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Synopsis 

This thesis report presents the results of a study carried out to determine possible 
uses of genetic algorithms to problems in control engineering. 

This thesis reviewed the literature on the subject of genetics and genetic algorithms 
and applied the algorithms to the problems of systems parameter identification and 
Pl/D controller tuning. More specifically, the study had the following objectives: 

+ To investigate possible uses of genetic algorithms to the task of system 
identification and Pl/D controller tuning. 

+ To do an in depth comparison of the proposed uses with orthodox traditional 
engineering thinking which is based on mathematical optimisation and 
empirical studies. 

+ To draw conclusions and present the findings in the form of a thesis. 

Genetic algorithms are a class of artificial intelligence methods inspired by the 
Darwinian principles of natural selection and survival of the fittest. The algorithm 
encodes potential solutions into chromosome-like data structures that. are evolved 
using genetic ·operators to determine the optimal solution of the problem. 
Fundamentally, the evolutionary nature of the algorithm is introduced through the 
operators called crossover and mutation. Crossover fundamentally takes two strings, 
selects a crossing point randomly and swaps segments of the strings on either side of 
the crossover point to create two new individuals. There are three variations of 
crossover which were considered in this thesis: single point crossover, two point 
crossover and uniform crossover. It was important that these be given careful 
consideration since much of the outcome of the algorithm is influenced by both the 
choice and the amount with which they are applied. 

Mutation has a biological role of producing new alleles and in the genetic algorithm it 
has a role of introducing new chromosomes into the pool through random alteration of 
the already existing ones. Mutation is often applied with a small probability, typically 
less than one percent, to every bit in the population. When the mutation is to be 
applied, a bit is probabilistically toggled from its state to the opposite one, hence 
changing the value of the chromosome at that point. Other elements of the GA such 
as selection techniques are also presented. Three different kinds of selections are 
presented and it is shown that the use of either can result in the bias towards the best 
solutions in the genetic processing. The complete structure of the GA is presented 
and a pseudo code in C++ is presented to shown how the algorithm would be 
implemented in practice. 
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In chapter 3 more advanced issues on genetic algorithms are handled. The questions 
of the fundamental workings of the algorithm and its convergence properties are 
tackled. Holland's schema model is presented and it is shown that according to his 
view, the workings of the algorithm simply amounts to sampling of hyperplanes by 
crossover to reveal new and untouched areas of the search space. The convergence 
of the canonical genetic algorithm, the simplest form of the GA, is addressed within 
the chapter. It is shown that the algorithm, as it stands, does not have satisfactory 
convergence properties and in fact will never converge to find a global optima of a 
problem being solved. Variations of this algorithm however, introduced as 
modifications, do converge to globally optimal solutions. The view is therefore taken 
that the canonical GA as it stands will not be used further in the investigation, but 

rather modified versions will. 

The first application of the algorithm to control problems is presented in chapter 4. 
The presentation was divided into two parts. First, the theoretical aspects of the work 
were presented highlighting the formulation of the cost function used and secondly, a 
practical application of this was carried out using a DC servo motor as a model to be 
estimated. The results hereof are presented in chapter 5. The model was chosen for 
its simplicity, and avoided cluttering the problems to be investigated with its 
peculiarities. The work compared this proposed estimation technique to a more 
established Recursive Least Squares (RLS) method with the comparison between the 
two methods being carried out with two consideration in mind: 

+ First, the two algorithms were to be compared in terms of accuracy of the 
parameters established when running using the same data set. Since the 
genetic estimation was carried out in the continuous domain, it was necessary 
to convert the model to the discrete domain for comparison with the model 
found using the RLS. 

+ Secondly, the algorithms were compared in terms of their noise handling 
capability. Only one topological structure for the RLS was considered in this 
case as being the more practical: The case of noise corrupting the process 
output and not the input. 

It was generally found that for this application, both algorithms (with the GA being 
tuned optimally) were comparable in terms of the accuracy. It is rather difficult to say 
that one better than the other since both methods were subject to experimental error. 
The difference between estimated parameters by both models was typically less than 
1 % with different running conditions being induced. 

For levels of noise less than 10% of the setpoint in the output, both routines seemed 
unperturbed by its presence, with deviations between base parameters (those chosen 
for a noiseless situation) and noise induced parameters being minimal. The recursive 
least squares model however underwent a more accelerated deterioration in 
parameters compared to the GA model as the noise content of the signal was 
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increased. The genetic algorithm showed more robustness even with the levels of 
noise exceeding 50% of the input signal amplitude, the parameters found were still 
sound. Also found, was the sensitivity of the RLS algorithm to the perturbation signals 
used in the motor input. Generally, on paper the RLS requires signals which are 
reasonably excited to improve its estimation characteristics. It was however found, 
that as a comparison with the genetic algorithm, as the nature of the signal changes 
from being a simple square wave to a ramp input and then a sine wave, more 

adjustments needed to be made to the RLS sampling time to accommodate this 

change. This in itself was difficult to carry out. 
An interesting observation was made on the performance of the cost function with 
respect to the noise signal. As far as the magnitude was concerned, the individual 
values of the GA estimated parameters changed less compared the change in the 
objective function suggesting that the real defining factor of goodness might in fact be 

the cost function and not the method used to process it. 

In chapter 5 work on Pl/D controller tuning is presented from a theoretical point. A 
comprehensive tuning criterion is established using the method of constraints. Very 
simply, the development formulated the objective on the basis of an articulation that a 
designer may have from personnel more familiar with the process that is to be 
optimised by proper tuning. The response is then squeezed into this frame which 
defines the constraints in the response such as the stability of the system, overshoot 
in the response, the settling time, and other considerations are obeyed. The output 
was not considered in isolation, the input, the main effector of control change, was 
also constrained in such a way that safety margins were observed and respected. The 
framework developed showed how the system can be optimised. by considering the 
effects of the stability of the system, the overshoot and the input constraints. Although 
these were the only considerations explored thoroughly, more considerations could be 
given to the character of both the system response and the input and appropriate 
constraints and penalty functions formulated. A comprehensive table summarising 
these considerations was drawn up and presented. 

A thorough application of this proposal was applied to a laboratory model of coupled 
tanks. The system was chosen for its dynamics which emulated those of typical 
industrial applications having relatively long time constants. Since the object of the 
exercise was not the modeling application, the system was modeled using the laws of 
physics governing the flows of liquids and a second order transfer function was found. 
Several considerations from the comprehensive table in chapter 6 were applied to this 
model as constraints of tuning the PIO controller used. The following conditions of 
tuning were investigated fully. 

+ The algorithm was applied to the model to tune its PIO controller for setpoint 
tracking or least error. Although this was achieved, the controller demanded 
plant input values which were above the limitations of the system. This to some 
extent was a side effect of this tuning criterion and resulted in steady state 
errors since the controller could not sustain the demand from the plant. 
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+ The algorithm was further applied with a view of tuning the controller for least 
input. This once more was achieved within the framework developed earlier. It 
was found that although this condition was met, the system suffered from slow 
convergence times in catching up with the setpoint and sometimes overshoots 
which were difficult to eliminate resulted. 

• In the third application, both the conditions highlighted above were applied to 
the controller as a multi-objective tuning case. The results here were 
interesting as the controller signals highlighted both the properties of the least 
tuned controller in the speed of convergence the system attained whilst the well 
bounded input was a result of the least input tuning. Should the need have 
arisen, it could be shown that more conditions could be added to the controller 
as cases of more objectives the user may impose on the system. 

An unsettling fact about the steep tuning curve of the algorithm that the user has to 
negotiate was highlighted. in chapter 8. Although the GA works well in cases when it is 
optimally tuned, arriving at the optimal settings proved to be a daunting task in most 
applications, particularly where there could be a close coupling between the algorithm 
settings and the problem that is being solved. An abstraction of the genetic algorithm, 
dubbed the Population Based Incremental Learning (PBIL), was presented as 
introduced by Shumeet Saluja. In essence, the PBIL aims to create a real value 
vector which when sampled, reveals regions of high evaluation solutions with high 
probability. This algorithm exploits the statistical properties of a GA whilst relieving the 
designer of the tuning overhead imposed by the GA. 

The development of this algorithm is shown and is applied to a problem of system 
identification already tackled by a GA. The work on the PBIL is fairly new, having 
been presented formally for the first time in 1995 by Saluja. There has been however 
many reports about the its performance, with claims that it outperforms even some of 
the best tuned GAs in problems which are designed to be GA friendly. On the. 
problem it was applied to in this thesis, numerous trials had to be taken to get a feel 
for its tuning criterion. Because there were relatively few parameters to be tuned, the 
task was not as daunting as was in tuning the GA, a feature which gives it a clear 
advantage. 

In chapter 9 the conclusions on the work presented are made. A holistic view on the 
algorithm is taken and view about the uses of the GA are expressed. 
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Glossary of Terms 

Crossover Crossover is a technique used to exchange the genetic material 
between two parent chromosomes to produce two new 
offspring. There are three fundamental types: single point, two 
point and uniform crossover. Crossover is usually applied with a 
high probability to force the algorithm to explore unknown 
schemata. 

Elitism Elitism is a genetic operation that encourages the carrying over 
of a proportion of the best solutions from the current generation 
into the next generation. The proportion to be carried over is 
user definable and defines the generation gap of the GA. 

Extremum/extrema The extremum of a differentiable function refers to the point 
where the function takes either a maximum or a minimum 
depending upon the extremum defined. The first derivatives of 
the function at this point are all equal to zero. This is assuming 
that the function is differentiable at all points. 

Fitness Fitness is a measure that transforms the measure of 
performance (i.e. the evaluation of a population member) into 
allocations of reproduction opportunities. 

Generation Gap The generation gap refers to the proportion of the population 
that will get replaced by offspring when mating of individuals is 
carried out. The elite members are inserted as they are into the 
next generation. 

Genetic Algorithm A class of artificial intelligence methods inspired by the 
Darwinian principles of natural selection and survival of the 
fittest. 

Genotype A genotype in the context of a genetic algorithm is a set of 
parameters specifying a particular domain of a problem. This is 
merely decoded and mapped into genes which will contain 
specific values of the domain. 

Hamming Distance The Hamming distance between any two binary strings is the 
count of the number of places in which the two strings differ. 
The calculation is effected using a modulo two addition. d = b1 
EE> b2 will be defined as a Hamming distance between binary 
strings b1 and b2. 

Hamming Weight The Hamming weight of any single binary string is count of the 
number of ones '1 s' contained in the string. 

Mutation Mutation is the systematic toggling of bits in a chromosome to 
alter the state of the chromosome. It is viewed as a source of 
new schemata. Mutation is usually applied with a small 
probability, typically less than 1%. 

Phenotype The finished construction of the genotype, i.e. in chromosomal 
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format is referred to as the phenotype. The phenotype will be a 
chromosome which contains information about the population 
member. It is the phenotype that is evaluated against objective 
functions to determine the performance of the individual and 
hence its fitness. 

An abstraction of a genetic algorithm using only the GA 
statistical properties but no recombination operators or mutation 
of bits. First introduced by Shumeet Saluja and Rich Caruana in 
1994. 

' 
The fundamental building block(s) of genetic representation of 
binary strings. Schemata of different planes reveal different 
planes where solutions of the process have a chance of lying. 

I 

System identification is a process of modeling systems from 
input-output data to determine the mathematical equation 
relating them. It is usually done from modeling which will 
determine the rough form of the model, and the identification 
then identifies the parameters of the model. 

A traditional biological term for a chromosome. 
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This thesis report presents the results of a research work carried out to investigate possible 

applications of genetic algorithms to process control engineering. 

Simulated evolution and stochastic search techniques off er great promise in the automation of 

engineering design[Greene, 1996]. In addition to multiple choices and constraints faced by 

engineering designers, there are more subtle design problems relating to habit, conventional 

wisdom and comprehensibility. Designs of dynamic systems rely mostly on the existence of 

linear control theory developed for such problems which, in most occasions, are not as frequent. 

The quest for simplicity and habit therefore, often compels designers to use linear theory to solve 

problems encountered even if the problem is non-linear and conventional methods of solving it 

exist. This is not because linear systems theory closely models the problem at hand in reality, or 

that the results of such a treatment are optimal, but because the theory is powerful enough to be 

trusted if the problem is formulated to be linear in nature. 

Similarly, good engineering practice depends on concepts of systems theory. These emphasise the 

need for modularity and hierarchies in process structures. Concepts of structured methodologies, 

viz. structured analysis, structured design and structured implementation often surface and are 

emphasised as the bare necessities to enhance and simplify design[Whitten et al, 1989]. This 

again is not because these considerations offer any better performance to trial-and-error 

approaches, but are often concessions to demands of design, maintenance and human 

intelligence. Concessions like these often deny the designer the chance to explore vast spaces of 

the solution of the problem often opting for exploitation of the known rather the exploration of 
the unknown. 

There is no reason at all why engineering designers have to impose such stringent limitations on 

their work. Exploitation coupled with intelligent exploration of the unknown often presents more 

"startling" results, revealing deeper intricacies about systems thought to be well known. It is then 

easier for the an astute designer to follow on from where the exploration left off and exploit a 

much smaller space in the neighborhood of the solution produced by an explorative approach. 

Often the imposition of the constraints on the design is forced by the type of parameter space th~t 

. is to be exploited for solutions. For realistic problems, the cost function, reflecting the goodness 

of the design, is often not a smooth continuous surface found in textbooks of design. It is usually 

a non-linear, discontinuous, non-differentiable surface, full of bumps and pitfalls. In such cases 

therefore, the use of simplified approaches of calculus stops. Non-linear mathematical 

considerations in these cases often are not even a consideration for reasons of habit, difficulty 
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and comprehension[Greene, 1996]. 

In trying to deal with these complications that arise from "ill-conditioned" problems, design has 

often stretched its horizons to tap into other domains of knowledge. Biological metaphors have 

been targeted as possible solution routes, mimicking nature and the functioning of its different 

aspects. Algorithms have been invented to emulate these aspects and apply them to problem 

solving hoping that the results would be as good as in nature. This is of course based on the 

assumption that species get better and better at survival and learning as they adapt more to their 

surroundings. In recent years, neural networks have come to the front as the more promising of 

the biologically metaphoric solutions. These rely on the fact that, like a brain neural network, the 

algorithm can learn from previous errors in order to influence the decisions of the future. Often 

there is no need to know complex mathematical structures defining the problem, but only what 

has been learnt about it in the past. The network will then continue to be trained on the basis of 

historical results until a predetermined termination criterion indicating the depth and goodness of 

its knowledge is reached. 

Fuzzy logic, although not biological in its inception, is another method that has been invented to 

solve complex problems encountered in engineering. One of the strong points of the method is 

that it removes strict boundaries and restrictions in the variables making up the solution space. 

Variables are interpreted not to have discrete digital states, but memberships that could span 

many possible states. This is different to conventional logic that says a variable is either on or off, 

1 or 0, dead or alive, etc. 

This thesis presents and explores an additional method to the list of ·biologically metaphoric 

methods: Genetic Algorithms (GAs). Also to be presented is an abstraction of this method 

known as the Population Based Incremental Learning (PBIL) aimed at simplifying GAs in 

respects to be presented. These two techniques are explored with the aim of investigating their 

application to process control engineering. As a prime objective of this thesis, the following 

question is asked: "Is there room for the genetic algorithm as a tool for tackling control 

engineering problems, and under what conditions can this be done?" 

Very briefly, genetic algorithms are a class of stochastic computational models inspired by the 

Darwinian theory of evolution[Whitley, 1993]. These algorithms encode a potential solution to a 

specific problem on a simple chromosome-like data structure and apply genetic recombination 

operators to a collection of such structures representing multiple trials to the problem 'solution. 

Critical information is preserved in each trial and more recombinations are carried out to search 

possible parameter spaces of the problem. Over many generations, natural populations evolve 

according to the principle of natural selection and survival of the fittest. By recombination and 

selection, genetic algorithms therefore try to mimic this process by "evolving" solutions to the 

real world problems, in the hope that as populations evolve they become better adapted to the 
environment. 

The basic prineiple of genetic algorithms was laid down rigorously by John Holland and his 

students in 1962. It was however only after 1975 that the technique surfaced as a possible 
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optimisation method [Jenning, 1992]. Since then, more research has been carried out by many of 

Holland's students and Holland himself to establish the current theory. 

The basic principle on which Holland's theory is based requires one to understand the concept 

inheritance and genetics. These will be presented in chapter 2 on the fundamentals of GAs. 

With this background in genetics and the problems presented, the objectives of this thesis and the 

study were thus: 

+ To do a complete review of the literature and the algorithm's theory and that of the 

Population Based Incremental Learning (PBIL). 

+ To investigate possible uses of the algorithm to the problem of control system parameter 

identification and that of PI/D controller tuning. 

+ To do an in depth comparison of the uses mentioned above to classical methods based on 

mathematical optimisation and traditional engineering thinking. 

+ To draw conclusions and present the findings as a thesis report. 

Limitations of the work 

Because genetic algorithms are inherently slow in their processing, most of the work was carried 

out under a digital computer simulation environment. For rigorous testing and comparisons 

however, two laboratory model processes were used as tools for the practical applications of the 

theoretical and simulated work. The author, with reference to the existing literature and public 

domain programs, decided to develop and write his own genetic algorithm in C++. This was 

motivated by the need to gain a deeper understanding of the algorithm and its processing powers 

and limitations. The algorithm was therefore not viewed as a black box as will be shown in 

chapters 2 and 3. 

Scope of the research and investigation 

Due to time constraints, the research conducted focused on the application of genetic algorithm to 

system parameter identification and tuning of Pl/D controllers. 

This report will start by presenting a background on genetics and genetic algorithms in chapter 2. 

The chapter will present the algorithm from its historical perspective. It will discuss components 

of the algorithm and their impact on the final GA functioning. Chapter 2 will end by presenting 

the complete algorithm using C++ pseudo code and mathematical representations. In chapter 3 

the topic of advanced genetic algorithms will be presented. This chapter explores in greater depth 

aspects of the algorithm related to its efficiency and its functioning. Issues and components of the 

GA introduced in chapter 2 are investigated in depth to reveal to the reader the underlying details 

of the algorithm. It is important to inspect these issues for several reasons: 

+ Should the algorithm fail to perform to the user's expectations then s/he should know that 

there is an array of possibilities as to why the failure might have been experienced. The 

algorithm, as will be shown in the next chapter, has a complex array of variables to be tuned 

before a problem is solved. Although no guidelines exist as to how these are to be set, it still 

important to have an idea of where to investigate should the performance ~f the algorithm be 
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less than optimal. 

• The presentation aims to explain the role of some of the GA components such as crossover 

and the effect each variation of this property will have on the search process. This 

knowledge, although not crucial for the beginner user, is invaluable for experienced users. 

These are users interested in the function of the algorithm rather than just the array of 

problems of problems that could be solved with it. 

In particular, issues relating to the basis model of the algorithm function, the schema model, and 

the convergence issues will be probed. The ever recurring problem of stagnation and the dilemma 

about the sizing of the population will also be presented and discussed. This chapter presents no 

new algorithms and should rather be viewed as a continuation of chapter 2, tackling more 

technical issues. 

In chapter 4 the first of the control focuses of the algorithm will be presented. This will present 

the problem of system parameter identification. In this chapter mainly the theory and principles 

of the formulation of its use will be presented. This is done to separate the issues of the algorithm 

from the peculiarities of the problems to be tackled. Chapter 5 will investigate this theme when 

viewed from a more practical perspective. In this work, the algorithm used as an estimator, is 

compared to a classical Recursive Least Squares (RLS) estimation method. The two algorithms 

are compared on the basis of the accuracy of the search and the comparative accuracy iri the 

parameters together with the noise handling characteristics. The latter consideration is based on 

the knowledge and literature reviews that the RLS is prone to estimator bias (errors in estimation) 

if the system is subject to noise on the signals used. 

In chapter 6 the question of controller tuning will be investigated. The PI/D controller class will 

be considered since it is the most versatile controller used in mineral's extraction and 

petrochemical industries. Although the control algorithm has been in existence for a long time, 

there are no satisfactory methods for tuning its parameters. Although the Ziegler-Nichols has 

been the most widely used of the classical tuning methods, it has a problem with its use of the 

control signals and makes its use problematic where limits exist on the actuators[Smith, 1972]. 

The Cohen-Coon tuning is considered and applied as a comparative case to the genetic algorithm. 

A framework for tuning the controller based on the limits that the process is to obey, is developed 

in chapter 6 and a practical application of this is reported in chapter 7. The application uses a 

two-tank laboratory model as process emulating slow dynamics of real plants more closely. Three 

considerations were given for tuning the controller to control the level of the second tank. The 

controller was then tuned to realise these objectives. 

In chapter 8 the abstraction of the genetic algorithm, the Population Based Incremental Learning 

(PBIL) is· introduced. The development of this algorithm has been motivated by the problem 

encountered with the setting up of the genetic control parameters to be explained in the next 

chapter. Its development and application to a problem of system parameter identification are 

reported. Chapter 9 presents the conclusions the author draws and closes the report. 
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Chapter 2 
Fundamentals of Genetic Algorithms 

2.1 Introduction 

This chapter is an introduction to the background on genetics and how they relate to genetic 

algorithms. In order to an appreciation of the model of genetic algorithms it is important to have a 

basic understanding of the concept of general genetics. To this end, a brief background on genetics 

is presented. It will be shown how GAs are evolved from this model. This chapter will however not 

attempt to be a tutorial on either general genetics or genetic algorithms themselves, but will rather 

serve as a guide to the link between the two concepts. 

This chapter will start with the fundamentals of the algorithm by briefly presenting the general 

genetics background. The Canonical Genetic Algorithm(CGA), being the direct technical 

descendent of genetics, will then be described in detail. The description will include a history of the 

algorithm and how it was developed. The algorithm itself will then be presented by breaking it up 

into its constituent parts, with each component, and the mechanism of its implementation, being 

discussed. The elements of the algorithm will then be drawn together into a composite GA. A short 

summary of the chapter highlighting the main features, will then be presented. 

2.2 Inheritance: The basis of evolution and successful adaptation 

Whether we are aware of it or not, species have evolved from their original forms of creation to 

what they appear to be in our eyes today. Evolution continues even in our life time, and although it 

is a slow process which is difficult to appreciate, it is occurring and continues to be a mechanism 

through which adaptation occurs. Different species, be they plant or animal, have acquired some 

individuality in our eyes. Consciously or unconsciously then, we have begun to describe them in 

terms of certain of their qualities, such as color, shape, size or activities(Shorrocks, 1978]. 

According to Edward Darwin, all of these species appear to coexist harmoniously in their 

ecosystems. What we are not aware of though, is the fierce competition going on for mere survival. 

Competition could be as visible as between lions and hyenas for scares food, or it could be as 

invisible as between beautiful roses and weeds in a garden. 



Chapter 2 Fundamentals of Genetic Algorithms 

Competition between species can also be between members of the same species. For example, there 

could be inter-species competition for limited food, water, shelter or even mates. It i's thus an 

inevitable fact that members of the species who cannot adapt to changing conditions will eventually 

be "wiped" off and cease to exist. Stronger individuals will survive and multiply better than weaker 

ones. Life then becomes in the words of Darwin "A struggle in which only the fittest will survive to 

reproduce"[Riolo, 1992]. Depending on the composition of the mating parents, offspring can 

become better or worse off than their parents. This is usually a process of· chance since genetically 

an offspring inherits half of its defining characters from one parent and half from the other. Thus, if 

"bad" properties are inherited from both parents, such an offspring will be doomed die. 

It is instructive to examine how nature decides survival patterns of species, that is the decision 

"who shall live and who shall die?" In short, the instinct and ability to survive is passed through 

generations in the genetic codes inherited by off springs from parents. Offspring will inherit some of 

their characters from the fathers, these being encoded in the blue prints of life found in the sperm 

DNA. In the same way, some of its properties are inherited from the mothers and passed through the 

codes found in the ovum. 

Although the sperm and ovum are the most mentally conceivable entities of pro-creation and serve 

as transport media for characters, what defines the character of the individual coming from the 

fusion process is not as obvious. During the mating process, fusion of sperm and ova occurs and 

through this, chromosomes from both parents align to exchange their genetic material, the 

composite being inherited by the offspring. 

Figure 2.1 Chromosome alignment before the exchange of genetic material. The lines show the 

segments which will be exchanged. 

Chromosomes are themselves made of subsections referred to as genes. Each gene has nucleic 

acids, the Deoxy-Ribonucleic acids (DNA) and the Ribonucleic acid (RNA). Each gene through the 

composition of its DNA determines specific features and attributes of an individual. They contain 

important character codes such as sex, height, color of eyes, hair texture, etc about the individual. 

As a feature which will determine the chances of survival, they may contain features such as 

muscle build, skeletal structure. Depending upon the composite features inherited, the off spring 

could be doomed to die due to the inability to adapt or could be the opposite. Inheritance, and hence 

the passing of properties down, progresses through many generations down the line as suggested in 

the figure below an sets the trend for all the other generations. 
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Figure 2.2 The tree of inheritance showing the passing of "blood" from one generation to the next. 

2.3 The Canonical Genetic Algorithm (CGA) 
In this section the fundamentals of genetic algorithms are presented. The presentation focuses on 

the fundamental genetic algorithm model known as the canonical genetic algorithms created by 

John Holland and his research students in 1962. 

2.3.1 The history of the GA 
A parallel situation between inheritance as a means of successful adaptation and the a new 

biological metaphor for problem solving dubbed the genetic algorithm(GA) was created by John 

Holland in 1962. Holland, as a pragmatic researcher, saw the science of genetics as "something to 

be emulated rather than envied"[Holland, 1992]. He noted that learning can occur not only by 

adaptation of a single organism, but also by evolutionary adaptation over many generations of a 

species. Carrying on from his research into machines that could learn, he proposed that learning 

machine's search for a good learning strategy be organised as the breeding of many strategies in a 

population of candidates, rather than as a refinement of a single strategy[Jenning, 1992]. More 

research work was carried out to explore this idea further and it was not until 1975 that it produced 

results and was presented in the publication of the book Adaptation in Natural and Artificial 

Systems. This was to become a standard text on which future research was to be based. The book 

presented the idea in a manner of being a principle and suggested numerous avenues in which the 

knowledge could be used. 

The ground breaking practical application suggestions and work were done and presented by 

Kenneth de Jong, Holland's doctoral student in his thesis. De Jong published numerous articles 

where he proposed that GAs could be used as function optimisers. Ironically though, de Jong was 

also the first to question the effectiveness of the algorithm as optimisers and went to publish a paper 

entitled "Are genetic algorithms function optimisers"[Manner and Manderick, 1992]. Researchers at 

the forefront of GAs today include people such as David Goldberg who has emerged as the most 

celebrated genetic theorist and practitioner. Greffenstete is also an active researcher based in the 

navy service of the United States. 

7 
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2.3.2 The algorithm 
Essentially, genetic algorithms are a class of artificial intelligence methods inspired by the 

Darwinian principles of natural selection and survival of the fittest(Whitley, 1993]. These 

algorithms encode potential solutions to problems in chromosome-like data structures. Genetic 

recombination operators are then applied to these structures so that they evolve them towards 

optimal solutions. In doing this, care is taken to preserve critical information which could be 

contained in the structures. Genetic algorithms are applied mostly to problems of optimisation 

although they have been shown to be equally good in problems of pure search as in pattern 

recognition. For this presentation, it is assumed that the algorithm is to be used in an optimisation 

task. The explanation and the presentation will however also be valid for search tasks. It is assumed 

that a function of several variables/(x1, xi, ... xn) is to be optimised. Without any loss of generality, 

it is further assumed that the function is in fact to be maximised. This task and condition translates 

to the task of finding those values of XJ. x2, •••• Xn such that the function f's peak is located. 

In Holland's terms, the search for a good solution is a search for a particular binary string(Holland, 

1992]. To this end, a genetic algorithm encodes each of the variables in the domain of the function/ 

as a series of binary bit strings. Each variable x1 is encoded as a bit string of length l that maps into a 

domain X; E [Xmim Xmar1· The exact choice of the alphabet used to encode the domain of the 

function has not been clear until recently presented works(Goldberg, 1989a]. 

With the encoding of parameters done, the problem at this stage is viewed simply as a black box 

with a series of digital switches which could either be ON (1) or OFF (0). The aim of the algorithm 

is then to find the optimal settings of the dials (bits in the string) such that the output of the black 

box (function}) is as desired. The use of a black boxt here is deliberate to illustrate that to a large 

extent the nature of the function does not matter to the GA. 

Figure 2.3 Black box view of the function to be optimised. 

At this stage some of the "orthodox" optimisation methods have to be discarded as invalid for the 

sake of the illustration. To continue and justify the application of the algorithm, we make the 

following assumptions about the maximisation problem: 

+ It is assumed that the problem is non-linear and that conventional linear calculus 
optimisation cannot be used. 

+ It is further assumed that there are interactions between variables x1, x2, •••• xn and that no 

t Figure redrawn from Goldberg, Goldberg[ 1989] 
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variable can be treated and solved independently of others. 

• The function is multimodal and has functional discontinuities which, once more, renders the 

use of calculus out of scope. 

• For many problems in science and engineering, the only sure way to find an optimal solution 

is to search through the entire space of all possible solutions. Such an exhaustive search will 

explore the parameter space fully. The disadvantage however, is that the search is of order 

O(i), where l is the length of the bit string. For moderate problems, say the bit string of 30 

bits, which is considered moderate and reasonable in the literature[Whitley, 1993], then the 

parameter space will have 230 (over 1 billion) possibilities. For large problems, we may 

encounter strings of length l = 400, which again, is considered reasonable, and the search 

space will have 2400 possibilities. Exhaustive search therefore is discarded as a possibility 

as well. 

2.3.3 Genetic algorithm implementation 
An implementation of any genetic algorithm begins with a population of randomly generated binary 

string solutions. A population in this context, will simply be a collection of samples encoded as 

possible solutions to the problem. It is parallel therefore, to populations in natural habitat. Each 

probable solution is encoded as a "chromosome" which, when decoded, will present the evaluation 

or fitness of the population member. The evaluation function will present the measure of 

performance of the chromosome with respect to a particular set of parameters. 

2.3.3 a) The chromosome data structure 

A chromosome, and hence a chromosome data structure(in program implementation), is viewed as a 

fundamental building block of any genetic algorithm. Typically, a chromosome will be a 

concatenation of parameter variables from the function to be optimised. The encoding used employs 

the binary alphabet as the most efficient coding scheme[Goldberg, 1989a]. Depending upon the 

problem at hand, a chromosome will be subdivided into a number of genes where each gene will 

represent a particular parameter within the domain of solutions. As an illustration, suppose that for 

a function being optimised, it is decided to encode each of the variables xi as a three digit binary 

code ranging from 000 to 111, mapping them into a real valued domain [Xm;,., Xmarl The 

concatenation of all these encoded variables will simply be an instance of one trial (chromosome) 

that is tried as a solution as illustrated below. 
c::n= _ _!L_ Y I I 

where 8, indicates a 'l' bit and 

CID indicates a 0 bit 

Figure 2.4 Illustration of a 9 bit chromosome containing three genes. 

For the 9 bit chromosome shown in figure 2.4, discrete segments of the string will be extracted and 

interpreted as genes of the chromosome, and hence encoded parameters of a function as shown in 

figure 2.5. 
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Figure 2.5 The encoded chromosome with genes extracted to indicate each of the parameters. 

In general, each of the genes will have its own length, depending on the precision of each of the 

parameters. At this stage, the genes, and thus the chromosome, are raw data that have no 

information in them. To add an information content to a chromosome, it is decoded into an 

unsigned integer (unsigned here is in the context of the complement of binary alphabets) and then 

mapped into a domain representing its desired span. Variables need not have the same domain. Each 

gene will be mapped into a real floating point number 

xi = xmin + xm,-xmin z ....... : ................................................ 2.1 
2 -1 

where Z is a unsigned integer. The domain boundaries, Xmin and Xm= are user defined and form the 

boundaries of search for each variable. The entire chromosome will then be decoded according to 

an iterative decoding equation going through all the genes 

ri (ail> ai2 .••• ail ) Xmin + Xm!IXI - Xmin (~ aij 2j-l J ................ : .................... 2.2 
, 2'-1 f:t ' 

where (au, a;2, ..... ail:.) denotes the i1
h segment of an individual chromosome. 

At this stage the chromosome will contain information about the domain of the variables that are to 

be searched for. In genetic terms, and as it will be used from here onwards, these variables 

containing the information will be referred to as the genotype. Genotypes will be inserted into a 

chromosomal string that will be referred to as the phenotype and evaluated against the objective 

function f(xi, x 2, x 3). The value returned by the evaluating function will be an indication of the 

performance of the phenotype and hence its fitness. 

2.3.3 b) The individual data structure 

The individual data structure is the next level of abstraction aimed at giving meaning to 

chromosomes or phenotypes. It was mentioned that chromosomes themselves will contain raw data 

that has no meaning about the problem. The data structure for the individual incorporates the 

chromosome as it lowest level. On top of that, it keeps a copy of the information contained in the · 

chromosome as it is decoded. To add value to the chromosome, the individual is supplied with the 

information about the boundaries of the chromosomal values. 
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Figure 2.6 An illustration of an individual's data structure. 

An individual, both as a component of the algorithm and an object data structure, is aware of the 

following attributes it has: 

+ Its chromosome: This is a raw piece of data made up of genes which are meaningle~s by 

themselves. The data is a series of bits concatenated into a string which can be manipulated. 

+ ·'value (Property) of each gene: This is the decoded gene that has been mapped into its 

appropriate domain. As a parallel to _general genetics, each value of the· gene could be 

viewed as defining a specific attribute of a member of a species. The actual numerical ,value 

itself defines the extent of the attribute. 

+ Boundaries: These define the extent of the search which is carried out on each gene value. 

Genes need not have similar domains of search. The extent of the boundaries of search for 

each variable is based on empirical observations and knowledge based settings. 

+ Value: This is an individual's value when evaluated against the cost function f For real 

species, this could define the ability of an individual to withstand and survive environmental 

conditions. This property by itself has no meaning until an individual is compared with 

others. 

The genetic search conducted by the algorithm depends as mentioned on its ability to mimic 

evolution and apply the Darwinian principles of survival of the fittest. These evolutionary 

capabilities are built into the GA through operators responsible for revealing new individuals. These 

operators are dubbed crossover and mutation, as in genetics. 

2.3.3 c) Reproduction and crossover 
During the reproductive phase of the GA, individuals are selected from the population and 

recombined using crossover, producing offspring which will constitute the next generation. The 

selection is conducted randomly from within the population in a scheme which will favour better 

individuals. The selection chances of parents for mating depends on their evaluation and fitness. 

The differences between these two notions will be discussed below. 
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2.3.3 d) Evaluation and fitness functions 
The evaluation function, or objective function, provides a measure of performance of a 

chromosome, and thus the individual with respect to a particular set of parameters. For our 

illustrative example, the evaluation or objective function will be the defined as /(xi, x:z, Xn)· When 

the parameters are all found, they will be evaluated for goodness against this function. The fitness 

function on the other hand, transforms the objective function into a reproduction opportunity for 

every individual. It is instructive then to measure the fitness of each individual relative to all the 

others in the population. In canonical genetic algorithms (CGA), fitness is defined as 

J;cxl' X 2 , x3 ) f,. · 
F = ---'--"-:;__..:;;__ = ....!.. ............................................................... 2.3 

I 1 n f 
- Lfk(x.,x2,X3). 
n k=l 

where fi is an evaluation associated with string i and f is the average evaluation of all the strings 

in the population. This fitness will then be used to determine reproductive opportunity of the 

individual. 

The execution of reproduction can be viewed as a two stage process: The first stage involves the 

selection of individuals from an old population into an intermediate population purely on the basis 

of merit(fitness). Good individuals are duplicated as shown below and bad ones are discarded as the 

population size is kept constant. The second stage involves the random mating of individuals in the 

intermediate population to create the next or new generation. 

Strin_g 1 
String 2 -
String 3 -
String 4 

Generation t 

Selection 

~::::- ........ -
-----­ ·-- ---

----........ ---·-- ............... 
Strin 
Strin 

Intermediate 
Generation 

Crossover 

Generation (t+ 1) 

Figure 2.7 A view of genetic reproduction as the creation of an intermediate population and then 

the selection of better individuals for mating to form the next generation. 

Selection itself is a process influenced by several factors, the prime one being the fitness of an 

individual. Logic therefore, dictates that the fittest individual should survive. Several selection 

techniques have been proposed with a view of emphasising fitness as a prime selection factor, and 

yet, be flexible enough to take deviations from norms. Several of these selection techniques are 

presented in the next subsection. 
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2.3.3 e) Selection and selection techniques 
The selection of individuals into the intermediate population is based on their fitness relative to the 

rest of the population. There are a number of ways of performing a selection. It is important to be 

aware of these techniques since the performance of any GA will have them as a variable which will 

influence the outcome of search to a considerable degree. Three of the most popular selection 

techniques are: 

i) Roulette wheel selection, 

ii) stochastic universal sampling and 

iii) remainder stochastic sampling with replacement[Beasley et al, 1993a]. 

i) Roulette wheel selection techniques 

In this technique, a real valued interval, Sum, is determined as either the sum of the individuals 

expected selection probabilities or the sum of the raw fitness values over all the individuals in the 

current population. Individuals are then mapped one-to-one into contiguous intervals in the range 

[O, Sum]. The size of each individual interval corresponds to the fitness value of the associated 

individual. For example, if the figure below the circumference of the roulette wheel is the sum of 

individuals fitness. For this case six individuals are chosen where each will occupy a slice of the pie 

as illustrated below. 

6 

1 
4% 2 

5 
34% 

3 
12% 

4 
4% 

Figure 2.8 Roulette wheel selection illustration. 

To select an individual, the wheel is spun and the individual whose number lands on the number 

selection pointer is selected. This is done by simply generating a random number in the domain [O, 

Sum]. The individual whose segment spans the number is selected. The procedure is repeated until 

the intermediate generation of figure 2.7 is full. 

It should be evident that the roulette wheel selection technique will favour the selection of those 

individuals who have a high degree of fitness. Exceptional performers in the first few generations 

will thus tend to dominate the rest of the generations as the algorithm progresses and hence push the 

selection pressure towards them. As an alternative and an improvement on this basic technique, the 

remainder stochastic sampling is used. 

13 
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ii) Remainder stochastic sampling 
The bias of roulette wheel selection is evident from the previous paragraph. A selection procedure 

that closely matches the expected fitness is the "remainder stochastic sampling". For each string i 
' 

with a fitness ~ greater than 1.0, the integer portion of this number will indicate how many copies 
f 

of the string will be directly placed into the intermediate population. All strings (including those 

with ~ greater than 1.0) then place an additional copy with a probability equal to the fractional 
f 

part of this number. As an example, a string having a fitness ~ = 1.89 will get to place one copy of 
f 

its chromosome in the intermediate population and a probability of 0.89 of placing the next copy. 

Random selection of mates is carried out from the intermediate population generated using any of 

the selection techniques. Mates are mated using genetic recombination operators to produce two 

new individuals which will be inserted into the next generation. There are variations as to how the 

insertion of members into the next generation is carried out. Some techniques employ methods 

where offspring are used to replace parents in the next population[Back and Schwefel, 1994]. Some 

replace the worst members of the population so far. Other techniques employ random replacement. 

These once more have an effect on the outcome of the search for parameters. Having selected the 

mates for recombination, the process of mating itself can be carried out. 

2.3.3 f) Crossover and genetic recombination 
Crossover takes two individuals from the individual population and cuts their chromosome strings 

at a randomly chosen point to produce two "head" segments and two "tail" segments. The tails are 

then swapped over to produce two new full length chromosomes as shown in figure 2.9. In this 

figure, two 12 bit strings are mated by choosing a crossing point at a "randomly" selected to be at 

the seventh bit and then exchanging the genetic material on either side of the point. 

Parent I 

Parent 2 

Kid 1 

Kid2 

Figure 2.9 Illustration of crossover of two chromosomes to produce two new individual 

chromosomes. 

Crossover of chromosomes comes in different variations. The operator is probably the single most 
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important feature of the algorithm which determines the success or failure of the search. In chapter 

three the role of crossover and different types will be discussed in detail to outline their effect. 

2.3.3 g) Types of crossover techniques 

Fundamentally, there are three types of crossover, with numerous variations of these. The three 

most prominent are: 

i) Single Point Crossover, 

ii) two point crossover and 

iii) uniform crossover. 

There have a been a number of schools of thought as to which crossover technique works better 

than the others. The arguments mainly rested on the amount and degree of disruptions crossover 

causes over bit strings[Beasley et al, 1993b ]. Before those issues are discussed in detail, the three 

types of crossover will be presented briefly. 

i) Single point crossover 

Single point crossover is the most fundamental of the three types of crossover techniques. 

Crossover is performed by exchanging genetic material between two chromosomes selected for 

mating. These align next to each other as shown in figure 2.9(repeated as figure 2.10 below). 

I~··-.;; 
C rossoveT Pt 

Figure 2.10 An illustration of the aligned chromosomes showing the chosen crossover point. This 

is before the genetic materials are exchanged between them. 

A crossover point is then selected randomly. This naturally will have to between the beginning of 

each bit string and its end. The chromosome is divided into a "head" and "tail" segment and genetic 

material is exchanged between the two by swapping the tail segments of the parent strings. The 

offspring may or may not look like their original parents depending on the parental make up. 

Figure 2.11 Exchange of genetic materials between two chromosomes in a single point crossover. 

The new individuals inherit parts of parents and thus produce entirely new individuals different to 

the respective parents. 

15 
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ii) Two point crossover 

In two point crossover, chromosomes are viewed as loops rather than linear strings. As far as 

implementation goes, this view does not offer any advantage over linear view used in single point 

crossover. 

Parent I Parent 2 

Figure 2.12 Loop view of a chromosome showing two crossover points. 

To exchange a segment from one loop with that of the another loop requires the selection of two 

cut-off or crossover points, C1 and C2• Genetic material between the two crossover points are 

swapped between the two strings to produce offspring as in the case of single point crossover. Two 

point crossover is considered to be a superset of single point and is thus said to be more general. 

The illustration of two point crossover exchange of material between two chromosomes can be seen 

in the next figure. 

Kid I Kid 2 

Inserted segrnenl lnscrled segment 

Figure 2.13 Exchange of genetic material between two chromosomes in a two point crossover 

technique. 

More variations of the two above mentioned crossovers are also applied. Multi-point crossover, 

with even and odd selection points, is the ultimate in generality in the crossover used. 

iii) Uniform crossover 

Uniform crossover is a radical departure from the two general crossover techniques presented so 

far. Each gene is created by copying corresponding 'ls' and 'Os' from either parent depending on 

some crossover mask generated[Syswerda, 1989]. The technique essentially works as follows: 

Two chromosomes align for crossover. A random binary mask is generated as a crossover mask. For 

each bit in the crossover mask, where there is a '1', a bit inherited from parent #1, where there is a 

'O' a bit is inherited from parent #2, with a pointer running through the mask until it is depleted. 

This is done for the generation of a single offspring. To generate a second offspring, the parents are 

exchanged and a new crossover mask is generated and the procedure is repeated once more. This 

will then generate the second offspring. To clarify the algorithm, an illustration of uniform 
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crossover is shown in the figure below. 

Random Mask 

Parent 1 

Generated Offspring 
i i i 

Parent 2 

Figure 2.14 Illustration of uniform crossover for the creation of a single offspring with a 

randomly generated mask. 

It can thus be seen that uniform crossover causes the offspring to inherit bits from parents 

independent of any other bit[Whitley, 1993]. There is thus no linkage between each of the offspring 

bits due to this independent inheritance. In chapter 3, it will be argued that this technique is in fact 

the most disruptive of any order of any population of samples. 

Arguments as to which technique is the best still continue[Beasley et al, 1993b]. The basis thereof, 

seems to be the question of which crossover technique will increase the entropyt of the system 

being optimised. There is a need to maintain order in a search so that the algorithm is guided 

systematically towards the most optimal solutions, whilst maintaining sufficient diversity of the 

samples. 

2.3.3 h) Mutation 
Mutation in general genetics is viewed as a source of new chromosomes[Srb and Owen, 1952]. The 

operation alters the state of a gene by toggling each bit in the chromosome with a small probability 

(typically less than 1 % probability) as shown in figure 2.15. After crossover is applied and two new 

offspring are produced, each will then be mutated with a small pre-defined probability. If the 

mutation rate is set relatively high (> 5%), then there usually is a danger that a GA will never 

converge. Too low a rate however, can result in the stagnation of the search a local optima. The 

choice of the mutation rate therefore, has an overwhelming outcome on the result of the search. 

Figure 2.15 Application of mutation to a chromosome. 

Off spring produced by one of the crossover techniques and the application of mutation are inserted 

into the population by some replacement scheme as alluded to before. Replacement schemes are 

usually not too significant and will thus not be discussed. 

t An entropy of any system is defined as a measure of disorder of that system. A term most used in thermodynamics, it 
defined the orderedness of molecules in a gas and gassified liquids as their temperatures are varied. 
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The above section described individual components of the algorithm from the perspective of their 

mechanics. What has to be done therefore is the presentation of the complete algorithm that makes 

use of all the above mentioned properties. The next section presents a complete genetic algorithm 

and its mathematical implementation. To aid in the construction, a C++ pseudo code would be used 

in the implementation. 

2.4 The algorithm implementation 

The previous sections of this chapter presented the bare bones of each of the components of the 

genetic algorithm and highlighted the differences between "dialects" of the same operators. In this 

section a unifying view showing how these components are combined to formulate the complete 

genetic algorithm is presented. 

2.4.1 The genetic algorithm 
The basis of the genetic algorithms, in particular the canonical genetic algorithm, is based on the 

following fundamental sequence of operations[Filho et al, 1995]: 

i) Creation of the population of strings. 

ii) The evaluation of each string and hence the entire population. 

iii) The selection of the best string to serve as a mile stone which all the other members have to · 

try to achieve. 

iv) Genetic manipulation of the current population to create the next generation of strings. 

The figure below shows these four operations using biologically inspired GA terminology. In each 

cycle, a new generation of possible solutions for a given problem is produced. 

Reproduction 

Figure 2.16 The cycle of evolution in the genetic algorithm. 

At the first stage, an initial population of potential solutions is created as a starting point of the 

search process. Each member of this population is encoded into a bit string to be manipulated as 

described before. These strings have an ability to be stripped of their genes which will be mapped 

into appropriate domains and then evaluated against the objective function. 

The performance of each of the members is then evaluated with respect to the cost function of the 

process. Based on the performance of each individual, mates are chosen for manipulation by 
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crossover and mutation to form the next generation of solutions. The algorithm repeats this cycle 

until some measure of convergence, determining the goodness of the search, defined by the user, 

has been satisfied. 

A mathematical model of the algorithm is shown below with the computer implementation 

following it immediately. 

Computer implementation algorithm 

t = O; 
initialise the population: P(O) = { a1(0), a2(0), .... all(O)} E r 

where I= {0,1}1
; 

evaluate the population: <1>(0) = { <p(a1(0)), <p(a2(0)), .... <p(a"(O))} 
where <I> is the evaluated population and <p the objective functions 

while(t(P(t)) :;r: true){ 
select P(t+ 1) = s(P( t)) 
perform recombination (crossover): a'kft) = rrpcJ (P(t)) Ve {1,2, .... µ} 
perform mutation: a"k (t) = m'fpmJ (a.it)) Ve {1,2, .... µ} 

evaluate: p'(t) = {a"i(t), a"it), ..... , a"J : 
<l>(t) = {<p(a"i(t)), <p(a"i(t)), .... <p(a"Jt))} 

t=t+l; 

The above algorithm captures the essence of the implementation of the algorithm. It is translated 

into simple computer code below. 

Pascal/C++ pseudo code of the application of the genetic algorithm 

Begin: t = O; 

END. 

generate initial population. 

Compute the value and fitness of each individual. 

Whilst not done{ 

} 

perform pre-selection - form intermediate population. 

for(i = O; i <population; i = i+2){ 

} 

*select two individuals from old generation for mating. 

*recombine the two individuals with probability Pc to produce 2 offspring. 

*mutate the offspring with probability Pm· 

*compute fitness of the two offspring . 

. *insert them into new population. 

if (population has converged) END. 

A complete look at how the implementation of the separate genetic data structures is done is 

presented in appendix A. 
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For the proper functioning of the genetic algorithm process, few but vital decisions have to made on 

the operators that are to be used. Of all the different types of genetic operators highlighted, in each 

category, only one can be applied at a time. The user has to decide on the type of crossover to be 

used, the amount, i.e. how frequent crossing should occur within a population, the selection 

technique, the amount of mutation and many others. Also crucial, is the size of the population used. 

Hence, a genetic algorithm is essentially a multivariable processing model whose goodness, if 

quantifiable, can be defined by the incomplete function 

GA = f (population_size, crossover_type, crossover_ rate, selection_type, mutation_ rate, ....... ) 

These variables, it will be shown in the next chapter, have a profound effect on the success of the 

algorithm and their selection has to be guided somehow by an intimate knowledge of the type of the 

GA used and the problem being solved. 

2.5 Summary of important points 

This chapter presented the fundamentals of genetic algorithms from the perspective of general 

genetics and some of the functions of the algorithm. Careful examination of the data structures, 

procedures and details necessary to implement a simple canonical GA were presented. 

The primary data structure of the algorithm, the chromosome, is a simple string of concatenated 

parameters referred to as genes. The canonical GA formulation uses two members of the population 

to create two offspring which are inserted into the next population and form the basis of the next 

generation. The primary work of the algorithm is performed through three routines: selection, 

crossover and mutation. Selection performs simple stochastic selection though any of the selection 

choices the user makes. Crossover and mutation are responsible for revealing new strings to be 

sampled and tested for fitness and objection. 

In the next chapter, an in depth consideration of the effect of some of the operators of the algorithm 

will be taken. This will focus on the workings of the algorithm and the convergence analysis. Also 

to be tackled is the question of population sizing and stagnation of the algorithm when performing 

optimisations. 
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Chapter 3 
Advanced Genetic Algorithms 

3.1 Introduction 

In chapter 2 of this report the fundamentals of genetic algorithms were introduced. Several 

aspects relating to the components of the algorithm were discussed at length and different 

variations were presented. Different choices of operators such as crossover and selection 

were introduced and it was mentioned that only one of the operators can be used at a time. 

What remained an important .and an unexplored factor in the goodness of search though, was 

the influence of different operators used in the algorithm and the proportion of their usage. 

For example, the algorithm's outcome will depend to some extent on the type of crossover 

used and the rate at which it is applied. Care should thus be taken when selecting both the 

type(single point, two-point, etc) and the rate of application(0.0 - 1.0) of this operator. Also, 

factors such as the population size should also be considered as strong variables influencing 

the outcome. 

This chapter discusses these operators and their variations in detail. In particular, an attempt 

will be made to shed some light about the goodness of the genetic operators and the effect 

which the quantities have on the search process. It is hoped that at the end of the treatment of 

the subject, there will be full justification of the conclusions to be made in this work, these 

being based on the in depth probing of the algorithm. This chapter will look at the following 

functional variables of a typical genetic algorithm: 

i) The subject of the working of the algorithm is explored in section 3.2. In this section, 

the fundamental schema model of John Holland will be presented as a basis for 

explaining the modeling and processing of a genetic algorithm. It will be shown that 

in simple terms, a genetic algorithm is in fact a parallel hyperplane sampler. 

ii) The subject of convergence of the genetic algorithm will be discussed in section 3.3. 

A proof of non convergence formulated by the author with reference material in the 

published literature will be presented. It will show that a canonical genetic algorithm 

(CGA) as formulated, will never converge to a globally optimal solution. Several 

authors, particularly Gunther[Gunther, 1994] and Yao [Yao, 1994], have shown 

ho,wever, that variations of the GA will converge to global optima. The proof uses a 

linear algebra model of population dynamics known as the Markov chain model. A 
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brief discussion of the model itself will be presented. 

iii) In section 3.4 the question of population sizing for serial genetic algorithms will be 

presented. The discussion will look at the sizing question with a view of determining 

the optimal population size that leads to an optimal performance of the algorithm. 

iv) Section 3.5 will discuss the question of the stagnation of the algorithm. Several 

factors from facts which will already have been discussed will be highlighted and 

their effect on the stagnation discussed. Several mechanisms on how research has 

attempted to tackle this problem will be presented. No in depth discussion of any 

particular technique will be done but rather a synoptic views of each subject will be 

presented. 

3.2 The workings of a genetic algorithm: The schema model 
Genetic algorithms at their inception were a matter of an algorithmic principle made up of 

intuitive feelings of researchers. The algorithm was to be a model which was based on the 

principles of evolution which were well understood. Holland as an academic and a 

researcher, was the first to produce rigorous mathematical model and treatment of the 

subject[Holland, 1975]. He(Holland) proposed what he termed a schema model of the 

working of the algorithm. In this section the basis of Holland's model are presented and 

discussed. 

3.2.1 The schema model of genetic algorithms 
The schema model and theory could best be articulated by studying a simple cube model 

shown below. 

010 

000 
001 

Figure 3.1 A cube model of genetic algorithms showing several faces sampled by same 

strings. 

Each of the faces of the cube can be represented by the face vertices. Looking at the front 

plane, it is seen that it is spanned by the strings 000, 001, 011 and 010 where these are Gray 

coded bit representations. Common to these four strings, is a 'O' in the first bit position of 

each of the them. Thus, the plane can generally be represented by the bit string 0## where # 

is a "don't care" as used in digital systems. The replacement of any "don't care" by a valid 

binary digit will yield an appropriate vertex member of the plane. This plane representation 

using "don't cares" is known as the schema representation of the hyperplane. 
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From observations, it should be noted that the top left vertex of the front face of the cube is 

also a member of the left hand plane. Therefore, 010 not only samples the front face of the 

cube, but also the left and the top side. One string will therefore be representative of three 

faces of the plane depending on the schema used. The representations 

0##, #1#, ##0 

all include the vertex 010 as their member. The representation of the problem using binary 

codes therefore spreads a single bit string across many planes that it could represent. This 

property of a string being a member of different hyperplanes is the one which ensures the 

completeness of the search conducted by the algorithm. Holland termed this representation 

implicit parallelism since the processing done is logically parallel although the structures 

worked with are serial in nature[Dorigo and Bertoni, 1993]. 

3.2.2 The role of cross in revealing new planes 
In the context of the schema representation of the hyperplanes, crossover has a special role of 

revealing new structures which may not be encapsulated by schema in a current population. 

There is a subtlety in the role that crossover plays in the search though. Although it has a role 

of revealing new planes which may not have been explored before, crossover can also drive 

the search away from regions which carry promising results. This is the disadvantage of some 

of the different crossover techniques and the differences will be highlighted here. 

Consider a string 11000110 which could be representative of the plane within the schema 

11######. If this string is crossed with a string 00101001 being a member of the plane 

00###### and the crossover point is chosen as the second point, using single point crossover, 

the offspring will be of the forms 

10101001 which belongs to the schemata 1 ####### or 10###### and 

01000110 which belongs to the schemata 0####### or 01 ######. 

It should thus be evident from the simple illustration that both the original planes and their 

schema will be lost irrecoverably due to the disruptive nature of crossover. Crossover has 

thus sent the search into different planes altogether. If the original planes are of importance, 

the only way to preserve them is to pass them into the next generation unchanged. This 

passing of significant strings into next generations without change is known as elitism and 

defines the generation gap. The generation gap itself, is the percentage of the population that 

will be carried over unchanged and plays a significant part in the algorithm for two reasons: 

L The biological model on which the algorithm is based, has this property interwoven 

into its fiber. Parents and grandparents co-exist with their off spring and pass on to 

them values and norms of life, thus maintaining continuity in human trends. 

ii. The capturing of the strings and passing them forward unchanged ensures a proper 

mixing of the population and thus keeps the influence of good strings going on. 
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The influence of each of the crossover techniques should therefore become eminent. Two 

point crossover is likely to be much more disruptive than one point. Uniform crossover with 

its action described (in section 2.3.3) inherits each of the bits independently from each parent 

since it does not use the swapping mechanism of the two variations. It is thus the most 

disruptive of all crossovers[Syswerda, 1989] The choice of the crossover technique has thus a 

profound effect on the outcome of the search or optimisation task and thus the interest. 

Modifications have been proposed by Greffenstete and Yao and Sethares independently that 

elitism is the best form of maintaining monotony in the search. Although Greffenstete's work 

is empirical[Greffenstete, 1986], Yao and Sethares presented a statistical proof showing that 

elitism will improve the GA and result in improved convergence[Yao and Sethares, 1994]. 

Which crossover technigue is ultimately chosen should be based on the cost-benefit analysis 

which each will deliver. More formally though, according to the schema theory[Whitley, 

1993], if M(H, t) is the number of strings sampling a hyperplane Hat time t, then the number 

of strings sampling the hyperplane in the intermediate population is given by 

M(H, intermediate)= M(H, t) f (H, t) ........................................... 3.1 
f 

To calculate M(H, t+ 1), the number of strings sampling H in the next generation, then the 

effects of crossover have to be taken into consideration. Usually, crossover is applied with a 

probability Pc, making the sampling of the hyperplane Hin the next sample to be given by 

f(H,t) f(H,t) . 
M(H,t + 1) = (1- pJM(H,t) + pJM(H,t) (I-losses)+ gains] .... 3.2 

f f 

The losses and gains in the above equation refer to those losses and gains which result from 

the disruption and new and better discoveries made by a crossover technique. They are 

numerical counts of the strings M lost and gained in sampling the hyperplane H at any 

instant. Thus, if the string gains are more than the losses, then the crossover could be 

considered to be worth the effort and would then have the revealing effect. There haven't 

been any in depth studies conducted on the subject of the crossover gains and losses. From 

empirical studies conducted, there is a strong lobby that aims at projecting uniform crossover 

as the best of the techniques[Syswerda, 1989]. In practice however, many of the public 

domain genetic algorithm utilities have increasingly used one point crossover as a standard. 

This again, could be encouraged by the fact that empirically, this crossover seems to incur 

fewer losses that all the other kinds. The amount of gains however are still unknown 

theoretical! y. 
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3.3 Convergence analysis of a canonical genetic algorithm(CGA) 

There has been a continued concern as to whether canonical genetic algorithms can be used 

for static function optimisation. Although De Jong [De Jong, 1988] was the first to show that 

GAs can be used for optimisation, he was also the first to question their effectiveness in so 

far as converging to a global solution of the optimisation task is concemed[Manner and 

Manderick, 1992]. There have been numerous analyses of GAs and their convergence, but 

none have tackled the question of convergence properties of the CGA. In this work, an 

attempt is made to show that indeed a CGA will never converge to a global optima, but 

modified versions will. 

In this thesis the convergence properties will be analysed in terms of the Markov chain model 

of population dynamics. Before this model can be applied properly, it is important to 

understand how the transformation of individuals from one state to another occurs. It is easier 

to visualise this transition by looking at a simple two variable problem, with variables 

represented in a contour plane, that is to be optimised by a GA. 
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Figure 3.2 Contour map depicting the parameters to be optimised and their state space. 

Each point along the contour map can be viewed as a state that an individual within the 

population can occur in. The entire plain can be viewed as a series of states, or more formally 

discrete random processes Zn= {Z0, Z1, ••••• }constituting a state space S of the process. Zn= 

r would therefore mean that after n steps, the process has attained stater [Jeffrey, 1990]. The 

movement between different states within the space S is probabilistic and is denoted by a 

transition probability tii . This is the probability of effecting the transformation from states i 

E S to a state j E S 
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Figure 3.3 A depiction of the transition from a state i to a state j with a transformation 

probability tij. 
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In the context of genetic algorithms, the transition that each member of the population makes 

between states will be a function determined by the application of mutation, the type of 

selection used and the gains and losses made from the crossover. In the next section, the 

composition of this transformation probability and formal Markov chain models are 

presented. This will lead to the development of the proof of non-convergence of the 

canonical genetic algorithm. 

The proof will be divided into two distinct parts: 

+ First, it will be shown how a transitional stochastic matrix is set up usmg the 

evolution operators of the genetic algorithm. 

+ Once this stochastic transition matrix has been set up, properties of stochastic 

matrices will be defined briefly and used to prove its convergence. 

3.3.1 Markov chains 
Concept Illustrating Example 
Markov chains arise naturally in biology, psychology, economics and other sciences[Fraleigh 

and Beauregard, 1990]. They are an important application of linear algebra and of 

probability. The model analyses transitions that populations undergo in their distribution 

within some pre-defined states. For instance, a population can be divided into classes 

according to income: poor, middle class and rich. For the purpose of this analysis, a 

population will be divided into states and not classes. Depending upon the economic and 

other factors, population members can make transitions between different states in a defined 

period. Some members may move from the poor state to become middle class, some middle 

class members will become rich while other will get poor, etc. The dynamics of these trends 

can be neatly encapsulated into a single matrix which will define the state transition of each 

of the state members. 

As an example, suppose that the following states are as defined above( completely arbitrary): 

State 1 : poor 

State 2: middle class 

State 3: rich 

Suppose further, that over a period of Y years, the following movements occur: 

Of the poor people, 19 % become middle class and 1 % rich. 

Of the middle class, 15 % become poor and 10% rich 

Of the rich, 5% become poor and 30 % middle class. 

A transition matrix Tis then formulated to capture these population dynamics. Each entry tij 

in the transition matrix T will represent the proportion of the population moving from state i 
to state j. T can thus be formulated as follows: 
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Poor Middle Rich 

.80 .15 .05 Poor 
T= ....................................................... 3.3 

.19 .75 .30 Middle 

.01 .10 .65 Rich 

It should be noted that each column of the transitional matrix will have a sum equal to 1 since 

this sum reflects the movement of the e~tire population for the state listed at the top matrix 

column. 

A row distribution vector p= [p1 p2 p3 ] which lists the distribution of the population 

among the states at the beginning of the chosen time frame is introduced. The entries of this 

vector must be non-negative and have to add up to 1, with each entry indicating the fraction 

of the population that is in that particular state. After the population transition, this vector 

will be updated to determine the spread of the population in the next generation amongst 

states. The updating of this vector is done through its multiplication by the transition matrix 

T. Therefore, if p0 was the distribution at time t = 0, then after Y years the distribution vector 

will be updated to 

or in detail 

[ 
(/+!) 

P1 
{

.80 

p~ .19 

.01 

.15 .05] . 

:~~ :~~ .................. 3.4 

The population will now be distributed amongst the possible states according to the entries of 

the vector p<1
+

1>. If the transition in the next Y years is the same, another transition matrix will 

be formulated and the next distribution of the population amongst the states worked out. This 

chain of transition matrices determining the population distribution in the next time span is 

called the Markov chain. A formal definition of the transition matrix of the Markov chain is 

given next. 

Definition: Transition matrix of a Markov chain (Kobayashi, 1981) 

•A transition matrix for an n-state Markov chain is an n x n matrix in which all the entries 

are non-negative and in which the sum of entries in each column is 1. 

In genetic algorithms, we view the transition that each population member makes as being 

bounded and guided by three primary genetic operators: 

+ Selection into the next generation, 

+ mutation of chromosomes and 

+ Crossover of population members to give new offspring. 

The contribution of each of these operators will be discussed in the next three sections 
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according to the order above. It should be noted that each of them has a probabilistic chance 

of bringing about the transition of a group of individual from one state to another. Although 

our rough illustration of figure 3.1 showed the movement in the contour planes of two decode 

variables A and B, the analysis in this work amounts to the re-mapping of A and B back into 

the domain of digital strings. 

3.3.2 Population transition through selection into the next generation 
When using proportional selection, the probability that an individual will be selected from a 

population (bi. b2, b3, ••• bn) to take part in reproduction is given by 

f(b;) 
P {selection of bi} = > 0 ......................................................... 3 .5 

n 

Itch) 
j=I 

Hence, each of the population members will have a given probability to make a transition 

from one functional state to another. It should be noted though that selection does not lead to 

the movement of the current members per se into different regions, but rather the movement 

of the offspring produced. The selection of better individuals by this probability however can 

be considered to have a good chance of making movement of the off spring into better 

regions. Since selection in itself is not the end, there will even be a chance of good 

individuals producing movement into weaker region's through offspring movement. The 

essence of the movement of members through selection between different states is captured 

by a selection transition matrix S. If the evaluation function is considered to have n discrete 

states, then the population movement from one state to another could be summarised by the 

matrix 
State_ 1 State - 2 State - n 

S II S12 S In State - 1 

s 21 s 22 State_ 2 ........................ 3.6 
S= 

S nl S n2 S nn State n 

where each entry Sij details the proportion of movement from states i to j. 

3.3.3 Population transition through mutation of chromosomes 
The application of mutation will transform a bit string bi from one state (location in the 

contour plane) to another bi' with a pre-defined probability Pm· For example, to transform a 

string 0000 to 1011 using mutation will occur with a probability 

P{bi -7b/} =Pm (1-pm) Pm Pm······················································3.7 
=pmk (1-pm)l-k 

where it can be noted that k is simply the Hamming distance between the initial string and the 
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final one and l is the length of the original and final bit strings. In general, the probability that 

mutation will transform a chromosome from one state to another is given by 

' d(b.(f)b'.) 1-d(b·ffib'.) 0 3 8 
P{ bi ~ bi} = pm ' ' (1- pm) ' ' > ················································ . 

where d(bi$b.i) denotes the computation of the Hamming distance between bi and b'i 

[Stremler, ]. This transformation will usually be relatively small but still significant. As in 

the case of selection movement of members between states, the transformation caused by 

mutation can be captured by a mutation transition matrix M. 

State_l State_2 State_ n 

M= 
11?.it 

State_l 

State 2 
- .......................... 3.9 

State n 

3.3.4 Population transition through crossover of chromosomes 
Transformations caused by crossover on the other hand, are not state transforming as in the 

sense of mutation, but rather, the sampling of different hyperplanes in the solution space. If 

we assume, according to the schema theory, that M(H, t) is the number of strings sampling a 

hyperplane H at time t, then the number of strings sampling the hyperplane in the 

intermediate population is given by 

M(H, intermediate)= M(H, t) f(1!_, t) ......................................... 3.10 
. f . 

To calculate M(H, t+ 1), the number of strings sampling H in the next generation, then the 

effects of crossover have to be considered. Usually crossover is applied with a probability Pc 
making the sampling of the hyperplane H in the next sample to be given by 

H H 
J(H,t) J(H,t) . 

M( ,t+l)=(l-pJM( ,t) +pJM(H,t) · (1-losses)+gazns] .... 3.11 
f f 

Although this is not the end, the above equation spells out the effect of crossover in the 

transformation of population individuals. Another transition matrix, the crossover transition 

matrix C can be formulated to capture the effects of crossover. This will be given by the 

matrix of the form 

State_! State_2 State_ n 

State_! 

C= 
State_2 ..................... 3.12 

State n 
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Each of the transition matrices derived above, the selection transition matrix S, mutation 

transition matrix M and the crossover transition matrix C, are all stochastic matrices since 

the movement from one state to the other through a genetic operator is probabilistic. Since all 

the operators will be presented in a typical GA, it should thus be evident that the transition 

made by an individual from one state to another will be a collective influence of all S, Mand 

C transition matrices. More specifically though, the movement made by a group of 

population members from state i to state j can be thought of as collectively being influenced 

by sii, mii and cii· In matrix terms, a Markov chain transition matrix will therefore be product 

of all the transition matrices above 

T = SMC ........................................................................ 3.13 

The development of the genetic transition matrix T is done from the perspective of the 

genetic algorithm operators and their transformational effect. The transition matrix T is used 

in the proof of convergence of stochastic matrices to show that as it stands it will never 

converge. The proof of convergence of these matrices as presented by Gunther will be used 

to complete this convergence analysis. 

Once more if the vector p is taken to represent the distribution amongst the states that 

individuals can occupy, the same distribution as before can be set up 

p(t+I) =pt T 

p<t+I) = pt (SMC) 

with p representing the final distribution and T the transition from one state to the other. The 

stochastic nature of the matrix T and its conformity to all the properties of such matrices is 

shown and proved in Gunther and will thus not be repeated here. 

With this information about the transitions carried in T and final states represented in p, and 

all the properties of stochastic matrices, the following theorem is stated from Iosifescu. 

Theorem (losifescu) 

Let T be a primitive stochastic matrix. Then r converges as k ~ oo to a positive stable 

stochastic matrix r = p- l'where p- = p0 limTk = p0T- has nonzero entries and is 
k-+-

unique regardless of the initial distribution and 1 is a stable matrix. 

where the following definitions of the stochastic matrix Tare made. 

Definition 1 

1. A square matrix Tis said to be positive (T> 0) if aij > 0 for all i, j. 

2. A positive definite matrix A is said to be primitive if there exists a k e K such that Ak is 

positive. 

3. A stochastic matrix A is said to stable if it has identical rows. 
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Although the initial theorem on stochastic matrices shows that the transition matrix T and the 

distribution vector p will converge as more trials are being taken, there could still be doubt as 

to whether it will converge to a global solution. Empirical results do support the above 

theorem, what is needed is to find the value to which the population transition matrix T and 

hence the distribution vector p will converge to. To do this we will need to have a precise 

definition of what convergence is in the context of population dynamics and genetic 

algorithms. The following definition is made to that effect. 

Definition 2 

Suppose Zr= max{f(rrfr!r (i)) J k = 1, 2, ..... n} is a sequence of random variables, representing 

the best fitness when the function/ is optimised, within each population represented by state i 

of p at step t. A genetic algorithm converges to the global optimum if and only if 

limP{Zr= f*}=l 

where/ = max {.f{b) I b E B } is the global optimum of the problem and B is the set of binary 

strings used as test population by the genetic algorithm .. 

This above definition thus leads to the following theorem to prove that a canonical genetic 

algorithm will never converge to a global optimum. 

Theorem 2 (Gunther, p5) 

The CGA with parameter transition as encapsulated by the transition matrix T as defined by 

the product of the genetic operator stochastic matrices does not converge to the global 

optimum. 

Proof: 

Let i be any population state with the maximum value the maximum value Zr= max{f(rrf11r (i)) 

I k = 1, 2, ..... n} < / and p1; the probability that the GA is in such a state at step t. Clearly 

then, the probability that the maximum value is not equal to the global maximum, P{Zr * /J 
~pr;, implies that P{Zr = /} ~ 1-pr;. From theorem 1 the probability that the CGA is in state i 

converges to pt> 0. Consequently then lim P{Zt = J*}<l-p'( < 1 

so the condition of convergence as per definition 2 is not fulfilled. 

This is valid when looking at the convergence within one state. Since convergence, as 

defined, will not be attained as more trials are taken, the entire vector will thus not converge 

to the optimal. 

The CGA does not reflect the practice of genetic researchers and users. It is well known that 

to induce convergence to the global optimum of the solution, the best solution of the previous 

generation is carried unchanged into the next generation, thus applying elitism. 

Gunther goes on to prove that as much as the CGA will not converge to a global optimum of 
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the function, modified versions (versions using elitism and other algorithmic fixes) will 

indeed do. The basis of his proof rests on the same argument made by the author about the 

use of Markov chains. It however, uses modification to the Markov chain by allowing carry 

over from past generation and let them have influence on the new ones. The probability of 

carrying best solution from the previous generation is always set to 1 if elitism is used. What 

varies is the percentage of the previous population that is to carried over. This proportion of 

the population to be carried over is formally referred to as the generation gap of the GA and 

is usually defined as one of the GA tuning parameters. The proof of modified GAs can be 

found in the appropriate reference. 

3.4 Population sizing for serial genetic algorithms 

The genetic algorithm has been discussed with reference to the issues of its functionality and 

the quality of search that it conducts. The concept of schemata forms a powerful cornerstone 

model on which the entire algorithm is based. Logically however, not every single plane we 

can think of will be covered by the pool of individuals chosen. The number of individuals and 

their diversity impacts directly on the pool of schemata the algorithm will have at its disposal. 

To this effect, it ·is important to investigate the question of the population sizing and its 

reference to the schema theory. 

3.4.1 Setting the population size 
Choosing the population size in a GA is fundamental decision faced by all GA users. On the 

other hand, if the population size is too small, then the algorithm will converge too quickly 

with insufficient processing of too few schemata. On the other hand, a population with too 

many individuals results in long delays for significant improvements to occur[Goldberg, 

1989b]. The population will typically be too large to get enough mixing of the schema per 

unit of computational time. A balance between these two extremes is therefore important to 

establish. 

The decision about the population sizing stems from the development of the figure of merit 

used for optimising the population size itself. First, the number of schemata contained in a 

randomly generated population has to be known. Goldberg [Goldberg, 1985) performed this 

calculation and it is presented below. 

To count the number of expected unique schemata in a population, consider a probability of 

having a particular schema of ordert n in a population of size m when the bit positions are 

equally likely (b1 = b0 = 0.5). The probability of a single match may be calculated as 

P(single match of a schema of order n) = (~)° 

where n is the number of fixed bits( order) in the schema. 

The probability of having no match of a single schema of order n in a population of m 

t The order of a schemata is defined as the number of entries which are not "don't cares" in a bit string. 
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individuals is calculated and given by 

P( O(B) .. n} = [1-GJ r .......................................... 3.14 
where B is the bit string and O(B) is the order of B. The probability that there will be at least 

one successful match or more of the type of schema mentioned above can be calculated form 

the above probability and shown to be 

P(O(B) =I or more)= 1-[1-GJ r ............................ 3.15 

Using the binomial combinatorial theory it can be shown that for every string of length l with 

n fixed bits forming the order of the schema, then there are ( ~) such combinations to fonn 

schema. With this information Goldberg showed that the expected number of schemata in a 

population of m individuals over a string of length l may be calculated using the following 

sum 

S(m,l) = t,G};{ 1-[1-(~);J"} ....................................... .3.16 
The function of equation 3.16 is called the schema function and is synonymous with the 

function of equation 3.2. This function however, gives the exact values of the schemata 

which could be expected in a population of m individuals and does not map the values 

probabilistically as in equation 3.2. This function has asymptotes it converges to, both as the 

function of the population size m and the string length l. It can be shown [Goldberg, 1989] 
that with large population 

!~ S(m,l) = !~tGJz; {1-[1-Grr} ~ 3' ............................. .3.17 
which is the maximum possible for a binary string of length l . 

For diminishing values of the population size, the schema function limit tends to the 

following value 

IimS(m,l) = lim ±(1.)2j{1-[1-(.!.)j]m}-7 m2 1 
••••••••••••••••••••••••••••••••••••••••• 3.18 

m~O m~O j=O j 2 

The above limits establish the upper and lower boundaries on the population size. It is 

however not a clear cut situation how large a population has to be in practical terms for the 

limiting case to take effect or how small it has to be. 

Although equation 3.17 and 3.18 establish the limiting cases in terms of schemata count and 

population sizing, it is still difficult to establish exactly how large a population has to be 

made for in between situations, letting alone what sizes limits define the in between sizing. 

Goldberg has proposed figure of merit to guide in the selection of the population sizes in 

these cases. The application of this has however not proved to be as popular within the GA 

community[intemet communications, comp.ai.genetic]. His work however, does answer the 
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important question about the limiting cases which are more important. It should thus be clear 

that small populations do not offer much in terms of the quantity of the schema processed 

where large population offer the opposite. Values in between will remain a mystery to be 

solved by the user of the algorithm. 

3.5 Issues on stagnation of the algorithm 

One of the most recurrent problems encountered with genetic algorithm running is the 

problem of premature convergence of the search. Premature convergence is symptomatic to 

the stagnation on local extrema and is a function of the settings of the algorithm parameters. 

There are three basic culprits which when unchecked, would lead to the algorithm stalling. 

i) The size of the population used, 

ii) selection type and selection pressured and 

iii) Crossover and mutation operator settings 

In the following subsections the contribution of each of the operators is discussed. 

3.5.1 Effect of the population size on convergence 
As discussed in section 3.4, the size of the population used determines the number of 

schemata that are produced by every population of n individuals. Large populations are likely 

to result in slow convergence but it was noticed from imperical studies, that the stagnation of 

the algorithm occurred less frequently in such settings. Small populations on the other hand, 

resulted in accelerated convergence to sub-optimal solutions which, most times, were far 

from the expected global optima. Stagnation in these cases was more frequent compared to 

moderate setting of the algorithm. A variation of the canonical genetic algorithm termed 

microGAs have been proposed to exploit the use of small populations to accelerate 

convergence which avoiding stagnation. The algorithm however also makes changes to the 

crossover and reproduction techniques in general. 

Stagnation is a simple result where the average Hamming distance between individual 

members of the population diminishes. Viewed from this perspective, once all the solutions 

have converged under whatever influence, no amount of crossover will produce anything 
new. 
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Figure 3.4 Illustration of the progress towards convergence of a population evolved by a 

GA. 

Only mutation in such cases will have a chance of revealing new planes and introducing 

some diversity. More roles of crossover and mutation are discussed in section 3.5.3. Large 

sizing of the population therefore will help retard the accelerated progression towards this 

state. 

3.5.2 Effect of selection on convergence 
Selection is carried out on the basis of genotypic value and the fitness of each individual. 

Ideally the value 

fi F; = 1 N .............................................................................. 3.21 

N~fj 
is used as a figure of merit determining the chances of selection given to an individual. The 

above criterion if used as it is, will increases the selection pressure towards those individuals 

which may be super fit at the beginning of the run. The population is therefore likely to be 

dominated by these individuals and the diversity is soon lost. This reduces the pool of 

individuals from which new schema will be formed. 

Modified versions of the fitness functions and selection have been suggested. The most 

popular selection technique and the one least susceptible to the stagnation problem is the 

ranking selection[Dumont and Kristinsson, 1992). Individuals are first sorted by rank and 

fitness values are allocated according to these ranks. The normalisation formula for ranking 

used in this thesis work is 

. 2(max- 1) . N + 1 
F,, (i) = rank(i) + 1- (max-1)-- ........................................ 3.22 

N-1 N-1 

The value of max is set to 1 $; max $; 2 and N is the population size. The range of normalised 

fitness therefore will be [2-max, max]. This ensures that all individuals have an equal chance 

of being selected. This ranking, coupled with stochastic selection with remainder of section 

2.3.3, produced the best performance with the best individual set to receive at most 1.6 

chances of being selected into the intermediate generation. 
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3.5.3 Effects of crossover on convergence 
Crossover when applied in insufficient quantities delays the revelation of new sample 

hyperplanes. If this trend persists, then individuals which may be favored by it will soon 

come to dominate the population and the search will stagnate. There have been modifications 

done to the both crossover and mutation to improve the quality of the search. Adaptive 

crossover and mutation[Androulakis et al, 1994] have been proposed as possible remedies 

for stagnation due to crossover. According to the empirical studies they conducted, they 

found that both crossover and mutation have varying degrees of impact on the search. 

Conservative users of the algorithm tend to apply crossover in relatively large amounts and 

mutation in values typically less than 1 %. Androulakis et al suggests the use of adaptive 

crossover and adaptive mutation as replacement for conventional ones. The algorithm ideally, 

would start with the values of crossover and mutation reversed to some extent. Mutation is 

set high enough to maintain diversity in the population whilst crossover is set low enough not 

to accelerate the search too much but still reveal new structures reasonably well. The traces 

below show this reversed trend 

emu 

cm in 

Mmin 

Generation 

Crossover Mutation 

cm ax 

cm in 
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I 
I 
I 
I 
I 

.................. :~.~~·i·~-~. ~~-..... ........... . 
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Figure 3.5 Adaptive crossover and mutation schemes applied to reverse the roles of 

mutation and crossover. 

As the search and processing progresses, the mutation rate is decreased and crossover is 

increased. The slope of both lines for the first plot determines the rate at which both the 

operator effect alters. Mutation is typically set to 100% probability at the beginning to ensure 

a thorough mixing of strings and maximum diversity between the population members. As 

the search continues, mutation is gradually decreased to values low enough to reduce the 

chaos in the system. Mmia as shown in the plot, could be set such that as mutation reaches that 

value after a predetermined number of generations no further change will occur thereafter. 

A slight improvement is gained by dividing the mutation trend into regions which will 

accelerate and decelerate its effect as the search changes its character. In the second plot the 

mutation trend is divided into three regions. In the first region, the rate of decrease from 

maximum is set to be moderate whilst in the second it is accelerated to get back to normal 

values. In the last region it is once more slowed down as this is the time when the system 

could be stagnating. 
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There is a good justification of the trends used: 

+ In the first region the system mutation is lowered gradually to allow pro~er mixi~g of 

the population and obtain the highest average Hamming distance between the strings. 

This improves the role of crossover as it will have generally more structures to 

sample. 

+ In the second region mutation is accelerated to reduce its value so as to reduce the 

entropy of the system. This helps the algorithm consolidate what it has learned before 

and search the parameter space more thoroughly. At the same time crossover is being 

gradually increased so support mutation. 

• In the last region as the algorithm settles down, there will be a tendency to stagnate. 

To reduce this chance, mutation is decelerated and applied with lower decreasing rate 

compared to the other two regions. This once more will help increase the diversity 

since mutation will still be relatively high and hence slow down the stagnation. 

Sigmoidal functions can also be used as mutation and crossover trajectories. These will 

emphasise the smoothness with which the transitions between different regions will be made 

with significant changes being in the concavity of the guiding trend[Androulakis et al, 1994]. 

There has been much more work done in the subject of stagnation of GAs and how they can 

be the problem can be solved. It is rather a disconcerting fact that so much effort has to be 

devoted to fixing elements of the algorithm which is designed to ~e robust and should not 

suffer from such phenomena (on paper). 

3.6 The issues of resolution: how deep can we go? 

The question of resolution of the space searched remains one of the powerful factors which 

can elude the algorithm completely if not set sensibly. According to the decoding function, 

mapping the binary patterns into the real domain, it was shown that it can be represented as 

xmax - xmin 
X; = X min + 21 -1 Z ...................................... 3.23 

In the above equation, the factor 

xmax - xmin -
21 -1 ............................................... 3.24 

defines the resolution with which the space will be searched. Two major variables determine 

the resolution or the granularity _of the space being searched: Its span, [Xmin. Xmax1 and the 

length of the string, l, used to represent the parameters themselves. The latter parameter 

carries more weight and is in most cases limited by the implementation effects. For machines 

using a 16 bit representation, the maximum divide used will be i 6-1(=65535). Hence, using 

the same span on the variables, the choice of the resolution will define the accuracy of the 

search, directly translating to the number of decimal places the user would like the solution to 
I 
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be accurate to. 

The resolution by itself can be one factor that could lead to the algorithm stalling at what 

would be considered local extrema of the problem. Consider the figure below: 

c 
f 
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x 

1.--d x -· 

X m I• 

Figure 3.6 Depiction of the resolution considerations for the search space. Shown above is 

the bin size defining the resolution of search and also the domain of possible search. 

For the figure above, depending upon the resolution dx, the algorithm may in all probability 

not be able to find the real peak of the function, being C. If the decision about the bit length 

is such that the bin spacing dx does not resolve the peak C with high magnification, then no 

amount of genetic manipulation will result in it being found. 

Another consideration is the domain of search that has been decided upon. Keeping the 

domain around the region suspected to contain the peak greatly improves the chances of 

finding the solution. As the region is kept tighter and tighter, even with same bit length used, 

the bin sizes will automatically reduce, hence giving the algorithm a better chance of finding 

c. 

As an extension to the fundamental algorithm, the author experimented with the concept of 

collapsing the search region when sufficient information or stalling is detected. In cases 

where no further gains are made in finding new solutions, the boundaries Xmin and Xmax are 

reduced to search finer in the region believed to be the neighbourhood of the extremum. In 

such cases, the bits within the population themselves do not change. To make sure that 

momentum from previous runs is not carried over, the entire population, except the best 

member is regenerated, effectively forcing all the other population members into extinction. 

Extinction and emigration models have been proposed in genetic algorithms to solve the 

stagnation problems and increase diversity. Their use however has been limited to the domain 

of island modeling, a branch of genetic algorithms dealing with parallel processing of 

solutions. These models were not applied to this work because of the processing limitations. 

Because they are inherently parallel, their design was such that they will be used to exploit 

the parallel architecture of both hardware and operating systems. Most of the utilities written 

in this regard are aimed at usage in the UNIX or equivalent environments. 
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3.7 Chapter summary 

This chapter probed some of the issues confronting the user of genetic algorithm on a day-to­

day basis. The schema model, being the fundamental model of genetic algorithms, was 

presented. It was shown that through the principle of implicit parallelism of Holland, a 

population of any size contains more schema than is suggested by the population size itself. 

The numbers increase dramatically with increasing population sizes. 

The role of crossover in the revelation of new planes, which may not have been there before, 

was introduced and explored. Of particular interest, was the mixed blessing nature of the 

operator. It was illustrated that through crossover, both gains and losses are made on the 

information already gathered in the search. Depending on the type used, the user has an 

influence on these gains and losses. Single point crossover was stated as being the least 

disruptive, and hence, the least likely to result in large losses. Although there is a strong 

lobby in the literature to portray uniform crossover as being the best of all crossovers, the 

model presented here negates that fact, and indeed, it can be seen that most public domain 

developments have not been taken over by the idea. There could be a case for uniform 

crossover though: Although disruptive in a way, it can improve the diversity of the 

population. The danger however, is that its high entropy denies the algorithm in general the 

opportunity to consolidate on whatever it might have previously learned. 

The case for the population sizing was also presented. The importance of this consideration 

cannot be divorced from the optimality and diversity of the algorithm. The population size 

set, determines the number of schema the algorithm will have at its disposal to sample. Limits 

for both the cases of large populations and diminishing sizes were shown. Although it is clear 

what these limiting cases are, there exist no clear cut way of determining the optimal settings 

for in between situations. 

The issues relating to the stagnation in the search were also probed. It was shown that to a 

large extent, stagnation is caused by the loss in diversity of the planes the algorithm has to 

sample. In particular, the contribution of the population size, the selection types and the role 

of crossover and mutation were highlighted. Depending upon the selection of the these, 

stagnation could be delayed, and with it, delay the convergence of the solution to the optimal 

one in case the algorithm does succeed in finding them. Different techniques aiming to solve 

these problems were highlighted. The use of adaptive crossover and mutation were shown by 

Androulakis to be a better implementation of the technique. Essentially, these are adjusted on 

line as improvements and stagnations are detected. 

In the next chapter the first application of genetic algorithms to control engineering problems 

will be presented. The chapter will report on the development of the framework and 

objectives for the utilisation of the GA. In chapter 5 this theme will be continued with an 

application comparing these proposal of chapter to recursive least squares. 
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Systems Identification Using Genetic Algorithms 

4.1 Introduction 

System identification has been employed in many fields for building mathematical models 

based on observed input and output data. Modeling is typically a stimulus-response process 

that depends on the exactness of both the input and the output data of the process. The field is 

mature and many powerful methods are at a disposal of control engineers and applied 

mathematicians in general[Maclay and Dorey, 1993]. 

Central to the idea of linear systems modeling, is the inherent underlying assumption that the 

parameter space of the model to be built is a smooth, continuous, analytict one. Modeling 

methods devised to date therefore aim to exploit these features of the function space, and are 

usually designed to be of hill-climbing nature. All of them are based on the same principle 

and can be described in a unified way[Ljung and Soderstrom, 1983]. Being of a hill-climbing 

nature, these techniques often fail in the search for global optimum if the function search 

space is not differentiable, non-linear in parameters, or if any of the assumptions about the 

function defined in the space do not hold. 

The same methods are applied for on-line identification popular with techniques such as 

adaptive control. Their form in such cases is based on recursive implementation of off-line 

methods which may be "one-shot" in nature. It is thus not suprising that they sometimes also 

fail to locate the extrema of functions, and hence, process models due to their inherent 

underlying structure. Another feature of these methods is that they go from one point to 

another in the search space at every data sampling point[Dumont and Kristinsson, 1992]. 

They do not iterate more than once on each datum received, as they need new data to direct 

the search. This is the exploitation of the feature of smoothness and continuity of the data 

space, a feature which could be limiting if the plant data available does not allow sufficient 

movement. 

In this chapter the use of a genetic algorithm as a system identification technique is 

proposed. The aim is to use the non-reliance of the algorithm on the function space and to 

separate the problem from the algorithm, thus fostering better and independent performance 

of the modeling method. The work will primarily focus on system identification in the 

continuous Laplace domain. The work to be carried out in this chapter will depend and make 

' Differentiable at every point. The choice of the word is deliberate to include spaces which may be complex. 
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use of the modification made to a canonical genetic algorithm as outlined in the previous 

chapter. This is done in view of the fact that it has been proved that the canonical genetic 

algorithm has no satisfactory convergence properties and will thus not be explored further. 

As a comparative case, the modeling using a GA will be compared to other models found 

using the recursive least squares (RLS) estimation method, this being the most popular and 

most widely used of the "orthodox" identification methods. A comparison between the two 

techniques will be done in chapter 5 using a practical application. 

This chapter presents the concept of system identification and model building developed 

from a theoretical perspective. It is shown how a genetic algorithm can be set up and used in 

the modeling and identification task. An example is presented to substantiate the presentation 

and illustrate the principle and process. It has to be mentioned that the choice of modeling 

examples was motivated by factors other than the difficulty of the problem. Simplicity was 

maintained so as not to clutter the real algorithm facts with peculiarities and details of the 

problem. The difficulty of problems solved successfully using genetic algorithms has been 

illustrated somewhere else in the literature using dedicated bench mark problems designed to 

exploit the algorithm to the fullest[Holland, 1992], [Beasley et al, 1993]. 

4.2 System identification 

The genetic identification proposed in this work will be approached from the general 

perspective. Consider a process modelled by the transfer function 

2 m a 0 + a1s + a2s + .... +a s 
( ) - m -ST < 4 1 gs-b b b2 bne m_n .................................... . 

0 + IS+ 2 S + · · · .+ n S 

where a; are the coefficients of the numerator and b; are the coefficients of the denominator 

and 'tis the transport delay. This model can be re-written in pole-zero format to be 

- (s- Z1 )(s- Z2 ) .... (s- Zm) -sT 

g(s)- K (s- P1)(s- P2) .... (s- Pn) e ........................................... .4.2 

Suppose that the parameters of a process having a known modelt of the form of equation 4.1 

above are to be identified, then the process can be rephrased as a search for the coefficients 

a;, b; and. the transport delay 't such that a pre-defined search criterion is fulfilled. The 

modeling can be equally well carried out by a rather different search: It is a well known 

fundamental fact that a process can attribute its behavior to its modes. These will be the 

positions of its poles and zeros in the s-plane. Therefore, instead of the search for the 

coefficients of equation 4.1, a search for the poles and zeros of the system can be carried out. 

This simplifies the modeling since each of the different aspects of the behavior of the process 

can be encapsulated in a single position that a pole or zero of the process will take. This does 

t It is assumed at this stage that the problem at hand is purely that of identification of unknown parameters. The structure of the 
model including its order and other attributes are assumed to be known. 
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not change the nature of the model since it will have as many poles as the order of the 

denominator function. The same is true for the numerator function. 

To this end, work in this chapter will use the model realisation of equation 4.2 as a basis on 

which continuous system identification will be carried out. The identification problem will 

thus be reduced to the search for poles and zeros of the process to fulfill a search criterion 

that a user defines. 

The use of the genetic algorithm as an identification tool, like other methods, depends on the 

availability of the plant input and output data. Unlike other methods mentioned in the 

introduction however, it was found that the genetic algorithm can be run with a single set of 

data from the plant. Once initial samples have been taken, there is no further need to sample 

more data to guide the algorithm towards the parameters. Schematically, the algorithm is 

connected to the plant as follows: 

Process to be identified g(s) Process Res onse 

Genetic Estimator ~---' 

Estimator out ut 

and paramters 

Identification criterion 

Figure 4.1 System Identification block for the use of a genetic estimator. 

Essentially, both the algorithm, which will contain different estimate models of the process, 

and the plant, are perturbed with the same input data. The algorithm is further supplied with 

the response signals from the real plant. As each model is perturbed using the plant data, its 

output is compared to that of the plant output and the result thereof is passed through the 

identification criterion which determines the goodness of the model parameters. Those 

models resulting in the minimal difference between their outputs and the output of the plant, 

are retained and genetic processing is applied to them to improve the overall resulting 

parameters. Details of the process are presented in the next section. 

4.3 Genetic modeling 

To perform the task of system identification we consider an nth order model response written 

in the Laplace form 

(s-z1)(s-z2 ) •••• (s-zm) -si-
y(s) = K ( )( ) e u(s) ............................ 4.3 

s-p1 s-p2 .... (s-pn) 

y(s) = g(s)e-si-u(s) ..................................................................... 4.3a 

An assumption is made that the model to be identified will have the same form. This does not 

however need to be the absolute truth. The phenomenon of pole dominance has shown that 
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models having multiple orders can be reduced to simpler ones with less number of poles if 

some of the modes of the original model are considered non-dominant, stable and 

damped[Kuo, 1987]. The model to be identified will thus be of the Laplace form 

" " " 
" (s-z1)(s-z2 ) ..... (s-zm) -s~ 

y(s) = " " " e u(s) ................................ .4.4 
(s- P1)(s- Pz) ..... (s- Pn) 

A A A 

y(s) = g(s)e-s-ru(s) ............................................................................ 4.4a 

" " where the coefficients P; and Z; are the unknown poles and zeros to be identified. Since 

both the known model response from the process and response of the estimated model are 

driven by the same input u(s), the object of the matching algorithm will thus be to find the 

proper poles and zeros of the model to make the two outputs to be the same. When this is 

achieved, the limit between the two variables will to tend to zero. The search objective for 

the genetic algorithm can thus be formally stated as follows: 

Search objective: 

" " Find the parameters of the unknown model response y ,and thus the model g(s), such that 

the limit of the difference between the plant and the model responses vanishes. 

1 N " 1 N 

l=-:L<Yk -yk)2 =-:Le; ............................................ 4.5 
N k=I N k=I 

" where y is the plant response, y is the response of the model and N is the number of input-

output samples taken from the plant and k is the sample counter. This has been popularised 

by applications such as least squares modeling which have illustrated the efficiency of the 

criterion. 

This model is valid for discrete cases although it could still be used for continuous cases. For 

such cases therefore, the objective function of equation 4.5 can be written as a limit using 

Riemann sums[Swokowski, 1988]. This limit, as shown by Swokowski, will tend to an 

integral of the form 

N " 
J = lim L (y- y) 2 ll.t ................................................................. 4.6a 

Ll.t--+0 k=I 

1 =_!_I (y - ;)2df// ........................................................................ 4.6b 
f// VF 

where y is the plant response, y the model response and 'I' is the length of the signal 

sampling window. 
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4.3.1 Setting up the algorithm 
With the objective function, J, decided upon as m equation 4.6 above, a chromosome 

representing all parameters of the model to be estimated can be assembled. For a general 

model under estimation, a chromosome 

e = [K, Zt. .•.. Zn, Pt •.. ···Pm. 't] 

is set up and has its entries equal to the number of parameters to be estimated. Each 

parameter will have a predefined domain in which it will be mapped. 

Z E [Zi_mim Zi_max] 

This mapping should be carried out in such a way that a desired resolution of the parameters 

is obtained. This pre-definition and mapping is not an unrealistic expectation to have for two 

reasons: 

i) The designer usually has some intimate knowledge of the process under study. As an 

example, for a simple first order model a designer could simply apply a step 

perturbation to the motor input. Depending upon the shape of the response, a 

conclusion could be drawn about the type of model (in this case it should be first 

order). Because the attributes of the perturbing signal are known, the response could 

be scrutinised roughly for the most probable range of parameter values. 

ii) A genetic algorithm could be run initially with as wide a domain as practically 

possible(matters of variable resolution should however be considered). As knowledge 

about the process is gained from trial runs, the domain could be gradually and 

systematically reduced to enclose a much smaller and tighter search space. The 

algorithm could be set to perform this task automatically running a series of genetic 

algorithms to decided on the domain and then the final algorithm to search finely in 

the decided on. 

With all the preparations made and the encoding schemes and resolutions resolved, the 

algorithm could be set in motion to carry out the estimation task. An illustrative example of 

these principles is presented in the next section. 

4.4 Genetic estimation 

The ideas presented so far were applied to a simulation example aimed at performing a 

systems parameter identification using a GA to find the parameters of the process 

g(s) = s 2 + ~~~ + 10 (s + 1.0~C~ + 10.0) ·················· · ........................... .4.? 

The model to be estimated was set to be of the form 

g(s) = p .......................................................................... 4.8 
(s + a)(s + y) 

where~' a and y were parameters to be identified. 
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The model parameters ~' a and y are concatenated into a string which will form a 

chromosome for the genetic algorithm. This can be represented simply as 

e = [p, a,')'] 

It was important to determine the search boundaries for each of the parameters. For problems 

where little or nothing is known about the distribution of the parameters, the search space 

should be made as large as possible. The space of parameters could then be reduced as the 

algorithm and the programmer learns more about the problem. This could be done manually 

by the programmer. Alternatively, the search space could be collapsed or expanded 

automatically as soon as stagnation is detected. If the stagnation is around the global extrema, 

then collapsing the search range makes the collapsed region more refined and the resolution 

increases. This effectively provides a magnification facility into the promising region. 

Numerous boundary trials were conducted for the example in discussion. On the basis of 

what was learnt and what is known to be the real parameters, the following parameter spans 

were decided upon: 

0.0 -5, p 5. 6.0 

o.o 5. a 5. 15.0 .............................. : .................................. 4.9 

o.o -5. r ~ 15.o 

The spans for a and y were made deliberately equal to allow the system poles to switch 

places if such a need came about. A genetic algorithm was tuned with the following search 

parameters 

Table 4.1 Search Parameters of the estimation genetic algorithm 

Algorithm and Function Property Value 

Population size 100 

Number of generations to search 200 

Crossover rate 0.80 

Mutation rate 0.005 

Elitism gap 4% 

Chromosome length 36 - 12 bits per gene 

Parameter search span and resolutions 0.0 s; ~ s; 6.0 Resolution= 0.15 % 

0.0 s; as; 15.0 Resolution= 0.37 % 

0.0 s; y :S;15.0 Resolution = 0.37 % 

4.4.1 A class of input perturbing signals 
As mentioned in the introduction, the goodness and performance of most of the orthodox 

estimation methods depends on the activity of the signal used. In the practical 

application(chapter 5), it will be shown that the recursive least squares to which the GA will 

be compared has an inherent dependence on the class of signals used and that this property 

has an effect on the accuracy and correctness of the model estimated. 

For the current genetic estimation task, both the simulated plant and models were perturbed 
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using a random Gaussian white noise shown below. The choice of the signal was in line with 

the randomness of the GA. It has a flat power spectral density, zero mean and 1 Volt standard 

deviation. 

~ 
-a; 
> 

.!!! 
iii 
c 
Cl 
(ij 

1 .5 

0.5 

0 

-0.5 

-1 

-1.5 

Input signal used to perturb the plant and the 
mode ls 

time(sec) 

Figure 4.2 A depiction of the class of signal used to excite both the simulated plant and the 

models. 

Although this was the most favored signal because of its statistical and random properties, it 

is not usually applied to practical systems which have dead bands and saturation. In such 

cases therefore, simple square waves with appropriate DC offsets and pseudo-random signals 

are more useful as will be illustrated in chapter 6. 

4.4.2 Performing the estimation and the results 
With these parameters above, a genetic algorithm was run to estimate the parameters. 

Although the algorithm found the solutions relatively early, it was allowed to run for all the 

pre-specified number of generations as in table 4.1. The plot below shows the movement of 

the parameters as they converged to the those of the plant. 
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Figure 4.3 Plot showing the convergence movement of the process estimated parameters. 

For the benefit of the clarity, the figure below shows the initial movement of the parameters 
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for the first 50 generations where there was a significant activity in the parameter movement. 
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Figure 4.4 A magnified view of the movement of parameters in the first 50 generations . . 
The following numerical values were obtained as the parameters of the process to be 

identified: 

a= 1.003 

~ = 3.898 

y= 9.960 

From the plot above, it should be evident that there is a significant amount of the trading of 

places between parameters gamma (as in the plot)y and alpha, a. The freedom to allow each 

parameter to move like this enhances the performance of the system greatly. 

In the midst of this parameter movement, it is instructive to inspect the profile of the cost 

function being minimised for two reasons: 

i) The trading of places by the parameters may give an impression that the accuracy of 

the system is being lost. Realising that the performance index is a function of the 

combination of all variables, J = f(a,f3, y), the significant movement of each 

should have a visible effect on the performance index. Although some parameters may 

appear to be getting completely lost, they often make room for improvement in the' 

others. This can only be captured by J. 

ii) The performance index is important by itself as an indication of how quickly the 

system attains its objective. Stalling or lingering around the same value of this index 

usually suggests that the search is stalling and thus some modification has to be done, 

or that the objective has been achieved. 

Figure 4.5 below shows the performance index of the system for the first 50 generations to 
correspond with figure 4.3. 
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Movement of the performance index with changing parameters 
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Figure 4.5 Plot of the movement of the performance index J as parameters are modified. 

From figure 4.5, clearly then, irrespective of the movement of the parameters, the 

performance index J remains a monotonically decreasing function after the third generation 

although there is a slight increase at the beginning of the run. This was due to occasional 

losses which occur at the beginning of the algorithm because of the way the program was 

written. Evidently then, the change that occurs is for the better. 

Although figures 4.3 through 4.5 show the convergence traces of the parameters estimated by 

the system and their values presented, it is difficult to appreciate their accuracy and do an 

objective comparison between the real plant and the model estimated. To assist in making 

this decision properly, a frequency response Bode plot of the both the model and the plant are 

presented in the next two figures. 
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Figure 4.6 Magnitude frequency response for both the real plant model and the genetically 

estimated model. 

The figure above presents a frequency domain comparative look between the real plant model 

and the genetically estimated one. As can be seen, there is virtually no difference between the 

two models for a wide range of frequencies tested. Once more, the small difference apparent 

in the individual parameter values themselves was difficult to see. The phase response of the 
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system is more sensitive to the changes in the parameters and was also plotted to show these 

small differences. 
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Figure 4. 7 Phase frequency response for both the real plant model and the genetically 

estimated model. 

What stands out of this illustration, is the accuracy with which the algorithm managed to 

estimate the parameters of the system. The simulation model was chosen deliberately so that 

the model can be subjectively compared to the known model for features such as accuracy. In 
spite of the fact that one mode (pole) of the system was nearly insignificant compared to the 

more dominant pole sitting next to the origin, the algorithm still managed to find this 

insignificant mode of the process. It would have been expected that due to the phenomenon 

of pole dominance and model uniqueness, the model would find the dominant pole and not 

the least significant pole. 

4.5 Chapter summary and highlights 

In this chapter, a first application of genetic algorithms to control engineering problems was 

presented. The chapter focused on the use of genetic algorithms on the problem systems 

parameter identification. Although the presentation focused on a simple problem and the 

presentation of the algorithm, a pattern was highlighted as to how the problem has to be set 

up for identification. 

+ For problems of identification, either simulated or practical applications, the first stage in 

the genetic estimation is to define the type of model that is to be estimated. This, as it 

was shown, could be <lone as a transfer function model of the process or as a pole-zero 

representation model. The latter model was chosen since the attributes of the process 

which are visible by inspection could be accounted for directly. 

+ The modeling however, needs to define the criterion of goodness of the poles estimated, 

in the same way as it would be done for transfer function models. A simple criterion of 

le~st squares estimation was used in this regard. Data was sampled from the plant, with 

the models estimated by the genetic algorithm perturbed using the same input as the one 
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used for the plant. The output of the two were then compared under the least squares 

consideration and the goodness of the poles decided. The smaller the magnitude of this 

function, the better the match between the modes found and the parameters of the 

process. It was shown that although the algorithm was given the liberty to estimate poles 

in any order, i.e. no boundaries limited the selection of any pole, the movement of these 

modes between the different parameters resulted in the cost function J being' a 
monotonically decreasing function. 

The one advantage offered by the GA is its ability to search for the poles and the zeros of the 

system directly. In the next chapter an in depth look at this theme using a practical system 

will be carried out. This will also introduce a comparison between the genetic algorithm as an 

estimator to the recursive least squares as a representative of classical engineering methods. 

The comparisons between the two will focus on the question of accuracy of both methods 

and their performance under the conditions of signals corrupted by noise. 
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Application of Genetic Estimation to a Servo 
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5.1 Introduction 

Chapter 4 proposed the use of genetic algorithms for the modeling and identification of 

control system parameters. The work presented together with an illustrative modelling 

example used were based on simulated models and data generated by simulation. This 

chapter presents a practical application of the ideas developed to a direct current. (DC) servo 

motor. The choice of the laboratory model was motivated by several factors: 

1. Since genetic algorithms are inherently slow in their processing of sample solutions, 

the servo motor served as a good example because it has dynamics that are fast, and 

thus, does not require long times waiting for system responses. Therefore, the genetic 

algorithm required data sampled only until the system has settled down to a steady 

state which was achieved in periods of less than 5 seconds. 

2. The model consists of two poles[Raven, 1987]. One pole results from the electrical 

circuitry of the armature and the other from the mechanical attachments to the rotor 

shaft. Using the phenomenon of pole dominance, the electrical time constant is known 

to be significantly shorter than that of the mechanical circuit and is thus usually 

ignored in many modeling exercises. The model would thus be set up as a first order 
system (purely due to a mechanical time constant). 

3. A comparison will be carried out between the genetic algorithm ·as a system 

identification tool, and the recursive least squares method. To simplify the 

comparison and highlight factors which really matter (such as the accuracy of the two 

models compared, their performance in the presence of signal corrupting noise, etc), it 

was necessary to keep the model as simple as possible so as not to interfere with the 
objectives of the study. 

This chapter will begin by briefly describing the modeled system from a physical perspective. 

The experiments carried out to model it will be described briefly. together with all the data 

samples which were obtained from the experiments. The extensive use of this data in the 

modeling which followed will be presented. The results of the genetic modeling will be 

presented next. As a comparison, the model parameters will be compared to those found 
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using the recursive least squares (RLS). This will be preceded by a brief explanation of the 

mechanism of the recursive least squares. 

5.2 DC servo motor physical description 

The description of the servo system used will be done with reference to a motor schematic 

diagram shown in the figure below. 

l 
Figure 5.1 The schematic circuit diagram of the DC servo motor used for the practical 

application of a genetic estimator. 

Effectively, the system consists of two distinct circuits having different characteristics: The 

electrical system and the attachments on the shaft forming the mechanical system. Apart from 

conducting step tests to determine the process model, the balance of forces and torque for the 

system can be employed to set up the physical defining equation. This model is derived using 

ordinary differential equations, focusing on the balance between the torque developed by the 

electrical and that resulting from the mechanical system. Braae showed that the final defining 
model of this system will have the form[Braae, 1994] 

where 

Q(s) 

e(s) 

K, 
BR1 

------'----L- ··· · ............................................. 5.la 
s{l + s( -fr)} {1 + s( i ) } 

I 

K 
------- .................................................. 5.lb 
s{ (1 + sTm )(1 + sT1 )} 

K = ~ is the motor gain in [Volt-secondsr1 

BR1 

Tm =!_is the mechanical time constant [seconds] 
B 
LI 

T1 = - is the field coil time constant [seconds] 
Rt 

The popular principle of pole dominance states that if the slowest pole of a multi-modal 

system is certain orders of magnitude slower than the fastest pole, then the latter can be 

replaced by its steady state gain. This applies to all systems including inherently oscillatory 
ones 
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jw 

Region of 
non dominance 

a 

Figure 5.2 An illustration of regions of dominance in the s plane. 

as shown in figure 5.2. "Insignificance" of poles is determined by their positions in the S­

plane relative to the slowest poles of the system As a rule of thumb, it is decided that if the 

fastest pole is 5 to 10 times faster (or more) than the slowest pole, then it can be ignored and 
replaced with its steady state gain[Kuo, 1987]. 

Using this principle therefore, the model derived in equation 5. lb was subject to the same 

treatment. This is on the basis of experimental evidence and observations. For the correct 
algebra the model of equation 5. lb is re-written as 

Q(s) = g(s) = K z K .............................. 5.2 
e(s) s{(l+sTm)(I+sT1 )} s{I+sTm) 

This makes the assumption that T1 << Tm according to pole dominance. 

The equation of 5.2 therefore describes the model as derived with no assumptions made and 
with the assumption that the mechanical time constant is more dominant. 

5.3 Recursive Least Squares as a comparison method 

The technique of genetic estimation reported here was compared to the RLS as a 

representative of classical engineering thinking methods. In this section a brief presentation 

. of the RLS will be made and presented in the context in which the comparison will be made. 

The RLS has been well studied and extensively documented[Astrom and Wittenmark, 1984] 

and this presentation should thus be viewed as a summary included for convenience and 
facilitation of the discussion. 

S.3.1 The basis of the RLS 

Basically, the recursive least squares was established from the Gaussian principle of least 

squares and is used here for systems identification [Astrom and Wittenmark, 1984]. 
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According to the Gaussian principle 
" . .the sum of the squares of the difference between the actually observed and computed values 
multiplied by the numbers that measure the degree of precision is a minimum." 

This principle is encapsulated in the famous equation of least squares 
N 

1 = tllell 2 = t :Le;2 
•••••••••••••••••••••••••••••••••••••••••••••• 5.3 

i=l 

used previously. 

Although the principle is simple to articulate mathematically, its use in the task of estimation 

has not been as simple. There are a number of ways in which this error could be formulated, 

each having its merits and demerits. The decisions made as to which error condition is to be 

minimised, is based on the concessions the algorithm user is prepared to make. Due to the 

impact these error conditions have on the performance of the estimator, two of most prevalent 

conditions will be shown below. 

a) Output error minimisation 
This error condition aims to minimise the square of the error between the output of the 

process model and the that of the plant to be modeled. 

u(t) Process 

+ e(t) 

Model 

Figure 5.3 Recursive estimation model for the forward difference error criterion. 

This forward difference model is seldom used due to the non-linearity it induces in the 

parameters of the model. The advantage of this model however, is its estimator noise 

handling capability. This however is outperformed by the linearity consideration and thus 

does not serve as a significant advantage. A mirror image model of figure 5.3, constituting 

the backward difference model, has also been proposed as a possible consideration for 

estimation. Like the forward difference model, this model also suffers from the problem of 

non-linearity in parameters and is thus disqualified as a possible candidate used for robust 

estimation. 

b) Generalised error model 
The generalised error model is the combination of the output and the input error models. This 

model is the most often used one and the majority of written utilities are based on it. 
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Process 

+ 
e(t) 

y(t) 

l+A(z 

Figure 5.4 Recursive estimation model for the generalised error criterion. 

This model, although linear in parameters, is known to suffer from problems of estimator bias 

when the system output is perturbed with noise on the output. The consideration taken in this 

thesis utilised it in comparing its performance in both the accuracy in estimation and its noise 

handling capability to that of the genetic estimator. 

5.4 Experimentation 

Experiments were carried out to model the servo motor. Since the genetic algorithm needs the 

input-output data to carry out the modeling exercise, the motor was perturbed with known 

signals and the response was sampled. Unlike in the simulation example presented in chapter 

4, it was not practical to perturb the motor with a Gaussian noise signal. Sufficiently random 

signals, in both magnitude and frequency, were therefore used excite the motor. 

Before the perturbation of the model was carried out, proper regions of operation of the 

motor were determined. The servo motor was found not to respond consistently across the 

range of inputs ranging from the 0 Volts to 10 Volts. Data therefore, had to be sampled so 

that it was workable for the GA. The figure below shows the profile of the motor as it 

responds to different levels of the input when tested for linearity. 

Linearity Profile of DC Servo Motor 
6 -···---- -------------

B 

/ 
A 
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0 2 3 4 5 6 7 8 9 10 

Motor Input Voltage [Volts] 

Figure 5.5 The linearity profile of the servo motor used for the GA system identification 

experiment. 
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The profile can be divided into three distinct sections: 

A. The dead band: In this region the applied input voltage is not sufficient to overcome 

the mechanical load resistance. No signal level will therefore be sufficient to move the 

motor when in the dead band. This band was between 0 and 1 Volt. 

B. The active linear region: This is the region where the motor responds linearly to the 

input voltage. The relationship, although linear, was not a one-to-one mapping (y = x) 

between the input voltage and the motor response. This band was between 1 Volt and 

4 Volts on the input scale. 

C. The saturation region: In the saturation region the motor simply stops responding to 

any changes in the field voltage feed. Thus, linear characteristics perturbation signals 

had to kept below 4 Volts as the profile suggests. The band was any voltage above 4 

Volts. 

It should be noted that the behavior and the profile presented in figure 5.3 resulted from the 

choice of operating components. It could have been chosen to arrange the experimental set-up 

such that the profile differs from the one presented. This would not change the problem as the 

motor inherently has the character profile shown, although it can be induced at different 

levels. 

Input-output sample signals of the motor were taken between 1 Volts and 4 Volts to remain in 

region B seeing that this was the most linear region of the profile that would result in the 

most accurate model. 

5.4.1 Data sampling and modeling 
Several experiments were carried out to ,determine the performance of the genetic algorithm 

as a system identification tool. For the purpose of comparison, the experiments and data 

samples that were obtained were motivated by the following goals: 

i) The performance of the genetic algorithm as a system identification tool was to be 

investigated for ideal situations. These would be conditions where it is assumed that 

all signals contain no corrupting noise (both the input and the output). This condition 

could be put somehow in perspective because the experimental set-up itself has 

inherent noise signals such as glitches in the power supply, the back propagation of 

the motor, etc. For the current purpose however, the base signal assumed to be clean 

is used. 

ii) The performance of the GA in the presence of signal corrupting noise was to be 

investigated. The signal noise level was increased continuously until complete failure 

in the algorithm was experienced. The margins of failure in the presence of corrupting 

noise were compared for both the GA and the RLS as will be shown. 
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A genetic algorithm was set up to evolve the model from the input-output data sampled. The 

following tuning information was provided 

Table 5.1 Parameter settings of genetic algorithm for model estimation 

Property 

Population size 

Crossover rate 

Mutation rate 

Chromosome resolution 

Model type 

Value 

80 

0.80 

0.005 

24 bits. 12 bits per gene 
Resolution: K - 0.122% 

Tm - 0.122% 
K 

g(s)=--
I+sTm 

Q:s;K:s;5 

0 :s; Tm :s; 5 

where the variable resolution is quoted as a percentage of the length of the domain. The 

boundaries on the parameters which were to be found were determined on the basis of user 

knowledge, accumulated through preliminary experimentation. This fact was fully justified in 

the last chapter on the theoretical treatment of the subject. In the spirit of simplicity and to 

highlight facts which really matter in the comparison to be made with the RLS, it was 

decided that the model be kept as simple as possible, and thus the choice for a first order 

model. 

5.4.1.a Performance of a GA with noiseless signals 

In this section the performance of a GA with no noise on the input or output signals is to be 

presented. The focus of interest in this class of experiments was the accuracy and resolution 

of a genetic algorithm in ideal conditions. The following data samples were obtained from 

the servo motor and used for estimation. 

Motor excitation and response signals 
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Figure 5.6 Excitation and response signals of the servo motor for a noiseless experiment. 

The signals in figure 5.6 have a DC off set consistent with avoiding both the dead band and 

the saturation region shown in the linearity profile of figure 5.3. This does not however, alter 

the dynamics of the process or the performance of the genetic estimator since the offset is 

removed from the input before the signals are used. As was mentioned in chapter 4, the class 
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of perturbation signals differ from case to case. For the current experiment, the magnitude 

and the frequency of the signals were chosen to be sufficient to excite the motor and thus 

extract a consistent response. It was experienced in the attempt to use white noise, as was 

done with simulated cases, that the motor response does not give a true reflection of the 

excitation signal. Also, the signal would need a relatively large deviation and would have to 

force the motor to change direction frequently. 

The signal of figure 5.6 was used for both the GA and RLS case in its modified form as 

shown in figure 5. 7 below. 

Motor excitation and response signals without the DC offset 
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Figure 5.7 Motor excitation and response signals with the DC offset removed for noiseless 

experimentation. 

The signal trace above was divided into two parts: The first part being used for the estimation 

of the model parameters and the second part for the model validation. In spite of the fact that 

not the entire data scale was used, the little that was used, was still sufficient to be used for 

the GA estimation task. 

The genetic algorithm was run with this data and the convergence results shown in figure 5.8 

were obtained. 
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Figure 5.8 Convergence of the parameters of the motor for noiseless GA search 

Several trials were taken to obtain confidence in the results. The previous plot is a 

representation of the best result obtained in a run of 20 trials for the noiseless system. The 

parameters were obtained relatively early in the run due to the tuning of the algorithm. The 
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experiment was also subjected to different tuning criteria of the algorithm as discussed in 

chapter 3 of this report. The above model found the following parameters for the motor gain 
Kand time constant Tm: 

Gain K: 1.103 

Time constant Tm: 0.614 

These parameters will be used in the analysis to follow and will form a basis for analysing 

the performance of the algorithm in cases where the system output will be injected with white 
Gaussian noise. 

Model Comparison to the RLS found model 

An RLS estimator was run for the case of no noise injection into the system. To put the 

comparison between the two found model in proper perspective, it was necessary to represent 

both the models in the same format. The model found using the genetic algorithm was thus 

transformed to the format compatible with that used by the RLS. The model was transformed 
to the discrete domain according to the transformation 

gh(z) = z ~ 1 z( g~s)) ...................................... . 5.4a 

~ z~ I~ s(c}~s)) ······· ..................... .5.4b 

where the model has been rewritten to fit those found in the tables of Z-transformation[Kuo, 
1992]. Using the tables of z transforms the model is transformed to 

gh(z) = _A_(_i_ -·-~ -_>_) ~ CD ........................ .' ..... 5.4c 
-T z-

z-er 

where Tis the motor sample time, A the process gain as in the continuous model case and 't = 
Tm is the motor time constant. 

The continuous model when transformed to the discrete domain is represented by the pulse 
transfer function 

0.0354 
gh(z) = z-0.967 .............................................. 5.5 

with the sampling period T set to 20 milliseconds. 

Using the above-mentioned sampling period, the RLS estimation was applied to the motor 

and the following parameters and convergence properties were observed. 
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Figure 5.9 The convergence plot of the RLS estimated system showing both the movement 

of the discrete pole and discrete gain. 

The model estimated above had its parameters converging to the following values 

C= 0.0352 

D = -0.968 

The convergence plot is magnified below for the first 40 samples to illustrate the speed of 

convergence of the algorithm. Samples here, should not be confused with the number of trials 

emphasised in figure 5.6. In that case, a trial constituted an entire generation of the algorithm, 

with each member using the entire sampled data to detennine the model. In the case below, 

sample refers to an ordered pair (input, output) comprising one input and output observation. 
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Figure S.10 The convergence plot of the RLS estimated system showing both the movement 

of the discrete pole and discrete gain for the first 40 data samples taken from the motor. 

By the 17rh sample the system under the RLS regime had already settled down to its final 

parameters. 

Comparatively, when the two model are put side by side 

GA 

( ) 
1.103 h 0.0354 

g s = 1 +0.614s ~ g (z) = z-0.967 

RLS 

0.0352 
g(z) = z - 0.968 

the comparison shows the accuracy with which both models agree. The difference between 

the parameters obtained using both methods is minimal and can be attributed to the 
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experimental procedures. It is difficult to make a subjective comparison of the numerics 

obtained because unlike the case of simulation, there is no solution to which both the models 

could be compared. As a case of demonstrating the results, the author has the taken the 

liberty of including in the accompanying diskette all the data procedures and code used for 

this experimentation. These could be run to confirm the results. The user will however need 

to convert the transfer function model to a pulse transfer function model. Seeing that it can 

done easily using equation 5.4c for this particular example, the systems once more took the 

liberty of performing the computation. 

b) Genetic estimation with noise injection in the motor output 
As a comparative case between the genetic algorithm and the recursive least squares method, 

it was decided to test the effectiveness of both methods in cases where the output of the 

process is subjected to corrupting noise. Estimator bias, as is formally known, is a well 

known phenomenon which could lead to erroneous results depending upon the character of 

the noise (the power spectral density and its correlation characteristics with the plant signals). 

The noise was injected in the output signal as the system was being sampled for both the 

input perturbation and the response. The following schematic illustrates the positioning of the 

noise source relative to the estimating algorithm for the output injection. 

input u(s) Process to be 
estimated g(s) 

Estimator 

injected noise 
n(•) 

Estimated Param ers 
an 0 utput 

Figure 5.11 Genetic estimation schematic diagram with a Gaussian white noise source. 

Although the system shown above has noise injected directly into the process output, in 

practice this is not the case. The white noise injected is usually band limited to the frequency 

spectrum of the process being modeled. A low pass filter is inserted in the reverse path to 

band limit the corrupt signal to the spectrum of the plant as shown in the following 

figure[Oppenheim and Schafer, 1989]. 

input u(s) Process to be 
cstim ated g(s) 

Estimator 

.. ...,..__ 
injected noise 
n(s) 

Figure 5.12 Genetic estimation schematic diagram with a band limited Gaussian white 

noise source. 
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In view of the problems of estimator bias, the model was perturbed with varying degrees of 

noise which was set to be a percentage of the setpoint. This was primarily done to determine 

the level of noise at which the model parameters estimated by both the genetic algorithm and 

the recursive least squares would significantly drift away from the noiseless parameters. The 

figure below shows the effect of noise injection on the output of the process. 

a) 0% (of input signal) noise injection b) 1 % (of input signal) noise injection 

101 •ot UI 1101 UOl UOI tlQI fU1 1101 1001 1101 UOI 

2.5% (of input signal) noise injection 5% (of input signal) noise injection 

Figure 5.13 Illustration of the corrupting effect of noise on the process output for varying 

degrees of injected noise. 

The genetic algorithm showed a substantial amount of resistance in drift even with increasing 

levels of noise. A proper analysis of these and the sensitivity of the parameters will be 

presented in the next section. 

c) The algorithm performance 

The performance of the genetic algorithm with respect to noise was analysed by considering 

the sensitivity of the of the model parameters to the changing levels of noise. Graphically, the 

parameters of the system model can be viewed as constituting a point in space where both 

parameters of the model result in an optimal J. The noise injection introduces a 

"constellation" around this point and the algorithm has to find its way around this cluster to 

get to the optimal point. 

Optimal Point 

A 

Figure 5.14 A graphic view of the effect of noise on the search conducted by the genetic 

algorithm for the optimal parameter point. 
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The higher the level of noise, the more dense . the constellation around the point being 

searched for, and hence, the more difficult it is to establish the optimal point. The goodness 

and strength of the algorithm with noise is thus analysed with regard to the sensitivity of its 

ability to finding its way around this. Each of the parameters of the model is analysed using 

the sensitivity formula 

S
A_ Ji 
N- % 

JN N ................................. 5.6 
Fraction_ change_ in_ A 

Fractional_ change_ in_ N 

In the above equation, N is the noise level (level of variance set) injected in the system and A 

is the parameter affected. Although only A is shown above, the analysis with regard to the 

time constant Twill have the same formula. 

The partial derivatives and the fractional change requires a nominal case with which the 

numerical computation will be compared. For these tests and experiments, it was decided to 

use the case of the noiseless system as a starting point with all the subsequent models being 

compared to it. Computations were carried out to determine the performance of different 

systems with differing noise levels. The following table shows the summary of computations 

and the results carried out to determine the performance of the system for varying degrees of 

noise injection. 

Table 5.2 Sensitivity analysis table for the varying degrees on noise for the GA estimator 

Tm Fractional Sensitivity in A Sensitivity in Tm 

Change in Tm 

0% 1.103 0. 
1% 1.103 0. 0.0049 0 0 
2% 1.103 0. 0.0 0.0049 0 0 

1.105 0. 0.0018 0.0049 9.54E-05 0.000257 
1.106 0.617 0.0027 0.0049 6.97E-05 0.000125 

20% 1.130 0.627 0.0244 0.0212 0.00031 0.000268 
50% 1.150 0.642 0.0426 0.0456 0.00043 0.000461 
75% 1.171 0.661 0.0617 0.0765 0.00041 0.000514 
100% 1.216 0.701 0.1024 0.1469 0.00052 0.000712 

For the table above the following interpretations should be made: 

1. The sensitivity indicator of the parameters increases with increasing levels of noise. Higher 

magnitudes therefore indicate more tendency for the parameters to change as noise is injected 
into the system and less values indicate the opposite. 

2. The comparative magnitudes between the columns of sensitivity indicate the comparative 

sensitivities between the parameters when subjected to the same level of noise. 

The sensitivity computations in the above table have been amplified to get a clearer picture of 

the system performance. The numeric values themselves do not bear any stance with 
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sensitivity as defined, but only the difference between them is important. Also to be noted, is 

the rate of decay of these values as the noise is increased. The table below presents the results 

of a similar test applied to the recursive least squares. 

Table 5.3 Sensitivity analysis table for the varying degrees on noise for the RLS estimator 

Noise level c , D Fractionll Fractional I Sensitivity in C I Sensitivity in D 

Change in Change in D 

0% 0.0352 -0.968 - - - -
1% 0.0352 -0.968 0 0 - -
2% 0.0350 -0.967 -0.00568 -0.00103 -0.00063 -0.00011 

5% 0.0347 -0.966 -0.0142 -0.00207 -0.00075 -0.00011 

10% 0.0331 -0.965 -0.0597 -0.0031 -0.00153 -7.9E-05 

20% 0.0268 -0.967 -0.2386 -0.00103 -0.00302 -l.3E-05 

50% 0.0226 -0.970 -0.3579 0.002066 -0.00362 2.09E-05 

75% 0.0126 -0.971 -0.6421 0.003099 -0.00431 2.08E-05 

100% 0.00597 -0.987 -0.8304 0.019628 -0.00417 9.86E-05 

In the above table, the reader's attention is drawn to the magnitudes of the computed 

fractional changes occurring in the parameters as the level of noise is increased. When 

inspecting the table, it can be seen that there is less tendency in the parameter D to move 

away from the nominal even as the noise level increases. The parameter C on the other hand 

is composed of the multiplicative effect of the sensitive pole in the continuous domain and 

gain in the same domain. 

Table 5.2 shows an anomalous behavior of the sensitivities when judged against the values of 

the parameters themselves. According to observations made and documented here, there was 

more movement and hence more sensitivity in the system time constant as the level of noise 

is increased. The gain showed more resistance to change at the same time. The interest 

however came when the objective function J was inspected for its behavioral dynamics with 

changing noise. The table below lists the values of J as used in the genetic estimation with 

increasing noise. 

Table 5.4 Movement of the objective function with varying noise levels 

I Noise Level Obiective Function Value J 
0% 0.694 
1% 0.797 
2% 3.324 
5% 10.976 
10% 55.621 
20% 166.603 
50% 266.207 
75% 597.69 
100% 1013.29 

Graphically the movement is as depicted in figure 5.14 
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Figure 5.15 Depiction of the movement of the performance index with varying levels of 

noise injected into the system. 

It can be seen that the objective functions with respect to noise is less sensitive to change up 

to 10% injection. Above this, there is a notable appreciation in its value. When inspecting 

this function in its totality, its appreciation at higher noise levels is hardly suprising. 

According to the Chain rules, the change in J with respect to the noise level is expected to be 

determined by the diagram 

J .,,,,,.-A --N 

-"'-T · N 
m 

so that the appreciation of J will have the rate 

a1 a1 aA a1 aTm 
aN =a A aN + aTm aN ..................................... 5·7 

From the inspection of table 5.2, both the change in A and Tm would contribute equally to the 

change in J with respect to the noise. 

The movement of both the parameters and the objective function raises a rather disturbing 

question from the following observation: 

It is clear that there is not much of a difference in the movements of the system gain for the 

case of the genetic estimation. Using the same argument, the movement of the discrete pole 

when sing the recursive least squares was not as sensitive. Even with the sensitivities 

computed, there was no satisfactory correlation between the system parameters, for both the 

GA and RLS, and the noise level applied. For the GA however, where the objective function 

could be monitored, there was a clear and unambiguous sensitivity of this function, directly 

reflecting the level of noise injected. With this observation therefore, one may pose the 

question: "What really determines the goodness of search when comparing the two 

methods?", "Is it the manipulation carried out by both, or is it the cost function 
utilised?". 
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5.5 Comparative performance between the RLS and the GA estimator 
Comparisons between the two estimation techniques were carried out at two levels: 

i) The accuracy of the estimation. 

+ For this first order model, there is a good agreement between the results produced 

by the modeling techniques. The results agree to within an experimental error 

inherent in the sampling and the removal of offsetting signals to format the data for 

the genetic estimator. It was shown that the estimated model obtained using the 

genetic algorithm could be transformed to the discrete domain to be 

0.0354 
gh(z) = z-0.967 

and compared to the parameters estimated by the RLS for the genetic model 

gh(z) =_A_( I---~~_>_) - _c_ 
-T z-D 

z-e-r 

where the parameters C and D were found using the RLS to be 

c = 0.0352 
D = -0.968 

For this simple illustration therefore, it can be seen that there is a reasonable 

agreement between the two models although they are based on different 

implementations. The underlying cost function for the two methods was however 

set to be same being, and could thus explain the similarity in the performance. 

ii) The noise handling characters. 

+ The genetic estimation with the its error characteristic clearly outperforms the RLS 

with increasing levels of noise being injected into the system. Although the 

parameters estimated using the GA show remarkable resistance to noise, there 

seems to be a more significant effect on the objective function J. This factor could 

be explained in terms of the topology of the estimation model and how it is 

connected to the plant to be estimated. It was mentioned in the presentation on the 

RLS that two of the error methods, the forward difference and the backward 

difference models were disqualified because of their non-linearity in parameters. 

These however have been shown in the literature to be more resistant to the 

problems of noise injection into the system. 

Although the use of the error squared cost function was reported in detail here, other cost 

functions such as J leldt, J leCt)ltdt and J e2tdt were used as well. All the cost functions 

involving time effectively used it as a weighting factor, emphasising that as more samples are 

taken, and thus more time, the difference between the samples ought to diminish as fast. For 

short simulation times however, as in the case of the de motor used, the error squared 

criterion proved to be more than adequate and hence, why they were not used any further. 
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5.6 Chapter summary and conclusions 

In this chapter the genetic algorithm was applied to a case of a servo motor as a system 

identification tool. As a measure of comparison to classical engineering methods, it was 

further compared to the Recursive Least Squares method. The comparisons between the two 

focused on the issues of the accuracy of the GA when not incurring problems such as 

stagnation and its capability in handling signal corrupting noise. 

According to the empirical work conducted, it is clear that the GA compares favorably to the 

RLS in terms of the accuracy in finding the parameters of the models. Although this is so, the 

amount of time the user has to wait for the GA to complete its tasks is almost a disadvantage 

when comparing it to that taken by the RLS. On the real time scale, the RLS takes typically 

orders of milliseconds, if run on line with samples data, to arrive at a solution representing 

optimal parameters. The genetic algorithm on the other hand, can takes orders of tens of 

minutes, to hours to arrive at what can be considered reasonable enough solutions. 

The performance of the algorithm in the presence of noise however does give a slight edge 

over the RLS. This however can also be put in perspective of the topology of both methods, 

where it was shown that the RLS by virtue of its connection, will always be prone to the 

noise in either the output or the input. Although the genetic algorithm connection embraced 

the topology which was supposed to put at a disadvantage in terms of the linearity in 

parameters, this did not tum to be case due to the non-reliance of the algorithm on the surface 

of the problem being optimised. 

For problems having more than two parameters to identify however, the GA falls into a 

different league of problems altogether: Stagnation due to its tuning. It was shown in chapter 

2 that the GA is a multivariable technique demanding many settings to be right in order to 

guide the search. These become imperative when the bit string representing the parameters of 

the system increases. This tendency to be stuck as a function of the string length to some 

extent is defeating of the purpose the algorithm may be used for. 

The decision as to whether to use the GA as a systems identification tool for ordinary 

problems should be based purely on the considerations the user has for time, accuracy, noise 

handling, dependence on classes of signals used and other considerations. There is however a 

wisdom of hindsight that where dedicated methods exist for the usage of any task, they 
should be used as methods of first choice. 

The next chapter will present the second investigated use of genetic algorithms, their 

application to the problem of PID controller tuning. A framework showing how time domain 

considerations and limits can be used to tune controllers will presented. The practical 

application of this work was applied to a coupled tanks laboratory model apparatus and is 
reported in chapter 7. 
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Chapter 6 

PID Controller Tuning Using Genetic Algorithms 

6.1 Introduction 

The goodness of any closed loop control system can be decided through,a qualitative analysis 

of its response when certain known test signals are applied to it. Depending on the objectives 

of the design, these test signals are usually of the form of step or a ramp functions[Kuo, 

1987]. For a step input, the percentage overshoot, rise time, and settling time are often used 

to measure its performance margins of the system, whilst the damping factor and natural 

under-damped frequency may be used to measure the relative stability. 

Design is often a process of compromises and usage of conventions. In line with this, most of 

the design methods in control systems therefore rely on the so-called fixed-configuration 

design in that the designer at the outset decides the basic composition of the overall system, 

and then places the controller relative to the controlled process to achieve the design 

objective[Kuo, 1987]. In spite of these compromises and conventions, there is still a lack of 

straight forward or unique relationships between the time domain specifications and the 

transfer functions of systems having orders higher than the second order. Unfortunately, a 

general design procedure in the time domain is difficult to establish[Varsek et al, 1993] 

With the articulation of the desired system response in the time domain, tuning controllers to 

achieve such desired responses is also a non-trivial task. As an example, process operators 

can articulate very clearly and eloquently the response they would like the process to have in 

cases of stepping controlled variables, or occurrence of load disturbances. Tuning could thus 

be carried out to achieve the desired responses. These responses and others, can in general be 

specified in a unified form, forcing them to fit the response parameters shown in the next 

figure. 

' 

t Settling Band 

.__ Rise time t. 

time (sec) 

Figure 6.1 Process boundaries used to articulate desired process responses 
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Specifications of the process response in cases where variables are being stepped from one 

level to another could thus be specified to be along the lines: 

+ The overshoot above the setpoint (or the undershoot) should not exceed a specified 

margm. 

+ The rise time of the process be within specified time constraints 

+ The process settles within 2% or 5% bandt in a specified time. 

+ etc. 

Specifications such as these are simple to articulate in principle. It is not clear however, how 

controllers have to be designed and tuned to achieve them. 

This chapter focuses on the proposition that genetic algorithms can be used in controller 

design to achieve the above control objectives. More specifically, the tuning of PI and PID 

controllers is to be investigated. The choice of the tuning of PI and PID controllers was 

motivated by the fact that ever since their inception, PI/D controllers are the most widely 

used controllers of their kind in the South African petrochemical and minerals extraction 

industry. Even with the long standing of their use though, their parameter tuning process 

continues to be a rather unmastered task[Porter and Jones, 1992]. The use of Ziegler-Nichols 

as a preferred tuning method has a few short comings which will be discussed in chapter 7 on 

a practical application of the system. 

This chapter will start by focusing on the broad view of PI/D controllers and their topology, 

showing how the control algorithm is set up. A proposed technique of the controller tuning 

will then be presented. An example study will be provided to illustrate the usage of the tuning 

framework. In chapter 7 the use of the Cohen-Coon tuning criterion will be presented and 

compared to the framework to developed. 

6.2 Topology of PID controllers 

The proportional-integral-and-derivative (PID) controller is the most versatile controller 

used in chemical process industries. Its composition aims to take advantage of the 

characteristic error function generated between the process setpoint and response in such a 

way that it is eliminated as quickly as possible. A PID controller is composed of three parts 

as shown in figure 6.2 below. 
PID Controller k(s) :-- -- --- -- -- -- --- -------. 

:--.i 
' ' ' 

K 

e(si 
i---~-- K/s 

Figure 6.2 Topology of a PID Controller in line with a process to be controlled 

t 2% band and 5% band have been chosen in this case since they are the mos! quoted settling bands of variables. Other% bands 
could also be specified if they have special significance. 
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The proportional term, KP' the integral term, K;ls and the derivative term, K~. These terms 

combine to reduce the control error according to the formula 

K. 
u(s)=(KP +-1 +Kds)e(s) ....................................................... 6.1 

s 

which in the time domain is written as 

u(t) = KPe(t) + Kj e(t)dt + Kd d~~) ........................................ )6.2 
t 

where Kp, Ki and ~ are constants of the controller that are to be tuned. The object of the 

tuning exercise therefore, is to find the right combination of these constants such that a 

desired response is observed. The search for these constants, to a great extent, depends on the 

role they play in the correction of the error. This is however not universal since they are also 

a function of the dynamics of the process to be tuned[Golten and Verwer, 1991]. The 

contribution of each of these constants is well documented and will not be discussed here. 

When all the control actions act together, it is important that each one be applied in quantities 

which will allow it to co-exist harmoniously with others and thus maintain the overall system 

stability. The contribution of each determines the attributes observable in the 

response[Nachtigal, 1990]. Kuo summarises the contributions of each, and shows that bad 

tuning of the constants of the controller can result in an otherwise stable process becoming 

unstable. 

6.3 The genetic tuning framework 

With the contribution of each of the controller terms well understood, a framework of tuning 

PI and PID controllers using a genetic algorithm is developed. This framework uses a 

graphical articulation of the response which a designer may wish the process to have. As 

shown in the figure 6.3, a control system designer may want his/her system to have its 

attributes to fit the response limits as defined in figure 6.1. The controller would therefore 

have to be tuned so that this response is realised. 

Figure 6.3 A system response showing the limiting cases of the process output. 

The general shape of the response cannot be defined using definite closed form equations 

valid over a wide span of frequencies. It can however, be defined as a set of constraints. 

These would include features of the response such as maximum overshoots,· settling times, 

maximum deviation from the setpoint, etc. [Gray et al, 1995]. The design therefore goes 

through a painstaking process of making sure that the controller is tuned such that the overall 

process obeys these limits. 
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6.3.l The PID genetic data structure 
For a general scenario of tuning a PID controller, the starting point is the formation of the 

chromosome data structure representative of the parameters to be tuned. This is accomplished 

by concatenating the parameters to be tuned in a vector-like structure representing the 

chromosome 

8 = [Kp, Kb KcJ] ••• chromosome 

For practical PID controllers, the control law of equation 6.1 cannot be implemented. 

Usually, the derivative term is augmented with a fast filter that will not affect the dynamics 

of the overall system but make the controller causal. The topology of the new system does 

not change, as is shown in figure 6.4. 

Modified PIO Controller r-------------1 
I I 
I I 
I 

y(s) - From Process 

Figure 6.4 Modified PID Controller including a filter on the derivative term. 

From this structure, the modified PID control law can be written as 

K; Kds 
u(s)=(KP +-+ )e(s) ................................................. 6.3 

s sTd + 1 

The chromosome to be set up as a parameter vector is thus modified to be 

8 = [Kp, Kb Kci, T d] ••• chromosome. 
In the genetic evolution, these parameters are encoded as a binary chromosome with each 

parameter being represented by a gene. Each gene is decoded and mapped into a domain 

binding the value of tt,e parameter. 

6.3.2 Control cost function and penalty functions 
In the work presented on system parameter identification m chapter 4, a cost function 

defining the goodness of fit of parameters was presented. The same function 

1 N 2 1 N 2 
1 = -:L(rk - Yk) =-:Lek ............................................... 6.4 

N k=I N k=I 

could be used to determine the goodness of the PID controller when acting to minimise the 

error between the setpoint and the process response. This error squared function howeve~, 
resulted in excessively high inputs being required to attain such minimisation goals. The 

inputs were particularly excessive the moment a setpoint change is applied. For sensitive 
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processes, this could lead to a totai distruction of the actuating circuits at worst, or the 

saturation thereof. Pilot work using this objecti,ve was carried out and it was decided not to 

use it any further due to its input characteristic. A simulation example using this cost function 

would be presented later in this chapter to illustrate the functioning of a GA as a. controller 

tuner. More elaborate and advanced work utilising the framework to be developed is 

reported in chapter 7 of this report. 

A comprehensive tuning criterion based on constraints as mentioned is used as a cost 

function of the c·ontrol action. The approach analyses the response in its totality and then 

makes appropriate changes to the parameters to improve it where it fails to meet control 

requirements. The method of constraints uses the observable and measurable attributes of the 

system to formulate the cost function[Homairfar et al, 1994]. To that extent, it was decided 

that the following attributes of the response and the actuating input would be used: 

+ The stability of the resulting system. 

+ The magnitude of the input demanded by the process from the controller. 

• The maximum overshoot and undershoots. 

+ The deviation from the desired steady state position specified by the setpoint. 

Each of these conditions is tested for on the resulting closed loop transfer function after 

tuning for a particular set of parameters has occurred. If the system fails to satisfy any of 

them, then the controller that resulted in such an action is penalised accordingly (as it will be 

shown in the table of constraints and penalties to follow). The following paragraphs illustrate 

how the constraints in the system are formulated and how the penalty functions are applied. 

a) Stability check 

The check for the stability of the system is simple. If any of the eigenvalues of the closed 

loop system are positive, then the system is unstable, and the penalty equal to the degree of 

instability (i.e. the real part of the pole) is applied. 

Constraint: Re(A;) :5 0 \Ii :5 n 

Penalty: J = L(A, +bias) 2 

where the bias term in included to ensure that the penalty is always above 1.0 for cases where 

pole position maybe within domain bounds 0 :5 Re(A,) < 1 

b) Control input check 
The check for the required input ensures that the system remains within some !lCfuator signal 

boundaries specified beforehand. These are typically hard bounds specified to make sure that 

the input never exceeds them. 

Constraint: Umin :5 U :5 U max 

max{U}-U U . -min(U) 
Penalty: J = max x100% + mm x100% 

U max Umin 

where Umin is the minimum input limit and min(U) is the minimum of all the moduli of the 

minima attained. U max is the maximum. limit not to be exceeded and max( U) is the maximum 
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of all values of U. 

The penalty function is composed in such a way that it uses percentage deviations from the 

ideal situations. It was found that using raw values of the extreme resulted in hard penalties 

and introduced anomalies in the system. 

c) Maximum overshoot checks 
The check for maximum overshoots (and undershoots) follows the criterion that the 

overshoot is to be reduced gradually. There are not hard bounds set, although this can be 

done. Where they are set, the cost function and the penalty criterion takes the same form 

described for checking the control input bounds. For a gradual reduction of the overshoot, the 

following constraint-penalty pair is used. 

Constraint: llrmaxll ~ r 

Penalty: J = llrmaxll-r x100% 
r 

where Y max is the maximum value attained by the process response and r is the process 

setpoint. 

The penalty functions for the hard bounded constrains are applied as percentage deviations 

from the boundaries. More scrutiny could be applied to the process and more tuning criteria 

developed. Table 6.1 summarises major consideration which may be put. This table is 

presented with reference to the criteria developed by genetic researchers at the university of 

Glasgow[Gray et al, 1995]. 

Table 6.1 Constraint-Penalty table for cost function optimisation 

Response Criterion 

Overshoot constraint 

Maximum in the response 

constraint 

Minimum in the response 

constraint 

Steady state deviation 

constraint 

Stability constraint 

My is the peak of the response. 

Interpretation of the table: 

Constraint 

My< Mov 

Ymax < (Yrer+ Ysserror) for all t >ts 

Ymin ~ (Yrer - Ysserror) for all t >ts 

y ~ y(O) 

Re("1) s 0 'ef i ~ n 

1. The first column lists the property of the system that is of interest. 
2. The second column lists the constraint that is to be met. 

Penalty Function 

(My-Mov+I)2 

Ymax < 100 (YmwcYreri 

Ymax ~ 100 (Ymax - Yrer) + 99
2 

Ymin > -98 (Yref - Ymin)
2 

Ymin S -98 (Yref - Ymin) + 992 

((y(O)-y)+ 1)2 

L(A1 +bias)2 

3. The third column lists the penalty to be applied if the constraint is not met. 

These constraints and penalties can be used as stand alone objectives of optimisation or can 
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be combined with others to formulate multi-objective optimisation tasks. Genetic algorithms 

offer this flexibility by merely combining each of the objectives in a summation and treating 

the numerical value thereof as an objective to either maximise or minimise. 

The composition of a multi-objective search objective function ·depends to a large extent on 

the presentation of each of the individual objective functions. The composite objective 

function is a linear combination of the different individual ones[Maciejowski, 1989]. To 

make this accurate, each of the individual objectives need to be interpreted as percentage 

deviations from their ideal situations. A function 

· I= aJ1+ PI2 + ..... + rln ....................................... 6.5 
consists of objectives J; which could be any of the ones t~bulated. The scalar values a, p ... r 
are set to emphasise the importance of the contribution of each in J. If it is not possible for 

the system to satisfy all constraints, then the objective function could be set such that some of 

the constraints are satisfied before the others. As an example, if a= p = 100 and r= 300 then 

this could be interpreted as meaning that the term multiplied by r is three times more 

significant than the other terms and is thus made to have more contribution to the cost 

function. The algorithm is thus set reduce the cost function as best as possible and thus the 

contribution of the term multiplied by y. On the other hand, if all the scaling values are set to 

the same magnitude, then this means that all the terms carry equal weight. In this 

arrangement, the priority focus will shift from term to term as improvements are made in the 

search. For example, if 11 is the contribution of the error and 12 the contribution of the input 

deviation, then as the error content improves it will contribute less to the objective function 

and the focus will shift to the input component which will now have a more significant 

contribution to make. This subject is explored fully in the next chapter on a practical system 

where case studies are undertaken to test different tuning strategies. 

A numeric example will be presented next to illustrate the concepts discussed so far. The 

example is kept simple enough so as to distinguish clearly between the algorithm and the 

peculiarities of the problem. Although better controllers can be designed using class.ical 

methods of pole-zero cancellation and the s-plane, it is not the purpose of this example to 

make these comparisons. What will be illustrated is that within the framework of desired 

responses, the genetic algorithm can be set in such a· way that graphical observations are 

transformed into m~thematical equations which can be optimised. The final result, although 

will be the minimum that the genetic algorithm can attain, will not mean that it is the very 

best solution attainable in practice. 

6.4 Illustrative example: Tuning of a PID controller for an oscillatory system 

A genetic algorithm is set up to tune a PID controller for a simulated process having th~ 

transfer function 
45 .. 

g(s) = s~ + s+ 15 ...... " ... ·· · ... " .......... " ............... 6·6 

The process in open loop has an oscillatory response shown in figure 6.5°. 
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SIMULATOR S:yst:et11: G<s> 

Sat:point: a Output: 
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2.50 

PID Controller Tuning Using Genetic Algorithms 

5.00 

Cont:rol Lab. ElecEng. UCT 
HB-..ct:(c)1995 

T iMe 

7.50 

Figure 6.5 Open loop response of the process to be controller by a GA tuned PI controller 

The interest in the process is that it cannot be stabilised with either a proportional(P) 

controller and a proportional-integral (Pl) controller satisfactorily as the typical root loci of 

both control types indicate below. Although an attempt can be made with a carefully tuned 

(Pl) controller, it is bound by the asymptotes which determine the angles of approach of the 

root locus and the response could remain oscillatory and unsatisfactory. 

ao .00-

... ~ 
nioo 

-10.00-

-ao.00--

k(•): k(•h•l .. ,.,, .. ,.,=, 

•'".' ....... . 

f('<P.> • • • • "••• 

Figure 6.6 a) Root locus of a system with a 
proportional (P) controller. 

Figure 6.6 b) Root locus of a system with a 
proportional-integral (Pl) controller. 

The root locus of figure 6.6a shows that the system will oscillate as the system gain 1s 

increased in feedback whereas figure 6.6b shows that with sufficient gain the system may 

ultimately become unstable. In the stable regions of this plot, the system becomes more 

oscillatory with increasing gain. Hence, neither of the control strategies will deliver 

satisfactory control results, and hence the choice of a PID controller to be tuned. This is also 

an illustration to show that there is no limitation in the number of parameters which could be 

concatenated in the search chromosome, as long as computational resources allow. 

The genetic process is thus set to search for the four parameters of the control law 

K; Kds 
u(s) =(KP+-+ )e(s) ......................................... 6.7 

s sTd + l 

such that the closed loop system poles and zeros are placed where they will result in stable 

and fast responses. Although not used further, the prime objective of the tuning was to reduce 

the error function e( s) as best as possible, no matter what the cost of the control action. 

6.4.1 Setting up the algorithm 
The genetic algorithm was set up to perform the task of tuning a PID controller for the 

process described. The following algorithm settings were used. 
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Table 6.2. Parameter settings of the GA tuning the PID controller 

Property Value 
Population size 80 

Crossover type single point 

Crossover rate 0.80 

Mutation rate 0.005 

Chromosome settings 48 bits long, 12 bits per gene 

Parameter boundaries 0.1 ~KP~ 100 

0.1 ~ K; ~ 100 

0.1 ~ Kct ~ 100 

0.005~ Tct ~ 5.0 

With these settings, the algorithm was allowed to run a maximum of 30 generations to find 

the solution. The figures to follow are snap shorts showing the algorithm's progress at 

different stages. Only three distinct tunings have been included as an illustration. The final 

plot included was not the very best the algorithm could do in this experiment, the results are 

presented in the next section. 

CONTROL ERROR 

Figure 6.7a) Genetic algorithm tuning progress at generation 0. 

Notes: The frequency of both the plant response and the plant input is very high. The magnitude of the 
input signal is also completely out of bounds. Although not shown on the plot, the system reported the 
maximum input to be 56V. 

,, 
·····--::· ... - ... 

( 

PLANT RESPONSE 

CONTROL RAOR 

I<~ = 4'9 . 402 

II< :I.. = .1.4 ~ :570 

Figure 6.7b) Genetic algorithm tuning progress at generation 5. 
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Notes: There is a visible increase in the decay rate on both the plant input and the process response. 
When looking at the s-plane, this is symptomatic of the advances of pole~ as they move further away 
from the origin. 

·PLANT RESPONSE P ANT INPUT 

· CONTROL ERROR CONTRCll...E:J:!ROR 
p_ ... ___ t ..... m.:: 

Figure 6.7c) Genetic algorithm tuning progress at generation 20. 

Notes: Although the signal frequency is still high, the decay rate of the response has increased even 
further, showing that the system poles have made more advances in moving away from the origin of the 
s-plane. 

The tuning criteria for this illustration was set to be a simple error square reduction of 

equation 6.4. It should be evident from the plots that although there is a reasonable amount of 

progress being made from one generation to another in tuning the controller, it is made at an 

unacceptably high cost in the plant input. For practical systems, this will indeed be a problem 

which could lead to actuators saturating and in some cases, undergoing accelerated wear and 

tear. 

The final result settled for in this experiment produced the following results in controller 

settings. The plot showing the control action is presented in the following figure. The final 

controller settings settled for were: 

Kp= 49.56 
Ki= 14.60 
~= 4.10 
Td= 0.02 

. __ --~ __ CONTROL Ji:RRO:R ... 
c~~~~o~•-~ P _____ t_ ... _: 

Ks:> = 4.'P,. S6CI 

K9. = 14,.!S'PO 

l<d = ... 09~ 
A-o--~-•-a P~1- = o.~•? 

Figure 6.8 Plot showing the end result of t~e algorithm's tuning exercise for an oscillating 

system. 
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As a comparison to the cases of Proportional (P) and Proportional-Integral(PI) controller, the 

root locus of the resulting system and the final system poles and zeros are presented next. 

Figure 6.9 shows the resulting root locus from the parameters of the controller presented. It 

shows that the system as tuned will be stable for cases of increasing the gain. Also evident, 

although the system will remain stable, the degree of oscillation will increase as a side effect 

as the gain is increased without bound. 
sw-t--: a<-> 

r~~~-~t: -cADOODO -<->: -<-> 
f<-.>: f<:a.>=.1. 

.... ---· 

c~~tr~~ L-b, E1-c:E~g, UCT 
l"'IH._.c:t<c:>.199~ 

k<->: k<->=.1. 
11'3'<-.>: P<->=.1. 

Figure 6.9 The root locus plot resulting from the parameters of the PID controller as tuned 

for least error case. 

More specifically, the following closed loop transfer function resulted from the tuning 

process: 

h(s) = 1109250( )( )( )( ) ...... 6.7 
s+ 0.31 s+ 10.20 s+ 20.25- l0l.6j s+ 20.25+ l0l.6j 

(s + 0.3 l)(s + 9.791) 

Equation 6. 7 as a closed loop characteristic function of any process is far from ideal for any 

process: 

i) Both zeros introduced by the PID controller induce a cancellation with the poles of 

the system. The pole at s = -0.31 is completely canceled by the zero which the genetic 

tuner has placed. Although the pole at s = -10.20 is not completely canceled, the effect 

of a zero at s = -9. 791 is overwhelming and does in fact neutralise the action of the 

pole to some extent. 

ii) The only poles left in the system will be those sitting at locations s = -20.25 ± 101.6}. 

Two features of this complex pole pair are worth mentioning and be linked directly to 

the objective function of the algorithm. 

+ The real part of the poles places them at locations in the s-plane resulting in 

relatively fast decay time compared to the other two modes of the process. It 

might be argued therefore, that the cancellation of the two relatively slow 

modes of the system was not incidental, but rather, a strategic move in the way 

the algorithm interpreted the s-plane. The decay time therefore ensures that the 

process reaches steady state as fast as possible and hence nulls the average 

error in as fast a time. 

+ The imaginary part of the poles results in high frequencies of oscillation of the 
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system. This in simulation cases could easily be offset and compensated by the 

speed of decay due to the real part placement of the pole. In practice however 

wear and tear would outperform the speed advantage and render the controller 

less than ideal. 

The algorithm has thus succeeded in tuning the PID controller to for least error. The evident 

side effect is the unlimited usage of the input, exacerbating the oscillation in the response. 

The placement of pole, albeit in oscillating regions, of course resulted in the least error 

manageable within the constraint of the defined parameters. With further processing the 

algorithm managed to do even better in terms of the response speed, but in so doing worsened 

the oscillation effect. 

6.5 Summary and chapter highlights 

In this chapter a proposal was made to use a genetic algorithm as a PID controller tuning 

algorithm. The framework developed evolved from the use of constraints which are used to 

describe graphically the limits the process response has to obey. 

Most of the considerations given to the process response, when transformed to mathematical 

representations, resulted in truly non-linear functions and sometimes discontinuous. With the 

processing carried out by genetic algorithm, this is no bother since the algorithm has a 

property of not depending on the surface properties of the function that is being processed. 

The example used in this chapter, although it was non discontinuous, showed that the 

requirements specified as parameter constraints in the time domain can in fact be transformed 

into specific pole positions in the s-plane. This was clearly demonstrated by the placement of 

the poles performed by the GA. The algorithm placed the process zeros such that the slowest 

poles are canceled. The remaining poles were moved as far away from the plot origin as was 

possible within the trials taken. 

Although pole-zero cancellation is known to produce problems related to internal stability of 

the closed loop, it was allowed in the context of this example. Inherent in the error cost 

function used is the fact that it is expected to diminish. For stability therefore, a growing 

error would be symbolic of the cost function which will result in an unstable system. Overall 

stability is therefore inherent in the tuning process. If pole-zero cancellation is to be avoided, 

the system resulting pole-zero placement can be analysed for its topological character, 

determining the proximity of the zeros to the poles. The zeros can thus be restricted to certain 

radii from poles, where it is known that such choices do not induce cancellation or that the 

zeros will not overwhelm the poles. 

In the next chapter a more elaborate look at the framework developed will be taken by 

applying the control tuning schemes to a two-tank laboratory model. Furthermore, the control 

scheme will be compared to more classical engineering methods such as the Ziegler-Nichols 

and the Cohen-Coon tuning method. 
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Chapter 7 
Application of Genetic Tuning to A Coupled 
Tank Apparatus System. 

7 .1 Introduction 

In chapter 6 a theoretical proposal suggesting the use of genetic algorithms to a problem of 

PIID controller tuning was made. The analysis and the proposal developed a theoretical 

framework which could be used to exploit the attributes of the process response and its input 

signals as guides for tuning the controller. Furthermore, a simulation example was presented 

to Illustrate and substantiate the concepts presented. 

This chapter presents a series of case studies that illustrates the use of a genetic PI/D loop 

tuner to a practical system utilising a coupled tanks laboratory model. The model involving 

storage of liquids, was chosen because of its time dynamics which, being slow, closely 

resembles reality of industry. It was further chosen to illustrate the control of a commonly 

occurring control problem in process industries, the control of fluid levels in storage tanks, 

reactor vessels, etc. and how ~t is dealt with. Genetic algorithms were used here to optimise 

the dynamics of this process in the way described in chapter 6. 

Three tuning cases studied are reported in this chapter as illustrations of the versatility of the 

genetic algorithm as the tuner for PI/D loops: 

i) In the first case study, a genetic algorithm was utilised to tune a' PID controller to 

achieve a minimal excursion in the error signal between the setpoint to the process 

_and the system response. It will be shown that this goal was achievab_le wit?in the 

framework of the problem although it had an undesirable side effect in its utilisation 

of the control signal. 

ii) The second case will show how a controller was tuned for minimal excursion in the 

process actuating signal. A noticeable side effect in this case, was the time taken for 

the process to reach the control target. 

iii) The third and final case study combined the two strategies outlined above as an 

illustration that a genetic algorithm can be used for multi-objective tuning purposes. 
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The emphasis on the tuning strategies lied in the formulation of objective functions and the 

analysis of the results thereof. Attributes of the cost function visible in the system response 

will be highlighted and so will the side effects. The case studies utilised a two-tank level 

control laboratory apparatus which has slow dynamics to emulate dynamics of a slow 

process. 

This chapter will start by describing physically the complete coupled tanks apparatus used to 

carry out the case studies. Thorough work was carried out calibrating the non-linear 

instrumentation panel provided with the apparatus. Due to the impact the instrumentation has 

on the control system designed, its brief description will be included as well. The 

experimental modeling process of the tanks will be presented together with the dynamic 

model extracted from the process using step tests and physical considerations. 

7.2 The coupled tanks apparatus 

Figure 7. I below is a schematic diagram of the complete coupled tanks apparatus. 

Pump driving motor 

Persplex partition 

Tank I Tank2 

Water sucking pipe 

Figure 7.1 Schematic diagram of the coupled tanks apparatus system. 

The apparatus consists of a transparent plexi-glass tank container having dimensions 200 

millimeters (mm) long, I 00 millimeters (mm) deep and 300 millimeters (mm) high. A center 

partition is used to divide the container into two tanks of equal dimension. Flow between the 

tanks is by means of three holes drilled at the bottom of the partition forming the orifice 

couple shown in the figure. The three holes have diameters 10.3, 9.5 and 6.4 millimeters 

(mm) respectively, and are situated 30.0 millimeters above the base of the tank. A smaller 

bleed hole of diameter 3 .2 millimeters is situated 15 .0 millimeters from the base. The size of 

the orifice is varied by plugging and unplugging these holes using bungs. With all bungs 
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removed, the container can be viewed as one large tank. On the other hand, with the largest 

holes plugged, the remaining holes allows for a weak interaction between the tanks. 

Water is pumped from the reservoir into the first tank by a variable speed pump which is 

driven by an electric motor. The pump motor drive signal is derived from a digital computer 

interfaced to the system though a DT2801 ADC/DAC interface module. The water flow rate 

is measured by a flow meter panel attached to the tank. 

Two depth sensing tracks are mounted in each of the tanks. An alternating current signal is 

applied to the tracks so that their resistance changes as the level of the water in the tanks 

change. This induces a voltage across the tracks, which is detected, filtered out and amplified 

to give the depth output of the sensor. All the signal processing is done inside the 

instrumentation panel provided with the apparatus. Water flowing into the second tank is 

allowed to drain out into the reservoir tank via an adjustable drain tap which has a diameter 

of 7 millimeters when fully open. 

7.3 The device instrumentation and the calibration of sensors 
In this section a brief description of the instrumentation system will be presented since it was 

found that their changing characters were mainly responsible for the observed peculiarities in 

the control of the levels. 

7.3.1 The mechanism of flow measurement and calibration of the flow meters 
The water flow rate is measured by a device consisting of a cylindrical bob weight inside a 

tapered tube as shown in figure 7.2 below. 

Fluid out 

Tapered tube 

Bob weight 

Fluid in 

Figure 7.2 Sketch of the flow measuring instrumentation device. 

As the fluid flows through the tube, the bob rises until the pressure drop associated with the 

flow just balances its weight. The more the flow, the higher the bob will rise to balance the 

pressure drop. Thus, the height of the bob inside the tube is a direct measure of the flow rate 

and may be calibrated accordingly. 
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Experiments were run to determined the relationship between the pump motor drive input 

voltage, V pump• and the flow rate developed. This was done with the view of calibrating the 

tank flow measurement system and determine the characters of the input. The calibration 

curve below shows the profile of the pump drive voltage versus the developed flow 

3 0 0 0 Profile of the flow rate vs motor drive voltage 

I 
2500 

2000 

~ 
! 1 5-0 0 

l 1000 

I 500 

Motor drive volta9e (V] 

Figure 7.3 Calibration curve determining the relationship between the motor input drive 

voltage and the flow rate developed. 

Above an input voltage of 1.2 Volts, there is a fair amount of linearity in the flow rate of the 

system. Errors resulting from noise in the response were usually minimal. 

7 .3.2 The depth sensors and their calibration 
As mentioned before the depth of the water in the tank is measured by parallel tracks placed 

inside each tank. These devices exhibit electrical resistance variation depending on the level 

of the water in the tank. 

The analysis of the depth sensors revealed a somewhat non-linear relationship between level 

and sensor voltage. As it can be seen in figure 7 .5, strict linearity of the depth sensors is 

limited between 100 millimeters and 140 millimeters and between 150 and 180 millimeters 

height in the tank with a definite inflection point between the regions. This means that the 

modeling and the control has to be done in the range defined by the linearity of the depth 

sensors. Control outside these areas will very likely be erroneous. 

C 11 Ii b r 1111 t Io n o f th e 1 a co n d ta n k d e p th • e n • o r 
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f 
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Figure 7.4 Calibration of the tank depth sensors and the plot showing their linearity 

character. 

When all the analysis was done, the process of modeling the system was undertaken. 
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7 .4 Coupled tanks modeling 

In the broader context of modeling, two approaches can be taken to determine a process 

transfer function: Modeling using the laws of physics and chemistry governing the 

process or stimulus-response characters of the process. The coupled tanks system landed 

itself well to both approaches which were used to determined the process model. 

Because of the interest in the difficulty of the model and their open loop dynamics, it was 

decided to do a control of the second tank level only. A stimulus-response approach was used 

by running the process until it reached a steady state in the level and then stepping it by 

increasing the pump drive by I Volt and observing the response. 

I I 

l

-lop,tflow

1

1 
rate 

-Tank level 
response 

Time(sec) 

Figure 7.5 Step response of the second tank when flow rate is stepped up and down. 

Figure 7 .5 presents an overall picture of the system response when the second tank 1s 

considered. For closer scrutiny of the model, a magnified version of this response is extracted 

and presented alone to highlight some of its peculiarities. 
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Figure 7.6 A magnified view of the second tank's level response when the flow rate is 

stepped up and down. 

As far as possible, the above figures suggest that the model of the process is of first order. It 

was however found with initial attempts in designing the level controllers, that the real-time 
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control of the assumed model type and calculated parameters did not match the simulation 

work. After exhaustive remodeling it was found that this assumption was invalid for high 

loop gains. This was confirmed by the oscillations which built up when the second tank level 

was controlled with a simple proportional controller in feedback. For theoretical and practical 

systems, a first order model is not expected oscillate when the feedback gain is increased. 

The building up of oscillation when the feedback gain was increased suggested that the 

process should be approximated by a model that was at least second order, perhaps more. The 

phenomenon of pole dominance was used to resolve this contradiction between expectation 

and observation. When a thorough analysis of the S-plane was done, it was found that the 

model contained two modes, one being the more dominant, manifesting itself as a first order 

response, and the other being a less dominant mode which was found using physical 

modeling of the system. 

The system was analysed using the flow-balance analysis to extract the extra mode which 

was not visible before. The working of the model will not be presented here. Details are 

presented in appendix B of this report. Using the flow-balance approach, a transfer function 

model was found to be of the form 

A 
------- .......................................................... 7.1 
(sI; + l)(sT2 + 1) 

where h2 is the level in the second tank and qi is the flow rate. 

The object of the modeling exercise was thus to find the three unknown parameters of the 

above model: A, T1 and T2 . The parameter values of this model were found by experiments 

and measurements of real parameters of the process. Experiments suggested by Wellstead in 

the manual accompanying the apparatus were carried out to determined the numeric values of 

the model of equation 7. I. The model settled for eventually was 

h2 (s) 0.94 
q;(s) = (184s+ 1)(22s+ l) ······················································7·2 

The fast mode which was not observed when using the stimulus-response approach is now 

clearly visible in the above model. When studying equation 7 .2, one can see that using step 

tests to model the process, the dominant pole with time constant of 184 seconds will tend to 

swamp the faster mode with time constant of 22 seconds. 

7 .5 PID controller design and tuning using the genetic algorithm 

With this process model obtained, the object of the experiment was then to design controllers 

for controlling the level in the second tank using the flow into the first tank. Consistent with 

the framework presented in chapter 6, different tuning strategies as outlined in the 

introduction were to be applied. Each had an objective which was listed as being prime for 

each of the consideration given. 

For the purpose of this experimental work the modified PID to be tuned was 
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K; Kds 
k(s) =KP+-+ ............................................. 7.3 

s I+s~ 

The control objectives mentioned were thus to be achieved by a careful selection and tuning 

of the parameters KP, Kb Kd and Td of the controller such that the control system is controller 

as desired. 

For all the control tuning cases studied, the same pattern in tuning the algorithm was used. 

The table below outlines these settings as they were used in this thesis. In general, all the 

algorithms were run for 30 generations once or more times depending on the results. 

Table 7.1 Parameter settings used in the GA for tuning case studies 

Property Value 

Population size 120 
Crossover tvoe One point crossover 
Crossover rate 0.75 
Mutation rate 0.005 
Parameter boundaries 0.1~KP~100 

0.1~Ki~100 

0.1~~~100 

10·4 ~ Td ~ 100 

7.5.1 Tuning objective 1: Tuning the PID controller for setpoint tracking 
In this work the objective was to tune the PID controller for the least error between the 

setpoint and the process response. To this effect, an objective function which was simply the 

error squared model criterion mentioned in chapter 5 was defined and used. 

} N 2 

11 = N L ( rk - Yk) 
k-1 - ....................... 7.4 

12 = _!_ f (r~ y) 2dl/f = _!_ f e2dl/f = liml1 l/f l/f N-+0 

where N and 'I' are sampling windows in both discrete and continuous domains. 

To minimise this criterion, a penalty function was set simply as a square of the multiplication 

factor that scales the fitness of the member functions of the GA population depending upon 

their .performance on minimising equation 7.4. The fitness of the individual is scaled 

proportional to the mean of the error function calculated in the simulation. Thus the 

genotypic value of the member function was set to be 

Genotype_ Value= (error* ~)2 

where ~ is a scaling factor set to determine the severity of the tuning. For this single 

objective tuning the value of ~ was set to 1000 to scale up the error which might be 

diminishing. The objective was thus to minimise this Genotype_ Value of the member 

function. It should be noted that ~ cart be set to any value which will ensure that the genotype 

value increases progressively with an increasing error. A value greater than 1 would suffice. 
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The algorithm was run for 30 generations as a limit and the following controller parameters 

were obtained: 

KP = 68.401 [V]/[V] 

Ki= 0.073 [s] 

Kct = 98.043 [s] 

Tct = 3.071 [s] 

Even though the objective was achieved, the cost of the control remained rather prohibitive. 

Proper analysis of this fact and more comments are done in the following section 

7 .5.la Controller performance for setpoint tracking 
The controller designed for least error tuning was analysed to determine if its objective was 

achieved. The simulation model clearly achieved its objective. Although this was done, the 

inputs used in the system were prohibitively large for the system to function smoothly. Figure 

7. 7 below shows the resulting control action due to the parameters of the controller obtained 

by the genetic algorithm. 

Level control of the second tank 

7.6 

6.4 

6.2 +--------t-----t---+--+-----+---+----t--------J----t---+--+-----+-----t-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 

M ~ ~ ~ m o ~ M ~ ~ oo m 

time (sec) 

--Tank level setpoint 

--Tank level 
response 

Figure 7.7 Level control signals of the second tank showing the set-point and the response 

of the tank level for a PID controller tuned for least error. 

There is a reasonable amount of occasional excursions away from the setpoint once it was 

caught by the tank response. This was due to the physical limitations of the pump drive 

system. Although according to the simulated result of the tuning, the system seemed to settle 

down with the least error, it however, demanded excessively high inputs to achieve the task. 

The pump system was limited to a 10 Volt output and thus could not apply the control signals 

outside the range. The limitation was further enforced by the programming to ensure that 

system limits are not exceeded as a protection measure for the devices. Viewed in this way, 

the system reduced to a simple bang-bang control strategy where the drive signal made large 

excursions to either side of the mean drive signal. The figure below shows the movement of 

input signal as commanded by the PID controller tuned. 
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Figure 7.8 The activity of the process input signal driving the tank pump for a PID 

controller tuned for least error. 

The activity of the signal in figure 7 .8 shows that .it had occasions of going abov~ 10 Volts 

and lingering around 0 Volts. Both situations were out of the ljmits of the pump drive signal 

whkh was shown in figure 7.3. To gain an appreciation of the movement of the actuating 

signal, a better trend of the movement of the input can be seen from its Histogram 

distribution. 
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Figure 7.9 A histogram of the distribution' of the control input signal for a PID controller 

tuned for least error. 

From this distribution1 the following descriptive statistics were obtained: 

Table 7.2 Descriptive Statistics of the least error tuning criterion case study 

Property Value 

Minimum input -3.515 

Maximum input 51.516 .. 

Mean input 4.465 

Standard Deviation 4.474 

From the statistics presented, both. the maximum and the minimum inputs demanded by the 

process on line were unattainable. The negative voltage required translates to a condition of 
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sucking the water out of the tanks using a mechanised technique. Since water can orily leak 

out at a rate not less than 0 cc/min, this condition was not met. Although the mean value of 

the controller could be comforting to some extent, the large value of the standard deviation is 

reflective of the noisy movement of the pump drive which sways it around the mean at a high 

frequency. This in practical terms, will result in the plant equipment, in particular the 

actuators, undergoing accelerated tribology. 

7 .5.1 b) C-0ntroller pole placement in. the s-,plane 

In the greater control context, .the final analysis of performance can only be confidently .done 

by analysing the pole positions in. the s..:plane. For this purpose, it is thus instructive to study 

the placement of poles done by the genetic loop tuner. Visible attributes of the system from 

its. response are low frequencies of oscillation. and a .relatively fast response compared to the 

open loop step response. Figure 7 JO below shows the root locus of the resulting closed loop 

system as tuned by the GA for least error. Poles and Zeros of the system are labeled <P> and 

<Z> respectively pn the plot. 

ROOT LOCUS: sv-.~e ... :: Q<m> 

2!> 

-o.:a:a -o .. :20 -D .. .1.~ -o .. .t.o 
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Figure 7.10 The root locus of the control system resulting from a least error tuning exercise. 

The resulting root locus shows that the closed loop system is perfectly stable and will become 

progressively more oscillatory as the loop gain increases. 

7.5.2 Tuning objective 2: Tuning the PID controller for the least input 
The second controller tuning objective was to achieve a good control action using as little 

control effort as possible; The objective-penalty function table pres.ented in chapter 6 lists the 

criterion for least input usage; The objective is simply to minimise the cost function 

~ = 77.580 [s] 
Td = 13.896 [s] 

1 ·N 

N Luk~ J utl'f/ 
k=I 'I' 

J = U::; llmax(u)ll .................................................... 7.4 

U ~ llmin(u)ll 
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This cost function penalises the controller member function on the basis of three criteria: The 

average control action, the maximum control action and the minimum control action. The 

aim was therefore to minimise the objective function which is made up of the considerations 

of all the above. When a controller deviates from any of the above criteria, a penalty 

proportional to the amount of deviation is added to its genotypic value and thus degrading the 

fitness of the genetic population member which resulted in such control action. Therefore, the 

penalty function for this controller would be made up as 

1 f .7.5 
P = %_dev{I N £ .. Pk - uavc I}* /3+ %_dev{lmax(u)-uimx I}* y+ %_dev{lrnin(u)-urrin I}* a 

k=O 

where the constants ~. y and a are chosen and set to emphasise the order of importance of 

each of the criteria. Uavg is the desired average for the input signal, Umax the tolerated 

maximum and Umin the tolerable minimum. For instance, if it is desirable to curb the 

maximum input as much as possible, then the scaling factor y would be scaled such that the 

percentage deviation resulting from the maximum input is emphasised more than the other 

two components of the penalty function P. If the scaling factors ~. y and a are set to the same 

value, then the order of importance change from parameter to parameter as improvements in 

the others are achieved. 

For reasons of practicality, the consideration of the average input usually does not make 

sense since it is built into the boundaries being the maximum and the minimum input. Thus, 

more pressing demands of excursions outside the pump flow settings could be weighed more. 

In fact, the component outlining the demand for average input could be removed from the 

penalty function without much significant loss in the performance of the controller. The 

modified penalty function would simply be reduced to 

P = %_dev{lmax(u)-umax I}* 1 + %_dev{lmin(u)-umi
0

I} *a ······ ······· ··· ···· ··7·6 

The objective then is to ensure that the control signal remains within the boundaries of the 

pump drive voltage. It should be noted that although it was said that removing the average 

input component from the penalty results in no significant loss in performance, there is now 

an added risk that the controller tuned might result in a bang-bang control within the limits 

defined by the other two criteria. Once more the algorithm was set to tune the controller to 

attain the objective of equation 7 .6. 

7.5.2a Controller performance for least input tuning 

As in the previous tuning case, the controller designed for least input was analysed for 

performance margins it achieved. The visible side effect in the case of least input tuning, was 

the amount of time taken for the system to settle down to new setpoints. The controller tuned 

attained the following values for the PID controller: 

Kp =1.661 [V]/[V] 

Ki= 0.098 [s] 

~ = 77.580 [s] 

Tct = 13.896 [s] 
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The figure below shows the resulting control action for the current tuning . 
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Figure 7.11 Level control signals of the second tank showing the setpoint and the response 

of the tank level for a PID controller tuned for least input. 

Evident from the figure above, is the comparative amount of time taken for the system to 

reach its setpoint and the accompanying output oscillation. Unlike the previous case however, 

there was a clear evidence of the declining steady state error and the system eventually settles 

at the required setpoint. 

The tuning was more successful in keeping the input within required limits as shown in the 

figure below. 
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Figure 7.12 The activity of the input signal driving the tank pump for a PID controller 

tuned for least input. 

The distribution of the signal shows a very tight and centered movement with no tendency to 

deviate out of the region of specified design. This is true for both cases when the system is 

stepped up and down. The excursion seen when the system is initially stepped should be 

ignored in the analysis of the controller performance since the transient performance of any 

controller is a function of the process starting modes. Only the response after the application 

of the first legitimate step should be considered. 
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As in the previous case, it is instructive for one to inspect the statistical distribution of the 

input signal movement. The figure below is a histogram showing the·distribution of the input 

signal. 
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Figure 7.13 A histogram of the distribution of the control input signal for a PID controller 

tuned for least input. 

From this distribution the following descriptive statistics were obtained 

Table 7.3 Descriptive statistics of the least input tuning criterion 

Property Value 

Minimum input 1.227 

Maximum input 5.071 

Mean input 3.122 

Standard Deviation 0.283 

The least input tuning scheme resulted in disciplined signal levels with the least amount of 

deviation from the mean. Although the average condition enforcing a particular average value 

in the input was removed from the cost-penalty function, the standard deviation from the 

signal mean shows coherence with the overall objective of maintaining a tight control signal. 

The excursions made to either end of the signal scale were as a result of t~e application of 

steps (both stepping up and stepping down the level) and the resulting initial transient. Unlike 

the previous tuning case though, even with sudden changes in the setpoint, the control signal 

remained within specified tuning boundaries. 

The side effect of the scheme however, was the amount of time the signal takes to reach its 

setpoint. This could be acceptable in practice depending upon the urgency of the control 

scheme. 

Between the two schemes presented so far, there is an element of practical unreality. In 

principle, the illustration that the controller can be tuned for either of the control schemes 

comes out clearly. In practice however, the situation is not an either-or choice, but rather a 

demand that both properties outlined above be inherent in the action of the controller. To this 

effect therefore, a controller has to be tuned to achieve both the least error possible within the 

design scope whilst being economic on the cost of control action used. This combination was 

investigated and is reported below as a case of multi-objective optimisation. 
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7.5.3 Tuning objective 3: Tuning the PID for both least error and least input 

The scheme to attain both objectives above was tried on this system and applied. Essentially 

this is a compromise scheme aiming to tune the controller for least error while at the same 

time economising on the usage of the plant input. The objective function for the scheme was 

constructed as follows 
N 2 

P = {%_dev(jjmax(u)jj+%_devjjmin(u)jj}* P+{_!_ L(rk - yk) }*y ............. 7.7 
N k=I 

Both the deviations from the maximum and minimum input, and the error functions were 

interpreted as percentage deviations. The compromise and priority between them is 

introduced by the scaling factors ~ and y which are set to values emphasising the deviation 

from the concerned penalty contribution. For example, if both ~ and y are set to 1000, then 

each contribution would be weighed by that much. If there is an improvement in say, the 

error function, then its contribution to the cost function will decrease and hence its 

contribution multiplied by the scaling factor. Out of this then, the first term would have more 

contribution due to the multiplying scaling factor and the relatively large value of the 

deviation compared to the error function[Thithi and Braae, 1996]. 

The alternative could be the deliberate emphasis of one of the factors of P such that it will 

always be the factor which really matters. In such a case then, the tendency is to set either of 

the scaling factors above the other depending upon the priority with which the user needs to 

tune the controller. For example, if one needs to keep the error as low as possible and to some 

extent does not mind a relatively high input, then y would be set to reflect this desired trend. 

Typically, the value set higher shows how much more important the factor being controlled 

when compared to the other. For example, if y is set to 2000 and ~ set to 1000, then this 

could be interpreted as meaning that the input tuning is twice as important as the error 

condition. 

For the current task of tuning the controller for the two tank system both the values of ~ and y 
were set to· be equal at 1000 to put equal emphasis on both conditions. When the trend is 

inspected, then it can be seen that the priority changes from one condition to the other as the 

tuning process continues 

7 .5.3 a) Controller performance for least error and input tuning 

As in the previous two cases, the controller designed was analysed for the performance 

margins achieved. The genetic tuner produced the following parameters for the controller: 

Kp =13.602 [V]/[V] 

Ki= 0.171 [s] 

~ = 54.526 [s] 

Td = 16.526 [s] 

The figure below shows the response of the process when stepped from one water level to 

another. 

94 



Chapter 7 Application of Genetic Tuning to A Coupled Tank Apparatus System 

7 .80 
Level control of the second tank 

E 
0 7 .60 
~ 7 .40 .. 
'D 
c 7 .20 m 

" :?: "' 7 .00 c 
0 

--Tank level utpolnt 

--T11nk Level Response 
c. 6 .80 "' ~ 
;; 6 .60 
> 
.!!! 6.40 
c 
{! 6 .20 

!Im e (sec) 

Figure 7.14 Level control signals of the second tank showing the setpoint and the response 

of the tank level for a PID controller tuned for multi-objective optimisation. 

When put in perspective, the performance of this system compared to the two other cases is 

better. The only side effect of this tuning strategy which was noticed, was the amount of 

overshoot and oscillation which resulted. 

The tuning was also successful in keeping the control signal within specified limits of 

between 2 and 9 Volts. The trace of control input signal is shown below. 
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Figure 7.15 The activity of the process input signal driving the tank pump for a PID 
controller tuned for multi-objective tuning. 

When compared to the case when the controller was tuned purely for the reduction of the 

input signal of figure 7 .11, a significant difference in the signal trend can be seen in the 

above signal diagram as shown in its amplitude distribution. 
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Figure 7.16 A histogram of the distribution of the control signal for a PID controller tuned 

for multi-objective optimisation. 
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From this distribution the following descriptive statistics were obtained: 

Table 7.3 Descriptive statistics of the multi-objective tuning criterion 

Property Value 

Minimum input 2.269 

Maximum input 7.149 

Mean input 3.252 

Standard Deviation 0.509 

The process response and input signals have inherent properties which are sole properties of 

the two previous tuning criteria: 

+ There is a sizable amount of over.shoot in the system, a property present on the least 

input tuning criterion. In satisfying the least input condition, the controller achieved 

reasonable input as shown in figure 7.15 with constrained movement. Compared to 

the input of the least error tuning, the current control signal is more stringent whilst 

achieving a comparable tracking. 

+ The input utilisation is not as conservative as in the least input criterion, and also not 

as severe as in the setpoint tracking case. The speed at which the setpoint is reached 

however, is characteristic of the property of least error or setpoint tracking feature 

built into the objective function. 

The genetic tuner was successful in meeting both the objectives of the design. The 

framework outlined in chapter 6 and applied to an example reported in this chapter was 

compared to classical engineering thinking for tuning PIDs. The next section highlights the 

Cohen-Coon comparative method and its application use. 

7.6 Classical control tuning techniques: A case for comparison 

The work presented so far has dealt with the proposition and application of the genetic 

algorithm as a technique for tuning PID controllers. In this section a comparison between 

genetic algorithm tuning and classical tuning techniques is made. The presentation will focus 

on the general framework developed for tuning and how it was later laid down solidly in the 

work of Ziegler and Nichols(Ziegler-Nichols tuning) and Cohen and Coon(Cohen-Coon 

tuning)[Pollard, 1971]. 

7.6.1 Optimum controller settings from transient response 

The critical phase of the implementation of the PI/D algorithms is the selection of numerical 

values of the constants of the algorithm[Srnith, 1972]. This difficulty has led to the search for 

a systematic way in which the parameters of the PI/D controller could be set for optimal 
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control of the process. A tuning framework was developed to serve as a guideline to be used 

when selecting the controller parameters. These guidelines are: 

i. Approximate the process with a simple model. 

11. Select the constants that give the desired behavior when controlling the model. 

11i. Apply these settings to the original process. 

These were applied to empirical problems studied by Ziegler and Nichols and were presented 

in a unified form in the criterion known as the Ziegler-Nichols tuning. The prime aim of this 

was to tune the process in such a way that the ratio of the response between successive peaks 

is reduced by a quarter every cycle. The tuning however proves to be rather costly in its 

utilisation of the control effort, a feature which serves a disadvantage. As a modification of 

this, the Cohen-Coon criterion sets the tuning such that the quarter amplitude criterion is 

maintained whilst at the same time observing the limits of the process. 

These guidelines are usually followed as they are with very little deviations from the norms. 

The details of their application will be highlighted in appendix C of this report. The two-tank 

model was analysed using this framework and a PID controller was tuned to compare it. with 

the results presented so far. 

7 .6.2 Two tank PID controller tuning 
The figure below shows process reaction curve for the to-tank system. The curve was 

analysed as suggested in the classical analytical studies and by figure 7 .17 with the following 

tuning information being extracted. 

Slope of the curve N = 0.00722 [V]/[sec] 

Effective delay L = 50 [sec] 

Response deviation: K = .13[V] 
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Figure 7 .17 Process reaction curve from the open loop step test of the two-tank plant 

model. 

This information was used to tune a PID controller according to the guidelines as suggested 

by Cohen and Coon strategy. The following controller settings resulted from the tuning table: 

KP = 4.052 [V]/[V] 

Ki= 7.149 [s] 

~ = 10·4 [s] 

Tct = 5.91 [s] 
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The process was controlled in feedback with these settings as the following process response 

was obtained. 
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Figure 7.18 Process response after tuning using the Cohen-Coon suggested settings. 

The process response has a reasonable character which approximates the ideal Cohen-Coon 

objective of a 4:1 response pattern between successive peaks. The achievement of this task 

was accompanied by a modest movement of the actuating signal as shown below. This case 

compares better than the Ziegler-Nichols tuning which in spite of attaining the correct and 

appropriate tuning does so with an unreasonable amount of control actuation. The transients 

of the input shown below are however much more active and the settling is not speedy. 
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Figure 7 .19 Process input movement for the Cohen-Coon settings. 

As was the case with the genetically tuned controller, the Cohen-Coon was analysed using 

the same framework to maintain consistency and draw coherent conclusions. The distribution 

of the movement of the actuating signal is shown below. 
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Figure 7 .20 A histogram showing the distribution of the control signal for the case of a 

Cohen-Coon tuned PID controller. 
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From this distribution the following descriptive statistics were obtained: 

Table 7.4 Descriptive statistics of the Cohen-Coon guided tuning 

Property Value 

Minimum input 1.308 

Maximum input 6.300 

Mean input 3.079 

Standard deviation 0.751 

The result in the actuating signal is consistent with the consideration given in the Cohen­

Coon strategy. It can be seen that the dynamics of the response decay at more or less the 

expected ratio, 4: 1. 

The next section will present a comparison of all the techniques used in this work as a 

summary and highlight significant differences between them. This will compare the strategies 

of tuning controllers using GAs only and also as a comparison between the GA based 

strategies and the classical techniques. 

7. 7 Summary and highlights of the chapter 

The foregoing analyses of this chapter and chapter 6 highlighted a remarkable and powerful 

use of genetic algorithms. The following highlights could be noted: 

+ The genetic algorithm as a controller tuning technique afforded the user the ability to 

define and articulate a desired response in the time domain as a set of limits that the 

process has to obey. The careful choice of pole positions that the algorithm makes is 

such that these boundary limits are obeyed. Stability is inherent in the tuning and if 

not, its can be explicitly built into it. 

+ The constraints specified, when mathematically interpreted, resulted in very non­

linear and mostly discontinuous behaviors in the cost function which had to be 

optimised. Because the genetic algorithm functions independently of the surface that 

is to be optimised, these ill-conditions did not prove to be deterrents in the way of the 

algorithm. This is indeed a major benefit the algorithm enjoys above all the other 

methods and the prime one which makes it stand out. 

+ The composition of multi-objectives was equally simple and mostly added to the non­

linearity nature of the problem. There are two major features that can be built into the 

multi-objective optimisation tuning: 
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• Prioritisation · 

Depending on the settings of the scalar multiplying factors in the objective 

functions which are linear combinations of others, tuning priorities of tuning could 

be set. Those conditions which are to receive higher tuning priorities are weighed 

so that they contribute more to the cost function which has to be minimised. The 

algorithm in minimising this function therefore, will almost be seeing only the 

heavier function contributing to the overall cost. When reduced sufficiently, the 

cost function will start bringing other factors into play and thus deal with them. 

When setting these priorities though, care should be taken that the comparative 

effect of the components making up the cost function remains sensible. 

Conservative emphasis factors would determine the importance of parameters as 

ratios, say, one parameter is three times as important as the other, or twice as 

important, and so on. Scaling factors are thus set to reflect this thinking. It makes 

no sense to say one parameter will be scaled by a factor of a thousand whilst the 

other remains within the units. There might not be sufficient processing carried out 

on the former to ensure that it is brought to with the other one. 

• Free running (non-prioritisation) 
In this mode all the components of the cost function are set to have the same 

priority, this being reflected in making the scaling factors of the penalty functions 

to be equal. In this mode emphasis changes from one parameter to the next as 

improvements are made on the others. As soon as sufficient progress is made in 

controlling one feature of the response, the penalty function reflecting this will 

then contribute less to the overall cost function and hence make room for other 

parameters to be dealt with. 

The Cohen-Coon tuning strategy also produced results which are acceptable compared to the 

Ziegler-Nichols techniques, another method considered. This strategy is a recipe based 

method reflecting the thinking of fu:ed-parameter methodologies outlined in chapter 6. It 

follows a pattern of events, with the model used being based on the assumption that the 

process will have a form of a model with first order dynamics and a dead time. This approach 

could be troublesome in cases where the model is far removed from this assumption as in the 

cases of second order systems with high oscillation frequencies. The method being what it is, 

come nowhere near allowing the user to specify other desired properties of the system since 

by its very specification and tuning limits one to a specified set of performance limits. 

In the next chapter, the problems encountered with tuning the genetic algorithm as was 

highlighted in chapters 2 and 3 will be explored further. A method aiming at abstracting away 

the role of crossover whilst maintaining the statistics inherent in the GA will be presented. 

Both the development and the utilisation of this technique will be shown. 
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Removing Genetics from GAs: The PBIL 

8.1 Introduction 

In chapter 2 of this report the genetic algorithm was presented and it was shown how its 

individual components are assembled to constitute the final working model. In chapter 3 the 

algorithm was probed in detail to determined how it processes solutions and hence what 

makes it effective. 

The ideal situation in the treatment of problems with a GA, is to assume that the algorithm is 

a black box as in figure 2.1 of chapter 2, where the dials are to be set to process the problem. 

The algorithm defines the objective function f which is to be optimised through a proper 

choice of parameters and the genetic machine is set in motion. What has become an 

inescapable fact though, is the detail and amount of thought the algorithm user has to put in 

tuning it for optimal functioning. The algorithm, as was shown in chapter 2, is multivariable 

in nature and the user has to wonder around a maze of seemingly arbitrary choices deciding 

which types of operators to use and in what proportions. A modest tuning tree for a simple 

canonical GA is shown in figure 8.1 below. The search for nodal elements of this tree does 

not become any easier even after a commitment to a particular type of a GA[Greene, 1996]. 

Genetic Algorithm 

Rate? Rate? Rate? 

Figure 8.1: Decision tree for running a typical genetic algorithm 

Bad decisions about the settings of any of the components, or the combinatorial effect 

thereof, can result in an otherwise solvable problem stumbling over local optima and 

eventually stagnating. There is a rather sad fact about . the GA: There exist no 

guidelines( theoretical or empirical) as to how the algorithm ought to be tuned. 

There have been attempts to create guidelines for tuning the GA, although most of the efforts 
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have fallen short of the target. Grefenstette has attempted to detennine optimal settings for a 

"general GA" by optimising a problem solving GA with a supervisory algorithm responsible 

for setting the parameters of the slave GA. As Grefenstette notes, his work had a few short 

comings which resulted in the failure of his experiments[Grefenstette, 1984]: 

+ First, it was necessary for him to choose a particular parameterised subclass of GAs to 

explore. He neglected other recombination operators such as multi-point crossover 

and other strategies used within a standard GA. 

+ Secondly, the genetic algorithms he considered were somewhat unconstrained 

optimisation problems. 

+ For multi-level GA, where Grefenstette used one GA to supervise the settings of 

another, he found the time taken to be just 'ridiculous', taking sizable CPU hours to 

complete rather trivial tasks. 

• Where there was some promise in the system running, settings tended to be very 

depended on the problem that was being solved. It thus became difficult to have GA 

settings which could be universal for all the problems. 

With this seeming lack of guidance, the user is left to use intuition as to how the algorithm 

control parameters have to be set. To worsen matters, this intuition is often a function of 

familiarity with the problem and an intimate knowledge of the problem. A question to be 

posed thus is: "Why should the burden of setting the parameters of the algorithm have 

to lie with the user?" This question is in the light of the following two reasons: 

i) The literature portrayal of the algorithm presents it as universal method able to solve a 

range of problems with ease. Although this is true to some extent within the 

framework of problems being solved, the literature often does not mention the 

subtleties which the algorithm tuning could introduce in the solution process. 

ii) The algorithm is often used as a last resort where established classical methods fail. 

The requirement that the user still has to set the algorithm appropriately is likely to 

clutter the issues which the user will see as prime: solution of the problem and not 

the struggle with the algorithm. 

To get around the algorithm tuning issue, Baluja investigated the detail of the working of the 

GA and suggested that the entire process depends more on the statistics inherent in the 

algorithm rather than the role of crossover as experience would suggest[Baluja, 1994]. 

Using this view, Baluja proceeded to develop a modified stochastic search method 

abstracting away the need for crossover and mutation whilst retaining the statistical 

properties of a conventional GA. The algorithm was dubbed the Population Based 

Incremental Learning (PBIL) and has since its introduction been used with a comparable 
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degree of success to conventional GAs[Thithi, 1996]. The essence of the algorithm is 

presented in the following section. 

8.2 The Population Based Incremental Learning (PBIL) 
The population based incremental learning (PBIL) is a combination of evolutionary 

optimisation and hill-climbing[Baluja, 1994]. The object of the algorithm, is to create a real 

valued probability vector which, when sampled, reveals regions of high evaluation solutions 

with high probability. This algorithm exploits the statistical properties of a GA whist 

relieving the designer of the tuning overhead imposed by GAs as shown in figure 8.1 [Thithi, 

1996]. 

8.2.1 The algorithm 

Suppose an extremum point of a scalar function cp(x) is to be found in a domain x e [Xmin. 

XmmJ. Using the genetic background, the domain is encoded as a binary string of length l 

where l is a string length of the chromosome for x;. A real valued vector P(t) is created and 

all its entries are initialised to 0.5. The vector is made to be same length as the chromosome 

length /. Sampling of this vector yields random solution vectors because the probability of 

generation either a 0 or 1 is equal. As the search progresses, the probability vector P(t) 

gradually shifts to represent high evaluation solution vectors. 

A sample population /(t) is generated using P(t). Each bit in the population will be generated 

using the probability corresponding to the entry in the corresponding real valued vector. For 

statistical confidence reasons and avoiding local extrema, the population is generated to be as 

large as can be allowed by computational resources. As an example, an 8 bit probability 

vector corresponding to a population containing members which are 8 bits in length, may 

generate an ith member of I to be 

P(t) = { 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5} 

~ 

0 0 1 0 0 1 l} 

where each j1h entry of Ii(t) is generated with the probability corresponding to the j1h entry of 

P(t). The rest of the population is generated using the same vector P(t). 

Each possible entry in the population I will then be decoded and evaluated against an 

evaluation function that is the optimised. 

Suppose that the population evaluates as follows: 

I'(<)= 1: 
I 0 0 0 0 r(x) 
0 1 0 0 0 fP2(X) ...................................... 8.1 

0 0 0 = <p .3. ~ ~) 
0 0 0 0 0 <p.(x) 

For this example, suppose further that the solution giving the best evaluation results from the 
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parameters of the third entry string, 

i.e. Best = B = { 1 1 1 0 1 0 1 0} = { <p3(x)} 

then the probability vector P will be adjusted so that the trial vectors created in the next 

generation 11 will more closely resemblet the best trial solution in generation 0. This biasing 

of the probability vector is done using the following probabilistic claim which the algorithm 

makes(about this specific example). 

Claim 8.1: The Basis of a PBIL 

Given tha.t { J J J 0 1 0 1 0} results is the best solution of the function extremum when decoded, 

then there exist a high probability that the final solution will have a '1' in the first bit position, a 

'l' in the second, .. a 'O' in the fourth, etc. 

The generating probability vector is then updated to encourage this trend. 

Updating the probability vector P(t) 

The updating of the probability vector is carried out in such a way that the regeneration of the 

population members having similar Hamming trends as the previously best solution is 

encouraged. To achieve this, Baluja defined a. few control parameters with which the 

probability vector has to be adjusted by. 

The learning rate: 
The learning rate is defined as the amount by which the probability vector should be 

perturbed to move it towards either 1 or 0. Suppose we defi,ne the learning rate of the 

algorithm to be ~. then each entry in the probability vector is perturbed by the amount Learn 

= ~ as will be defined shortly. The probability vector at step 1 will be updated according to 

the following simplified scheme 

P1(t) = { 0.5+~(1-P(t)), 0.5+~(1-P(t)), .... , 0.5-~(1-P(t)) .... } 

where the first step has been chosen deliberately to illustrate the updating scheme. In general 

though, the updating of the probability vector will be done according to this C++ pseudo­

code scheme 

for (i = O; i < L; i++){ 

P[i] f- P[i] (1-~) + B[i] * ~ 

where 

Bis the bit string vector which resulted in the best evaluation function cp(x) 

~ is the learning rate as defined by the user 

i is the running index picking specific bit positions in the vectors and L is the length of the 

probability vector. 

The learning rule has a simple geometrical interpretation: If P[i] is assumed to be the best 

t The resemblance referred to here is in the sense of the Hamming distances between two binary string 
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solution vector at an instant, then its updating according to P[i] f- P[i] (1-~) + B[i] * ~. can 

be translated into a different format with a different symbol. Writing P[i] as a vector w and 

B[i] as a vector a, then this transformation could be written as w f- w +~(a - w) by a simple 

algebraic manipulation. This means that the resulting vector being the combination of the two 

vectors wand a should lie on a straight line connecting points wand a[Kvasnicka et al]. 

Figure 8.2 Geometrical interpretation of the learni~g rule and the updating of the probability 

vector. The vector w' lies inside the region on the straight line determined by a and w. 

The movement of this probability vector thus launches along a straight line which, hopefully, 

will probabilistically carry it to the optimal solution. It should be evident from the illustration 

above that the learning rate will determine the rate of appreciation or depreciation of each of 

the entries of the probability vector. A large value of the learning rate ~ will result in 

accelerated convergence towards either 1 or 0. A small rate on the other hand will result in 

delayed convergence. Both these extremes are undesirable and can cause problems where the 

algorithm will stall at local extrema of the function being evaluated. This topic will be 

discussed further in the next section. 

Mutation or Forgetting Factor 

In its basic form, the PBIL occasionally shows the tendency to converge prematurely to local 

extrema of functions. The probability vector is likely to launch and proceed in the direction 

of the initial trial solution found. It was experienced with trial examples running the PBIL, 

that this trend is indeed true, although no formal proof exist to substantiate the observation. 
' 

The vector of the learning rate will progress in the direction determined by the first best 

solution. The plots of convergence of the generation probability vector will be shown to 

illustrate the concept. 

To overcome this, Baluja proposed a "mutation" of the probability vector P which will 

randomly alter the state of each entries with a pre-defined probability. According to Greene, 

it is not dear whether this is the most appropriate way of characterising this 

operation[Greene, 1996]. In the genetic algorithm, mutation performs a clear cut role of 

toggling the state of each bit with a pre-defined probability. In a PBIL however, this cannot 

occur since the probability vector is real valued. What is needed though, is a mechanism to 

prevent the pressure to drift towards either 0 or 1 too fast and the probability vector taking a 
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monotonic single direction towards the best solution. 

Greene proposes in the way Baluja does, but renaming the operation, the use of a 

deterministic forgetting factor. After each update of P, each element is moved a small 

amount y back towards 0.5 

P[i] f- P[i] - y(P[i] - 0.5) 

It should be noted that the updating of the probability vector is done with a "floor" and 

"ceiling" functions in mind. These tend to bound the probability vector on either side of 0.5 

so that probabilities greater than 1 and less than 0 are never generated. The application of this 

forgetting factor is done with a relatively high+ probability to sway the otherwise runaway 

probability vector to looking in other directions. 

For statistical confidence reasons, the PBIL is often iterated a number of times to get a 

consensus on the solution generated in each trial. When implemented, the algorithm has to be 

provided with the following information to proceed: 

t The number of trials per iteration, N. 

t The learning rate, ~-

• The deterministic forgetting factor y. 

The designer hence does not have to bear the full burden of setting the algorithm's 

parameters as is the case with the genetic algorithm. The full conceptual algorithm is shown 

next and later its application to the problem of system identification is reported. 

The algorithm can be described conceptually as shown in the following illustration. 

*Relative here refers to a comparison with the application of mutation in genetic algorithms which is done with a 
probability of less than 1 % 
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t := 0 
set the learning rate LR = ~ 
set the forgetting factor = "{ 

initialise the probability generating vector: 
P(O) = { ai(O), a2(0), ....... av} where a; = (0.5} 

initialise the population samples 
1(0) = {ai(O), ai(O), ......... an(O)} 

where alO) denotes the /h segment of an individual in the population /. I itself will be made of 
binary alphabets I= { 1,0]1 where l is the length of the string i-

qJIO(X) 

qJ20(x) 

evaluate the initial population: <l>(O) = qJ30 (x) 

Update the generating probability vector: 
for(i = O; i < l; i++) 

P(t+l) = P(t)(l-~) + B[i](t)*~ 
where B[i] is the best vector from the evaluation function. 

do{ 
regenerate population samples: 

/(t) = {ai(t), ai(t), an(t)} 

qJ11(x) 

qJ21 (x) 

evaluate<l>(t) = qJ 31 (x) 

qJnt (x) 

update the generating probability vector: 
for(i = O; i < l; i++) 

P(t+l) = P(t)(l-~) + B[i](t)*~; 
Apply the small deterministic forgetting factor 
P[i] = P[i] - y(P[i] - 0.5); 

} while (not done) 
mutation direction determines whether the direction is up or down, in which case it becomes 
either 1 or 0. 

Conceptual algorithm for the population based incremental learning 

The population based incremental learning has been applied to bench-mark test functions 

designed to be GA friendly. Greene reports that according to his verification, the PBIL 

consistently outperforms a standard simple canonical GA Kvasnicka et al and Baluja have 

undertaken detailed work to establish the trends in the processing of the PBIL. The work is 

fairly new, having been proposed in the later part of 1994 and reported formally for the first 

time in September 1995. There has not been much response from the GA community about 
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the prospects and the challenge made by the PBIL to the GA. 

Although the current reports show a hopeful picture about the application of a PBIL to a host 

of benchmark problems, it was decided in this thesis work to apply it to practical problems 

already tackled using a genetic algorithm. The results obtained were indeed promising and 

the PBIL did outperform the GA in some respects[Thithi, 1996]. A short example will be 

presented to show how a PBIL was used in the task of system identification for the servo 

motor of chapter 5. The experimentation will not be repeated as it has already been reported 

in chapter 5. 

8.3 An application example: Systems parameter identification. 

The algorithm described above was applied to the servo motor system described in chapter 5. 

The motor model was of the form 

K 
g(s) = 1 + sTm 

with the parameters Kand Tm were to be identified. The PBIL was set with the following 

parameters and allowed to run for 100 trials. 

Population size 60 
Learning rate 0.1 
Forgetting factor 0.05 

The convergence of the algorithm was less than satisfactory in genetic algorithm standards. 

Although the algorithm did find the parameters of the motor, it did so after numerous trials 

with exhaustive changes being made to get a feel for the learning rate and the forgetting 

factor. The following parameters of the motor were found by the algorithm: 

K = 1.081 
Tm= 0.628 

These parameters compare well with those found using the genetic algorithm in chapter 5 

where they were as follows: 

Gain K: 1.103 

Time constant Tm: 0.614 

The differences between the two could be attributed to experimental and computational 

errors. Also the methods are different in their backgrounds. 

The convergence pattern of the individual entries of the probability vector outlines the bit 

pattern of the best string the algorithm found. Figure 8.3 shows the convergence pattern of 

the probability vector as the algorithm progressed through the search. The movement towards 

the upper pole indicates the confirmation that there is a '1' at an entry and the movement 

towards the lower pole confirms a 'O' at an entry. 
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Figure 8.3 Traces of the convergence characteristics of the probability vector showing the 

bounds both below and above the starting probability 0.5 

The above traces of each of the entries of the probability vector are indicative of the high 

learning rate set. For cases where the learning rate is set low, the curves are less steep at the 

beginning. All the values of the probability vector are bounded above and below so that they 

do not exceed the probability of 1.0 and do not depreciate below 0.0. What is to be noted on 

the plot is the peculiar movement of some of the entries of the probability vector. They 

appear to start going in the opposite direction to the one they eventually take. Some of these 

are highlighted with ellipses on the plot. This behavior is characteristic of the use of the 

concepts of the forgetting factor. 

8.4 Chapter summary and conclusions 

This chapter presented an abstraction of the genetic algorithm that aimed at exploiting the 

statistical properties of the algorithm whilst ridding it of the crossover and mutation 

operators. The algorithm is fairly new and has been applied with comparable success to 

problems which. were designed to be GA friendly and in most cases outperforms even the 

best of the tuned genetic algorithms. For the purpose of this thesis, the algorithm was applied 

to a problem of system identification and although it did not perform as well as the genetic 

algorithm, it offered some relief to the user with relatively little loss in performance: 

+ It is has been the author's experience that even with the simple two variable problem 

that was to be identified, a number of trials were to be taken to decide on the relative 

values that were to be set for the learning rate. This however compares better with the 

task of deciding the entire decision tree of figure 8 .1. 

+ Without the application of the forgetting factor, the algorithm is almost disastrous 

with the probability vector launching in one direction in space and continuing to do so 

for the rest of the search. The use of the forgetting factor is therefore imperative to 

make sure that the trend is curbed. 
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+ The only two real comparisons which could be made between the GA and the PBIL 

are based on simplicity of the latter and the time taken to process the solutions being 

evolved: 

• The algorithm performed much better in terms of the time taken to reach the 

solution when the optimal setting for this problem was established. This is 

consistent with the report by Thithi that the algorithm performed in fractions of 

time compared to the GA when run of the same computer systems[Thithi, 

1996]. 

• It is much simpler to set up compared to the conventional genetic algorithm, 

allowing the user to focus on the problem to be solved rather than the 

peculiarities of the algorithm. 

+ Although not reported in this work for the reasons of avoiding repetition, the PBIL 

was also applied successfully to the problem of PID controller tuning and the results 

were comparable to those from the genetic algorithm. 

A rather disconcerting factor creeping into the PBIL however, is the already proposed 

measures to improve its performance, dragging it to the same league of problems as the GA. 

The updating of the probability vector from the best individual at times does not offer the 

best performance in terms of the convergence towards a globally optimal solution. Baluja 

argues that the updating should be done in such a way that the population is not only pushed 

towards the best member of the population, but also away from the worst member[Baluja, 

1995]. This however, he found, worked well at the beginning of the run, but as the population 

converged, the average Hamming distance between the members of the population decreased 

and thus the practice did not offer any significant advantages. 

The PBIL however, as young as it is, relieves the user of the burden of setting the parameters 

related to the optimal functioning of the genetic algorithm. The user can focus entirely on the 

problem that really matters and does not have to battle with optimising the algorithm first, 

and then his/her problem. Although this is so, with all the relative advantages outlined, there 

continues to be a disturbing silence from the greater GA community[Greene, 1996]. 
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In this thesis, work was carried out to investigate possible applications of genetic algorithms to 

control engineering problems. On the basis of the information contained in this report and the 

readings made by the author the following conclusions are made. 

Genetic algorithms and other simulated evolution techniques carry a lot of promise as tools for 

engineering design and optimisation. In these biologically inspired algorithms, and in particular the 

genetic algorithm, there are two broad categories in which most of the research work falls in: 

+ Application oriented research 
In this category of work the interest shown by the users of the GA is often in the diversity of 

problems to which it can be applied. In particular, it is emphasised that irrespective of the 

origin of the problem being tackled, it can be formulated and squeezed into a framework 

which will be solvable by the algorithm. Problems formulated and cast into the genetic 

framework come from as diverse fields as engineering, economics, finance, planning, 

etc[Holland, 1975). As an observation, the author noted that publications in this line of work 

present very little information that is new about the algorithm and tend to get involved in the 

peculiarities of the problem and how they were solved. 

+ Algorithm oriented research. 

There hasn't been much work done in the direction of the algorithm. Most of the recent 

presentations made tend to be fixes in the fundamental canonical GA. The works of 

Greffenstete, Yao, Androulakis are good examples of the amount of effort which gets 

devoted to fixing aspects of the method which are considered to be prime culprits in the 

failure of the algorithm when performing optimisations. 

The investigation reported in this thesis attempted to be an embodiment of both these aspects of the 

algorithm by applying it to problems in control engineering and investigating how the algorithm 

would cope. Two areas of control engineering work were chosen as examples to be studied under 

the GA regime: 

+ Systems parameter identification. 

Essentially, this area of work investigated the search characteristic of the algorithm. 

The search was usually organised such that an objective determining its goodness was to 

be satisfied. Domains of parameters were often knowledge based, this being acquired 
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through trial runs. The algorithm however imposed no limits on the size and range of the 

search space of the parameters. 

+ Controller Tuning 
In this work the main aspect of the algorithm to be investigated was its optimisation 

technique. A framework was defined in chapter 5 for which a controller was to be 

designed to fit. In general, work carried out in this area was of multi-objective 

optimisation nature. Experiments reported in chapter 7 illustrated the diversity of 

objectives which could be built into the algorithm as more demands are made about the 

process performance. This flexibility highlighted the strength of the algorithm in coping 

with conditions which change without notice. 

Both areas of control engineering investigated compared the GA to established classical control 

methods. In the case of system parameters identification, the algorithm's performance was 

compared to the Recursive Least Square (RLS) and focused particularly on the issues of accuracy 

and noise handling (estimator bias) characteristics. In the controller tuning, the framework 

developed in chapter 6 was compared with the Ziegler-Nichols I Cohen-Coon tuning techniques. 

Conclusions made on both these subjects will be presented next. 

Conclusions on systems identification 
The genetic algorithm performed well in the problems it was applied to for system identific:ation. 

When put in perspective, the problems were designed to be simple enough to highlight issues which 

the author thought really matter: considerations of the accuracy of the estimated solutions and the 

noise handling capability when compared to the recursive least squares. The algorithm was applied 

to problems of higher dimensions in identification but it was found that problems relating to the 

settings of the algorithm hampered the search due to settings which were found not to be the 

optimal ones. This is indeed a disadvantage of the system. For many genes constituting the 

chromosome, the bit strings length increases linearly. For the creation of the sufficient pool of 

chromosome to tackle the problem of extra parameters, the population size has to grow by the same 

order as the growth of the string length as was presented in chapter 3. This is however impractical 

in many respects due to the disadvantages introduced by large population sizes. 

When considering the cost benefit of using the GA as a system identification tool, it soon become 

evident that it is no better candidate than the recursive least squares: 

+ Although the speed of convergence was not brought into the discussion much, there simply 

is no contest between the genetic algorithm and the recursive least squares. The RLS takes 

orders of milliseconds to converge to the parameters being estimated compared to the orders 

of minutes to hours experienced using a simple genetic algorithm. 

+ Although its performance will be adequate and allows one to carry out identification in the 

continuous domain for simple cases, as the dimension of the parameters to be identified is 

increased, so do the problems of tuning the algorithm. This situation to some extent defeats 
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the purpose of the use of the algorithm. The GA is meant to be used in situations. where 

conventional engineering methods fail to perform. If it incurs the steep penalty of setting the 

parameters, it becomes too difficult to use. With unlimited amounts of time, the algorithm 

can be run iteratively and a statistical result taken as the average of the results. 

+ The noise handling capability of the genetic model was good in that: 

* With increasing levels of noise being injected into the GA estimating system, the 

model parameters showed a high degree of resistance towards it. Although changes 

were there, they did not seem to be directly related to the noise content. Logically, one 

would expect a gross deterioration in the estimated parameters as the noise 1s 

increased, as was most visible with the RLS. 

What was noted with interest however, was the movement of the performance index 

function, chosen to be a simple error square function. This although not directly 

interfaced to the noise signal, as was shown with the chain rules, reflected more visibly 

the effect of noise. 

Since both the GA and the RLS were deliberately made to use the same objective, the 

Gaussian least squares, the question posed would therefore be: "Can the GA be truly 

and totally credited with good performance in the presence of noise, or is it just a case 

of the choice of the cost function?" 

* The GA can attribute its resistance to the parameter change in noise to its structure. In 

the presentation on the RLS, different formulations of the Gaussian error were 

presented. Although two of them, the forward difference model and the backward 

difference methods were disqualified due to the non-linearity in parameters, it was 

mentioned that in the literature they are known to perform better in the presence of 

noise [Astrom and Wittenmark, 1987]. The genetic algorithm was used in a forward 

difference mode therefore gained a competitive advantage over the RLS in this regard. 

Because the algorithm processing does not depend on the structure of the solution 

space of the problem, the non-linearity of the parameters, if it exist, does not act as a 

hindrance as is the case in the RLS. 

In summary therefore, the prime advantage the GA holds over the RLS is the arrangement of its 

topology which allows it to take advantage of the best noise handling tactics and its non-reliance on 

the problems making non-linearity and discontinuities not a problem. The time factor however 

proves the RLS a real winner in processing speed. There is no sufficient evidence to claim that for 

simple pathological problems solved, the GA would perform better than the RLS. Despite having all 

the advantages in terms of its topological settings, the results still deliver somewhat sub-optimal 

expectations. 
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Conclusions of controller tuning. 
In this section, the algorithm proved to be worth the trouble of setting it up. Compared to the 

classical methods such as the Ziegler-Nichols tuning criterion and the Cohen-Coon, the algorithm 

allowed the specification of the desired response of the process as a framework of limits which the 

controller was then tuned to obey. It was thus possible to articulate the desired response graphically 

and then tune the controller to realise such a desired behavior. 

The framework described in this thesis, showed that when interpreted mathematically, the cost 

functions become non-linear, discontinuous functions which could not be handled with simple 

linear theory. This however did not deter the genetic algorithm from finding the solutions and 

design controllers that would force responses and the output to fit the limits. In most cases also, the 

specification of the control systems performance and the control effort are not mutually exclusive 

occurrences. Good performance is usually proportional to the amount of effort taken to achieve it. It 

was shown in cases where the controller was tuned for least error, a condition amounting to the 

fastest response possible, that the system incurred a stiff penalty in its utilisation of the input. 

Nothing stops one though from including into the cost function the measure to curb such 

occurrences. The case of multi-objective tuning, a condition attained through simple linear 

combination of the cost functions, is a good example of this. It can be chosen to construct this 

optimisation such that it prioritises the tuning order or that it runs freely. In the first case, the cost 

function is set such that those tuning conditions which are of high priority are dealt with first. The 

weighting values determine the bias towards such considerations. In the case of free running the 

algorithm deals with the user's requirements on an equal level. As one parameter attribute 

improves, focus shifts to others which might not have been dealt with before. 

The ability of the GA to deal with the description of the process response in the time domain and 

tune a Pl/D controller to realise the demanded response puts it in the league of its own. In 

particular, the ability to add more requirements as the algorithm processes, is a big advantage. 

Classically no method, has been able to perform such an explicit relation between the process 

response and the parameters of a controller. The Cohen-Coon and the Ziegler-Nichols are no match 

for this tuning. 

The previous concluding remarks focused on the application oriented issues of the algorithm. 

Although it has been shown that the performance of the algorithm is comparable to that of classical 

methods, there are two concerns about its use: 

• Firstly, when should a genetic algorithm be used at all? 

• The setting of the algorithm parameters when a decision to use has been taken. 

There seems to be an agreement that the GA should be used only as a last resort strategy to problem 

solving[Beasley et al, 1993). The advice given by Beasley et al is that where a dedicated 

optimisation method exists to solve the problem, then it should be used as a first choice method .. 
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Care should be taken not to abuse the universality of the GA by recasting every problem into a 

framework a GA could handle where dedicated methods exist. 

The second concern is about the tuning and setting up of the genetic algorithm. This becomes more 

pronounced when one looks at a genetic algorithm and compares it to its abstraction, the Population 

Based Incremental Leaming(PBIL). There is no doubt that there is steep learning curve which the 

user is subjected to when tuning the algorithm. The figure below, repeated from chapter 8, shows a 

tree of information to be filled when setting parameters of the algorithm. 

Rate? Rate? Rate? 

Figure 10.1 Genetic tuning tree for a simple classical GA 

The goodness and eventually the success of the search or optimisation, depends to a large extent on 

the settings chosen by the user. Matters are made worse by the fact that not only do individual 

settings have an effect on the system, but also their combinatorial effect. Hence, even if crossover is 

set appropriately, the selection type could lead to the process stagnating early depending on the 

selection pressure it induces. In general, the tuning of the algorithm itself could be summarised by 

the following equation: 

GA= f(C_type, C_rate, M_rate, S_type, S_yress, P _size, Elitism, G_Gap) 

where C_type is the crossover type employed 

C_rate is the crossover rate used 

M_rate is the mutation rate 

S_type is the selection type 

S_press is the selection pressure 

P _size is the population size 

Elitism determines where elitism will be used or not 

G_Gap determines the generation gap when elitism is used. 

· Each of the components of this function were discussed in chapter 3 on advanced genetic algorithm 

and the effect of each on the search was shown. It could be argued that the algorithm should be 

viewed as a black box and intuition be used to set the parameters. Although this could be the case 

for experienced users, it is however not at all practical for beginner users. There are no exact ad hoc 
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theoretical guidelines about the settings which have to be made for an algorithm to converge 

satisfactorily. 

Greffenstete has attempted to do an optimisation of the genetic algorithm parameters using another 

genetic algorithm. His work had short comings related mostly to the problem that the GA was to 

solve. Although not a predominant factor, there is a degree of coupling relating the problem to be 

solved to settings of the algorithm. The authors own experience in this regard is with the settings of 

the sampling rates of processes. Through an accidental error, one of the experiments the sampling 

rate in one of the systems identification experiments was set incorrectly. The algorithm was 

however manipulated in such a way that the results produced although not correct were within a 

reasonable range of the expected true result. When the sampling was finally set correctly, the true 

results were obtained. 

Thus, because of the lack of well defined guides about the settings of the algorithm, the user is 

forced to have to work the settings out himself. The query which one could have thus is: "Why 

should the burden of setting the algorithm, which is supposed to be a black box, lie with the 

user?" Most times the problem to be solved is in itself enough challenge and the GA is usually 

used as a last resort. If it presents problems outlined above, it can only add to the users problems. 

Although this is so, the genetic algorithm still remains one of the most promising biologically 

inspired stochastic optimisation methods. Its use should thus be placed in the perspective of the 

gains and losses which a potential user can derive from it. 

Whether or not one chooses to use a GA for systems identification or controller tuning , should be a 

decision based on the cost-benefit analysis of all the advantages and disadvantages outlined. Also to 

be taken seriously is the opportunity cost of using such an approach, that is, the user should ask: 

"What functionality of the alternative method will I loose should I opt for a GA?". With all the 

decisions being made, it should be kept in mind that the abuse of the algorithm should not be 

encouraged. Where adequate, dedicated classical methods exist for problem solving, they should be 

used as a first preference. 

GAs may live up to the expectation or they may be another passing fashion parade. Whatever the 

case, there is no denying that there is a lot of power to be harnessed from them. 

"Through these thorny questions slow our pace, and knotty problems cause us pause, our journey is at no 

impasse. With settlements of proven ideas upon which we may fall back, and outposts of natural notions 

from which to push forward, we may venture ahead, clearing the path with a machete of mathematics and a 

scythe of computer simulation. And as we stand at this GA frontier, looking out over myriad opportunities 

and tasks, we stand tall with the knowledge of what natural genetics has already created, with the 

confidence of what we have already found, and eager expectation of what we are about to discover" 

[Edward Goldberg, 1989]. 
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Appendix A 
Genetic Algorithm Programming Environment 

Al. Introduction 

As an incentive to understand genetic algorithms and manipulators better, it was decided that 

the GA to be used for the purpose of this research was to developed "in-house". The author 

designed the structure of the CGA and its modified versions and implemented them using 

Borland C++ as a language of choice. This appendix therefore lays down the basis in which 

the genetic algorithm used in this thesis was designed and coded. The design emphasises the 

use of object oriented programming (OOP) philosophy which has become a major advantage 

in designing software with ease. The OOP method will not be discussed here and can be 

found in references included. What will be shown however is how data in the GA was bound 

to code which processed it. 

The design took a hierarchical approach, designing the lowest levels of the data structures 

first and then building up by adding higher layers of abstraction. It will be shown this 

appendix how each level of the GA was designed and how it fits with all the other layers. 

Computer code for implementing functions will not be presented and can found in the 

accompanying disk. For clarity purpose only, C++ pseudo-code will be used to illustrate how 

functions were implemented. 

A2. Hierarchies in genetic algorithm data structures 
The lowest level of data in any genetic algorithm is a chromosome. Chromosomes are simply 

concatenation of bits to form longer bit strings. By themselves chromosomes carry not 

information about functions and are merely encoded raw data elements. Chromosomes can be 

divided into segmental-divisions known as genes. The genes ar~ more atomic in their 

representation of data since they constitute encoded parameters of function to be optimised. 

A2.1 The chromosome object 
A chromosome object was programmed as an entity that contains the data the chromosome 

data and methods which operate on that data. 
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+ 

Chromosome Object. 

Figure Al A depiction of a chromosome object showing the chromosome data and 

manipulating methods. 

The OOP design encapsulates data and methods which manipulate the same data into one 

entity known as an object as shown above. Functions outside this enclosure are not allowed 

to temper with the entities private data, thus, the integrity of the data in each entity is 

ensured. 

For our purpose, the data in the chromosome was simply a string of bits which could be 

divided into segments which will be interpreted as genes. A bit string within a chromosome 

was encoded as a simple array of unsigned integers. Each unsigned consists of two bytes and 

hence 16 bits. Motivation for using unsigned integers in C++ as the basis for data was the 

failure of earlier attempts where the implementation was done as character arrays. The use of 

unsigned integers allows one to manipulate them at a bit level and thus make better use of the 

compiler provided functions. The declaration in C++ is as follows 

C++ declaration of the chromosome data structure showing the structure and its methods. 

class Chromosome { 

Data Structure 
protected: 

Methods 
public: 

} ; 

unsigned *chrom; 

unsigned *genes; 

II the chromosome string itself 

II genes making up the chromosome 

unsigned chromsize; II chromosome size in bytes 

int chromlength; II total length of the chromosome 

int nGenes; II number of genes contained 

int *geneLengths; //length of each gene 

void DisplayString(); 

void initChrom(int length); //initialises the chromosome to a given length 

void init(int *Lengths, int geneCount); 

void setGene(int whichGene, unsigned newGene); 

unsigned extractGeneSegment(unsigned, int, int); 
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The above data structures has been mentioned to contain no information by itself, but simply 

raw data that has to be interpreted. To this effect the an extra layer of information, the 

individual, in created to reflect the attributes of the chromosome. The individual is further 

provided with the boundaries of the search space for each of the chromosomal variables 

defined in the genes. During its utilisation, the individual's chromosome has to be decoded 

and evaluated against an objective function and value created for it. The object 

implementation for this is as illustrated below. 

~ 
I Chromosom'e I 

I Property or each gene I 
I Boundaries 

I Value 

Data Structure 

Individual object 

As can be seen, this object incorporates the chromosome object at one level. This inheritance 

also carries with it all the methods which are peculiar to the chromosome. The individual 

therefore is able to activate the chromosome methods and manipulate it directly. The C++ 

implementation of this object is shown below. 

class individual : public Chromosome, public evaluate{ 

protected: 

} ; 

double *parameters; II parameters making up individual 

double *maxima; 
double *minima; 
double value; 
double fitness; 
int rank; 

public: 

II maxima of the parameters 
II minima of the parameters 
II the value of the individual 
II fitness relative to other individual 
II the social class ranking 

void eval(); II Evaluates the individual to determine its value 
void initlnd(int, int*); II Initialises the 
void decodeEachParameter(int); II maps each parameter to a domain of search 
unsigned extractSegments(int, int); II extracts genes from chromosomes before 

decoding 

The above object inherits the property to be able to evaluate the decoded structures once they 

are the individual is ready for evaluation. Minima an maxima member variables define the 

boundaries of that the variables within the member can take. 

For the utilisation of ranking selection, the individual also has to be able to carry its rank in 

the entire population. 
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The next level of abstraction in the hierarchy is that of the population. The population is 

essentially a collection of individual objects, each having the properties of an individual. The 

population members are able to die (when they are not selected into the next generation) and 

offspring can be born (through the utilisation of crossover). 

When the population has been formed, the object will have methods used to manipulate the 

individual objects making up the member variables of the object. Similar object oriented 

approach is taken in evaluating this object. A graphical depiction showing both the object 

symbolising the population is shown below. 

. . 

·Methods 

~ 
I Chromosome! I Chromosome! 

~ 
I Chromosomel 

I Gene prnogr1J I Gene pmgerrJ I Gene ewneoJ 

I 801m1 arics I no11n1aries 

IV''"" IV'"'" I Value 

Data Structures 

~ 
I Chromosome! I Chromosome! I Chromosome! 

I Gene PmpertJ I Gene pragertJ I Qcnc PtgperfJ 

I Bmipdaries I 9 mm1 acies 

I Value I v•'"' I Value 

Methods involved in the processing of this object are listed in the C++ implementation of the 

object below. 

class Population : public onePtCrossOver{ 
protected: 

public: 

} ; 

individual *members; 
individual bestlnd; 
individual worstlnd; 
int populationSize; 

void popEval(); 

II members of the population 
II best individaul of all 
II worst individual of all 

II the size of the population 

void findBestandWorst(); 
void computeFitnesses(); 
void evaluatePopulation(); 
void QuickSortPopulation(); 
void mateTwoMembers(individual&, individual&, individual&, 

individual&); 
void replaceMember(int, individual& ); 

Although the methods shown below are not complete, they are the most operational on the 

population. The object has the ability to mate members of the population, evaluate the 
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population, sort the population by rank and others. Also to be noted is that the object has 

room for both the best and the worst individuals. These are kept and passed from generation 

to generation to determine who has been the worst and the best since the beginning of time. 

Also shown is a member function used in the replacement scheme of the population. It was 

mentioned in the main text that the algorithm has a range of replacement schemes available 

ate its disposal. These determine the order with which the GA will constitute the next 

generation. 

The complete implementation of these structures and their usage can be found in the disk 

inserted. The entire listing will not be shown here due to the lengths and the quest to be 

economic on the rain forests. 
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Appendix B 
Modelling and Control of the two Tank System 

Bl Introduction 

In chapter 7 of the main text a case of study was undertaken to apply genetic tuning of PID 

controllers to a two tank level control system. Results of the modelling process were 

presented without derivations due to space and continuity limitations. This appendix 

completes the modelling of exercise for the two tank system using physical laws that govern 

the system. The modelling of the system will be carried out with reference to figure B 1 below 

Figure Bl Schematic diagram of the two tank system used for the process of modelling the 

process using physical laws. 

B2 Modelling 
Consider figure B 1 shown above. The dynamic equations of the system can be derived by 

taking the flow balances about each tank. For the first tank, the resultant flow rate is 

Qi - Q 1 = rate of change of fluid volume in tank 1 

dy; dH1 =-=A-........................................................................... Bl 
dt dt 
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where V 1 = volume of fluid in tank 1 

H1 =height of fluid in tank 1 

A = cross sectional area of tank 1 and tank 2 

Q1 = the flow rate for tank 1 to tank 2 through the orifice 

Qi = the pump flow rate 

The second tank obtain its inflow through the coupling provided by the intertank orifice. For 

the second tank therefore 

dV2 dH2 Q
1 
-Q

0 
=-=A-............................................................ B2 

dt dt 

where V 2 = the volume of fluid in tank 2 

H2 = height of fluid in tank 2 

Q0 = flow rate of fluid out of tank 2 

From the laws of physics governing orifices, it is assumed that both the intertank holes and 

the drain tap behave like perfect orifices. The flow rates through these orifices can therefore 

be written as 

QI = cdlal "12g(H1 - H2) ......................................................................... B3 

Q0 = Cd2a2"12g(H2 -H3 ) ....................................................................... B4 

where a1 =cross sectional area of the intertank orifice 

a2 = cross sectional area of the drain tap orifice 

Cdi. Cd2 =discharge coefficient(= 0.6 for sharp edged orifices) 

H3 = height of the drain tap 

g = gravitational constant 

The above modelling equations describe the model of the system in its most non-linear 

nature. For our purposes or linear control, it is necessary to look at the small signal analysis 

of the model which linearises the model around a desired operating point. This approach is 

taken from steady state considerations. For small signal analysis small letters will be used for 

both the flow rates and the heights of the tanks. 

The flow rate into the first tank is linearised using the approach 

q, =:;, "1 + ~: h, = ~ C,,'"Fc[ .j~.--h~2 ] ................................ BS 
and 

q, = ~: h, = ~ c,,a,Fc[ H,~HJ····································· .B6 

Using this small signal analysis, the balance of low about the first tank can be re-written as 

dh, 
. q; - q1 =A dt .......................................................................................... B7 

Substituting equation B4 into the above equation, we obtain the model 
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d~ 
qi -k1 (~ -lti) = Adt ............................................................................ B8 

where 
cdlal .J2i 

k =-=== 
I 2.JH1 -H2 

dh2 
k

1 
(Iii -h2 )-k2h2 =A- ...................................................................... B9 

dt . 

where 

Equation B7 and B8 can be grouped into a state space model since the system is made of two 

differentials. Using this state space approach, the model can the written as 

-(k~~,I~J+mq, .................................................................. 810 

By taking the Laplace transformation of the model of equation B9, a transfer function 

relating the input flow rate and the level in the second tank can be found by transforming the 

state space model to a transfer function model. 

(k~;,}' +( A(2::k:k.,)}+1 ··················································'·······Bll 

1 

___ k~2 --- •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• B12 
(s'.I; + l)(sT2 + 1) 

where T1 and T2 are time constants related with the movement of water from the pump to the 

first tank and from the first tank to the second tank. 

A(2k1 +k2 ) 
I; + T2 = ................................................. B13 

k1k2 

The above transfer function is made up of parameters which are measurable physically. The 

time constants are a function of parameters k11 and k2 which are themselves the functions of 

parameters which could measured. The accompanying work book for the tanks lists the 

procedure for carrying out the experiments to determine the parameters id detail. These 

procedures will be repeated in this work and the reader is referred to the manual 
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Appendix C 
Tuning Guidelines for Ziegler-Nichols I Cohen-Coon 

tuning criteria. 

Cl Introduction 

The critical phase of the implementation of the Pl/D algorithms is the selection of numerical values 

of the constants of the algorithm[Smith, 1972]. This difficulty has led to the search for a systematic 

way in which the parameters of the PI/D controller could be set for optimal control of the process. 

A tuning framework was developed to serve as a guideline to be used when selecting the controller 

parameters. These guidelines are: 

i. Approximate the process with a simple model. 

11. Select the constants that give the desired behavior when controlling the model. 

11i. Apply these settings to the original process. 

These were applied to empirical problems studied by Ziegler and Nichols and were presented in a 

unified form in the criterion known as the Ziegler-Nichols tuning. The prime aim of this was to tune 

the process in such a way that the ratio of the response between successive peaks is reduced by a 

quarter every cycle. The tuning however proves to be rather costly in its utilisation of the control 

effort, a feature which serves a disadvantage. As a modification of this, the Cohen~Coon criterion 

sets the tuning such that the quarter amplitude criterion is maintained whilst at the same time 

observing the limits of the process. The guidelines and the procedures used in both the Ziegler­

Nichols and the Cohen-Coon strategies are outlined below. 

C2 Model Approximation 

Since the process tr an sf er function could be difficult to work out in practice the process is 

approximated by a curve approximating a first order transfer function augmented with a dead time. 

Ke-sB 
g(s) =-- ........................................................... Cl 

l+sr 
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In utVariable 

M 
_,___ __ ~ ----································ ·············· ·············· 

T 
Final Value 
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InitialVaJue 

. 
Figure Cl Process reaction curve used to approximate the parameters of the controller process. 

The process reaction curve is typically an s-shaped curve of the form shown above[. The first step 

of the estimation is to find the maximum slope of the reaction curve, N and draw the tangent at that 

point. The next step is to determine the 'effective delay', D by determining the time between the 

time point where the slope tangent line crosses the line of initial operation of the process. T is the 

rise time of the system defined as the time it takes for the process to move from 10% of its final 

value to 90% of its settling value. 

C3 Controller parameter setting 
As a result of the imperical tests on a wide variety of systems using this modeling technique, 

Ziegler and Nichols proposed a method of basing the controller settings required for reasonably 

good performance on the step response of the open loop system[Pollard, 1971]. This was later 

formalised in a paper which introduced the Ziegler-Nichols tuning criterion in 1942. The Ziegler­

Nichols tuning is guided by the objective that for every circle of the response, the controller is tuned 

to attain approximately a quarter (25%) of the previous amplitude peak. Since the tuning criterion 

was compiled from imperical studies only tables of tuning of the tree actions of the PIO controller 

were formulated. The Ziegler-Nichols tuning table for the PIO parameters is shown below. 

Table Cl Recommended controller settings for Ziegler-Nichols tuning [Pollard, 1971] 

Control Action KP 

Proportional M 
NL 

Prop. + Integral 0.9M -,;n 
Prop+ Integral+ Derivative 1.2M 

NL 

Ki 

L 

2L L 
2 

The Ziegler-Nichols tuning although it works, it was found to suffer from a sever problem of 

control signal usage. This is a disadvantage for systems where there are limitations on the input 

rates. To overcome this the Ziegler-Nichols method was further elaborated by Cohen and Coon who 

used the equivalent transfer function to determine the theoretical values of the controller parameters 

to give acceptable responses. According to their definition, Cohen and Coon defined acceptable 

responses as those who have a 4: 1 subsidence ratio and minimum offset and error integral. The 

required controller parameters are expressed in terms of the transfer function constants, K, ()and r 

as defined for the approxim~tion transfer function of equation C 1. The Cohen and Coon 

recommendations for the controller settings are given in the table below. 
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Table C2 Recommended controller settings for Cohen-Coon tuning [Smith, 1972) 

Control Actions Kp Ki 

Proportional ! (1+1) 

Proportional + Integral ! (o.9+ ~) (30+ 3R) 
L 9+20R 

Proportional + Derivative ! (1.25+ 1) 

Proportional+ Integral+ Derivative ! (1.33 +1-) 
(

32+6R) 
L 13+8R 

R is used for the 'lag ratio' NL/K. 

The Cohen-Coon as a more conservative method compared to the Ziegler-Nichols was applied to 

the tuning the parameters of the PID controller for the two tank process using table 7 .5. These 

tuning criteria are used in chapter 7 of the main text to tune a PID controller. 
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AppendixD 

The Cryogenic Genetic Algorithm 
~-(Biii'?mtJMiill···~~~~·l!lill5JBii•>-

Dl Introduction 

When it comes to the comparison between the genetic algorithm and classical engineering thinking 

methods, the thought process breaks into several streams: First, comparisons are made on the 

accuracy of the GA and methods compared to it. Second, the handling of peculiar situations known 

to trouble the classical techniques often is of interest. Other considerations such as the difficulty 

level of the problems which a GA can handle as compared to the classical methods, are often of 

interest to genetic practitioners. On this regard, the algorithm is often probed using flashy 

demonstrations which are meant to act as evidence of intellectual merit. There is no denying that the 

range of problems which can be handled using GA is vast as has been demonstrated extensively in 

the literature. 

The genetic algorithm in its quest to locate the optima of the function being optimised goes a great 

length in processing the search space, leaving no stone unturned. Its efforts however, are known to 

be hampered by the unfortunate realities of the algorithm such as stagnation, a feature resulting 

from poor settings of its control parameters. 

With all the features and problems outlined above, the question of processing time has been silently 

accepted as a feature which the GA cannot be compared with any other method on, unless of course, 

the methods are in the same league. For simple one short optimisation problems such as finding the 

an extremum of a closed form function, time is usually not an issue. For problems involving 

gestation of information, as in the case of simulations, time becomes of the essence and effort has to 

be taken to improve the processing speed of the algorithm whilst not compromising on its functional 

power. 

In this chapter, attention is turned to the question of the processing time of the algorithm and a 

proposal as to how this could be reduced is made. The proposal presented was made by the author's 

supervisor and was implemented and analysed by the author with his supervisor's help. The idea 

exploits and incorporates the concepts of binary search, known to be the most efficient search for 

sorted data [Tenenbaum et al, 1990], into a genetic algorithm to assist in speeding it up. The 

algorithm has been dubbed the Cryogenic Genetic Algorithm (CrGA), the acronym chosen so as 

not to confuse it with the CGA (canonical genetic algorithm). The fundamental idea of this 
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technique will be presented together with a simple illustration of its use. The method is presented 

as a matter of principle and should lend itself well to the problems already reported in this work. 

D2 The Cryogenic GA: The fundamentals 

The fundamental idea of the algorithm will be presented with respect to the following surface. 

10 

5 

c 0 

-5 

-10 
60 

f(A ,B ,C) 

60 

0 0 

Figure D.1 Surface view of the function whose peak has to be found. 

Suppose that the genetic algorithm is to be used to find the highest peak of this surface. That is, a 

combination (A,B, C) is to be found such that f(A,B, C) is maximized. When inspecting the surface 

and imagining that one has to choose a route that .should lead to the peak of the surf ace, then the 

following subdivisions, or path planning of the surface could be presented when looking at the 

plane AB. 

A+ B + 

Figure D.2 Planar view of the magnitude distribution of the variables A and B and quadrant view 

of the plane of A and B. 

Clearly, the direction to the plane peak on AB involves a certain degree of movement towards B+ 

and a certain movement towards A+. Importantly though, is that the peak of the function lies in a 

specific quadrant of this plane. The most efficient search for the peak therefore, would aim to divide 

the plane AB into quadrants as shown above, performing exhaustive walks in each quadrant to 

determine the highest peak found. Quadrants which do not hold promise are systematically 

discarded in favor of those which carry more weight. 
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A quadrant selected for further probing is once more divided into four regions which are further · 

probed for highest value lying in each. 

Figure D.3 Illustration of the subdivision of a chosen quadrant to explore it in more detail. 

This procedure is continued until a single point is left and hopefully will be the optimal point of the 

function. Thinking about the procedure, it should be clear that this is simply a 2 dimensional binary 

search. There are two ways in which movement can be executed in each quadrant to effect the 

search: 

+ Movement could be executed along one direction whist being held constant in the other. In 

this case there will be as many movements as there are points to be tested, reducing the 

problem to same level as exhaustive search techniques ruled out in chapter 2. 

+ Movement can be executed simultaneously in both directions. This could be problematic if 

there is a descent in one direction and an ascent in one direction. 

Although binary search is the most efficient in one direction, its search character is difficult to co­

ordinate in systems with more than 2 dimensions[Tenenbaum et al, 1990]. 

Since the domain in both A and B is inherently ordered, there is a possibility of conducting 

independent searches in both variables to determine their peaks. The idea is not completely far 

fetched. Consider the case of determining a peak of a function of two variables f(xi. x2). Then the 

system can be viewed as optimisations in one variables while holding the other constant, and then 

turning the attention to finding the function peak with respect to the other variable as is illustrated 

below. 

Optimisation with respect to the variable x1 

-..... 
~ 

0 
-1 0 

x1 

Optimisation with respect to x2 

-"' ~ 
-100 

x2 

Figure D.4 Independent optimisation of the function with respect to individual variables. 
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The function is thus optimised with respect to x1 to find its peak while the other variable is held 

constant and then by x2 while x1 is held constant. If binary search is used in this regard, then it can 

be used to search either variable at a time, arriving at the solution and then for the other. This 

process could be carried on until the entire function is optimised in both variables. 

Although binary search will indeed speed the search for an ordinary problem where all the orthodox 

methods have been ruled out, the idea cannot be applied for the following obvious reason: The 

search cannot be conducted independently for each variable. There usually is an inherent interaction 

between the variables such that they cannot be separated. If there exist a possibility however, of 

conducting a search on both variables simultaneously, then each variable can be searched for using 

binary search. The result of the search after the decision as to where each variable is likely to lie, 

would then be evaluated against the objective function f(xb x2). The separation between the 

variables would thus be removed. All that has to be decided in this case, is the probable space of 

each of the variables. The genetic algorithm therefore, becomes a candidate for a typical search 

procedure for determining the boundaries of each variable. Further on the contribution of the GA is 

discussed below. 

D2.1 The genetic contribution 
The genetic algorithm is applied as a divider of the search space in both the parameters. A random 

genetic search is conducted for each parameter to determine the boundaries of its membership. As a 

start, suppose that a coded string is 4 bits long and is mapped into a domain x e [0,5], then the 

parameter will have possible values ranging from 0000 to 1111. This binary domain can itself be 

split into regions 

0000 ~ 0111 (lower bound) 0.0 - 2.49 and 

1000 ~ 1111 (higher bound) 2.5 - 5.00 

The prime objective of the algorithm at the beginning is thus to determined the highest boundary 

that the variable will belong to. The phenomenon of epistasis in genetic algorithms states that the 

search for variables cannot be conducted in isolation[Beasley, et al, 1993b). With this in mind 

therefore, the search for the initial boundaries is conducted simultaneously for both the variables A 

and B with the evaluation being conducted for boundaries found in each variable. The results of this 

genetic exercise on the entire plane is therefore a consensus view as to where the solution is likely 

to lie. For the above example, two distinct regions exist, 0### and 1 #### dividing it into either of 

the regions (0-2.49) or (2.50 - 5.0). 

0000-0111 
0.0 - 2.49 Boundary 

1 000 - 1111 A 

2 .5 - 5 .0 

Figure D.5 Illustration of the division of the one dimensional search into two distinct regions in 

the domain. Also shown, is the boundary that a GA has to decide. 
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Each variable's large span is thus decided at this stage. Following this decision, the first bit is 

frozen as the representative of the larger quadrant selected, thus deciding which side of the 

boundary it is likely to belong to. Suppose that for a larger quadrant selected, the solution lies in the 

higher region of the search space, then the search space will then be reduced to the domain with the 

span [ 1-0## to 1-1 ## ] when the starting 1 indicates that it is frozen and cannot be changed. The 

genetic algorithm is thus set to explore this reduced space using its genetic operators to determine 

the most optimal solution within the newly decided space. 

This space is further divided using the same logic as the first space and the search continues. This is 

done until an optimal point is found. Although this is shown for one variable, the difference in this 

application is that at the same time the other variable is being searched for. Although it is 

emphasised in this case that the decision on membership of the region is taken on the basis of 

optimality within a region, the combinatorial effect of the other variables is taken into account to 

have a consensus. 

When a bit has been frozen, the algorithm clearly then has committed itself to searching for the 

solution in a specific quadrant. This scenario is synonymous to the representation of numbers. A 

number such as 3205 can be split into four categories: thousands, hundreds, tens and units. 

Thousands 

3 

Hundreds 

2 
Tens 

9 

Units 

s 

When viewed in this manner, the algorithm is thus forced to first decide on the region in the 

thousands whist all the other categories are kept random. Once that decision is made, correctly or 

incorrectly, it progresses to search the candidate in the next category, fixing that and progressing 

further down until it is done. 

There is thus an evident amount of danger lurking in the idea: If the decision in any of the 

categories, in particular the higher ones, is bad, then the algorithm is almost guaranteed to flop. No 

amount of search or processing in the lower categories will have any positive effect. This being 

said, the advantage of the technique is outlined below. 

D2.2 Search space reduction 
For a simple single dimension binary search, it is known that every time a decision about the 

variable boundary is made, then the search space is effectively reduced by half (1/21
) of the original 

space. For a two variable problem, illustrated in figure D.3, the search space is reduced by a quarter 

(1122
) every time a decision about both variables is taken. For a three variable problem shown below 
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c 

A 

Figure D.6 An illustration of the reduction of the search space to an eight of the original space for 

a variable search of three variables. The space decided upon reduces to a simple cube in space. 

the search space is reduced to an eight (1/23
) of the original size. It can thus be shown using the 

principle of mathematical induction that the following postulate can be made: 

Reduction of search space postulate. 

In a case where there a~e only 2 choices about the state of a variable(i.e. either high or low) and 

where n variable exist, then the search space is reduced by 2
1
• of the original space when the 

decisions about the variable boundaries is made. 

Proof: 
Follows by the principle of mathematical induction in Swokowski (1989). 

This once more is irrespective of the correctness of the values obtained when each decision is made. 

This reduction of the search space is therefore a major advantage to arm a genetic search with. The 

role of the GA is therefore reduced to that of finding the boundaries of variables and letting 

variables themselves converge as they are being enclosed by the spaces decided upon. 

This property makes the proposal quite attractive as a measure of speeding up the search. Numerous 

trials were undertaken to put the idea in practice and several flaws were found: 

+ If the search fails to find the right candidate quadrant or bin for the most significant bits, 

then there is no amount of genetic processing which will help the algorithm get out of the 

trapping. 

+ The failure in this regard has been found to be attributable directly to the problems of the 

stagnation of the genetic algorithm outlined in chapters 3 and 8 of this report. This is by far 

the worst disadvantage the system is likely to have under this regime. 

+ The execution of the idea is likely to demand a parallel processing system , where each 

parameter will be searched using a genetic binary scheme on a separate platform, with a 

supervisory GA conducting the combination of the results found the salve GAs and thus 

computing the results. 
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+ Once the most significant section has been decided upon, it was noticed that the rest of the 

string would resemble all the others in the population, resulting in the minimum Hamming 

distance between the best and the worst member, a feature to be expected once the algorithm 

has converged sufficiently. This required the population be re-initialised every time a section 

has been worked on. This by itself does serve as a hassle but draws the idea to the same 

league of problems as the rest of the proposed modifications to the algorithm. 

With all these concerns however, when applying the idea to simple mathematical optimisation 

problems, the idea seemed to carry enough merit to be worth further investigation. Due to the time 

constraint and the depth of work covered in this thesis, it was decided to leave it for another project. 

D3 Conclusions 
In this chapter, a proposal of the use if binary search to help improve the time considerations of the 

genetic algorithm processing was made. It was shown that when using the principle of mathematical 

induction, the idea will reduce the search space dramatically once decisions about the search space 

are taken, irrespective of whether they are right or wrong, and hence could lead to the reduction in 

the search time. This would however be an ideal situation on a parallel processing system. The idea 

has already been drawn to the same league of problems resulting form the settings of the genetic 

algorithm. 
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