tuning which in spite of attaining the correct and

appropriate tuning does so with an unreasonable amount of control actuation. The transients

of the input shown below are however much more active and the settling is not speedy.

Pump slg n a Imo ve men t

6 • o a

s . 0 0

E
[4 .o 0

5 .
~ 3 . a o

£
2 .o 0

1 'Q. 0

0. 0 0

tlma(aet)

Figure 7 .19 Process input movement for the Cohen-Coon settings.

As was the case with the genetically tuned controller, the Cohen-Coon was analysed using

the same framework to maintain consistency and draw coherent conclusions. The distribution

of the movement of the actuating signal is shown below.

12 0 Actuator signal distribution

" 100
u

" !
80 ;; ..

u
0

80 0 ,..
u

" 40 " ::r .,.
~ 20

0

11
Signal Distribution

Figure 7 .20 A histogram showing the distribution of the control signal for the case of a

Cohen-Coon tuned PID controller.

98

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

From this distribution the following descriptive statistics were obtained:

Table 7.4 Descriptive statistics of the Cohen-Coon guided tuning

Property Value

Minimum input 1.308

Maximum input 6.300

Mean input 3.079

Standard deviation 0.751

The result in the actuating signal is consistent with the consideration given in the Cohen­

Coon strategy. It can be seen that the dynamics of the response decay at more or less the

expected ratio, 4: 1.

The next section will present a comparison of all the techniques used in this work as a

summary and highlight significant differences between them. This will compare the strategies

of tuning controllers using GAs only and also as a comparison between the GA based

strategies and the classical techniques.

7. 7 Summary and highlights of the chapter

The foregoing analyses of this chapter and chapter 6 highlighted a remarkable and powerful

use of genetic algorithms. The following highlights could be noted:

+ The genetic algorithm as a controller tuning technique afforded the user the ability to

define and articulate a desired response in the time domain as a set of limits that the

process has to obey. The careful choice of pole positions that the algorithm makes is

such that these boundary limits are obeyed. Stability is inherent in the tuning and if

not, its can be explicitly built into it.

+ The constraints specified, when mathematically interpreted, resulted in very non­

linear and mostly discontinuous behaviors in the cost function which had to be

optimised. Because the genetic algorithm functions independently of the surface that

is to be optimised, these ill-conditions did not prove to be deterrents in the way of the

algorithm. This is indeed a major benefit the algorithm enjoys above all the other

methods and the prime one which makes it stand out.

+ The composition of multi-objectives was equally simple and mostly added to the non­

linearity nature of the problem. There are two major features that can be built into the

multi-objective optimisation tuning:

99

Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System

• Prioritisation ·

Depending on the settings of the scalar multiplying factors in the objective

functions which are linear combinations of others, tuning priorities of tuning could

be set. Those conditions which are to receive higher tuning priorities are weighed

so that they contribute more to the cost function which has to be minimised. The

algorithm in minimising this function therefore, will almost be seeing only the

heavier function contributing to the overall cost. When reduced sufficiently, the

cost function will start bringing other factors into play and thus deal with them.

When setting these priorities though, care should be taken that the comparative

effect of the components making up the cost function remains sensible.

Conservative emphasis factors would determine the importance of parameters as

ratios, say, one parameter is three times as important as the other, or twice as

important, and so on. Scaling factors are thus set to reflect this thinking. It makes

no sense to say one parameter will be scaled by a factor of a thousand whilst the

other remains within the units. There might not be sufficient processing carried out

on the former to ensure that it is brought to with the other one.

• Free running (non-prioritisation)
In this mode all the components of the cost function are set to have the same

priority, this being reflected in making the scaling factors of the penalty functions

to be equal. In this mode emphasis changes from one parameter to the next as

improvements are made on the others. As soon as sufficient progress is made in

controlling one feature of the response, the penalty function reflecting this will

then contribute less to the overall cost function and hence make room for other

parameters to be dealt with.

The Cohen-Coon tuning strategy also produced results which are acceptable compared to the

Ziegler-Nichols techniques, another method considered. This strategy is a recipe based

method reflecting the thinking of fu:ed-parameter methodologies outlined in chapter 6. It

follows a pattern of events, with the model used being based on the assumption that the

process will have a form of a model with first order dynamics and a dead time. This approach

could be troublesome in cases where the model is far removed from this assumption as in the

cases of second order systems with high oscillation frequencies. The method being what it is,

come nowhere near allowing the user to specify other desired properties of the system since

by its very specification and tuning limits one to a specified set of performance limits.

In the next chapter, the problems encountered with tuning the genetic algorithm as was

highlighted in chapters 2 and 3 will be explored further. A method aiming at abstracting away

the role of crossover whilst maintaining the statistics inherent in the GA will be presented.

Both the development and the utilisation of this technique will be shown.

100

Chapter 8
Removing Genetics from GAs: The PBIL

8.1 Introduction

In chapter 2 of this report the genetic algorithm was presented and it was shown how its

individual components are assembled to constitute the final working model. In chapter 3 the

algorithm was probed in detail to determined how it processes solutions and hence what

makes it effective.

The ideal situation in the treatment of problems with a GA, is to assume that the algorithm is

a black box as in figure 2.1 of chapter 2, where the dials are to be set to process the problem.

The algorithm defines the objective function f which is to be optimised through a proper

choice of parameters and the genetic machine is set in motion. What has become an

inescapable fact though, is the detail and amount of thought the algorithm user has to put in

tuning it for optimal functioning. The algorithm, as was shown in chapter 2, is multivariable

in nature and the user has to wonder around a maze of seemingly arbitrary choices deciding

which types of operators to use and in what proportions. A modest tuning tree for a simple

canonical GA is shown in figure 8.1 below. The search for nodal elements of this tree does

not become any easier even after a commitment to a particular type of a GA[Greene, 1996].

Genetic Algorithm

Rate? Rate? Rate?

Figure 8.1: Decision tree for running a typical genetic algorithm

Bad decisions about the settings of any of the components, or the combinatorial effect

thereof, can result in an otherwise solvable problem stumbling over local optima and

eventually stagnating. There is a rather sad fact about . the GA: There exist no

guidelines(theoretical or empirical) as to how the algorithm ought to be tuned.

There have been attempts to create guidelines for tuning the GA, although most of the efforts

Chapter 8 Removing Genetics from Genetic Algorithms: The PEIL

have fallen short of the target. Grefenstette has attempted to detennine optimal settings for a

"general GA" by optimising a problem solving GA with a supervisory algorithm responsible

for setting the parameters of the slave GA. As Grefenstette notes, his work had a few short

comings which resulted in the failure of his experiments[Grefenstette, 1984]:

+ First, it was necessary for him to choose a particular parameterised subclass of GAs to

explore. He neglected other recombination operators such as multi-point crossover

and other strategies used within a standard GA.

+ Secondly, the genetic algorithms he considered were somewhat unconstrained

optimisation problems.

+ For multi-level GA, where Grefenstette used one GA to supervise the settings of

another, he found the time taken to be just 'ridiculous', taking sizable CPU hours to

complete rather trivial tasks.

• Where there was some promise in the system running, settings tended to be very

depended on the problem that was being solved. It thus became difficult to have GA

settings which could be universal for all the problems.

With this seeming lack of guidance, the user is left to use intuition as to how the algorithm

control parameters have to be set. To worsen matters, this intuition is often a function of

familiarity with the problem and an intimate knowledge of the problem. A question to be

posed thus is: "Why should the burden of setting the parameters of the algorithm have

to lie with the user?" This question is in the light of the following two reasons:

i) The literature portrayal of the algorithm presents it as universal method able to solve a

range of problems with ease. Although this is true to some extent within the

framework of problems being solved, the literature often does not mention the

subtleties which the algorithm tuning could introduce in the solution process.

ii) The algorithm is often used as a last resort where established classical methods fail.

The requirement that the user still has to set the algorithm appropriately is likely to

clutter the issues which the user will see as prime: solution of the problem and not

the struggle with the algorithm.

To get around the algorithm tuning issue, Baluja investigated the detail of the working of the

GA and suggested that the entire process depends more on the statistics inherent in the

algorithm rather than the role of crossover as experience would suggest[Baluja, 1994].

Using this view, Baluja proceeded to develop a modified stochastic search method

abstracting away the need for crossover and mutation whilst retaining the statistical

properties of a conventional GA. The algorithm was dubbed the Population Based

Incremental Learning (PBIL) and has since its introduction been used with a comparable

102

Chapter 8 Removing Genetics from Genetic Algorithms: The PEIL

degree of success to conventional GAs[Thithi, 1996]. The essence of the algorithm is

presented in the following section.

8.2 The Population Based Incremental Learning (PBIL)
The population based incremental learning (PBIL) is a combination of evolutionary

optimisation and hill-climbing[Baluja, 1994]. The object of the algorithm, is to create a real

valued probability vector which, when sampled, reveals regions of high evaluation solutions

with high probability. This algorithm exploits the statistical properties of a GA whist

relieving the designer of the tuning overhead imposed by GAs as shown in figure 8.1 [Thithi,

1996].

8.2.1 The algorithm

Suppose an extremum point of a scalar function cp(x) is to be found in a domain x e [Xmin.

XmmJ. Using the genetic background, the domain is encoded as a binary string of length l

where l is a string length of the chromosome for x;. A real valued vector P(t) is created and

all its entries are initialised to 0.5. The vector is made to be same length as the chromosome

length /. Sampling of this vector yields random solution vectors because the probability of

generation either a 0 or 1 is equal. As the search progresses, the probability vector P(t)

gradually shifts to represent high evaluation solution vectors.

A sample population /(t) is generated using P(t). Each bit in the population will be generated

using the probability corresponding to the entry in the corresponding real valued vector. For

statistical confidence reasons and avoiding local extrema, the population is generated to be as

large as can be allowed by computational resources. As an example, an 8 bit probability

vector corresponding to a population containing members which are 8 bits in length, may

generate an ith member of I to be

P(t) = { 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5}

~

0 0 1 0 0 1 l}

where each j1h entry of Ii(t) is generated with the probability corresponding to the j1h entry of

P(t). The rest of the population is generated using the same vector P(t).

Each possible entry in the population I will then be decoded and evaluated against an

evaluation function that is the optimised.

Suppose that the population evaluates as follows:

I'(<)= 1:
I 0 0 0 0 r(x)
0 1 0 0 0 fP2(X) 8.1

0 0 0 = <p .3. ~ ~)
0 0 0 0 0 <p.(x)

For this example, suppose further that the solution giving the best evaluation results from the

103

Chapter8 Removing Genetics from Genetic Algorithms: The PEIL

parameters of the third entry string,

i.e. Best = B = { 1 1 1 0 1 0 1 0} = { <p3(x)}

then the probability vector P will be adjusted so that the trial vectors created in the next

generation 11 will more closely resemblet the best trial solution in generation 0. This biasing

of the probability vector is done using the following probabilistic claim which the algorithm

makes(about this specific example).

Claim 8.1: The Basis of a PBIL

Given tha.t { J J J 0 1 0 1 0} results is the best solution of the function extremum when decoded,

then there exist a high probability that the final solution will have a '1' in the first bit position, a

'l' in the second, .. a 'O' in the fourth, etc.

The generating probability vector is then updated to encourage this trend.

Updating the probability vector P(t)

The updating of the probability vector is carried out in such a way that the regeneration of the

population members having similar Hamming trends as the previously best solution is

encouraged. To achieve this, Baluja defined a. few control parameters with which the

probability vector has to be adjusted by.

The learning rate:
The learning rate is defined as the amount by which the probability vector should be

perturbed to move it towards either 1 or 0. Suppose we defi,ne the learning rate of the

algorithm to be ~. then each entry in the probability vector is perturbed by the amount Learn

= ~ as will be defined shortly. The probability vector at step 1 will be updated according to

the following simplified scheme

P1(t) = { 0.5+~(1-P(t)), 0.5+~(1-P(t)), , 0.5-~(1-P(t)) }

where the first step has been chosen deliberately to illustrate the updating scheme. In general

though, the updating of the probability vector will be done according to this C++ pseudo­

code scheme

for (i = O; i < L; i++){

P[i] f- P[i] (1-~) + B[i] * ~

where

Bis the bit string vector which resulted in the best evaluation function cp(x)

~ is the learning rate as defined by the user

i is the running index picking specific bit positions in the vectors and L is the length of the

probability vector.

The learning rule has a simple geometrical interpretation: If P[i] is assumed to be the best

t The resemblance referred to here is in the sense of the Hamming distances between two binary string

104

ChapterB Removing Genetics from Genetic Algorithms: The PEIL

solution vector at an instant, then its updating according to P[i] f- P[i] (1-~) + B[i] * ~. can

be translated into a different format with a different symbol. Writing P[i] as a vector w and

B[i] as a vector a, then this transformation could be written as w f- w +~(a - w) by a simple

algebraic manipulation. This means that the resulting vector being the combination of the two

vectors wand a should lie on a straight line connecting points wand a[Kvasnicka et al].

Figure 8.2 Geometrical interpretation of the learni~g rule and the updating of the probability

vector. The vector w' lies inside the region on the straight line determined by a and w.

The movement of this probability vector thus launches along a straight line which, hopefully,

will probabilistically carry it to the optimal solution. It should be evident from the illustration

above that the learning rate will determine the rate of appreciation or depreciation of each of

the entries of the probability vector. A large value of the learning rate ~ will result in

accelerated convergence towards either 1 or 0. A small rate on the other hand will result in

delayed convergence. Both these extremes are undesirable and can cause problems where the

algorithm will stall at local extrema of the function being evaluated. This topic will be

discussed further in the next section.

Mutation or Forgetting Factor

In its basic form, the PBIL occasionally shows the tendency to converge prematurely to local

extrema of functions. The probability vector is likely to launch and proceed in the direction

of the initial trial solution found. It was experienced with trial examples running the PBIL,

that this trend is indeed true, although no formal proof exist to substantiate the observation.
'

The vector of the learning rate will progress in the direction determined by the first best

solution. The plots of convergence of the generation probability vector will be shown to

illustrate the concept.

To overcome this, Baluja proposed a "mutation" of the probability vector P which will

randomly alter the state of each entries with a pre-defined probability. According to Greene,

it is not dear whether this is the most appropriate way of characterising this

operation[Greene, 1996]. In the genetic algorithm, mutation performs a clear cut role of

toggling the state of each bit with a pre-defined probability. In a PBIL however, this cannot

occur since the probability vector is real valued. What is needed though, is a mechanism to

prevent the pressure to drift towards either 0 or 1 too fast and the probability vector taking a

105

Chapter8 Removing Genetics from Genetic Algorithms: The PBIL

monotonic single direction towards the best solution.

Greene proposes in the way Baluja does, but renaming the operation, the use of a

deterministic forgetting factor. After each update of P, each element is moved a small

amount y back towards 0.5

P[i] f- P[i] - y(P[i] - 0.5)

It should be noted that the updating of the probability vector is done with a "floor" and

"ceiling" functions in mind. These tend to bound the probability vector on either side of 0.5

so that probabilities greater than 1 and less than 0 are never generated. The application of this

forgetting factor is done with a relatively high+ probability to sway the otherwise runaway

probability vector to looking in other directions.

For statistical confidence reasons, the PBIL is often iterated a number of times to get a

consensus on the solution generated in each trial. When implemented, the algorithm has to be

provided with the following information to proceed:

t The number of trials per iteration, N.

t The learning rate, ~-

• The deterministic forgetting factor y.

The designer hence does not have to bear the full burden of setting the algorithm's

parameters as is the case with the genetic algorithm. The full conceptual algorithm is shown

next and later its application to the problem of system identification is reported.

The algorithm can be described conceptually as shown in the following illustration.

*Relative here refers to a comparison with the application of mutation in genetic algorithms which is done with a
probability of less than 1 %

106

Chapters Removing Genetics from Genetic Algorithms: The PBIL

t := 0
set the learning rate LR = ~
set the forgetting factor = "{

initialise the probability generating vector:
P(O) = { ai(O), a2(0), av} where a; = (0.5}

initialise the population samples
1(0) = {ai(O), ai(O), an(O)}

where alO) denotes the /h segment of an individual in the population /. I itself will be made of
binary alphabets I= { 1,0]1 where l is the length of the string i-

qJIO(X)

qJ20(x)

evaluate the initial population: <l>(O) = qJ30 (x)

Update the generating probability vector:
for(i = O; i < l; i++)

P(t+l) = P(t)(l-~) + B[i](t)*~
where B[i] is the best vector from the evaluation function.

do{
regenerate population samples:

/(t) = {ai(t), ai(t), an(t)}

qJ11(x)

qJ21 (x)

evaluate<l>(t) = qJ 31 (x)

qJnt (x)

update the generating probability vector:
for(i = O; i < l; i++)

P(t+l) = P(t)(l-~) + B[i](t)*~;
Apply the small deterministic forgetting factor
P[i] = P[i] - y(P[i] - 0.5);

} while (not done)
mutation direction determines whether the direction is up or down, in which case it becomes
either 1 or 0.

Conceptual algorithm for the population based incremental learning

The population based incremental learning has been applied to bench-mark test functions

designed to be GA friendly. Greene reports that according to his verification, the PBIL

consistently outperforms a standard simple canonical GA Kvasnicka et al and Baluja have

undertaken detailed work to establish the trends in the processing of the PBIL. The work is

fairly new, having been proposed in the later part of 1994 and reported formally for the first

time in September 1995. There has not been much response from the GA community about

107

Chapter8 Removing Genetics from Genetic Algorithms: The PBIL

the prospects and the challenge made by the PBIL to the GA.

Although the current reports show a hopeful picture about the application of a PBIL to a host

of benchmark problems, it was decided in this thesis work to apply it to practical problems

already tackled using a genetic algorithm. The results obtained were indeed promising and

the PBIL did outperform the GA in some respects[Thithi, 1996]. A short example will be

presented to show how a PBIL was used in the task of system identification for the servo

motor of chapter 5. The experimentation will not be repeated as it has already been reported

in chapter 5.

8.3 An application example: Systems parameter identification.

The algorithm described above was applied to the servo motor system described in chapter 5.

The motor model was of the form

K
g(s) = 1 + sTm

with the parameters Kand Tm were to be identified. The PBIL was set with the following

parameters and allowed to run for 100 trials.

Population size 60
Learning rate 0.1
Forgetting factor 0.05

The convergence of the algorithm was less than satisfactory in genetic algorithm standards.

Although the algorithm did find the parameters of the motor, it did so after numerous trials

with exhaustive changes being made to get a feel for the learning rate and the forgetting

factor. The following parameters of the motor were found by the algorithm:

K = 1.081
Tm= 0.628

These parameters compare well with those found using the genetic algorithm in chapter 5

where they were as follows:

Gain K: 1.103

Time constant Tm: 0.614

The differences between the two could be attributed to experimental and computational

errors. Also the methods are different in their backgrounds.

The convergence pattern of the individual entries of the probability vector outlines the bit

pattern of the best string the algorithm found. Figure 8.3 shows the convergence pattern of

the probability vector as the algorithm progressed through the search. The movement towards

the upper pole indicates the confirmation that there is a '1' at an entry and the movement

towards the lower pole confirms a 'O' at an entry.

108

Chapter8 Removing Genetics from Genetic Algorithms: The PBIL

1 . 2 0

1 . 0 0

0 . 8 0

0 . 6 0

0 . 4 0

0 . 2 0

0 . 0 0

- 0 . 2 0

Figure 8.3 Traces of the convergence characteristics of the probability vector showing the

bounds both below and above the starting probability 0.5

The above traces of each of the entries of the probability vector are indicative of the high

learning rate set. For cases where the learning rate is set low, the curves are less steep at the

beginning. All the values of the probability vector are bounded above and below so that they

do not exceed the probability of 1.0 and do not depreciate below 0.0. What is to be noted on

the plot is the peculiar movement of some of the entries of the probability vector. They

appear to start going in the opposite direction to the one they eventually take. Some of these

are highlighted with ellipses on the plot. This behavior is characteristic of the use of the

concepts of the forgetting factor.

8.4 Chapter summary and conclusions

This chapter presented an abstraction of the genetic algorithm that aimed at exploiting the

statistical properties of the algorithm whilst ridding it of the crossover and mutation

operators. The algorithm is fairly new and has been applied with comparable success to

problems which. were designed to be GA friendly and in most cases outperforms even the

best of the tuned genetic algorithms. For the purpose of this thesis, the algorithm was applied

to a problem of system identification and although it did not perform as well as the genetic

algorithm, it offered some relief to the user with relatively little loss in performance:

+ It is has been the author's experience that even with the simple two variable problem

that was to be identified, a number of trials were to be taken to decide on the relative

values that were to be set for the learning rate. This however compares better with the

task of deciding the entire decision tree of figure 8 .1.

+ Without the application of the forgetting factor, the algorithm is almost disastrous

with the probability vector launching in one direction in space and continuing to do so

for the rest of the search. The use of the forgetting factor is therefore imperative to

make sure that the trend is curbed.

109

Chapter8 Removing Genetics from Genetic Algorithms: The PBIL

+ The only two real comparisons which could be made between the GA and the PBIL

are based on simplicity of the latter and the time taken to process the solutions being

evolved:

• The algorithm performed much better in terms of the time taken to reach the

solution when the optimal setting for this problem was established. This is

consistent with the report by Thithi that the algorithm performed in fractions of

time compared to the GA when run of the same computer systems[Thithi,

1996].

• It is much simpler to set up compared to the conventional genetic algorithm,

allowing the user to focus on the problem to be solved rather than the

peculiarities of the algorithm.

+ Although not reported in this work for the reasons of avoiding repetition, the PBIL

was also applied successfully to the problem of PID controller tuning and the results

were comparable to those from the genetic algorithm.

A rather disconcerting factor creeping into the PBIL however, is the already proposed

measures to improve its performance, dragging it to the same league of problems as the GA.

The updating of the probability vector from the best individual at times does not offer the

best performance in terms of the convergence towards a globally optimal solution. Baluja

argues that the updating should be done in such a way that the population is not only pushed

towards the best member of the population, but also away from the worst member[Baluja,

1995]. This however, he found, worked well at the beginning of the run, but as the population

converged, the average Hamming distance between the members of the population decreased

and thus the practice did not offer any significant advantages.

The PBIL however, as young as it is, relieves the user of the burden of setting the parameters

related to the optimal functioning of the genetic algorithm. The user can focus entirely on the

problem that really matters and does not have to battle with optimising the algorithm first,

and then his/her problem. Although this is so, with all the relative advantages outlined, there

continues to be a disturbing silence from the greater GA community[Greene, 1996].

110

Chapter 9
Conclusions
-i:m.111;:;::,IOOllif~ESiiiE.Mt~1~~-:ii!ICZ!l:!!RllDT&ll1Jllf:t~JiM:*i'.1R.Ull!l{ .. ~.:M:i:lf'~,

In this thesis, work was carried out to investigate possible applications of genetic algorithms to

control engineering problems. On the basis of the information contained in this report and the

readings made by the author the following conclusions are made.

Genetic algorithms and other simulated evolution techniques carry a lot of promise as tools for

engineering design and optimisation. In these biologically inspired algorithms, and in particular the

genetic algorithm, there are two broad categories in which most of the research work falls in:

+ Application oriented research
In this category of work the interest shown by the users of the GA is often in the diversity of

problems to which it can be applied. In particular, it is emphasised that irrespective of the

origin of the problem being tackled, it can be formulated and squeezed into a framework

which will be solvable by the algorithm. Problems formulated and cast into the genetic

framework come from as diverse fields as engineering, economics, finance, planning,

etc[Holland, 1975). As an observation, the author noted that publications in this line of work

present very little information that is new about the algorithm and tend to get involved in the

peculiarities of the problem and how they were solved.

+ Algorithm oriented research.

There hasn't been much work done in the direction of the algorithm. Most of the recent

presentations made tend to be fixes in the fundamental canonical GA. The works of

Greffenstete, Yao, Androulakis are good examples of the amount of effort which gets

devoted to fixing aspects of the method which are considered to be prime culprits in the

failure of the algorithm when performing optimisations.

The investigation reported in this thesis attempted to be an embodiment of both these aspects of the

algorithm by applying it to problems in control engineering and investigating how the algorithm

would cope. Two areas of control engineering work were chosen as examples to be studied under

the GA regime:

+ Systems parameter identification.

Essentially, this area of work investigated the search characteristic of the algorithm.

The search was usually organised such that an objective determining its goodness was to

be satisfied. Domains of parameters were often knowledge based, this being acquired

Chapter 9 Conclusions

through trial runs. The algorithm however imposed no limits on the size and range of the

search space of the parameters.

+ Controller Tuning
In this work the main aspect of the algorithm to be investigated was its optimisation

technique. A framework was defined in chapter 5 for which a controller was to be

designed to fit. In general, work carried out in this area was of multi-objective

optimisation nature. Experiments reported in chapter 7 illustrated the diversity of

objectives which could be built into the algorithm as more demands are made about the

process performance. This flexibility highlighted the strength of the algorithm in coping

with conditions which change without notice.

Both areas of control engineering investigated compared the GA to established classical control

methods. In the case of system parameters identification, the algorithm's performance was

compared to the Recursive Least Square (RLS) and focused particularly on the issues of accuracy

and noise handling (estimator bias) characteristics. In the controller tuning, the framework

developed in chapter 6 was compared with the Ziegler-Nichols I Cohen-Coon tuning techniques.

Conclusions made on both these subjects will be presented next.

Conclusions on systems identification
The genetic algorithm performed well in the problems it was applied to for system identific:ation.

When put in perspective, the problems were designed to be simple enough to highlight issues which

the author thought really matter: considerations of the accuracy of the estimated solutions and the

noise handling capability when compared to the recursive least squares. The algorithm was applied

to problems of higher dimensions in identification but it was found that problems relating to the

settings of the algorithm hampered the search due to settings which were found not to be the

optimal ones. This is indeed a disadvantage of the system. For many genes constituting the

chromosome, the bit strings length increases linearly. For the creation of the sufficient pool of

chromosome to tackle the problem of extra parameters, the population size has to grow by the same

order as the growth of the string length as was presented in chapter 3. This is however impractical

in many respects due to the disadvantages introduced by large population sizes.

When considering the cost benefit of using the GA as a system identification tool, it soon become

evident that it is no better candidate than the recursive least squares:

+ Although the speed of convergence was not brought into the discussion much, there simply

is no contest between the genetic algorithm and the recursive least squares. The RLS takes

orders of milliseconds to converge to the parameters being estimated compared to the orders

of minutes to hours experienced using a simple genetic algorithm.

+ Although its performance will be adequate and allows one to carry out identification in the

continuous domain for simple cases, as the dimension of the parameters to be identified is

increased, so do the problems of tuning the algorithm. This situation to some extent defeats

112

Cha ter 9 Conclusions

the purpose of the use of the algorithm. The GA is meant to be used in situations. where

conventional engineering methods fail to perform. If it incurs the steep penalty of setting the

parameters, it becomes too difficult to use. With unlimited amounts of time, the algorithm

can be run iteratively and a statistical result taken as the average of the results.

+ The noise handling capability of the genetic model was good in that:

* With increasing levels of noise being injected into the GA estimating system, the

model parameters showed a high degree of resistance towards it. Although changes

were there, they did not seem to be directly related to the noise content. Logically, one

would expect a gross deterioration in the estimated parameters as the noise 1s

increased, as was most visible with the RLS.

What was noted with interest however, was the movement of the performance index

function, chosen to be a simple error square function. This although not directly

interfaced to the noise signal, as was shown with the chain rules, reflected more visibly

the effect of noise.

Since both the GA and the RLS were deliberately made to use the same objective, the

Gaussian least squares, the question posed would therefore be: "Can the GA be truly

and totally credited with good performance in the presence of noise, or is it just a case

of the choice of the cost function?"

* The GA can attribute its resistance to the parameter change in noise to its structure. In

the presentation on the RLS, different formulations of the Gaussian error were

presented. Although two of them, the forward difference model and the backward

difference methods were disqualified due to the non-linearity in parameters, it was

mentioned that in the literature they are known to perform better in the presence of

noise [Astrom and Wittenmark, 1987]. The genetic algorithm was used in a forward

difference mode therefore gained a competitive advantage over the RLS in this regard.

Because the algorithm processing does not depend on the structure of the solution

space of the problem, the non-linearity of the parameters, if it exist, does not act as a

hindrance as is the case in the RLS.

In summary therefore, the prime advantage the GA holds over the RLS is the arrangement of its

topology which allows it to take advantage of the best noise handling tactics and its non-reliance on

the problems making non-linearity and discontinuities not a problem. The time factor however

proves the RLS a real winner in processing speed. There is no sufficient evidence to claim that for

simple pathological problems solved, the GA would perform better than the RLS. Despite having all

the advantages in terms of its topological settings, the results still deliver somewhat sub-optimal

expectations.

113

Chapter 9 Conclusions

Conclusions of controller tuning.
In this section, the algorithm proved to be worth the trouble of setting it up. Compared to the

classical methods such as the Ziegler-Nichols tuning criterion and the Cohen-Coon, the algorithm

allowed the specification of the desired response of the process as a framework of limits which the

controller was then tuned to obey. It was thus possible to articulate the desired response graphically

and then tune the controller to realise such a desired behavior.

The framework described in this thesis, showed that when interpreted mathematically, the cost

functions become non-linear, discontinuous functions which could not be handled with simple

linear theory. This however did not deter the genetic algorithm from finding the solutions and

design controllers that would force responses and the output to fit the limits. In most cases also, the

specification of the control systems performance and the control effort are not mutually exclusive

occurrences. Good performance is usually proportional to the amount of effort taken to achieve it. It

was shown in cases where the controller was tuned for least error, a condition amounting to the

fastest response possible, that the system incurred a stiff penalty in its utilisation of the input.

Nothing stops one though from including into the cost function the measure to curb such

occurrences. The case of multi-objective tuning, a condition attained through simple linear

combination of the cost functions, is a good example of this. It can be chosen to construct this

optimisation such that it prioritises the tuning order or that it runs freely. In the first case, the cost

function is set such that those tuning conditions which are of high priority are dealt with first. The

weighting values determine the bias towards such considerations. In the case of free running the

algorithm deals with the user's requirements on an equal level. As one parameter attribute

improves, focus shifts to others which might not have been dealt with before.

The ability of the GA to deal with the description of the process response in the time domain and

tune a Pl/D controller to realise the demanded response puts it in the league of its own. In

particular, the ability to add more requirements as the algorithm processes, is a big advantage.

Classically no method, has been able to perform such an explicit relation between the process

response and the parameters of a controller. The Cohen-Coon and the Ziegler-Nichols are no match

for this tuning.

The previous concluding remarks focused on the application oriented issues of the algorithm.

Although it has been shown that the performance of the algorithm is comparable to that of classical

methods, there are two concerns about its use:

• Firstly, when should a genetic algorithm be used at all?

• The setting of the algorithm parameters when a decision to use has been taken.

There seems to be an agreement that the GA should be used only as a last resort strategy to problem

solving[Beasley et al, 1993). The advice given by Beasley et al is that where a dedicated

optimisation method exists to solve the problem, then it should be used as a first choice method ..

114

Cha ter 9 Conclusions

Care should be taken not to abuse the universality of the GA by recasting every problem into a

framework a GA could handle where dedicated methods exist.

The second concern is about the tuning and setting up of the genetic algorithm. This becomes more

pronounced when one looks at a genetic algorithm and compares it to its abstraction, the Population

Based Incremental Leaming(PBIL). There is no doubt that there is steep learning curve which the

user is subjected to when tuning the algorithm. The figure below, repeated from chapter 8, shows a

tree of information to be filled when setting parameters of the algorithm.

Rate? Rate? Rate?

Figure 10.1 Genetic tuning tree for a simple classical GA

The goodness and eventually the success of the search or optimisation, depends to a large extent on

the settings chosen by the user. Matters are made worse by the fact that not only do individual

settings have an effect on the system, but also their combinatorial effect. Hence, even if crossover is

set appropriately, the selection type could lead to the process stagnating early depending on the

selection pressure it induces. In general, the tuning of the algorithm itself could be summarised by

the following equation:

GA= f(C_type, C_rate, M_rate, S_type, S_yress, P _size, Elitism, G_Gap)

where C_type is the crossover type employed

C_rate is the crossover rate used

M_rate is the mutation rate

S_type is the selection type

S_press is the selection pressure

P _size is the population size

Elitism determines where elitism will be used or not

G_Gap determines the generation gap when elitism is used.

· Each of the components of this function were discussed in chapter 3 on advanced genetic algorithm

and the effect of each on the search was shown. It could be argued that the algorithm should be

viewed as a black box and intuition be used to set the parameters. Although this could be the case

for experienced users, it is however not at all practical for beginner users. There are no exact ad hoc

115

Cha ter 9 Conclusions

theoretical guidelines about the settings which have to be made for an algorithm to converge

satisfactorily.

Greffenstete has attempted to do an optimisation of the genetic algorithm parameters using another

genetic algorithm. His work had short comings related mostly to the problem that the GA was to

solve. Although not a predominant factor, there is a degree of coupling relating the problem to be

solved to settings of the algorithm. The authors own experience in this regard is with the settings of

the sampling rates of processes. Through an accidental error, one of the experiments the sampling

rate in one of the systems identification experiments was set incorrectly. The algorithm was

however manipulated in such a way that the results produced although not correct were within a

reasonable range of the expected true result. When the sampling was finally set correctly, the true

results were obtained.

Thus, because of the lack of well defined guides about the settings of the algorithm, the user is

forced to have to work the settings out himself. The query which one could have thus is: "Why

should the burden of setting the algorithm, which is supposed to be a black box, lie with the

user?" Most times the problem to be solved is in itself enough challenge and the GA is usually

used as a last resort. If it presents problems outlined above, it can only add to the users problems.

Although this is so, the genetic algorithm still remains one of the most promising biologically

inspired stochastic optimisation methods. Its use should thus be placed in the perspective of the

gains and losses which a potential user can derive from it.

Whether or not one chooses to use a GA for systems identification or controller tuning , should be a

decision based on the cost-benefit analysis of all the advantages and disadvantages outlined. Also to

be taken seriously is the opportunity cost of using such an approach, that is, the user should ask:

"What functionality of the alternative method will I loose should I opt for a GA?". With all the

decisions being made, it should be kept in mind that the abuse of the algorithm should not be

encouraged. Where adequate, dedicated classical methods exist for problem solving, they should be

used as a first preference.

GAs may live up to the expectation or they may be another passing fashion parade. Whatever the

case, there is no denying that there is a lot of power to be harnessed from them.

"Through these thorny questions slow our pace, and knotty problems cause us pause, our journey is at no

impasse. With settlements of proven ideas upon which we may fall back, and outposts of natural notions

from which to push forward, we may venture ahead, clearing the path with a machete of mathematics and a

scythe of computer simulation. And as we stand at this GA frontier, looking out over myriad opportunities

and tasks, we stand tall with the knowledge of what natural genetics has already created, with the

confidence of what we have already found, and eager expectation of what we are about to discover"

[Edward Goldberg, 1989].

116

Reference Appendix
1:·:~r:tr':'~il~::•:~~~-~·····~·m:Msfai¥L!?&fami¥E~i1Mt!M"#Wl!J'.:'.::1¥''W'"•'.Er~':l1Jwlf!'!llBEB'i8

Androulakis et al
(1991)

Astrom and
Wittenmark(1987)

Back

Back (1992)

Baluja (1994)

Baluja (1995)

Baluja and
Caruana(1995)

Beasley et al (1993a)

Beasley et al (1993b)

Beasley et al (1993c)

Androulakis, LP, Venkatasubramanian, V, A Genetic Algorithm
Framework for Process Design and Optimization. Computers in
Chemical Engineering, Volume 15, No 4, 1991.

Astrom, K.J, Wittenmark, B, Computer Controlled Systems, Addison­
Wesley, 1987.

Back, T, Optimal Mutation Rates in Genetic Search. Technical Report,
University of Dortmund.

Back, T, The Interaction of Mutation rate, Selection and Self Adaptation
Within a Genetic Algorithm. In R Manner and B Manderick, editors,
Parallel Problem Solving from Nature 2, pages 85-94. Elsevier, 1992.

Baluja, S, Population Based Incremental Learning: A Method for
Integrating Genetic Search Based function Optimization and
Competitive Learning. Technical Report, School of Computer Science,
Carnegie Mellon University, Pittsburgh, CMU-CS-94-193.

Baluja, S, An Empirical Comparison of Seven Iterative and Evolutionary
Optimization Heuristics. Technical Report, Carnegie Melon University,
1995. '"

Baluja, S, Caruana, R, Removing Genetics from the standard Genetic
Algorithm. Technical Report, School of Computer Science, Carnegie
Mellon University, Pittsburgh, CMU-CS-95-141.

Beasley, D, Bull, D.R and Martin, R.R, An Overview of Genetic
Algorithms: Part 1, Fundamentals, Technical Report, Department of
Computer Science, The University of Wales, the College of Cardiff,
1993.

Beasley, D, Bull, D.R and Martin, R.R, An Overview of Genetic
Algorithms: Part 2, Research Topics, Technical Report, Department of
Computer Science, The University of Wales, the College of Cardiff,
1993.

Beasley, D, Bull, D.R and Martin, R.R, A Sequential Niche technique for
Multimodal Function Optimization. Evolutionary Computation, Volume
1, No. 2, MIT Press, 1993.

117

Belding (1995)

Braae (1994)

, De Jong (1980)

De Jong (1988)

Dorigo and Bertoni
(1993)

Dumont and
Kristinsson (1992)

Filho et al (1995)

Fraleigh and
Beauregard(1990)

Goldberg (1985)

Goldberg (1989a)

Goldberg (1989b)

Golten and Verwer
(1991)

Gray et al (1995)

Greene (1996)

Belding, T.C, The Distributed Genetic Algorithm Revisited. Proceedings
of the Sixth International Conference on Genetic Algorithms. San
Francisco, 1995.

Braae, M, Control Theory for Electrical Engineers. UCT Press, 1994.

De Jong, K, Adaptive System Design: A Genetic Approach. IEEE
Transactions on Systems, Man and Cybernetics, Volume 10, No. 9,
September 1980.

De Jong, K, Learning with Genetic Algorithms: An Overview. Machine
Leaming, Volume 3. Kluwer Academic Publishers., 1988.

Dorigo, M, Bertoni, A, Implicit Parallelism in Genetic Algorithms.
Artificial Intelligence, Volume 61, No. 2.

Dumont, G.A, Kristinsson, K, System Identification and Control Using
Genetic Algorithms. Transactions on Systems, Man and Cybernetics,
Volume 22, No. 5, September/October 1992.

Filho, J.R, Alippi, C and Treleaven, P, Genetic Algorithm Programming
Environments. Was to appear in the IEEE Computer Journal, 1995.

Fraleigh, J.B, Beauregard, R.A , linear Algebra, Second Edition.
Addison-Wesley Publishing Company, 1990.

Goldberg, D.E, Optimal Initial Population Size for Binary Coded
Genetic Algorithms. TCGA Report No. 85001. Tuscaloosa: University
of Alabama, The Clearinghouse of Genetic Algorithms.

Goldberg, D.E, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison Wesley. Reading. 1989.

Goldberg, D.E, Sizing Populations for Serial and Parallel Genetic
Algorithms. The Proceedings of the Third International Conference on
Genetic Algorithms, San Mateo, California, 1989. ·

Golten, J , Verwer, A, Control System Design and Simulation. McGraw­
Hill book company. Berkshire, England, 1991.

Gray, G.J, Li, Y, Murray-Smith, DJ and Sharman, K.C, Specification of
a Control System Fitness Functions Using Constraints For Genetic
Algorithm Based Design Methods. Technical Report TR-Control-
950329. The Proceedings of Genetic Algorithms in Engineering:
Innovations and Applications, Sheffield, England, September, 1995.

Greene, J .R, Population Based Incremental learning as a Simple
Versatile Tool for Engineering Optimisation. Proceedings of the First
International Conference on Evolutionary Computation and Its
Application, Moscow, Russia, June 24-27, 1996.

118

Grefenstette(1986)

Gunther (1994)

Holland (1975)

Homaifar at al (1994)

Jeffrey (1990)

Jenning (1992)

Juels and Wattenberg
(1994)

Kobayashi (1981)

Kuo (1987)

Kuo (1992)

K vasnicka et al

Ljung and
Soderstrom (1983)

Maciejowski (1989)

Maclay and Dorey
(1993)

Manner and
Manderick (1992)

Nachtigal (1990)

Grefenstette, J.J, Optimization of Control Parameters for Genetic
Algorithms. IEEE Transactions on Systems, Man and Cybernetics,
Volume 16, No.11986.

Gunther, R, Convergence Analysis of Canonical Genetic Algorithms,

Holland, J.H, Adaptation in Natural and Artificial Systems: An
introductory Analysis with Application to Biology, Control and Artificial
Intelligence. Cambridge, M.A, The MIT Press, 1992.

Homaifar, A, Qi, C.X, and Lai, S.H., Constrained optimization via
genetic algorithms, Simulation, Volume 62, No. 4, 1994.

Jeffrey, A.J, Linear Algebra and Ordinary Differential Equations.
Blackwell Scientific Publications, Inc. Cambridge Massachusetts,
U.S.A, 1990.

Jenning, P.J, Genetic Algorithms. American Scientist, Volume 80,
January-February, 1992.

Juels, A, Wattenberg, M, Stochastic Hillclimbing as a Baseline Method
for Evaluating Genetic Algorithms. Written on a visit to Superieure-rue
d'Ulm, Groupe de Bioinformatique, France. September, 1994.

Kobayashi, H, Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology. Addison-Wesley Publishing
Company. Reading. Massachusetts, 1981.
Kuo, B.C, Automatic Control Systems, Fifth Edition. Prentice Hall
Internal Editions. Englewood Cliffs, New Jersey, 1987.

Kuo, B.C, Digital Control Systems, Second Edition. Saunders College
Publishing, Orlando Florida, 1992.

Kvasnicka, V, Pelikan, M and Pospichal, J, Hill Climbing with
Learning (An Abstraction of Genetic Algorithm).

Ljung, L, Soderstrom, Theory and Practice of Recursive Identification.
Cambridge MA: MIT Press, 1983.

Maciejowski, J.M, Multivariable Feedback Design. Addison-Wesley
Publishers Ltd. Workingham, England, 1989.

Maclay, D, Dorey, R, Applying the Genetic Search Techniques to
Drivetrain Modeling. IEEE Control Systems, June 1993.

Parallel Problem Solving from Nature, 2. (Eds.) Amsterdam: North
Holland, 1992.

Nachtigal, C.L, Instrumentation and Control: Fundamentals and
Applications. Wiley Series in Mechanical Engineering Practice, John
Wiley and Sons. New Jersey, 1990.

119

Oppenheim and
Schafer (1989)
Pollard (1971)

Porter and Jones
(1992)

Riolo (1992)

Shorrocks (1978)

Smith (1972)

Srb and Owen(l952)

Swokowski (1988)

Syswerda (1989)

Tenenbaum et al
(1990)

Thithi (1995)

Thithi (1996)

Thithi and Braae
(1996)

Varsek et al (1993)

Whitley (1993)

Whitten et al(l 989)

Yao and
Seth ares(1994)

Oppenheim, A.V, Schafer, W.S Discrete Signal Processing. Prentice­
Hall International Inc. Englewood Cliffs, New Jersey, 1989.
Pollard, A, Process Control For the Chemical and Allied Fluid­
Processing Industries. Heinemann Educational Books, London, 1971.

Porter, B, Jones, A.H, Genetic Tuning of Digital PID Controllers.
Electronics Letters, Volume 28, No. 9, 23rd April 1992.

Riolo, R.L, Survival of the Fittest Bits. Scientific American, July 1992

Shorrocks, B The Genesis of Diversity. Hodder and Stoughton
Educational. Sevenoaks, Kent, England, 1978.

Smith, C.L, Digital Computer Process Control. Intex Educational
Publishers, 1972.

Srb, A.M and Owen, R.D, General Genetics. W.H Freeman and
Company. San Francisco, California, 1952.

Swokowski, E.W, Calculus with Analytical Geometry. Second Alternate
Edition. Addison-Wesley, New Jersey, 1988.

Syswerda, G, Uniform Crossover in Genetic Algorithms. In J.D
Schaffer, editor. Proceedings of the Third International Conference on
Genetic Algorithms, pages 2-9. Morgan-Kaufmann, 1989.

Tenenbaum, A.M, Langsam, Y and Augestein, M.J, Data Structures
Using C. Prentice-Hall International Editions. Englewood Cliffs, New
Jersey, 1990.

Thithi, LT, Unpublished Mintek report, September 1995.

Thithi, LT, Systems Parameter Identification using the Population
Based Incremental Learning. Proceedings of the UKACC Control '96
Conference, Exerter, September 2-5 ,1996.

Thithi, LT and Braae, M, Application of a Genetic Algorithm to PID
Tuning. Elektron Journal, August, 1996.

Varsek, A, Urbancic, T and Filipic, B, Genetic Algorithms in Controller
Design and Tuning. IEEE Transactions on Systems, Man and
Cybernetics, Volume 23, No.5 September/October 1993.

Whitley, D, A Genetic Algorithm Tutorial. Technical Report CS-93-103.
Department of Computer Science, Colorado State University.

Whitten, J.L, Bentley, L.D, Barlow, V.M, Systems Analysis & Design
Methods. Second Edition. Irwin, Homewood, Boston, 1989.

Yao, L, Sethares, W.A, Nonlinear Parameter Estimation via the Genetic
Algorithm. IEEE Transaction on Signal Processing, Volume 42, No 4,
April 1994.

120

Appendix A
Genetic Algorithm Programming Environment

Al. Introduction

As an incentive to understand genetic algorithms and manipulators better, it was decided that

the GA to be used for the purpose of this research was to developed "in-house". The author

designed the structure of the CGA and its modified versions and implemented them using

Borland C++ as a language of choice. This appendix therefore lays down the basis in which

the genetic algorithm used in this thesis was designed and coded. The design emphasises the

use of object oriented programming (OOP) philosophy which has become a major advantage

in designing software with ease. The OOP method will not be discussed here and can be

found in references included. What will be shown however is how data in the GA was bound

to code which processed it.

The design took a hierarchical approach, designing the lowest levels of the data structures

first and then building up by adding higher layers of abstraction. It will be shown this

appendix how each level of the GA was designed and how it fits with all the other layers.

Computer code for implementing functions will not be presented and can found in the

accompanying disk. For clarity purpose only, C++ pseudo-code will be used to illustrate how

functions were implemented.

A2. Hierarchies in genetic algorithm data structures
The lowest level of data in any genetic algorithm is a chromosome. Chromosomes are simply

concatenation of bits to form longer bit strings. By themselves chromosomes carry not

information about functions and are merely encoded raw data elements. Chromosomes can be

divided into segmental-divisions known as genes. The genes ar~ more atomic in their

representation of data since they constitute encoded parameters of function to be optimised.

A2.1 The chromosome object
A chromosome object was programmed as an entity that contains the data the chromosome

data and methods which operate on that data.

121

Methods
+

Chromosome Object.

Figure Al A depiction of a chromosome object showing the chromosome data and

manipulating methods.

The OOP design encapsulates data and methods which manipulate the same data into one

entity known as an object as shown above. Functions outside this enclosure are not allowed

to temper with the entities private data, thus, the integrity of the data in each entity is

ensured.

For our purpose, the data in the chromosome was simply a string of bits which could be

divided into segments which will be interpreted as genes. A bit string within a chromosome

was encoded as a simple array of unsigned integers. Each unsigned consists of two bytes and

hence 16 bits. Motivation for using unsigned integers in C++ as the basis for data was the

failure of earlier attempts where the implementation was done as character arrays. The use of

unsigned integers allows one to manipulate them at a bit level and thus make better use of the

compiler provided functions. The declaration in C++ is as follows

C++ declaration of the chromosome data structure showing the structure and its methods.

class Chromosome {

Data Structure
protected:

Methods
public:

} ;

unsigned *chrom;

unsigned *genes;

II the chromosome string itself

II genes making up the chromosome

unsigned chromsize; II chromosome size in bytes

int chromlength; II total length of the chromosome

int nGenes; II number of genes contained

int *geneLengths; //length of each gene

void DisplayString();

void initChrom(int length); //initialises the chromosome to a given length

void init(int *Lengths, int geneCount);

void setGene(int whichGene, unsigned newGene);

unsigned extractGeneSegment(unsigned, int, int);

122

The above data structures has been mentioned to contain no information by itself, but simply

raw data that has to be interpreted. To this effect the an extra layer of information, the

individual, in created to reflect the attributes of the chromosome. The individual is further

provided with the boundaries of the search space for each of the chromosomal variables

defined in the genes. During its utilisation, the individual's chromosome has to be decoded

and evaluated against an objective function and value created for it. The object

implementation for this is as illustrated below.

~
I Chromosom'e I

I Property or each gene I
I Boundaries

I Value

Data Structure

Individual object

As can be seen, this object incorporates the chromosome object at one level. This inheritance

also carries with it all the methods which are peculiar to the chromosome. The individual

therefore is able to activate the chromosome methods and manipulate it directly. The C++

implementation of this object is shown below.

class individual : public Chromosome, public evaluate{

protected:

} ;

double *parameters; II parameters making up individual

double *maxima;
double *minima;
double value;
double fitness;
int rank;

public:

II maxima of the parameters
II minima of the parameters
II the value of the individual
II fitness relative to other individual
II the social class ranking

void eval(); II Evaluates the individual to determine its value
void initlnd(int, int*); II Initialises the
void decodeEachParameter(int); II maps each parameter to a domain of search
unsigned extractSegments(int, int); II extracts genes from chromosomes before

decoding

The above object inherits the property to be able to evaluate the decoded structures once they

are the individual is ready for evaluation. Minima an maxima member variables define the

boundaries of that the variables within the member can take.

For the utilisation of ranking selection, the individual also has to be able to carry its rank in

the entire population.

123

The next level of abstraction in the hierarchy is that of the population. The population is

essentially a collection of individual objects, each having the properties of an individual. The

population members are able to die (when they are not selected into the next generation) and

offspring can be born (through the utilisation of crossover).

When the population has been formed, the object will have methods used to manipulate the

individual objects making up the member variables of the object. Similar object oriented

approach is taken in evaluating this object. A graphical depiction showing both the object

symbolising the population is shown below.

. .

·Methods

~
I Chromosome! I Chromosome!

~
I Chromosomel

I Gene prnogr1J I Gene pmgerrJ I Gene ewneoJ

I 801m1 arics I no11n1aries

IV''"" IV'"'" I Value

Data Structures

~
I Chromosome! I Chromosome! I Chromosome!

I Gene PmpertJ I Gene pragertJ I Qcnc PtgperfJ

I Bmipdaries I 9 mm1 acies

I Value I v•'"' I Value

Methods involved in the processing of this object are listed in the C++ implementation of the

object below.

class Population : public onePtCrossOver{
protected:

public:

} ;

individual *members;
individual bestlnd;
individual worstlnd;
int populationSize;

void popEval();

II members of the population
II best individaul of all
II worst individual of all

II the size of the population

void findBestandWorst();
void computeFitnesses();
void evaluatePopulation();
void QuickSortPopulation();
void mateTwoMembers(individual&, individual&, individual&,

individual&);
void replaceMember(int, individual&);

Although the methods shown below are not complete, they are the most operational on the

population. The object has the ability to mate members of the population, evaluate the

124

population, sort the population by rank and others. Also to be noted is that the object has

room for both the best and the worst individuals. These are kept and passed from generation

to generation to determine who has been the worst and the best since the beginning of time.

Also shown is a member function used in the replacement scheme of the population. It was

mentioned in the main text that the algorithm has a range of replacement schemes available

ate its disposal. These determine the order with which the GA will constitute the next

generation.

The complete implementation of these structures and their usage can be found in the disk

inserted. The entire listing will not be shown here due to the lengths and the quest to be

economic on the rain forests.

125

Appendix B
Modelling and Control of the two Tank System

Bl Introduction

In chapter 7 of the main text a case of study was undertaken to apply genetic tuning of PID

controllers to a two tank level control system. Results of the modelling process were

presented without derivations due to space and continuity limitations. This appendix

completes the modelling of exercise for the two tank system using physical laws that govern

the system. The modelling of the system will be carried out with reference to figure B 1 below

Figure Bl Schematic diagram of the two tank system used for the process of modelling the

process using physical laws.

B2 Modelling
Consider figure B 1 shown above. The dynamic equations of the system can be derived by

taking the flow balances about each tank. For the first tank, the resultant flow rate is

Qi - Q 1 = rate of change of fluid volume in tank 1

dy; dH1 =-=A-... Bl
dt dt

126

where V 1 = volume of fluid in tank 1

H1 =height of fluid in tank 1

A = cross sectional area of tank 1 and tank 2

Q1 = the flow rate for tank 1 to tank 2 through the orifice

Qi = the pump flow rate

The second tank obtain its inflow through the coupling provided by the intertank orifice. For

the second tank therefore

dV2 dH2 Q
1
-Q

0
=-=A-.. B2

dt dt

where V 2 = the volume of fluid in tank 2

H2 = height of fluid in tank 2

Q0 = flow rate of fluid out of tank 2

From the laws of physics governing orifices, it is assumed that both the intertank holes and

the drain tap behave like perfect orifices. The flow rates through these orifices can therefore

be written as

QI = cdlal "12g(H1 - H2) ... B3

Q0 = Cd2a2"12g(H2 -H3) ... B4

where a1 =cross sectional area of the intertank orifice

a2 = cross sectional area of the drain tap orifice

Cdi. Cd2 =discharge coefficient(= 0.6 for sharp edged orifices)

H3 = height of the drain tap

g = gravitational constant

The above modelling equations describe the model of the system in its most non-linear

nature. For our purposes or linear control, it is necessary to look at the small signal analysis

of the model which linearises the model around a desired operating point. This approach is

taken from steady state considerations. For small signal analysis small letters will be used for

both the flow rates and the heights of the tanks.

The flow rate into the first tank is linearised using the approach

q, =:;, "1 + ~: h, = ~ C,,'"Fc[.j~.--h~2] BS
and

q, = ~: h, = ~ c,,a,Fc[H,~HJ····································· .B6

Using this small signal analysis, the balance of low about the first tank can be re-written as

dh,
. q; - q1 =A dt .. B7

Substituting equation B4 into the above equation, we obtain the model

127

d~
qi -k1 (~ -lti) = Adt .. B8

where
cdlal .J2i

k =-===
I 2.JH1 -H2

dh2
k

1
(Iii -h2)-k2h2 =A- .. B9

dt .

where

Equation B7 and B8 can be grouped into a state space model since the system is made of two

differentials. Using this state space approach, the model can the written as

-(k~~,I~J+mq, .. 810

By taking the Laplace transformation of the model of equation B9, a transfer function

relating the input flow rate and the level in the second tank can be found by transforming the

state space model to a transfer function model.

(k~;,}' +(A(2::k:k.,)}+1 ··'·······Bll

1

___ k~2 --- •• B12
(s'.I; + l)(sT2 + 1)

where T1 and T2 are time constants related with the movement of water from the pump to the

first tank and from the first tank to the second tank.

A(2k1 +k2)
I; + T2 = ... B13

k1k2

The above transfer function is made up of parameters which are measurable physically. The

time constants are a function of parameters k11 and k2 which are themselves the functions of

parameters which could measured. The accompanying work book for the tanks lists the

procedure for carrying out the experiments to determine the parameters id detail. These

procedures will be repeated in this work and the reader is referred to the manual

128

Appendix C
Tuning Guidelines for Ziegler-Nichols I Cohen-Coon

tuning criteria.

Cl Introduction

The critical phase of the implementation of the Pl/D algorithms is the selection of numerical values

of the constants of the algorithm[Smith, 1972]. This difficulty has led to the search for a systematic

way in which the parameters of the PI/D controller could be set for optimal control of the process.

A tuning framework was developed to serve as a guideline to be used when selecting the controller

parameters. These guidelines are:

i. Approximate the process with a simple model.

11. Select the constants that give the desired behavior when controlling the model.

11i. Apply these settings to the original process.

These were applied to empirical problems studied by Ziegler and Nichols and were presented in a

unified form in the criterion known as the Ziegler-Nichols tuning. The prime aim of this was to tune

the process in such a way that the ratio of the response between successive peaks is reduced by a

quarter every cycle. The tuning however proves to be rather costly in its utilisation of the control

effort, a feature which serves a disadvantage. As a modification of this, the Cohen~Coon criterion

sets the tuning such that the quarter amplitude criterion is maintained whilst at the same time

observing the limits of the process. The guidelines and the procedures used in both the Ziegler­

Nichols and the Cohen-Coon strategies are outlined below.

C2 Model Approximation

Since the process tr an sf er function could be difficult to work out in practice the process is

approximated by a curve approximating a first order transfer function augmented with a dead time.

Ke-sB
g(s) =-- ... Cl

l+sr

129

In utVariable

M
_,___ __ ~ ----································ ·············· ··············

T
Final Value

Measured variable K

InitialVaJue

.
Figure Cl Process reaction curve used to approximate the parameters of the controller process.

The process reaction curve is typically an s-shaped curve of the form shown above[. The first step

of the estimation is to find the maximum slope of the reaction curve, N and draw the tangent at that

point. The next step is to determine the 'effective delay', D by determining the time between the

time point where the slope tangent line crosses the line of initial operation of the process. T is the

rise time of the system defined as the time it takes for the process to move from 10% of its final

value to 90% of its settling value.

C3 Controller parameter setting
As a result of the imperical tests on a wide variety of systems using this modeling technique,

Ziegler and Nichols proposed a method of basing the controller settings required for reasonably

good performance on the step response of the open loop system[Pollard, 1971]. This was later

formalised in a paper which introduced the Ziegler-Nichols tuning criterion in 1942. The Ziegler­

Nichols tuning is guided by the objective that for every circle of the response, the controller is tuned

to attain approximately a quarter (25%) of the previous amplitude peak. Since the tuning criterion

was compiled from imperical studies only tables of tuning of the tree actions of the PIO controller

were formulated. The Ziegler-Nichols tuning table for the PIO parameters is shown below.

Table Cl Recommended controller settings for Ziegler-Nichols tuning [Pollard, 1971]

Control Action KP

Proportional M
NL

Prop. + Integral 0.9M -,;n
Prop+ Integral+ Derivative 1.2M

NL

Ki

L

2L L
2

The Ziegler-Nichols tuning although it works, it was found to suffer from a sever problem of

control signal usage. This is a disadvantage for systems where there are limitations on the input

rates. To overcome this the Ziegler-Nichols method was further elaborated by Cohen and Coon who

used the equivalent transfer function to determine the theoretical values of the controller parameters

to give acceptable responses. According to their definition, Cohen and Coon defined acceptable

responses as those who have a 4: 1 subsidence ratio and minimum offset and error integral. The

required controller parameters are expressed in terms of the transfer function constants, K, ()and r

as defined for the approxim~tion transfer function of equation C 1. The Cohen and Coon

recommendations for the controller settings are given in the table below.

130

Table C2 Recommended controller settings for Cohen-Coon tuning [Smith, 1972)

Control Actions Kp Ki

Proportional ! (1+1)

Proportional + Integral ! (o.9+ ~) (30+ 3R)
L 9+20R

Proportional + Derivative ! (1.25+ 1)

Proportional+ Integral+ Derivative ! (1.33 +1-)
(

32+6R)
L 13+8R

R is used for the 'lag ratio' NL/K.

The Cohen-Coon as a more conservative method compared to the Ziegler-Nichols was applied to

the tuning the parameters of the PID controller for the two tank process using table 7 .5. These

tuning criteria are used in chapter 7 of the main text to tune a PID controller.

131

AppendixD

The Cryogenic Genetic Algorithm
~-(Biii'?mtJMiill···~~~~·l!lill5JBii•>-

Dl Introduction

When it comes to the comparison between the genetic algorithm and classical engineering thinking

methods, the thought process breaks into several streams: First, comparisons are made on the

accuracy of the GA and methods compared to it. Second, the handling of peculiar situations known

to trouble the classical techniques often is of interest. Other considerations such as the difficulty

level of the problems which a GA can handle as compared to the classical methods, are often of

interest to genetic practitioners. On this regard, the algorithm is often probed using flashy

demonstrations which are meant to act as evidence of intellectual merit. There is no denying that the

range of problems which can be handled using GA is vast as has been demonstrated extensively in

the literature.

The genetic algorithm in its quest to locate the optima of the function being optimised goes a great

length in processing the search space, leaving no stone unturned. Its efforts however, are known to

be hampered by the unfortunate realities of the algorithm such as stagnation, a feature resulting

from poor settings of its control parameters.

With all the features and problems outlined above, the question of processing time has been silently

accepted as a feature which the GA cannot be compared with any other method on, unless of course,

the methods are in the same league. For simple one short optimisation problems such as finding the

an extremum of a closed form function, time is usually not an issue. For problems involving

gestation of information, as in the case of simulations, time becomes of the essence and effort has to

be taken to improve the processing speed of the algorithm whilst not compromising on its functional

power.

In this chapter, attention is turned to the question of the processing time of the algorithm and a

proposal as to how this could be reduced is made. The proposal presented was made by the author's

supervisor and was implemented and analysed by the author with his supervisor's help. The idea

exploits and incorporates the concepts of binary search, known to be the most efficient search for

sorted data [Tenenbaum et al, 1990], into a genetic algorithm to assist in speeding it up. The

algorithm has been dubbed the Cryogenic Genetic Algorithm (CrGA), the acronym chosen so as

not to confuse it with the CGA (canonical genetic algorithm). The fundamental idea of this

132

technique will be presented together with a simple illustration of its use. The method is presented

as a matter of principle and should lend itself well to the problems already reported in this work.

D2 The Cryogenic GA: The fundamentals

The fundamental idea of the algorithm will be presented with respect to the following surface.

10

5

c 0

-5

-10
60

f(A ,B ,C)

60

0 0

Figure D.1 Surface view of the function whose peak has to be found.

Suppose that the genetic algorithm is to be used to find the highest peak of this surface. That is, a

combination (A,B, C) is to be found such that f(A,B, C) is maximized. When inspecting the surface

and imagining that one has to choose a route that .should lead to the peak of the surf ace, then the

following subdivisions, or path planning of the surface could be presented when looking at the

plane AB.

A+ B +

Figure D.2 Planar view of the magnitude distribution of the variables A and B and quadrant view

of the plane of A and B.

Clearly, the direction to the plane peak on AB involves a certain degree of movement towards B+

and a certain movement towards A+. Importantly though, is that the peak of the function lies in a

specific quadrant of this plane. The most efficient search for the peak therefore, would aim to divide

the plane AB into quadrants as shown above, performing exhaustive walks in each quadrant to

determine the highest peak found. Quadrants which do not hold promise are systematically

discarded in favor of those which carry more weight.

133

A quadrant selected for further probing is once more divided into four regions which are further ·

probed for highest value lying in each.

Figure D.3 Illustration of the subdivision of a chosen quadrant to explore it in more detail.

This procedure is continued until a single point is left and hopefully will be the optimal point of the

function. Thinking about the procedure, it should be clear that this is simply a 2 dimensional binary

search. There are two ways in which movement can be executed in each quadrant to effect the

search:

+ Movement could be executed along one direction whist being held constant in the other. In

this case there will be as many movements as there are points to be tested, reducing the

problem to same level as exhaustive search techniques ruled out in chapter 2.

+ Movement can be executed simultaneously in both directions. This could be problematic if

there is a descent in one direction and an ascent in one direction.

Although binary search is the most efficient in one direction, its search character is difficult to co­

ordinate in systems with more than 2 dimensions[Tenenbaum et al, 1990].

Since the domain in both A and B is inherently ordered, there is a possibility of conducting

independent searches in both variables to determine their peaks. The idea is not completely far

fetched. Consider the case of determining a peak of a function of two variables f(xi. x2). Then the

system can be viewed as optimisations in one variables while holding the other constant, and then

turning the attention to finding the function peak with respect to the other variable as is illustrated

below.

Optimisation with respect to the variable x1

-.....
~

0
-1 0

x1

Optimisation with respect to x2

-"' ~
-100

x2

Figure D.4 Independent optimisation of the function with respect to individual variables.

134

The function is thus optimised with respect to x1 to find its peak while the other variable is held

constant and then by x2 while x1 is held constant. If binary search is used in this regard, then it can

be used to search either variable at a time, arriving at the solution and then for the other. This

process could be carried on until the entire function is optimised in both variables.

Although binary search will indeed speed the search for an ordinary problem where all the orthodox

methods have been ruled out, the idea cannot be applied for the following obvious reason: The

search cannot be conducted independently for each variable. There usually is an inherent interaction

between the variables such that they cannot be separated. If there exist a possibility however, of

conducting a search on both variables simultaneously, then each variable can be searched for using

binary search. The result of the search after the decision as to where each variable is likely to lie,

would then be evaluated against the objective function f(xb x2). The separation between the

variables would thus be removed. All that has to be decided in this case, is the probable space of

each of the variables. The genetic algorithm therefore, becomes a candidate for a typical search

procedure for determining the boundaries of each variable. Further on the contribution of the GA is

discussed below.

D2.1 The genetic contribution
The genetic algorithm is applied as a divider of the search space in both the parameters. A random

genetic search is conducted for each parameter to determine the boundaries of its membership. As a

start, suppose that a coded string is 4 bits long and is mapped into a domain x e [0,5], then the

parameter will have possible values ranging from 0000 to 1111. This binary domain can itself be

split into regions

0000 ~ 0111 (lower bound) 0.0 - 2.49 and

1000 ~ 1111 (higher bound) 2.5 - 5.00

The prime objective of the algorithm at the beginning is thus to determined the highest boundary

that the variable will belong to. The phenomenon of epistasis in genetic algorithms states that the

search for variables cannot be conducted in isolation[Beasley, et al, 1993b). With this in mind

therefore, the search for the initial boundaries is conducted simultaneously for both the variables A

and B with the evaluation being conducted for boundaries found in each variable. The results of this

genetic exercise on the entire plane is therefore a consensus view as to where the solution is likely

to lie. For the above example, two distinct regions exist, 0### and 1 #### dividing it into either of

the regions (0-2.49) or (2.50 - 5.0).

0000-0111
0.0 - 2.49 Boundary

1 000 - 1111 A

2 .5 - 5 .0

Figure D.5 Illustration of the division of the one dimensional search into two distinct regions in

the domain. Also shown, is the boundary that a GA has to decide.

135

Each variable's large span is thus decided at this stage. Following this decision, the first bit is

frozen as the representative of the larger quadrant selected, thus deciding which side of the

boundary it is likely to belong to. Suppose that for a larger quadrant selected, the solution lies in the

higher region of the search space, then the search space will then be reduced to the domain with the

span [1-0## to 1-1 ##] when the starting 1 indicates that it is frozen and cannot be changed. The

genetic algorithm is thus set to explore this reduced space using its genetic operators to determine

the most optimal solution within the newly decided space.

This space is further divided using the same logic as the first space and the search continues. This is

done until an optimal point is found. Although this is shown for one variable, the difference in this

application is that at the same time the other variable is being searched for. Although it is

emphasised in this case that the decision on membership of the region is taken on the basis of

optimality within a region, the combinatorial effect of the other variables is taken into account to

have a consensus.

When a bit has been frozen, the algorithm clearly then has committed itself to searching for the

solution in a specific quadrant. This scenario is synonymous to the representation of numbers. A

number such as 3205 can be split into four categories: thousands, hundreds, tens and units.

Thousands

3

Hundreds

2
Tens

9

Units

s

When viewed in this manner, the algorithm is thus forced to first decide on the region in the

thousands whist all the other categories are kept random. Once that decision is made, correctly or

incorrectly, it progresses to search the candidate in the next category, fixing that and progressing

further down until it is done.

There is thus an evident amount of danger lurking in the idea: If the decision in any of the

categories, in particular the higher ones, is bad, then the algorithm is almost guaranteed to flop. No

amount of search or processing in the lower categories will have any positive effect. This being

said, the advantage of the technique is outlined below.

D2.2 Search space reduction
For a simple single dimension binary search, it is known that every time a decision about the

variable boundary is made, then the search space is effectively reduced by half (1/21
) of the original

space. For a two variable problem, illustrated in figure D.3, the search space is reduced by a quarter

(1122
) every time a decision about both variables is taken. For a three variable problem shown below

136

c

A

Figure D.6 An illustration of the reduction of the search space to an eight of the original space for

a variable search of three variables. The space decided upon reduces to a simple cube in space.

the search space is reduced to an eight (1/23
) of the original size. It can thus be shown using the

principle of mathematical induction that the following postulate can be made:

Reduction of search space postulate.

In a case where there a~e only 2 choices about the state of a variable(i.e. either high or low) and

where n variable exist, then the search space is reduced by 2
1
• of the original space when the

decisions about the variable boundaries is made.

Proof:
Follows by the principle of mathematical induction in Swokowski (1989).

This once more is irrespective of the correctness of the values obtained when each decision is made.

This reduction of the search space is therefore a major advantage to arm a genetic search with. The

role of the GA is therefore reduced to that of finding the boundaries of variables and letting

variables themselves converge as they are being enclosed by the spaces decided upon.

This property makes the proposal quite attractive as a measure of speeding up the search. Numerous

trials were undertaken to put the idea in practice and several flaws were found:

+ If the search fails to find the right candidate quadrant or bin for the most significant bits,

then there is no amount of genetic processing which will help the algorithm get out of the

trapping.

+ The failure in this regard has been found to be attributable directly to the problems of the

stagnation of the genetic algorithm outlined in chapters 3 and 8 of this report. This is by far

the worst disadvantage the system is likely to have under this regime.

+ The execution of the idea is likely to demand a parallel processing system , where each

parameter will be searched using a genetic binary scheme on a separate platform, with a

supervisory GA conducting the combination of the results found the salve GAs and thus

computing the results.

137

+ Once the most significant section has been decided upon, it was noticed that the rest of the

string would resemble all the others in the population, resulting in the minimum Hamming

distance between the best and the worst member, a feature to be expected once the algorithm

has converged sufficiently. This required the population be re-initialised every time a section

has been worked on. This by itself does serve as a hassle but draws the idea to the same

league of problems as the rest of the proposed modifications to the algorithm.

With all these concerns however, when applying the idea to simple mathematical optimisation

problems, the idea seemed to carry enough merit to be worth further investigation. Due to the time

constraint and the depth of work covered in this thesis, it was decided to leave it for another project.

D3 Conclusions
In this chapter, a proposal of the use if binary search to help improve the time considerations of the

genetic algorithm processing was made. It was shown that when using the principle of mathematical

induction, the idea will reduce the search space dramatically once decisions about the search space

are taken, irrespective of whether they are right or wrong, and hence could lead to the reduction in

the search time. This would however be an ideal situation on a parallel processing system. The idea

has already been drawn to the same league of problems resulting form the settings of the genetic

algorithm.

138

Index

actuating circuits, 71
actuators, 3, 75, 88
adaptive control, 40
armature, 52

A

B

backward difference, 54, 110
binary string, 7, 8, 28, 30, 102
Biological metaphors, 1
black box, 2, 7, 101, 112, 113
Bode plot, 46

c
C++, 2, 14, 15, 103
canonical genetic algorithm, 6, 10, 14, 21,

23,24,29,31,40
canonical genetic algorithms, 6, 10, 24
case studies, 72, 81, 86
CGA, 5, 6, 10, 21, 23, 24, 29
Chain rules, 62
chromosome, 2, 7, 8, 9, 11, 12, 13, 14, 16,

27,42,43, 70, 73, 102, 110
closedloop,68, 71, 73, 76, 77,88,89
closed loop control, 68
constellation, 61
control, 1,2,3,35,40,47,52,68,69, 70,

71, 72, 73, 75, 77,81,82,83,84,85,86,
87,88,89,90,91,92,93,94,95, 102,
103, 109, 111

controller, 2, 3, 64, 68, 69, 70, 71, 73, 74,
75, 76,81,85,86,87,88,89,90,91,92,
93,94,95,96, 108, 109, 110, 111, 113

conventional logic, 2

139

convergence,3, 15, 16, 21,23,24,28,29,
31,32,35,40,45,46,58,59, 104, 106,
107, 108, 110

cost function, 1, 9, 45, 47, 63, 64, 70, 71,
72, 77,81,89,92,96,97, 110, 111

coupled tanks, 64, 81, 82, 84
CPU, 102
crossover, 3, 9, 12, 13, 14, 15, 16, 21, 22,

23,24,27,31,32,33,34,35,86,97, 101,
102, 107, 112

Darwin, 5
Darwinian, 2, 7, 9

D

dead band, 44, 55, 57, 111
dead bands, 44, 111
descriptive statistics, 88, 91, 93, 95
DNA,5,6
dominance,47,53,85
dominant pole, 47, 85
don't care, 22, 114
DT2801, 82

E

eigenvalues, 71
elitism, 22, 23, 29, 44, 112
estimation, 3, 40, 43, 44, 47, 54, 55, 56, 57,

58,59,60,62,63
estimator bias, 3, 55, 60, 110

. Evolution, 5
exhaustive search, 7
exploitation, 1, 40
exploration, 1

F

fitness, 8, 9, 10, 11, 15, 16, 28, 31, 32, 86,
89

flow rate, 82, 83, 84, 85
forgetting factor, 104, 105, 106, 107
forward difference, 54, 110
framework, 3, 64, 69, 71, 76, 77, 81, 85, 93,

94,95, 102, 109, 110, 111, 112
frequency spectrum, 59
Fuzzy logic, 1

G

GA, 2, 3, 5, 6, 7, 9, 10, 14, 15, 16, 23, 24,
28,29,30,31,40,43,44,47,55,56,57,
59,61,63,64, 71, 73, 74, 77,86,88,96,
101, 102, 106, 107, 108, 109, 110, 111,
112, 113

GAs, 2, 5, 6, 24, 29, 33, 96, 101, 102, 113
Gaussian, 44, 54, 55, 57, 59, 60, 110
gene,6, 8,9, 13, 14,44,56, 70, 74
generalised error model, 54
generation, 6, 9, 10, 11, 13, 14, 15, 16, 22,

23,25,26,27,29,32,46,58, 74, 75, 102,
103, 104, 112

generation gap, 23, 29, 112
genes,6, 8,9, 14, 16, 110
genetic algorithm, l, 2, 3, 5, 6, 7, 8, 10, 14,

15, 16,21,22, 23,24,26,28,29,31,34,
35,40,41,42,43,44,47,52,55,56,57,
58,59,60,63,64,68,69, 73, 74, 76,81,
85,86,94,96,97, 101, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113,"114

genetic algorithms, 1, 2, 5, 6, 7, 10, 14, 16,
21,22,24,26,28,29,34,35,40,43,47,
52,64,68,81,96, 101, 107, 109, 114

genetic modeling, 52
genetics, 2, 5, 6, 9, 14, 16, 113
Glasgow, 72
Goldberg, 7, 8, 29, 30, 114
Gray code, 22
Gray coded, 22
guidelines for tuning, 101

H

Hamming distance, 27, 31, 33, 108, 114
hill-climbing, 40, 102
histogram, 88, 91, 93, 95
Holland, 2, 6, 7, 21, 22, 34, 40, 109
hyperplane, 21, 23, 27

140

I

implicit parallelism, 22, 34
individual, 5, 6, 9, 10, 11, 12, 14, 15, 24, 26,

28,31,32,46, 72,86, 101, 105, 106, 108,
112

individuals, 5, 9, 10, 11, 15, 24, 26, 27, 28,
29,30,31,32

instrumentation, 81, 82, 83

K

Kuo,42,53,58,68,69

L

Laplace, 42
learning rate, 103, 104, 105, 106, 107
least error, 76, 86, 87, 88, 89, 91, 92, 93,

111
least squares, 40, 42, 44, 47, 52, 54, 59, 60,

61, 63, 110
linear control theory, 1
linear region, 55, 56
linearity profile, 55, 57
low pass filter, 59

M

Markov chain, 24, 25, 26, 28, 29
minerals extraction, 68
modeling, 21, 34, 40, 41, 42, 47, 52, 55, 63,

81,83,84,85
modes,41,42,47, 76,85,91
motor,43,52,53,55,56,57,58,59,64,82,

83, 106
mutation, 9, 14, 15, 16, 24, 26, 27, 31, 32,

33,35,44,56, 74,86, 102, 104, 105, 106,
107, 112, 114

N

natural selection, 2, 7
neural networks, 1
noise, 3, 44, 47, 52, 54, 55, 56, 57, 58, 59,

60,61,62,63,64, 83, 109, 110, 111

0
objective function, 9, 14, 15, 42, 62, 63, 72,

76,81,86,89,92,93,96, 101

offspring,5,6,9, 11, 12, 13, 14, 15, 16,22,
23,26

openloop,84,88,94
optimisation, 2, 7, 23, 24, 63, 72, 92, 101,

102, 109, 111, 112, 113
ordinary differential equations, 53
orifice, 82
ova,6
ovum, 5

p

P, 15, 26,29,30, 73, 75,88,89,92, 102,
103, 104, 105, 106, 112

PBIL,2,3, 101, 102, 103, 104, 106, 107,
108, 112

penalty function, 70, 71, 72, 86, 89, 91, 97
percentage overshoot, 68
performanceindex,45,46,62, 110
petrochemical, 3, 68
PI,2,3,68,69, 73, 75, 81,94, 111
PI/D,2,3,68,69,81,94, 111
PID,64,68,69, 70, 71, 73, 74, 76,81,85,

86,87,88,89,90,91,92,93,94,95, 108
pole,41,47,52,53,58,59,62,63, 71, 76,

77,85,88,96
pole dominance, 47, 53, 85
population, 3, 6, 8, 9, 10, 11, 13, 14, 15, 16,

21,22,23, 24, 25,26,27, 28,29,30,31,
32,33,34,35,86,89, 102, 103, 105, 106,
108, 110, 112

Population Based Incremental Learning, 2,
3, 102; 106, 112

power spectral density, 44, 59
probability vector, 102, 103, 104, 105, 106,

107, 108
process, 1, 2, 3, 5, 6, 10, 11, 14, 15, 21, 24,

40,41,42,43,45,47,53,54,57,58,59,
60,68,69, 70, 71, 72, 73, 74, 76, 77,81,
84,85,86,87,88,91,92,93,94,95,96,
97, 101, 102, 107, 109, 111, 112

process industries, 69, 81
proportional controller, 85
pump,82,83,84,87,88,89,90,91,93

R

ramp, 68
ramp functions, 68
random, 10, 11, 13,24,28,44,55, 102

141

recombination, 2, 7, 11, 15, 101
recursive least squares, 40, 44, 47, 52, 54,

59,60,61,63, 110
remainder stochastic sampling, 10, 11
replacement, 10, 11, 14, 32
reproduction, 10, 26, 31
Ribonucleic acid, 6
Riemann sums, 42
rise time, 68
RLS,3,40,52,54,56,57,58,59,61,63,

64, 109, 110, 111
RNA,6
Roulette wheel selection, 10, 11

s
saturation, 44, 55, 57, 71
schema,3,21,22,23,27,29,30,31,32,34,

35
schemata, 22, 29, 30, 31, 114
selection, 2, 7, 9, 10, 11, 13, 14, 15, 16, 21,

24,26,27,30,31,32,35,47,85,94, 112
sensitivity, 60, 61, 62, 63
servo motor, 52, 55, 57, 64, 106
setpoint, 60, 68, 69, 70, 71, 72, 81, 86, 87,

90,91,92,93
settling time, 68, 70
sex, 6
side effect, 75, 76, 81, 90, 91, 92
Single point crossover, 12, 13, 22, 34
species, 1, 5, 6, 9
sperm, 5
standard deviation, 44, 88, 91
statistical confidence, 102, 104
steady state, 52, 53, 71, 76, 84, 90
~ep,28,29,43,53,68,81,85,88,91,94,

103
step test, 53, 81, 85, 94
step tests, 53, 81, 85
stochastic universal sampling, 10
structured analysis, 1
structured design, 1
structured implementation, 1
structured methodologies, 1
survival of the fittest, 2, 7, 9
system identification, 40, 41, 42, 52, 55, 56,

64, 106, 107' 110

T

transfer function, 41, 47, 58, 59, 68, 71, 73,
76,84,85

tribology, 88
tuning, 2, 3, 29, 56, 57, 64, 68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 81, 85, 86, 87, 88,
89,90,91,92,93,94,95,96,97, 101,
102, 108, 110, 111, 112, 113

two point crossover, 12, 13, 23

142

u
uniform crossover, 12, 13, 23, 34

w
wear and tear, 75, 76

z
zero,41,42,44,47, 76, 77

