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Abstract
Background: Between August and November 2014, the incidence of Ebola virus disease (EVD) rose dramatically 
in several districts of Sierra Leone. As a result, the number of cases exceeded the capacity of Ebola holding and 
treatment centres. During December, additional beds were introduced, and incidence declined in many areas. 
We aimed to measure patterns of transmission in different regions, and evaluate whether bed capacity is now 
sufficient to meet future demand.

Methods: We used a mathematical model of EVD infection to estimate how the extent of transmission in the 
nine worst affected districts of Sierra Leone changed between 10th August 2014 and 18th January 2015. Using 
the model, we forecast the number of cases that could occur until the end of March 2015, and compared bed 
requirements with expected future capacity.

Results: We found that the reproduction number, R, defined as the average number of secondary cases 
generated by a typical infectious individual, declined between August and December in all districts. We 
estimated that R was near the crucial control threshold value of 1 in December. We further estimated that bed 
capacity has lagged behind demand between August and December for most districts, but as a consequence of 
the decline in transmission, control measures caught up with the epidemic in early 2015.

Conclusions: EVD incidence has exhibited substantial temporal and geographical variation in Sierra Leone, but 
our results suggest that the epidemic may have now peaked in Sierra Leone, and that current bed capacity 
appears to be sufficient to keep the epidemic under-control in most districts.
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Introduction
The devastating epidemic of Ebola virus disease (EVD) in West Africa has taken an enormous toll in terms of 
human suffering and economic loss. As of 18th January 2015, Sierra Leone is the worst affected country, with 
over 8000 confirmed and probable cases reported1. The national and international effort to control EVD in 
Sierra Leone stepped up considerably between August and December, and a number of new Ebola Treatment 
Centres (ETCs) have been opened. These units operate high levels of infection control and are used to isolate 
and provide clinical care to confirmed EVD patients. In addition, Ebola Holding Centres (EHCs) have been 
constructed as a first destination to assess the status of persons suspected of having EVD and isolate them until 
confirmatory blood testing, and a number of Community Care Centres (CCCs) – smaller, more lightly staffed – 
have been opened to help increase bed capacity and bring care closer to communities. This enormous 
investment in infrastructure has coincided with efforts to improve community engagement and to reduce the 
risk of transmission, particularly during funerals2.

In this study we used a mathematical model of Ebola virus transmission to estimate how the reproduction 
number, R, defined as the average number of secondary cases generated by a typical infectious host, varied 
between August 2014 and January 2015 in the nine districts of Sierra Leone with the most active transmission. 
As a large number of additional ETC and EHC beds were introduced in Sierra Leone in December 20143, we also 
used the model to estimate how many cases would be present in the community by the end of March 2015, and 
evaluate whether beds currently in place will be sufficient to meet demand.

Methods
We used a combination of patient and situation report data to obtain reliable and up-to-date time series of the 
number of confirmed and probable cases. The WHO publishes the weekly number of confirmed and probable 
cases at the subnational level for Sierra Leone on their website4. These data come from the patient database, 
which is the most reliable data source because it is continuously cleaned. In particular, it takes into account 
reclassification and avoids double counting of cases. However, the patient database is updated with substantial 
delay so that the number of reported cases is typically underestimated in the most recent weeks. To tackle this 
issue, we compiled case data from the daily situation reports issued by the Sierra Leone Ministry of Health and 
Sanitation (MoHS SitReps) between 10th August 2014 and 18th January 20151. The WHO patient database was 
used except for the most recent weeks, where we switched to the MoHS SitReps. The time at which this switch 
was made was determined for each district by comparing the weekly totals from the WHO/patient database and 
the MoHS SitReps in the 6 weeks preceding publication date of WHO data (11th January 2015). The earliest 
week where the number of confirmed and probable cases in the MoHS SitReps exceeded that in the 
WHO/patient database determines this switch. This was between 1 and 4 weeks before. Available bed capacity 
was compiled for all ETCs, EHCs and CCCs in Sierra Leone3.

To model disease transmission, we used a stochastic SEIR transmission model5 in which individuals progressed 
through four classes: susceptible, exposed, infectious and removed. To account for external influences on 
transmission – such as variation in human behaviour and introduction of control measures – we assumed that 
the transmission rate could change over time5,6,7,8; the extent and direction of change was estimated during 
the model fitting process9. We used published empirical estimates10 of 9.4 days for the mean incubation period 
and 11.2 days for the mean infectious period (see Appendix for more details).

We fitted the model to the time series of weekly reported cases (confirmed and probable) using a Bayesian 

and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no 
competing interests exist.

Introduction
The devastating epidemic of Ebola virus disease (EVD) in West Africa has taken an enormous toll in terms of 
human suffering and economic loss. As of 18th January 2015, Sierra Leone is the worst affected country, with 
over 8000 confirmed and probable cases reported1. The national and international effort to control EVD in 
Sierra Leone stepped up considerably between August and December, and a number of new Ebola Treatment 
Centres (ETCs) have been opened. These units operate high levels of infection control and are used to isolate 
and provide clinical care to confirmed EVD patients. In addition, Ebola Holding Centres (EHCs) have been 
constructed as a first destination to assess the status of persons suspected of having EVD and isolate them until 
confirmatory blood testing, and a number of Community Care Centres (CCCs) – smaller, more lightly staffed – 
have been opened to help increase bed capacity and bring care closer to communities. This enormous 
investment in infrastructure has coincided with efforts to improve community engagement and to reduce the 
risk of transmission, particularly during funerals2.

In this study we used a mathematical model of Ebola virus transmission to estimate how the reproduction 
number, R, defined as the average number of secondary cases generated by a typical infectious host, varied 
between August 2014 and January 2015 in the nine districts of Sierra Leone with the most active transmission. 
As a large number of additional ETC and EHC beds were introduced in Sierra Leone in December 20143, we also 
used the model to estimate how many cases would be present in the community by the end of March 2015, and 
evaluate whether beds currently in place will be sufficient to meet demand.

Methods
We used a combination of patient and situation report data to obtain reliable and up-to-date time series of the 
number of confirmed and probable cases. The WHO publishes the weekly number of confirmed and probable 
cases at the subnational level for Sierra Leone on their website4. These data come from the patient database, 
which is the most reliable data source because it is continuously cleaned. In particular, it takes into account 
reclassification and avoids double counting of cases. However, the patient database is updated with substantial 
delay so that the number of reported cases is typically underestimated in the most recent weeks. To tackle this 
issue, we compiled case data from the daily situation reports issued by the Sierra Leone Ministry of Health and 
Sanitation (MoHS SitReps) between 10th August 2014 and 18th January 20151. The WHO patient database was 
used except for the most recent weeks, where we switched to the MoHS SitReps. The time at which this switch 
was made was determined for each district by comparing the weekly totals from the WHO/patient database and 
the MoHS SitReps in the 6 weeks preceding publication date of WHO data (11th January 2015). The earliest 
week where the number of confirmed and probable cases in the MoHS SitReps exceeded that in the 
WHO/patient database determines this switch. This was between 1 and 4 weeks before. Available bed capacity 
was compiled for all ETCs, EHCs and CCCs in Sierra Leone3.

To model disease transmission, we used a stochastic SEIR transmission model5 in which individuals progressed 
through four classes: susceptible, exposed, infectious and removed. To account for external influences on 
transmission – such as variation in human behaviour and introduction of control measures – we assumed that 
the transmission rate could change over time5,6,7,8; the extent and direction of change was estimated during 
the model fitting process9. We used published empirical estimates10 of 9.4 days for the mean incubation period 
and 11.2 days for the mean infectious period (see Appendix for more details).

We fitted the model to the time series of weekly reported cases (confirmed and probable) using a Bayesian 

and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no 
competing interests exist.

Introduction
The devastating epidemic of Ebola virus disease (EVD) in West Africa has taken an enormous toll in terms of 
human suffering and economic loss. As of 18th January 2015, Sierra Leone is the worst affected country, with 
over 8000 confirmed and probable cases reported1. The national and international effort to control EVD in 
Sierra Leone stepped up considerably between August and December, and a number of new Ebola Treatment 
Centres (ETCs) have been opened. These units operate high levels of infection control and are used to isolate 
and provide clinical care to confirmed EVD patients. In addition, Ebola Holding Centres (EHCs) have been 
constructed as a first destination to assess the status of persons suspected of having EVD and isolate them until 
confirmatory blood testing, and a number of Community Care Centres (CCCs) – smaller, more lightly staffed – 
have been opened to help increase bed capacity and bring care closer to communities. This enormous 
investment in infrastructure has coincided with efforts to improve community engagement and to reduce the 
risk of transmission, particularly during funerals2.

In this study we used a mathematical model of Ebola virus transmission to estimate how the reproduction 
number, R, defined as the average number of secondary cases generated by a typical infectious host, varied 
between August 2014 and January 2015 in the nine districts of Sierra Leone with the most active transmission. 
As a large number of additional ETC and EHC beds were introduced in Sierra Leone in December 20143, we also 
used the model to estimate how many cases would be present in the community by the end of March 2015, and 
evaluate whether beds currently in place will be sufficient to meet demand.

Methods
We used a combination of patient and situation report data to obtain reliable and up-to-date time series of the 
number of confirmed and probable cases. The WHO publishes the weekly number of confirmed and probable 
cases at the subnational level for Sierra Leone on their website4. These data come from the patient database, 
which is the most reliable data source because it is continuously cleaned. In particular, it takes into account 
reclassification and avoids double counting of cases. However, the patient database is updated with substantial 
delay so that the number of reported cases is typically underestimated in the most recent weeks. To tackle this 
issue, we compiled case data from the daily situation reports issued by the Sierra Leone Ministry of Health and 
Sanitation (MoHS SitReps) between 10th August 2014 and 18th January 20151. The WHO patient database was 
used except for the most recent weeks, where we switched to the MoHS SitReps. The time at which this switch 
was made was determined for each district by comparing the weekly totals from the WHO/patient database and 
the MoHS SitReps in the 6 weeks preceding publication date of WHO data (11th January 2015). The earliest 
week where the number of confirmed and probable cases in the MoHS SitReps exceeded that in the 
WHO/patient database determines this switch. This was between 1 and 4 weeks before. Available bed capacity 
was compiled for all ETCs, EHCs and CCCs in Sierra Leone3.

To model disease transmission, we used a stochastic SEIR transmission model5 in which individuals progressed 
through four classes: susceptible, exposed, infectious and removed. To account for external influences on 
transmission – such as variation in human behaviour and introduction of control measures – we assumed that 
the transmission rate could change over time5,6,7,8; the extent and direction of change was estimated during 
the model fitting process9. We used published empirical estimates10 of 9.4 days for the mean incubation period 
and 11.2 days for the mean infectious period (see Appendix for more details).

We fitted the model to the time series of weekly reported cases (confirmed and probable) using a Bayesian 

2PLOS Currents Outbreaks



approach9. As it was not possible to estimate the extent of under-reporting, we fixed the proportion of 
symptomatic cases reported at 60%, based on recent estimates from the UN for Ebola Emergency Response 
and the National Emergency Response Centre2. We also included the possibility of variability in the accuracy of 
reporting over time, as well as an over-dispersed delay of 4.3 days in average between onset of symptoms and 
notification of reported cases10. Using the fitted model, we estimated how the reproduction number, R, varied 
between 10th August 2014 and 18th January 2015.

We then used the model to simulate 5000 potential epidemic trajectories from 18th January 2015 until 29 March 
2015, and thus to predict the number of cases there would be in the community. Each simulation started with a 
value of the reproduction number sampled from the posterior distribution on the latest data point. We also 
conducted a sensitivity analysis by taking the averaged posterior distribution of R over the first three weeks of 
January, in order to smooth over the most recent changes (see Appendix). Upon notification, EVD suspected 
cases are first sent to an EHC or CCC, where they remain until the result of the laboratory test. Accordingly, we 
assumed that the number of beds required for EHCs and CCCs at any time was equal to the number of cases in 
their first three days post-notification (i.e. the average time to obtain the status result), while accounting for the 
number of non-EVD cases that are also isolated until their laboratory test result (this proportion was computed 
for each week and district using the reported number of non-EVD cases1, see Appendix for more details). Upon 
confirmation, EVD cases are transferred to ETUs where they may die or recover, so the number of beds required 
in ETUs was assumed to be equal to the number of cases confirmed but not yet removed. This corresponds to a 
mean ETC hospitalisation time of 3.9 days10 (i.e. the average infectious period minus the average time from 
onset to laboratory test result).

While this paper was under review, we collected data for two more weeks (weeks ending 25th January and 2nd 
February 2015). Here, instead of re-fitting to the latest data we decided to assess how well our forecasts 
matched these two additional data points. Weekly updates of our fit and forecast to the latest data is available 
online19.

Results
We focused our analysis on the nine districts of Sierra Leone that have reported the most cases since 1st 
November 2014: Bo, Bombali, Kambia, Koinadugu, Kono, Moyamba, Port Loko, Tonkolili and Western Area 
(Figure 1 and 2). They have a combined population of 4.7 million, representing 75% of the total Sierra Leonean 
population. Data source comparison for each district shows that the WHO data published on 11th January 2015 
gives the more complete estimate of the number of confirmed and probable cases up to a cut-off date ranging 
from 30th November 2014 to 4th January 2015, depending on the district (see Figure 2, red lines). After this cut-
off date, the situation reports provide more complete estimates of the number of confirmed and probable cases 
(Figure 2).
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cases are first sent to an EHC or CCC, where they remain until the result of the laboratory test. Accordingly, we 
assumed that the number of beds required for EHCs and CCCs at any time was equal to the number of cases in 
their first three days post-notification (i.e. the average time to obtain the status result), while accounting for the 
number of non-EVD cases that are also isolated until their laboratory test result (this proportion was computed 
for each week and district using the reported number of non-EVD cases1, see Appendix for more details). Upon 
confirmation, EVD cases are transferred to ETUs where they may die or recover, so the number of beds required 
in ETUs was assumed to be equal to the number of cases confirmed but not yet removed. This corresponds to a 
mean ETC hospitalisation time of 3.9 days10 (i.e. the average infectious period minus the average time from 
onset to laboratory test result).

While this paper was under review, we collected data for two more weeks (weeks ending 25th January and 2nd 
February 2015). Here, instead of re-fitting to the latest data we decided to assess how well our forecasts 
matched these two additional data points. Weekly updates of our fit and forecast to the latest data is available 
online19.

Results
We focused our analysis on the nine districts of Sierra Leone that have reported the most cases since 1st 
November 2014: Bo, Bombali, Kambia, Koinadugu, Kono, Moyamba, Port Loko, Tonkolili and Western Area 
(Figure 1 and 2). They have a combined population of 4.7 million, representing 75% of the total Sierra Leonean 
population. Data source comparison for each district shows that the WHO data published on 11th January 2015 
gives the more complete estimate of the number of confirmed and probable cases up to a cut-off date ranging 
from 30th November 2014 to 4th January 2015, depending on the district (see Figure 2, red lines). After this cut-
off date, the situation reports provide more complete estimates of the number of confirmed and probable cases 
(Figure 2).
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Fig. 1: Geographical distribution of Ebola virus disease in Sierra Leone.

The map shows cumulative number of confirmed and probable cases reported up to 18 January 2015 in the 
fourteen districts of Sierra Leone. Darker shades of red indicate a greater number of cases.
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Fig. 2: Time-series of the weekly number of confirmed and probable cases reported in the 
patient (black) and situation report (blue) databases.

The vertical red line indicates the cut-off date after which we used the situation report database as it 
provided more complete information than the patient database (see Methods section).

The estimated number of weekly reported cases in the fitted model was consistent with the observed data, 
suggesting our framework was able to capture the overall pattern of transmission over time (Figures 3, 4 and 5, 
upper panels). The epidemic appears to be peaking or in decline in all districts. However, in the most heavily 
affected districts (Western Area, Port Loko) there were still more than 30 cases per week in January 2015 
(Figure 3). The situation is less clear in Kambia, where the number of cases has been stable in January, around 
10 cases per week, but only one case was reported on the week ending 2nd February 2015 (Figure 4).

The reproduction number, R, generally decreased between August and December in all nine districts (Figures 3, 
4 and 5, lower panels). In Western Area, which has had the most cases, we found that the median R decreased 
from 2.8 (interquartile range credible interval, IQR: 2.1-3.8) to 0.32 (0.20-0.47) between August and January and 
dropped below the critical epidemic control threshold of R = 1 in early December (Figure 2). Similar changes 
occurred earlier in Bo, Bombali, Port Loko and Tonkolili and our median estimate for R over January was also 
below one (Table 1). Accordingly, our forecasts suggest cases could continue to decline in these areas. This 
trend was confirmed by the two additional weeks of data, except in Port Loko where the number of cases 
increased on the week ending 2nd February 2015.
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increased on the week ending 2nd February 2015.
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The vertical red line indicates the cut-off date after which we used the situation report database as it 
provided more complete information than the patient database (see Methods section).

The estimated number of weekly reported cases in the fitted model was consistent with the observed data, 
suggesting our framework was able to capture the overall pattern of transmission over time (Figures 3, 4 and 5, 
upper panels). The epidemic appears to be peaking or in decline in all districts. However, in the most heavily 
affected districts (Western Area, Port Loko) there were still more than 30 cases per week in January 2015 
(Figure 3). The situation is less clear in Kambia, where the number of cases has been stable in January, around 
10 cases per week, but only one case was reported on the week ending 2nd February 2015 (Figure 4).

The reproduction number, R, generally decreased between August and December in all nine districts (Figures 3, 
4 and 5, lower panels). In Western Area, which has had the most cases, we found that the median R decreased 
from 2.8 (interquartile range credible interval, IQR: 2.1-3.8) to 0.32 (0.20-0.47) between August and January and 
dropped below the critical epidemic control threshold of R = 1 in early December (Figure 2). Similar changes 
occurred earlier in Bo, Bombali, Port Loko and Tonkolili and our median estimate for R over January was also 
below one (Table 1). Accordingly, our forecasts suggest cases could continue to decline in these areas. This 
trend was confirmed by the two additional weeks of data, except in Port Loko where the number of cases 
increased on the week ending 2nd February 2015.
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Table 1. Median and interquartile range interval of the posterior estimates of the reproduction number on 18th 
January 2015 in different districts of Sierra Leone.

District R (median and IQR)
Bo 0.35 (0.21 – 0.55)
Bombali 0.28 (0.16 – 0.52)
Kambia 0.97 (0.71 – 1.2)
Koinadugu 0.098 (0.024 – 0.36)
Kono 0.24 (0.078 – 0.63)
Moyamba 0.39 (0.11 – 1.1)
Port Loko 0.46 (0.34 – 0.62)
Tonkolili 0.28 (0.15 – 0.49)
Western Area 0.32 (0.2 – 0.47)
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Fig. 3: Model fits and forecast for Bombali, Port Loko, and Western Area.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

In Kambia, R decreased between September and mid-December from 1.3 (1.1 – 1.8) to 1.0 (0.79 – 1.25) but has 
since stabilised at around the critical epidemic control threshold (Figure 4). Accordingly, our forecast suggested 
that the number of cases could either increase, decrease or remain stable over the next few weeks following 
our latest fitted data point (18th January 2015). Comparing with the two additional weeks of data, we noted that 
the number of cases remained stable on the week ending 25th January 2015, but dropped below the lower 
bound of the interquartile range interval (IQR) of our forecast on the following week. Similar drops in the 
number of cases was also observed in Port Loko and Kono on the first additional week but was followed by an 
increase on the following week, more in lines with our forecast estimates.

Finally, the situation in Kono, Moyamba and Koinadugu, where R has been oscillating around the control 
threshold since October (Figure 4 and 5), suggest that, although the median R were below one on 18th January 
2015 and the associated forecasts show a decline of the epidemic, resurgence of cases cannot be ruled out in 
these areas. In particular, the upper bound of the IQR of R in Moyamba is just above one, hence the high 
variability in our forecast for this district.
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In Kambia, R decreased between September and mid-December from 1.3 (1.1 – 1.8) to 1.0 (0.79 – 1.25) but has 
since stabilised at around the critical epidemic control threshold (Figure 4). Accordingly, our forecast suggested 
that the number of cases could either increase, decrease or remain stable over the next few weeks following 
our latest fitted data point (18th January 2015). Comparing with the two additional weeks of data, we noted that 
the number of cases remained stable on the week ending 25th January 2015, but dropped below the lower 
bound of the interquartile range interval (IQR) of our forecast on the following week. Similar drops in the 
number of cases was also observed in Port Loko and Kono on the first additional week but was followed by an 
increase on the following week, more in lines with our forecast estimates.

Finally, the situation in Kono, Moyamba and Koinadugu, where R has been oscillating around the control 
threshold since October (Figure 4 and 5), suggest that, although the median R were below one on 18th January 
2015 and the associated forecasts show a decline of the epidemic, resurgence of cases cannot be ruled out in 
these areas. In particular, the upper bound of the IQR of R in Moyamba is just above one, hence the high 
variability in our forecast for this district.
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Fig. 4: Model fits and forecast for Bo, Kambia, and Kono.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

Fig. 4: Model fits and forecast for Bo, Kambia, and Kono.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

Fig. 4: Model fits and forecast for Bo, Kambia, and Kono.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

8PLOS Currents Outbreaks

http://currents.plos.org/outbreaks/files/2015/02/Figure4.png
http://currents.plos.org/outbreaks/files/2015/02/Figure4.png
http://currents.plos.org/outbreaks/files/2015/02/Figure4.png


Fig. 5: Model fits and forecast for Koinadugu, Moyamba and Tonkolili.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

We used our fitted model to estimate the number of assessment and treatment beds needed over time and 
compared this with the number of beds available (Table 2). Our results suggest that bed capacity has remained 
below what was needed since the outset of the Ebola outbreak in most areas, but that this is now changing. In 
Western Area and Port Loko, for instance, the bed capacity increased dramatically in December, which 
coincides with the peaking of the epidemic curve (Figure 3). In Bombali and Tonkolili, where the epidemic first 
started to decline, current bed capacity is predicted to be sufficient (Figure 3 and 5). However, three districts 
still suffer from a lack of treatment beds (Kambia, Koinadugu, Kono), in particular Kambia, where the 
assessment bed capacity will become insufficient to isolate all suspected cases in case the epidemic would 
increase in the near future (Figure 4).
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The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

We used our fitted model to estimate the number of assessment and treatment beds needed over time and 
compared this with the number of beds available (Table 2). Our results suggest that bed capacity has remained 
below what was needed since the outset of the Ebola outbreak in most areas, but that this is now changing. In 
Western Area and Port Loko, for instance, the bed capacity increased dramatically in December, which 
coincides with the peaking of the epidemic curve (Figure 3). In Bombali and Tonkolili, where the epidemic first 
started to decline, current bed capacity is predicted to be sufficient (Figure 3 and 5). However, three districts 
still suffer from a lack of treatment beds (Kambia, Koinadugu, Kono), in particular Kambia, where the 
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increase in the near future (Figure 4).

Fig. 5: Model fits and forecast for Koinadugu, Moyamba and Tonkolili.

The shaded area is the interquartile range on estimates (grey) and projections (blue), the red solid line is 
the bed capacity and the red dotted line on the lower panels represents R=1, which is the threshold for 
control. Fitted data are plotted as filled circles and the two additional, non-fitted, data as open triangles.

We used our fitted model to estimate the number of assessment and treatment beds needed over time and 
compared this with the number of beds available (Table 2). Our results suggest that bed capacity has remained 
below what was needed since the outset of the Ebola outbreak in most areas, but that this is now changing. In 
Western Area and Port Loko, for instance, the bed capacity increased dramatically in December, which 
coincides with the peaking of the epidemic curve (Figure 3). In Bombali and Tonkolili, where the epidemic first 
started to decline, current bed capacity is predicted to be sufficient (Figure 3 and 5). However, three districts 
still suffer from a lack of treatment beds (Kambia, Koinadugu, Kono), in particular Kambia, where the 
assessment bed capacity will become insufficient to isolate all suspected cases in case the epidemic would 
increase in the near future (Figure 4).
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Table 2. Estimated bed requirements over time in different districts of Sierra Leone (median and IQR)

District Actual 
assessment 
beds 
expected

Assessment 
beds needed 
(18th Jan 
2015)

Assessment 
beds needed 
(29th March 
2015)

Actual 
treatment 
beds 
expected

Treatment 
beds 
needed 
(18th Jan 
2015)

Treatment 
beds 
needed 
(29th 
March 2015)

Bo 20 112 (89 – 156) 0 (0 – 22) 50 2 (2 – 3) 0 (0 – 0)
Bombali 296 124 (104 – 

156)
0 (0 – 10) 210 6 (5 – 8) 0 (0 – 0)

Kambia 55 64 (54 – 75) 61 (17 – 150) 0 10 (9 – 12) 10 (2 – 24)
Koinadugu 83 0 (0 – 1) 0 (0 – 0) 0 1 (0 – 1) 0 (0 – 0)
Kono 58 60 (50 – 79) 0 (0 – 14) 0 20 (17 – 27) 0 (0 – 5)
Moyamba 4 63 (47 – 79) 0 (0 – 111) 22 4 (3 – 5) 0 (0 – 7)
Port Loko 326 211 (191 – 

234)
16 (6 – 39) 219 36 (32 – 40) 2 (1 – 6)

Tonkolili 199 108 (87 – 141) 0 (0 – 10) 100 5 (4 – 7) 0 (0 – 0)
Western 
Area

388 583 (529 – 
651)

13 (4 – 49) 556 73 (66 – 81) 1 (0 – 6)

Discussion
We compiled data from daily situation reports from Sierra Leone and fitted an EVD transmission model to these 
reports to estimate how the reproduction number changed in different parts of the country from August 2014 to 
January 2015. Our analysis suggests that the epidemic is peaking in Sierra Leone, particularly in the more 
heavily populated Western Area, and that the reproduction number is currently close to or below the epidemic 
control threshold of R=1 in all districts of Sierra Leone. The decline in the reproduction number during 
December, combined with the ongoing increase in bed capacity, suggest Ebola care facilities have caught up 
with bed demand in most districts for the first time since the beginning of the outbreak. However, the current 
situation in Kambia indicates that the number of cases might still increase in the near future. In addition, the 
rapid changes of R around the epidemic control threshold in Kono, Moyamba and Koinadugu since October 
suggest that resurgence of cases might still occur. This is of concern as these areas are currently under-served 
by treatment and/or assessment beds. Although opening new ETCs in those areas may not be possible in the 
coming weeks, rapid opening of new EHCs/CCCs and transfer of confirmed cases to ETUs in neighbouring 
districts could be envisaged.

We separated the bed demand for EHCs/CCCs from that for ETCs in the model. This is because EHC/CCC 
planning must anticipate a high proportion of suspected but non-EVD cases. By contrast, we have assumed that 
ETCs received only confirmed cases. In reality, this separation is subtler as many ETCs proceed to triage and 
can therefore fill the gap between EHC/CCC capacity and bed demand, such as in Bo.

Our forecast approach assumes that the situation remains unchanged from what is inferred from the last data-
point. Comparing our forecasts with two additional weeks of data, we found that this assumption held for the 
districts showing a steady decline in the number of cases (Bo, Bombali, Koinadugu, Moyamba, Tonkolili and 
Western Area). In the three other districts the number of cases dropped below our IQR forecast estimates during 
either the first (Kono and Port Loko) or second (Kambia) additional week. However, the increase in the number 
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of cases during the following week in Kono and Port Loko suggest that one should be cautious in interpreting 
the recent decline of case in Kambia. By fitting these two additional data points, the model would be able to 
suggest whether a change in the transmission and/or in the reporting of cases occurred recently in these 
districts. Finally, we conducted a sensitivity analysis on our forecast by using the average R over the last three 
fitted weeks instead of the last one. We obtained similar results except for Kambia, Kono and Moyamba, where 
the model forecasted higher number of cases. This is because R has been above the control threshold in these 
districts during the last three fitted weeks.

In many areas the drop in the reproduction number has coincided with an increase in bed capacity. For 
instance, in Western Area the fall in the reproduction number in October occurred at the same time as several 
ETCs were opened, notably the Hastings-Freetown ETC organised at the Police Training School (125 beds). 
However, since we did not include an explicit mechanism by which bed capacity affected transmission in the 
model12,13,14 we could not measure the extent to which the decline in the reproduction number resulted from 
more treatment and holding centres versus other factors, such as changes in community behaviour15 and 
burial practice. Indeed, the expansion of bed capacity is likely to partly reflect a general increase in awareness 
and control efforts. However, such factors are far more difficult to measure than beds. When estimating 
epidemiological parameters, and effectiveness of interventions, the complexity of a disease model is 
constrained by the quality of available data16. If more data were to become available from Sierra Leone, 
particularly on the extent of under-reporting and health-seeking behaviour, it would be possible to use a more 
detailed framework, and thereby examine a potential causal relationship between bed capacity and reduction in 
transmission.

Community transmission was represented using a single parameter in the model because it has been shown 
that it is not possible to robustly estimate multiple routes of transmission – such as the contribution from 
funerals – for Ebola from a single incidence curve7. However, knowledge of such factors is not necessary to 
calculate the change in overall reproduction number over time, and hence understand the average trend in 
population transmission patterns in real-time8,17. We assumed that the time from onset to hospitalisation and 
the proportion of reported cases remained constant over time. However, a two-week operation to uncover 
hidden EVD cases in Western Area occurred at the end of December 2014 and could have lead to a reduction in 
the time to hospitalisation and to an increase in the proportion of reported cases18. We anticipate that this 
would reduce our estimate of the reproduction number but increase bed requirements, because cases would 
stay longer in isolation.

Real-time modelling is key to tracking changes in R and helping to inform bed capacity planning in the context 
of the rapidly changing EVD outbreak in West Africa. We are publishing weekly updates of our real-time analysis 
online19.

APPENDIX 1

Data
Subnational time-series from the patient database were downloaded from the WHO website4 and did not 
require any post-processing. On the other hand, daily situation reports (SitReps) are generated by the Sierra 
Leone Ministry of Health and Sanitation (MoHS) and are available on the MoHS website 
(http://health.gov.sl/?page_id=583). We extracted the data automatically where possible and otherwise 
manually. In order to smooth day-specific reporting biases, we computed weekly number of new cases by 
summing daily numbers of confirmed and probable cases. Based on this figure, we selected the nine districts of 
Sierra Leone with active transmission over the period December 2014 - January 2015: Bo, Bombali, Kambia, 
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Koinadugu, Kono, Moyamba, Port Loko, Tonkolili and Western Area. We grouped the two neighbouring Western 
Area districts (Rural plus Urban) because patients from one district are commonly sent to ETUs in the other 
district, depending on bed availability. These two districts form therefore a single area for bed capacity 
planning. Bed capacity is detailed here http://dx.doi.org/10.6084/m9.figshare.1304889.

Model and parameters 
Model structure

To model Ebola virus disease (EVD) transmission, we used a stochastic SEIR framework accounting for 
hospitalisation and delay in case reporting (Figure 1 and Table 2 of the Appendix). We assumed that the 
population in each district was initially fully susceptible to infection. Based on published empirical estimates 
from the WHO Ebola response team10, we assumed the incubation period was distributed according to an 
Erlang distribution with a shape of 2 and a mean, 1/ν = 9.4 days. The infectious period was split between the 
time commonly spent in the community (Ic) and hospital (Ih) by assuming a mean time from onset to 
hospitalisation, 1/τ = 4.3 days10. In our model, we did not explicitly account for status outcome 
(death/recovery) but grouped all infectious into a single compartment by reweighing the average time from 
hospitalization to hospital discharge (11.6 days10 ) and the average time from hospitalization to death (5.2 days
10 ) by the case fatality ratio (CFR = 73%10 ) in order to obtain an average hospitalization time, 1/γ = 0.73 ∗ 
5.2 + (1 − 0.73) ∗ 11.6 = 6.9 days and an average infectious period of 4.3+6.9=11.2 days. This separation of 
the infectious period between community and hospital allowed us to account for time delay in reporting and to 
compute the bed demand rather than modelling the mechanistic effect of hospitalisation on the transmission 
rate, for which we used a phenomenological approach that we describe now.
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Table 2. Description of the transition rates

Transition Description Rate Note
 S → E1 Infection βtS(Ic + Ih)/N log(βt) is a Wiener process9. 

N is the population size.

 E1 → E2 Progression of incubation 2vE1  

 E2 → Ic Onset of symptoms and 
infectiousness 2νE2  

 Ic → Ih Hospitalisation and notification τIc Includes multiplicative Gamma 
noise

 Ih → R Removal γIh  

Time varying transmission

We modelled the time-varying transmission parameter, βt, by a Wiener process9, also known as standard 
Brownian motion, in the log-space (to ensure positivity of βt):

d log(βt)=σ dBt,

where σ is the volatility of the Brownian motion and was estimated when fitting the model to data. Intuitively, 
the higher the volatility the larger are the changes in βt over a given period of time. We used this single 
parameter to represent transmission as we only had overall incidence data available to fit the model to, rather 
than detailed case data, hence a more complex model would not have been identifiable7.

The reproduction number

The time-varying reproduction number is: Rt=βtΔSt/N where Δ is the overall infectious period: Δ=1/τ+1/γ, and St
is the number of susceptible individuals at time t. In all the scenarios studied here, St≈N. We therefore choose 
to ignore depletion of susceptibles in our interpretation of Rt≈βtΔ as the time-varying reproduction number.

Reporting of cases

It has been reported that the time from onset to notification of EVD cases is over-dispersed10, with a mean of 
4.5 days and a standard deviation (s.d.) of 5 days. A similar over-dispersed distribution was reported for the 
time from onset to hospitalisation (mean 4.6 days and s.d. 5.1 days), which suggests that most notifications 
occur upon hospitalisation. We modelled this by using a stochastic rate20 for the transition leading to 
hospitalisation of infectious cases (Ic → Ih). More precisely, we used a multiplicative Gamma noise20 with an 
infinitesimal standard deviation of 0.1 (to account for the ≈ 10% over-dispersion).

The second source of variability in the weekly incidence data compiled from the SitReps or collected by WHO 
comes from under reporting. This can be split further between:
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The proportion, ρ, of EVD cases that actually report illness. We assumed this proportion was 60% based on 
reports from the UN for Ebola Emergency Response2. We also allowed this parameter to vary over time 
using an additional over-dispersion parameter, φ, that was inferred during model fitting.
The proportion, κt, of daily SitReps that are available each week on the MoHS website and were digitalized. 
Figure 2 indicates incomplete weeks. For instance, only three SitReps are available for the week 3 to 9 
November. Hence the drop in the number of reported cases for that week. We note however that, in this 
study, we obtained all the daily SitReps (κt=1) for the time period where we use the SitReps instead of the 
patient database (see Figure 2 of the main text).

Based on these observations, we modelled the weekly incidence reported in the SitReps, Xt, given the simulated 
incidence Zt, by a negative binomial distribution with E(Xt|Zt)=ρκtZt and Var(Xt|Zt)=φρ2κt

2Zt
2.

Model fitting and inference
For each of the nine districts, we fitted our model and estimated three parameters: over-dispersion of reported 
cases; volatility (i.e. standard deviation) of the Wiener process on log(βt); and number of symptomatic cases at 
the start of the fitting period. We assumed uniform priors for all parameters.

Our inference framework, described below, also allowed us to estimate how the time dependent reproduction 
number, Rt = βtΔ, defined as the average number of secondary cases generated by a typical infectious host at 
time t, changed between 10th August and 18th January 2015.

Model fitting was performed using the SSM library11 (freely available at: https://github.com/sballesteros/ssm). 
This library implements a particle Marginal Metropolis-Hastings MCMC algorithm (pMCMC) to perform Bayesian 
inference for this class of non-linear stochastic models with intractable likelihood21.

In SSM, parameters are transformed to ensure positivity (log transform) or any boundedness (e.g. logit 
transform for probabilities) and the pMCMC is implemented with an adaptive multivariate normal proposal 
distribution on the transformed parameter space. The adaptive procedure of the proposal kernel operates in 
two steps. First, the size of the covariance matrix is adapted at each iteration to achieve an optimal acceptance 
rate of ~23%22. Second, its shape is adapted by using the empirical covariance matrix, computed from the 
accepted samples and updated at each iteration, thus leading to an optimal proposal distribution23.

The SSM library also implements a Kalman-simplex algorithm (ksimplex), which was used to maximise the (non-
normalized) posterior distribution and thus initialise the pMCMC close to the mode of the target. Since the 
simplex algorithm only guaranties convergence to a local maximum, we ran 1000 independent ksimplex 
initialised from parameter sets sampled from the prior distribution. We selected the simplex that converged to 
the highest posterior density value, and used the outputted parameter set to initialise 2 independent pMCMC 
chains of 100,000 iterations. We visually checked that the 2 chains converged to the same stationary 
distribution and combined them after appropriate thinning and accounting for burn-in.  For each posterior 
sample, a filtered trajectory was sampled from all particles (with probability equal to its overall likelihood). 
Figures 3, 4 and 5 of the main text show the median and interquartile range of these trajectories at each time 
point. Figures were plotted using the R software24.

Forecasting and bed requirements
To estimate future bed requirements, we simulated 5000 stochastic trajectories from 18th January 2015 until 29 
March 2015. In order to propagate the uncertainty of the Bayesian posterior distribution, each simulation was 
started by sampling a set of parameters and states from the joint posterior distribution on 18th January 2015 
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In order to estimate bed requirements for EHCs/CCCs, we accounted for the number of suspected but non-EVD 
cases who remain isolated until status result. These numbers are reported in the MoHS SitReps and allowed us 
to compute the weekly proportion of positive EVD cases. Figure 2 of the Appendix shows how this proportion 
changed over time in each district. Overall, the proportion of EVD cases decreased over time in most districts 
and was around 30% in January. In the model, we assumed that the bed demand in EHCs/CCCs was equal to the 
number of EVD cases in their first three days post-notification divided by the empirical proportion of EVD cases 
at that time. We used the average value over January during the forecast.

In this study, we have used the estimate of the case fatality rate (CFR) for all cases, based on status outcome, 
which was reported to be 73.4%10  in Sierra Leone for the period Dec 2013-25 Nov 2014. Actually, the CFR is 
lower for hospitalized cases (60.3%) and higher for non-hospitalized cases (91.9%10 ).In our model 
parameterization, decreasing the CFR would lead to an increase in the infectious period, which would have two 
effects on the inference:

 Lower estimates of the contact rate (β) in order to obtain the same estimates of the reproduction number 
over time as when using a shorter infectious period.
 An increase of the time spent in hospital and thus of the number of beds required.

Accordingly, although a lower CFR would not affect our conclusions regarding the temporal changes in the 
reproduction number, it would affect our estimates of the number of beds required. For instance, using the CFR 
of hospitalized cases (60.3% instead of 73.4%) for the whole population would translate into an increase of 22% 
of the time spent in hospital and thus of the number of beds required. Note however that in our study we 
assumed that all cases (including the 40% under-reported) would present to the hospital when calculating the 
number of beds required. As such, our estimates can already be seen as conservative, even without the 
additional 22% due to a lower CFR in hospitalized patients.
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Fig. 2: Proportion of EVD positive cases in different districts

 Sensitivity analysis on model forecast
In the main analysis, we sampled from the posterior distribution of the reproduction number on the latest data 
point. To conduct a sensitivity analysis, we also took the averaged posterior distribution over the first three 
weeks of January, which smoothed the most recent changes in reproduction number. Overall, the forecasts 
remained much the same, except for Kono and Moyamba, where using the average let to a noticeably larger 
projection of future case numbers, as well as increased uncertainty, which comes from the sudden changes in 
epidemic dynamics in early January.
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Fig. 3: Sensitivity analysis on sampling of reproduction number

Blue dashed line shows median forecast as in Figures 3-5, with the reproduction number sampled from the 
posterior at the last data point. Orange dashed line shows median forecast when the reproduction number is 
sampled from the average posterior distribution over the first three weeks of January. Shaded regions 
represent interquartile range. Fitted data are plotted as filled circles and the two additional, non-fitted, data 
as open triangles.
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