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Practical considerations for sensitivity analysis
after multiple imputation applied to
epidemiological studies with incomplete data
Vanina Héraud-Bousquet1*, Christine Larsen2, James Carpenter3, Jean-Claude Desenclos4 and Yann Le Strat2

Abstract

Background: Multiple Imputation as usually implemented assumes that data are Missing At Random (MAR),
meaning that the underlying missing data mechanism, given the observed data, is independent of the unobserved
data. To explore the sensitivity of the inferences to departures from the MAR assumption, we applied the method
proposed by Carpenter et al. (2007).
This approach aims to approximate inferences under a Missing Not At random (MNAR) mechanism by reweighting
estimates obtained after multiple imputation where the weights depend on the assumed degree of departure from
the MAR assumption.

Methods: The method is illustrated with epidemiological data from a surveillance system of hepatitis C virus (HCV)
infection in France during the 2001–2007 period. The subpopulation studied included 4343 HCV infected patients
who reported drug use. Risk factors for severe liver disease were assessed. After performing complete-case and
multiple imputation analyses, we applied the sensitivity analysis to 3 risk factors of severe liver disease: past
excessive alcohol consumption, HIV co-infection and infection with HCV genotype 3.

Results: In these data, the association between severe liver disease and HIV was underestimated, if given the
observed data the chance of observing HIV status is high when this is positive. Inference for two other risk factors
were robust to plausible local departures from the MAR assumption.

Conclusions: We have demonstrated the practical utility of, and advocate, a pragmatic widely applicable approach
to exploring plausible departures from the MAR assumption post multiple imputation. We have developed
guidelines for applying this approach to epidemiological studies.

Background
Missing data are ubiquitous in epidemiological and clinical
research, and in consequence there is increasing interest
in appropriate statistical methods, principally multiple
imputation (MI) [1,2]. Multiple imputation techniques
available in standard statistical software [3,4] enable par-
ameter estimation under the assumption that missing data
are missing at random (MAR), meaning that the missing-
ness mechanism depends on observed data only, and
given these no longer on the missing data [5].
Incomplete datasets are usually addressed by a complete-

case (CC) analysis restricted to individuals that have no

missing data in any of the variables required for the ana-
lysis. For etiologic analyses, a complete-case approach
leads to a loss in power, but gives valid results if the
probability of being a complete-case is independent of
the outcome, given the covariates in the model [5,6].
However, if the missingness mechanism depends on the
outcome, given the covariates, a complete-case analysis
can be biased, even under the MAR assumption [7,8].
Conversely, MI allows individuals with incomplete data
to be included in the analysis. It yields valid and efficient
inferences under the MAR assumption, even if the miss-
ingness mechanism is related to the outcome, provided
the imputation model is appropriate [5].
Missing data may also be due to a Missing Not At

Random (MNAR) mechanism, also termed non-ignorable,
meaning that, given the observed data (including the
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outcome), the missingness mechanism depends on unob-
served data. In practice, it is impossible to distinguish
between MAR and MNAR data [9]. When perform-
ing multiple imputation under MAR, the estimate of
the regression coefficient of a covariate with missing
values can be subject to bias when the missingness
mechanism of the covariate is MNAR, whether this
MNAR mechanism depends on the outcome variable or
not [6,7]. The extend of this bias is often greater the
stronger the dependence of the missingness mechanism
on the outcome [10]. Sensitivity analysis is useful in
such cases.
Specifically, where the missingness mechanism for one

or more of the covariates depends on the response in
the model of interest, a MI analysis assuming MAR is
preferable to a CC analysis, especially if additional vari-
ables, not in the model of interest, can be included in
the imputation model to increase the plausibility of the
MAR assumption [11-14]. Nevertheless, the missingness
mechanism may additionally depend on unseen values
of a covariate, and the estimates of the coefficient of this
covariate may be sensitive to this. Knowledge of the dir-
ection and extent of this sensitivity is important when
drawing conclusions from an analysis. The method we
present here allows such sensitivity analysis to be per-
formed rapidly after MI under MAR.
In the statistical literature, both selection models [15]

and pattern-mixture models [16] have been proposed for
the analysis of data under MNAR assumptions [17,18].
Here, our focus is on selection models, which describe
assumptions about the mechanisms causing the missing
data and then work through the consequences for infer-
ence from the model of interest. Unfortunately, methods
for such sensitivity analysis are not implemented in
standard statistical software and in their full generality
are computationally complex. Thus they are little used
in practice [1].
However, a computationally much more straightfor-

ward approach to local sensitivity analysis, following MI
under MAR, has been proposed by Carpenter et al.
[19,20]. This ‘selection-based’ approach explores the
robustness of inference under local departures from
the MAR assumption, meaning that the sensitivity to
departure from the MAR assumption can be calculated
from the observed data without estimating a full non-
ignorable model [21]. Parameter estimates obtained from
the imputed datasets assuming MAR are reweighted to
represent the distribution of imputations under a MNAR
mechanism. Consequently, inferences obtained under
the MAR and MNAR assumptions can be compared to
assess the robustness of inferences to local departures
from the MAR hypothesis.
This method is attractive as it is easy to implement

after performing MI, and it has not been reported for

observational data to our knowledge. We have therefore
applied this method to surveillance data for hepatitis C
viral infection collected in France [22]. As a result of
this, we further propose guidelines on the use of the
method for observational data.

Methods
The hepatitis C virus (HCV) surveillance system is based
on 26 participating hepatology reference centers out of
the 31 located in university hospitals throughout France
[23]. Since 2000, it has enrolled patients at first referral
with HCV chronic infection to monitor changes in char-
acteristics of HCV infection. Here, ‘first referral’ is
defined as a patient’s first consultation at the clinic with
no prior histologic evaluation of their liver disease [22].
A standardized questionnaire is used to collect epi-
demiological (date of first referral and last HCV negative
test, circumstance of HCV antibody testing, and risk
factors), clinical, biological (HCV RNA serum status,
HIV and HBV co-infection), and history of excessive
alcohol consumption data.
For this study we considered the 4,343 cases that

reported having injected or snorted drugs at least once
in their whole life. We investigated risk factors predictive
of severe liver disease (SLD) at first referral by multivari-
ate logistic regression. SLD was defined as cirrhosis or
hepatocellular carcinoma at first referral, as assessed by
biochemical tests and morphological evaluation [24].
Note that the risk factor data were collected independ-
ently of the outcome of interest.

Preliminary analyses
Details of the study design and the initial analyses
have already been described [22,23]. Six out of the 9
variables retained for the multivariate analysis were
incomplete, with a range of missing values from 10 to
26 % (Table 1). In the CC analysis, multivariate logistic
analysis was reduced to 1,858 individuals (43 % of total
cases) having no missing data in any of the 9 variables of
the analysis. Consequently, we estimated missing values
through multiple imputation by chained equations using
Stata's user written program ice [4] (STATA W 9.2,
Stata Corporation, College Station, Texas, USA). This
computationally convenient method is being increasingly
used in epidemiology, and does not require any direct
assumption on the joint distribution of the variables
[25,26]. The imputation algorithm is based on a set
of univariate imputation models which, in turn, regress
one variable on all the other covariates and the out-
come [27].
The variables in the imputation model were limited to

the 9 variables retained after the univariate analysis. No
additional (auxiliary) variables were included because they
had either too many missing values or were insufficiently
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related to the missingness mechanism. A total of 30
imputed datasets were generated. The initial study
exploring the risk factors of SLD was performed using a
joint analysis of these 30 imputed datasets [22]. Further
imputations were performed subsequently for the sensi-
tivity analysis.

Sensitivity analysis method
Consider a variable (covariate or response) Y with miss-
ing values. We denote by Yi the value of Y for the indi-
vidual i. Let Ri be an observation indicator variable equal
to 1 if Yi is observed and 0 if otherwise. We assume a
logistic model relating the probability of observing Y to

Table 1 Multivariate logistic regression of factors associated with severe liver disease

Multivariate analysis

Factors Patients
(n = 4 343)

% SLD % missing
data

Complete Case (n = 2 130)
aOR* (95 % CI*)

Multiple Imputation
(n = 4 343) aOR* (95 % CI*)
M= 30 imputed datasets

Period of inclusion

2001-2003 2330 7.0

2004-2007 2013 9.5

Sex

Female 993 4.2 1.0 1.0

Male 3350 9.3 1.8 [1.1,3.0] 2.0 [1.4,2.9]

Age

≤ 40 years 2435 3.9 1.0 1.0

> 40 years 1908 13.6 2.2 [1.5,3.3] 2.3 [1.7,3.1]

Time between 1st HCV+ test and referral

< 1 year 1728 6.7

≥ 1 year 2163 8.7

Missing 452 11.5 10.4

Duration of HCV infection at referral†

< 18 years 1709 3.0 1.0 1.0

≥ 18 years 2002 12.5 3.1 [2.0,5.1] 2.6 [1.8,3.7]

Missing 632 8.2 14.6

History of excessive alcohol intake{

No 2015 4.5 1.0 1.0

Yes 1847 13.2 2.6 [1.8,3.7] 2.8 [2.2,3.7]

Missing 481 4.4 11.1

HbsAg status

Negative 3570 8.3 1.0

Positive 89 13.5 2.4 [1.0,5.9]

Missing 684 6.7 15.7

HIV serostatus

Negative 3342 8.2 1.0

Positive 294 14.0 1.8 [1.2,2.6]

Missing 707 5.7 16.3

HCV genotype 3

No 2083 7.2 1.0 1.0

Yes 1117 10.3 1.5 [1.1,2.0] 1.6 [1.3,2.1]

Missing 1143 7.8 26.3

*aOR, adjusted Odds Ratio; CI, confidence interval; SLD, severe liver disease (cirrhosis, hepatocellular carcinoma); HCV, hepatitis C virus; HBsAg, hepatitis B surface
antigen; HIV, human immunodeficiency virus.
† Time from suspected year of infection to year of referral to the reference centre. Suspected year of HCV infection is defined as year of the last HCV negative test
performed during the drug-use period or year of first drug injection.
{ >210 g/week for women and >280 g/week for men.
Complete case and multiple imputation analyses were applied to a population of HCV-RNA positive drug users newly referred in hepatology reference centres in
France, 2001–2007.

Héraud-Bousquet et al. BMC Medical Research Methodology 2012, 12:73 Page 3 of 11
http://www.biomedcentral.com/1471-2288/12/73



the underlying (but potentially unseen) value of Y itself,
adjusted for a vector X of covariates:

logitPr Ri ¼ 1ð Þ ¼ αþ βXi þ δYi: ð1Þ

Under this parametric form assumption, if δ= 0, given
the fully observed data, the mechanism causing the
missing data of Y does not depend on Y, so that the
missing data are MAR. On the contrary, if δ 6¼ 0,
the missingness mechanism depends on the potentially
missing Y, even taking into account the information in
the observed data. Thus the data are MNAR.
In practice, the above logistic regression cannot be

performed since, by definition, we do not observe Yi
when Ri=0. This implies that a value for δ must be
chosen, and its effect on inferences from the model of
interest explored. With the method we investigate, this
can be done using weights which are a simple function
of δ and the imputed data. We next give an intuitive ex-
planation of the approach.
Suppose M datasets are created by a MI method as-

suming MAR. For each dataset, we denote by θ̂m the es-
timate of the parameter of interest (e.g. a regression
coefficient). Multiple imputation assuming MAR results
in several point estimates which, under Rubin’s rules, are
simply averaged for final inference. Thus, the usual MI
estimate of θ is expressed by:

θ̂MAR ¼ 1
M

PM
m¼1

θ̂m: (see Appendix for its estimated

variance).
Carpenter’s approach works by replacing this simple

average by a weighted average, where estimates arising
from imputations that are more likely under MNAR are
upweighted relative to the others. Under the logistic model
for the missingness mechanism described in (1), Carpenter
et al. show the weights take a particularly simple form [20].
The model (1) hypothesises that, after adjusting for

other observed variables, the chance of observing Y per
unit change in Y has log-odds ratio δ. Then the weight,
noted ~wm δð Þfor imputation m, (m=1,. . .,M), is equal to

exp �δ
P
i2IY

Ym
i

" #
; , where Yi

m (i2 IY) is the imputed value

of Y for the individual i in the dataset m, and IY is the
set of individuals with Y unobserved. The exponential
form of the weights comes from the logistic link in equa-
tion (1).
Normalized weights calculated for each imputed data-

set are expressed by wm δð Þ ¼ ~wm δð ÞPM
k¼1

~wk δð Þ
.

The MNAR estimate of θ is defined by θ̂MNAR δð Þ ¼
PM
m¼1

wm δð Þ � θ̂m (see Appendix for its estimated variance).

Note that if data are MAR, then δ= 0, and all imputa-
tions are equally weighted as in Rubin’s original rules.
To gain an intuition for these weights, if δ is positive

the chance of observing Y is greater for more positive Y.
Thus in the data after imputation under MAR, imputa-
tions with small Y will be under-represented. The
weights correct this by up-weighting (relative to the
other imputed data sets) estimates from imputed data
sets where the sum of the imputed values of Y is small.
Below, we present MAR estimates for the HCV dataset

and explore their robustness to MNAR as δ moves away
from zero. We further propose practical guidelines for
selecting a δ value where possible (or at least a plausible
range of values for δ).

Framework for sensitivity analysis
Among variables retained in the multivariate analysis
(Table 1), we focused on the missingness mechanisms of 3
binary variables. We now discuss epidemiological hypo-
theses about these mechanisms for each variable in turn.

Alcohol consumption
Reporting alcohol consumption may be prone to a
social desirability effect, even when past consumption is
accounted for. We hypothesized that former heavy drinkers
were less likely to report their past alcohol consumption.

HIV infection
HIV serostatus could be assessed either by a previous
HIV test, where available, or by a test at first referral.
Since the prevalence of HCV-HIV co-infection in hepa-
tology reference centers is ~8 % and HIV testing is quite
systematic, the physician may consider that patients are
mainly HCV mono-infected when no positive HIV test
is available. We hypothesized that HIV testing is less
often reported when patients are HIV negative.

HCV genotype 3
HCV genotypes are tested by the referral laboratories of
the participating centers. Genotyping might depend on
the physicians’ attitudes, but probably not on the unob-
served values of the genotype. We nevertheless explored
the MNAR assumption.
Consequently, we focused the sensitivity analysis on

these 3 variables to assess the robustness of estimates
obtained after MI using Carpenter’s method [20]. The
sensitivity analysis was applied to each variable separ-
ately in turn.

Practical considerations for sensitivity analysis
Although it is recommended to impute at least 50 data-
sets [20], we chose to impute 1000 datasets using the
Stata ice program to illustrate the features of the method.
This is double the number used by Carpenter et al. [19]
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in a simulation study to test the method; although impu-
tations are computationally cheap, beyond 1000 the gain,
in terms of increased range of the imputation estimates

θ̂m, is small.
One way to select a value for δ is to formally elicit

plausible values from experts [28]. An alternative is to
explore a range of values consistent with hypotheses
concerning the missing data mechanism, such as those
outlined above.
We propose the following 4-step approach for choos-

ing an appropriate value for δ, and illustrate this using
the HCV genotype 3 variable, before applying it to the
other variables. Our focus is sensitivity analysis for the
parameter of interest i.e. the coefficient of genotype 3 in
the post MI multivariate logistic regression explaining
SLD (Table 1, rightmost column). Using previous nota-

tion, θ̂m is the MAR estimated logistic regression coeffi-
cient of genotype 3 in the imputed dataset m=1,. . .,M.

Procedure for choosing delta
Step 1: Logistic regression to explore the missingness
mechanism
Generate an indicator variable for the covariate in ques-
tion being missing, and use logistic regression to assess
association with the outcome and other covariates.
Illustrating with genotype 3, we generate a missing

indicator equal to 1 if genotype 3 is observed and 0
otherwise. Using imputed values, we then fit a multivari-
ate logistic regression model to explain the genotype 3
missing indicator; in this model we include the outcome
(SLD) and all the covariates included in the initial anal-
ysis model, genotype 3 excepted.
The results, shown in Table 2, suggest the missingness

mechanism for genotype 3 depends on age and disease

duration, but given these is independent of SLD, the out-
come in the analysis model.

Step 2: Graphical determination of a delta value
The theoretical justification of the method rests on im-
portance sampling [29]. When using importance sam-
pling, it is not recommended to put all the weight on one,
or very few values. The implication is that we should re-
strict the range of δ. Consistent with this, we recommend
the following criteria: values of δ should be such that the
maximum normalized weight is around 0.5, and at least 5
normalized weights are above 1/M (the weight when
δ= 0)[20]. Thus our MNAR estimate will draw on infor-
mation from at least 5 imputations, the minimum typically
advised in practice. It also reflects practically relevant, yet
appropriately local, departures from MAR.
In practice, we recommend presenting this informa-

tion in a graph such as Figure 1. The left panel shows a
histogram of the sum of the imputed values for genotype
3. Extreme values are 340 in imputed dataset n°921 and
480 in dataset n°771. The right panel indicates normal-
ized weights for each of the M=1000 datasets by δvalue.
The maximum normalized weight corresponds to the
dataset(s) in which the sum of imputed values of Y is
minimal (dataset n°921) when δ>0 or maximal (dataset
n°771) when δ<0. When δ=0, the normalized weight is
equal to 1/M because all the ~wm 0ð Þ are equal to 1.
Figure 2 shows the central part of the right panel

of Figure 1. Following our recommendation above, we
retain positive or negative δ values that correspond to a
maximum normalized weight of ~0.5. This gives a range
of [−0.2 to 0.15]. Even at the end of this range, more
than 5 normalized weights are> 0.001. The central part
of the hatched zone (defined subjectively, although an
objective criteria could be set down a-priori if desired)
corresponds to departures from MAR for which the
weights are still approximately equal, so that MAR and
MNAR inferences are essentially the same.

Step 3: Choice of sign of delta
Here, we choose δ to be either the upper or lower end
of the range identified in step 2.
For HCV genotype, equation (1) shows the relation

between the sign of δ and the assumed missingness
mechanism: for positive δ, the adjusted odds for observ-
ing genotype increases if a person’s HCV is of genotype
3; for negative δ the converse. In this instance, consistent
with the results from step 1 (Table 2), we selected
δ= 0.15. This means that the adjusted odds of missing
data for genotype 3 is 1.2 (exp(0.15)) times greater for
individuals infected by a genotype 3 strain than for those
infected by other genotypes. For this variable, experience
does not strongly suggest a positive or negative δ, and
results for both are presented below.

Table 2 Multivariate regression to explain the missing
indicator of genotype 3 using covariates

Genotype 3 missing
indicator

Regression
coefficients

SE* P*

Severe liver disease † −0.05 0.13 0.72

Age 0.16 0.09 0.06

Sex 0.04 0.08 0.63

Disease duration { 0.19 0.08 0.04

Delay of referral 4 0.05 0.08 0.53

Alcohol consumption 5 −0.005 0.07 0.94

HIV serostatus 0.02 0.14 0.90

HbsAg status −0.14 0.23 0.52

* P, pvalue; SE, standard error.
† Cirrhosis or hepatocellular carcinoma.
{ Time from suspected year of infection to year of referral to the reference
centre. Suspected year of HCV infection is defined as year of the last
HCV negative test performed during the drug-use period or year of first
drug injection.
4 Time between testing and first referral.
5 >210 g/week for women and >280 g/week for men.
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Step 4: Graphical diagnostic
The re-weighting method is for local sensitivity analysis,
because the underlying theory requires the probability
distribution of the estimator of the parameter of interest

under MAR and MNAR to share the same support (al-
beit they have different means). This will not generally
hold for non-local sensitivity analysis. The ‘range’ of
such local sensitivity analyses will depend on the

Imputed
data set
n°921

Imputed
data set
n°771

w
m

Imputed
data set
 n°771

Imputed
data set
n°921
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Figure 1 Graphical determination of a delta value for the variable genotype 3. Left panel: histogram of the sum of genotype 3 imputed
values for each data set and for M= 1000 bases ; extreme values of this sum are 340 in imputed dataset n°921 and 480 in imputed dataset n°771.
Right panel: normalized weights (wm) for each imputed dataset according to δ.

w
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Figure 2 Normalized weights (wm) for each imputed dataset according to δ for the variable genotype 3. The hatched zone delineates
values of δcorresponding to maximum normalized weights equal to 0.5.
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between imputation variance of the estimator, which is
indirectly related to the proportion of missing observa-
tions. To assess whether, at the chosen value of δ, this
holds we propose (i) a plot of normalized weight wm

against θ̂m , m=1,. . .,M and (ii) a plot of the estimate
under MNAR as the number of imputations increases.
In both plots, if the method is to give reliable results,
the MNAR estimator should be supported within the

distribution of θ̂m obtained by MI under MAR. If all the
weight is accruing to estimates at the end of the range of

θ̂m, this is consistent with the MNAR estimator having a
distribution lying outside the range of MAR estimates, i.
e. a ‘non-local’ departure from MAR. Under such a non-
local MNAR mechanism the estimate of θ is most likely
beyond the smallest (largest) of the MAR imputation
estimates.
For the HCV genotype variable the results are shown

in Figure 3. The left-hand panel plots the normalized

weights versus θ̂m for each imputed data, using δ=0.15

(recall θ̂m is the regression coefficient estimate obtained
under the MAR assumption for each imputed dataset).
The right panel plots the MNAR estimate calculated
using n imputations against the number of imputed
datasets noted n (n = 10,. . .,M) and

�

defined by:
In this case we see that (i) the MNAR estimate appears

to settle down as the number of imputations increases

and (ii) the MNAR distribution of θ̂ seems comfortably
supported within the MAR distribution (indicated by the
‘rug’ on the right side of the plot).

Results
The complete-case and MI (assuming MAR) analysis are
shown in Table 3. Here we also give the results of sensi-
tivity analysis for the following three variables: HCV
genotype 3, HIV serostatus and history of excessive alco-
hol consumption.
For HCV genotype 3, we derived the value of the

sensitivity parameter δ above, to illustrate our four step
approach. We applied the same approach to HIV seros-
tatus and alcohol consumption.
For alcohol consumption, step 1 showed the probabil-

ity of observing this depends on the outcome (SLD sta-
tus). Step 2 identified the range for δ of [−0.4;0.4] (left
panel of Figure 4). Consistent with step 1 and experi-
ence, the odds of observing alcohol intake is higher if it
is not excessive, we chose δ= −0.4. The interpretation

^
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Figure 3 Analysis of the variable genotype 3 with δ=0.15. Left panel: normalized weights (wm) versus θ̂m(estimated logistic regression

coefficient of genotype 3 in the imputed dataset m), for each imputed data set. The dash line represents θ̂MAR (mean of θ̂m over the 1000

imputed datasets). Right panel: running estimate, calculated as the moving average of the θ̂MNAR according to the number of imputed datasets.

On the right axis is plotted the ‘rug’ of the 1000 estimates θ̂m for each imputed dataset. The dash line represents θ̂MAR (mean of θ̂m over the
1000 imputed datasets).

θ̂MNAR δ; nð Þ ¼ Pn
m¼1

wm δð Þ � θ̂m

Pn
m¼1

wm δð Þ
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is that, after adjustment for other variables, the odds of
observing alcohol history is reduced among those with a
history of excessive intake by 0.7 = exp(−0.4).
For HIV serostatus, step 1 showed the probability of

observing this depends on the outcome (SLD status).
Step 2 identified a range of [−0.4;0.7] (right panel of
Figure 4). Taking the results from step 1, and given that
in similar contexts the chance of observing HIV infection
is higher for HIV positive individuals, we chose δ = 0.7.
The interpretation is that, after adjustment for other

variables, the odds of observing HIV serostatus is
2.0 = exp(0.7) times higher if HIV serostatus is positive.
For these three variables, the diagnostic in step 4 was ac-

ceptable. Adjusted odds ratios (OR) are shown in Table 3.
Note the same multivariate model including sex, age, dur-
ation of HCV infection, alcohol consumption, genotype 3,
and HIV serostatus, was applied for each analysis. The sensi-
tivity analysis was applied to each of the 3 variables in turn.
Two criteria are useful to interpret the adjusted odds

ratios in the 3 analyses:

Table 3 Multivariate analysis for the complete case, multiple imputation and sensitivity analysis, with M=1000
imputed data sets

Complete Case (CC) Multiple Imputation (MI) Sensitivity Analysis (SA)

Missing
values %

aOR 95 % CI SE CV
(%)

aOR 95 % CI SE CV
(%)

VRMI

(MI vs CC)
(%)

δ aOR*95 % CI SE CV
(%)

VRSA
(SA vs MI)
(%)

Alcohol
consumption

11.1 2.32 0.39 17 2.82 0.37 13 21.86 -0.40 2.86 0.37 13 1.29

[1.66,3.23] [2.18,3.66] [2.21,3.70]

Genotype3 26.3 1.51 0.24 16 1.66 0.23 14 9.70 0.15 1.60 0.21 13 3.56

[1.10,2.07] [1.27,2.16] [1.23,2.06]

HIV 16.3 1.56 0.41 27 1.80 0.34 19 15.52 0.70 1.91 0.36 19 6.12

serostatus [0.92,2.62] [1.24,2.61] [1.32,2.76]

Note. aOR, odds ratio adjusted on sex, age, duration of HCV infection, alcohol consumption and HIV serostatus; aOR*, odds ratio obtained from the MI adjusted
odds ratio estimates.
CI, confidence interval; CV, coefficient of variation of the aOR; VRMI , variation rate of the aOR for CC and MI analyses; VRSA , variation rate of the aOR for MI and
senstitivity analyses.
Covariates included in the model were: sex, age, duration of HCV infection, alcohol consumption, genotype 3 and HIV serostatus. Sensitivity analysis: the
weighting process was applied to alcohol consumption, genotype 3 and HIV serostatus indepedently.
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Figure 4 Normalized weights (wm) for each imputed dataset according to δ for the variables alcohol consumption and HIV serostatus.
Left panel: the interval for δ is restrained to [−0.4;0.4]. Right panel: the interval for δ is [−0.4;0.7].
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1 The coefficient of variation (CV) of the OR gives its
normalized measure of dispersion. For the 3
variables, it is clearly reduced after MI and remains
stable after reweighting.

2 The variation rate (VR) assesses the relative change
between the OR̂MNAR and the OR̂MAR; and is defined
by VRSA ¼ 100� OR̂MNAR � OR̂MAR

� �
=OR̂MAR.

Similarly, we define a variation rate named VRMI

that displays the relative variation of the OR
obtained after CC and MI analyses. VRMI varies
from 9.7 % for genotype 3 to 15.5 % for HIV and
22 % for alcohol. VRSA is given for the value of δ
selected for each variable. Its value is relatively small
for alcohol (1.3 %) and genotype 3 (3.5 %) but larger
for HIV at 6.6 %. The VRSA is relatively stable as δ
varies in [−1;1] for alcohol and genotype 3, but
continues to increase for HIV (Figure 5).

Discussion
With missing data, all analyses and corresponding infer-
ences rest on inherently untestable assumptions about
the missingness mechanism. Therefore, sensitivity ana-
lyses, where we explore the robustness of inferences as
assumptions change, are important.
The method presented here enables rapid local sensi-

tivity analysis to inferences obtained via MI under MAR.
It works by upweighting imputations which are more
plausible under MNAR; under a logistic model for the
missingness mechanism, these weights take a particularly
simple form.

While the sensitivity analysis is local, it nevertheless
provides important information on the duration and
impact of departures from MAR on inference, while
avoiding the computational complexity of full joint
modeling. Its accuracy for local sensitivity analysis has
been confirmed elsewhere[20,30].
Here, we have developed and illustrated the practical

utility of the approach, proposing a 4-step process for
choosing a value for the sensitivity parameter. We now
discuss the results. Note that all three variables are
binary, so the scale for delta is the same.
For genotype 3, step 1 of our process shows that

among individual with complete records on variables
apart from genotype 3, the probability of observing this
variable does not appear to be related to the outcome
in the model of interest (severe liver disease) (Table 2).
The sensitivity analysis allows this probability addition-
ally to depend on the underlying value of genotype 3
(present or absent). Table 3 and Figure 5 show inference
is insensitive to this, indeed for plausible delta the esti-
mate moves back towards the complete case estimate,
consistent with what would be expected if the additional
MNAR dependence does not materially change the lack
of dependence of the chance of observing genotype 3 on
severe liver disease.
Regarding alcohol consumption, our hypothesis was

that patients will be less willing to report past excessive
alcohol consumption because of the associated social
stigma. However, the literature is not unanimous on this
[31-34]. Reporting alcohol consumption is strongly

1.00.50.0-5.0-0.1

-5
0

5

V
R

S
A
 (

%
)

HIV

Alcohol

Genotype 3

HIV

Alcohol

Genotype 3

Figure 5 Variation rate according to δ after sensitivity analysis (VRSA) for genotype 3, alcohol consumption and HIV serostatus. The
black points correspond to the VRSA calculated for the value of δ retained for each variable (genotype 3 δ= 0.15, alcohol δ=−0.4 and HIV δ= 0.7).
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related to the sociodemographic characteristics [35] that
can be included in the imputation model in order to
reduce non-response bias. We only included age and sex
in the imputation model because other sociodemo-
graphic variables were not related to the missingness
mechanism. Our step 1 showed that the probability of
observing alcohol does depend on the outcome, after
taking into account other covariates. This is consistent
with the relatively large change in the alcohol covariate
under MAR (Table 3). The sensitivity analysis allows this
probability additionally to depend on the alcohol value.
Table 3 and Figure 5 show inference is relatively insensi-
tive to this, which is consistent with what would be
expected if the additional MNAR dependence does not
materially change the dependence of the chance of
observing alcohol consumption on severe liver disease.
For HIV co-infection, hepatologists in reference cen-

ters tend to consider their patients as being HCV mono-
infected because HCV-HIV co-infected patients are
usually referred to infectious diseases departments in
France. Under the default assumption of mono-infection,
there would thus usually be less impetus to test for or
record HIV status. Thus we felt it was more likely to be
observed if it was present, i.e. serostatus was positive,
hence our positive value for δ. Step 1 showed that the
probability of observing HIV status does depend on out-
come, after taking into account other covariates. This is
consistent with the relatively large change in the coeffi-
cient under MAR. The sensitivity analysis allows this
probability additionally to depend on the HIV status.
Table 3 and Figure 5 show inference is sensitive to this,
suggesting that if the mechanism is MNAR with increased
chance of observing HIV status for those who are positive,
the association in the model of interest is stronger and
more significant than analysis under MAR would suggest.
In summary, for these data collected from a French

surveillance system for hepatitis C infection, CC analysis
is plausibly biased, as the data suggest dependence of
the chance of observing values on the outcome, even
given the covariates. Thus analysis under MAR, via MI,
is preferable. Our sensitivity analysis shows that for local
departures from MAR, inference for the genotype 3 and
alcohol consumption is little changed, while the effect
of HIV status is underestimated if, given the observed
data, the chance of observing HIV status is higher when
this is positive.
The approach we have described here can also be

applied to explore the situation when there is an inter-
action between, say, the response (disease status) and the
chance of a risk factor being observed. In this case we may
have two sensitivity parameters, one for each group (dis-
ease status), or possibly a single parameter representing the
difference between these. Since some evidence for this has
been found [36] this is a natural area for future work.

Conclusion
This sensitivity analysis provides a fast, albeit approxi-
mate, way to assess the robustness of inferences to the
MAR assumption, avoiding the need for further imput-
ation and model fitting to the imputed datasets. In this
paper we have proposed a 4-step process for using
this method in practice. We have demonstrated the
application of this method and the interpretation of the
results. Faced with non-trivial proportions of missing
data, we encourage readers to apply the method in their
own analyses.

Appendix
Let M the number of imputed datasets, θ̂m the estimated
parameter of interest in the imputed dataset m,
m=1,. . .,M, and σ̂m2 its associated variance estimate.

The estimated MAR variance of θ̂MAR is:

V̂ MAR θ̂MAR

� �
¼ V̂ W θ̂MAR

� �
þ 1þ 1

M

� � � V̂ B θ̂MAR

� �
,

where V̂ W θ̂MAR

� �
¼ 1

M

PM
m¼1

σ̂m2 and V̂ B θ̂MAR

� �
¼

1
M�1

PM
m¼1

θ̂m � θ̂MAR

� �2
.

The estimated MNAR variance of θ̂MNAR for a chosen

δvalue is: V̂ MNAR θ̂MNAR δð Þ
� �

� V̂ W θ̂MNAR δð Þ
� �

þ

1þ 1
M

� � � V̂ B θ̂MNAR δð Þ
� �

, where V̂ W θ̂MNAR δð Þ
� �

¼
PM
m¼1

wm δð Þ � σ̂m2 and V̂ B θ̂MNAR δð Þ
� �

¼ PM
m¼1

wm δð Þ �

θ̂m � θ̂MNAR δð Þ
� �2

.
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