A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/80893

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

A Study of Quartic K3 Surfaces with a $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ Action

By
Florian Bouyer

Thesis
Submitted to the University of Warwick
for the degree of
Doctor of Philosophy

Warwick Mathematical Institute

1st April 2016

Contents

Page
Acknowledgements iii
Declaration iv
Abstract v
1 Introduction 1
2 Background 3
2.1 Lattices 3
2.2 Basic Definitions 6
2.3 The Family \mathcal{X}. 9
3 The Galois and Monodromy Group 15
3.1 The Galois Group 15
3.2 Monodromy Group 23
3.3 K3 surfaces with many \mathbb{Q}-conics 34
4 Picard Lattices of Subfamilies 43
4.1 The Families and Lines 44
4.2 The Picard Group 48
5 Examples of CM Curves of Genus two Defined over the Reflex Field 60
5.1 Invariants 61
5.2 Reduction 62
5.3 Results 74
Appendix A 91
A. 1 List of Singular Points 91
A. 2 List of Discriminants 91
A. 3 List of Planes 93
A. 4 The Equations of the Lines 96
A.5 List of Gram Matrices . 98

Acknowledgements

This thesis would have not been possible without the help of many people, more than I can thank here.

For helping me start my journey, and introducing to me the wonderful area of arithmetic geometry, I would like to thank my supervisor Damiano Testa. I also thank Marco Streng, who not only showed me the world of mathematical research but with whom I had a very fruitful collaboration.

My thanks also go to Samir Siksek and Ronald van Luijk for agreeing to read this thesis and be my examiners.

I am grateful to the Engineering and Physical Sciences Research Council for funding my studies. For putting up with (and answering all) my queries, I would like to thank the whole administrative team of the Warwick Mathematics Institute, in particular Carol Fisher. I extend my thanks to the whole number theory group at Warwick, who supported me for four years, gave me access to all computational resources I needed for this thesis and provided me with so many opportunities to teach.

This thesis (and my well-being) benefited from the many useful discussions and interesting comments that I received from my mathematical friends. In particular I want to thank Samuele, Alejandro, Mark, Chris B., Heline, Céline, Dave, Adam, Ben, Daniel, Alex, and Ian.

I want to thank my housemates, Pedro, Matthew, Gareth and Chris W., who provided mathematical discussions at all hours of the day and night, and Amy, Maike and Kathryn, who distracted us when we started talking too much about mathematics (as if it were possible). Jacob has my thanks for making sure I never got too stressed.

Finally, I want to thank my family who nurtured my love for maths my whole life and supported me throughout these last four years. I especially want to thank Emmanuel, my dad, who (as a non-mathematician) proofread this thesis many times and asked so many questions that lead to many clarifications.

Declaration

Chapter 5 is a joint work with Marco Streng (Leiden) and an extended version of it has appeared as a paper [BS15]. Except for that chapter, I declare that, to the best of my knowledge, the material contained in this thesis is my own original work except where otherwise indicated, stated or where it is common knowledge.

This thesis is submitted to the University of Warwick in support of my application for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree.

Abstract

The main focus of this thesis is to study the equation

$$
A\left(x^{4}+y^{4}+z^{4}+w^{4}\right)+B x y z w+C\left(x^{2} y^{2}+z^{2} w^{2}\right)+D\left(x^{2} z^{2}+y^{2} w^{2}\right)+E\left(x^{2} w^{2}+y^{2} z^{2}\right)=0
$$

To do so, we view this equation as a family of quartic K 3 surfaces in $\mathbb{P}_{[x, y, z, w]}^{3}$, parametrised by points $[A, B, C, D, E] \in \mathbb{P}^{4}$. We pursue two directions. First we look at 320 conics that such a K3 surface contains. In particular, we explore the field of definition of these 320 conics and the Monodromy group linked to these conics. In the other direction we explore the quartic K3 surfaces which contain lines. We list all subfamilies of K3 surfaces for which a very general member contains $8,16,24,32$ or 48 lines.

We combine the two directions, by using the lines and conics found, to explore the Picard group of the various families found. In particular, not only do we work out the Picard rank of a very general member of a family, but we also decompose the Picard lattice into known lattices.

This thesis has a secondary focus on hyperelliptic curves of genus two with complex multiplication (CM). At the end of the thesis, we design an algorithm to find CM curves of genus two which are defined over quadratic extensions of the rationals. To do so we also develop an algorithm which makes the coefficients of a curve smaller.

Chapter 1

Introduction

One of the motivating questions in number theory is trying to solve Diophantine equations, that is, to find integral or rational solutions to a system of integral polynomials. Solving a Diophantine equation is equivalent to finding the rational points of its associated variety. As such, much work has been done to understand algebraic curves of low genus such as elliptic curves. While many problems are still open, mathematicians have also began to look in detail at curves of higher genus or at varieties of higher dimension. In this thesis we will do both, first looking at K3 surfaces then studying genus two hyperelliptic curves.

Elliptic curves and K3 surfaces have trivial canonical divisors, hence K3 surfaces can be thought of as two-dimensional analogues of elliptic curves. While our understanding of K3 surfaces has grown, answering questions on the arithmetic of K3 surfaces is still difficult. So instead of looking at all K3 surfaces, we impose some restrictions on the ones we investigate. For example, in this thesis we look at a family of quartic K 3 surfaces that admit a $(\mathbb{Z} / 2 \mathbb{Z})^{4}$-action. More specifically, consider the $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ subgroup of $\operatorname{Aut}\left(\mathbb{P}_{\overline{\mathbb{Q}}}^{3}\right)$ generated by

$$
[x, y, z, w] \mapsto\left\{\begin{array}{l}
{[y, x, w, z]} \\
{[z, w, x, y]} \\
{[x, y,-z,-w]} \\
{[x,-y, z,-w]}
\end{array} .\right.
$$

We consider the quartic $K 3$ surfaces in $\mathbb{P}_{\overline{\mathbb{Q}}}^{3}$ which are invariant under these transformations. We call such quartic surfaces invariant quartic, and the family of all invariant quartics is known to be parametrised by \mathbb{P}^{4}.

Eklund Ekl10] was motivated by the question "which invariant quartic contains a conic?". He proved that a very general invariant quartic contains at least 320 conics. On the other hand, Barth and Nieto [BN94] studied the invariant quartics which contain a line. They found the locus of invariant quartics containing lines to be a
quintic threefold $N_{5} \subset \mathbb{P}^{4}$, plus the tangent cones of the 10 singular points of N_{5}.
The first motivating question of this thesis is: if an invariant quartic is defined over a number field, what is the smallest field extension over which the 320 conics are defined? This leads us to look at the Monodromy group of the 320 conics of a very general invariant quartic surface. We conclude that the moduli space of pairs (X, C), where X is an invariant quartic K 3 surface and C one of the mentioned 320 conic on X, has 10 irreducible components. We contrast this with the following conjecture: the moduli space of pairs (X, C), where X is a primitive K 3 surface of genus g and C an irreducible nodal curve on X, is irreducible. This conjecture is proven by Ciliberto and Dedieu for $3 \leq g \leq 11, g \neq 10$ in [CD12].

The second motivating question is: if X is an invariant quartic surface containing a line, what can we say about its Picard group? As Eklund studies the quartic surfaces parametrised by N_{5} in Ekl10], we look at the surfaces parametrised by the tangent cones. Using this, we find invariant quartic surfaces containing $8,16,24$ or 32 lines, which we group in various families. For each family we calculate the Picard group of a very general member, decompose it into known lattices and show that it is generated by the lines and conics lying on the surface. We notice that for a family of dimension r, the Picard rank of a very general member is $20-r$. This fits nicely with the fact that certain moduli spaces of K3 surfaces whose Picard group contains a fixed lattice M has dimension $20-\operatorname{rank}(M)$.

We also turn our attention to curves of higher genus, namely we look at genus two hyperelliptic curves with complex multiplication (CM). A curve C / k of genus g is said to have complex multiplication if the endomorphism ring of its Jacobian, over \bar{k}, contains an order in a number field K of degree $2 g$. It is known that there exists exactly $13 j$-invariants giving elliptic curves over \mathbb{Q} with CM , see for example Cox13, Thm 7.30ii]. Analogously, Van Wamelen vW99a gives a list of 19 curves of genus two over \mathbb{Q} with CM by a maximal order. As this did not account for all quartic CMfields, we implement an algorithm to find those not defined over \mathbb{Q}. More precisely we extend his list to include genus two hyperelliptic curves with CM defined over certain real quadratic extensions of \mathbb{Q}. A recent paper by Kilicer and Streng [KS15] proves that our list is complete.

The layout of the thesis is as follows: Chapter 2 deals with background knowledge that is assumed in the rest of the thesis. In particular the last section covers the main aspect of the family of invariant quartic K3 surfaces. Chapter 3 and Chapter 4 deal with the two motivating questions respectively, while Chapter 5 explains the work on genus two hyperelliptic curves

Note. Many of the calculations done at various points throughout this thesis were done with the help of the computer algebra package Magma BCP97] and Sage [$\left.\mathbf{S}^{+} 13\right]$. We will explicitly mention where other packages were used.

Chapter 2

Background

In this chapter we review some material and notation that will be used throughout the thesis. The first section gives an overview of the theory of lattices that we need. In particular, we look at how given a lattice we can decompose it into root lattices and the hyperbolic lattice. For that purpose Table 2.1 gives the invariants of these lattices. The second section gives a quick recap of some basic algebraic geometry notions that we need. We provide some references where more details can be found.

The final section is the most important one, as we introduce the family of quartic K3 surfaces that is the main study of this thesis. We also recap what we already know about this family, with many of the theorems being used explicitly and implicitly throughout the thesis.

2.1 Lattices

In this thesis a lattice, L, is a free abelian group of finite rank equipped with a symmetric, non-degenerate, bilinear form $\langle\rangle:, L \times L \rightarrow \mathbb{Z}$. We say it has signature $\left(b_{+}, b_{-}\right)$ if for some basis $\left\{e_{i}\right\}$ of $L \otimes_{\mathbb{Z}} \mathbb{R}$ we have

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1 & i=j, i \in\left\{1, \ldots, b_{+}\right\} \\ -1 & i=j, i \in\left\{b_{+}+1, \ldots, b_{+}+b_{-}\right\} \\ 0 & i \neq j\end{cases}
$$

A lattice is positive definite if it has signature $\left(b_{+}, 0\right)$, negative definite if it has signature $\left(0, b_{-}\right)$, and indefinite otherwise. A lattice, L, is even if $\langle x, x\rangle \in 2 \mathbb{Z}$ for all $x \in L$. Let $\left\{e_{i}\right\}$ be a basis for L, then a Gram matrix of L (with respect to $\left\{e_{i}\right\}$) is the matrix $\left(\left\langle e_{i}, e_{j}\right\rangle\right)_{i, j}$. The discriminant of L, denoted $\operatorname{Disc}(L)$, is the determinant of a Gram matrix, which is invariant under change of basis. A lattice is unimodular if it has discriminant ± 1.

Example. Consider the following Dynkin diagrams:

Each diagram defines a (root) lattice, with basis $\left\{e_{i}\right\}$ and bilinear form

$$
\left\langle e_{i}, e_{j}\right\rangle=\left\{\begin{array}{ll}
2 & i=j \\
-1 & \bigcirc-\quad e_{i} \quad e_{j} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Another example of a lattice is the hyperbolic plane lattice, denoted U, which is the unique (up to isomorphism) rank 2 even indefinite unimodular lattice. For some basis, its Gram matrix is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Given a lattice L with basis $\left\{e_{i}\right\}$ and $m \in \mathbb{Z}$, we denote by $L\langle m\rangle$ the lattice with basis $\left\{e_{i}\right\}$ and bilinear form $\left\langle e_{i}, e_{j}\right\rangle_{L\langle m\rangle}=m\left\langle e_{i}, e_{j}\right\rangle_{L}$. By abuse of notation, we denote the rank one lattice with bilinear form $\left\langle e_{1}, e_{1}\right\rangle=m$ by $\langle m\rangle$. If L_{1} and L_{2} are two lattices with basis $\left\{e_{i}\right\},\left\{f_{i}\right\}$ respectively, we denote by $L_{1} \oplus L_{2}$ the lattice with basis $\left\{e_{i}\right\} \sqcup\left\{f_{i}\right\}$ and bilinear form given by $\left\langle e_{i}, f_{j}\right\rangle=0$. We will say that a lattice L decomposes into L_{1}, \ldots, L_{n} if $L \cong L_{1} \oplus \cdots \oplus L_{n}$.

We say a lattice L_{1} is a sublattice of a lattice L_{2} if it is a subset of L_{2} and if the bilinear form of L_{2} restricted on L_{1} agrees with the bilinear form of L_{1}. A sublattice is said to be primitive if L_{2} / L_{1} is torsion free. If L_{1} is a full-rank sublattice of L_{2}, i.e. $\operatorname{rank}\left(L_{1}\right)=\operatorname{rank}\left(L_{2}\right)$, then we call L_{2} an overlattice of L_{1}. Note that in such case $\operatorname{Disc}\left(L_{1}\right) / \operatorname{Disc}\left(L_{2}\right)=\left[L_{2}: L_{1}\right]^{2}$.

In Chapter 4 we try to find a decomposition of lattices into $A_{n}\langle m\rangle, D_{n}\langle m\rangle, E_{8}\langle m\rangle$ and $U\langle m\rangle$, to do so we will need some extra invariants. We may extend the bilinear form \langle,$\rangle on L \mathbb{Q}$-linearly to $L \otimes \mathbb{Q}$ and define the dual lattice (which is often not a lattice with respect to our definition):

$$
L^{*}:=\operatorname{Hom}(L, \mathbb{Z}) \cong\{x \in L \otimes \mathbb{Q}:\langle x, y\rangle \in \mathbb{Z} \forall y \in L\} .
$$

Definition 2.1.1. The discriminant group of a lattice L is the finite abelian group $A_{L}:=L^{*} / L$. We denote by $\ell\left(A_{L}\right)$ the minimal number of generators of A_{L}.

The discriminant group comes with a bilinear form, $b_{L}: A_{L} \times A_{L} \rightarrow \mathbb{Q} / \mathbb{Z}$, defined by $b_{L}(x+L, y+L) \mapsto\langle x, y\rangle_{L^{*}} \bmod \mathbb{Z}$.

For even lattices, we define the discriminant form, $q_{L}: A_{L} \rightarrow \mathbb{Q} / 2 \mathbb{Z}$, by $x+L \mapsto$ $\langle x, x\rangle_{L^{*}} \bmod 2 \mathbb{Z}$.

The following theorem of Nikulin will help identify the lattices we will find:
Theorem 2.1.2 (Nikulin [Nik80, Cor. 1.13.3]). If a lattice L is even, indefinite with $\operatorname{rank}(L)>\ell\left(A_{L}\right)+2$, then L is determined up to isometry by its rank, signature and discriminant form.

With that theorem in mind, we write down in Table 2.1 a summary of the rank, signature and discriminant form for the lattices $U, E_{8}, A_{n}\langle m\rangle, D_{n}\langle m\rangle$ and $\langle 2 m\rangle$.

	Rank	Signature	Discriminant	A_{L}	q_{L}
U	2	$(1,1)$	1	$\{\mathrm{id}\}$	$\{0\}$
E_{8}	8	$(8,0)$	1	$\{\mathrm{id}\}$	$\{0\}$
$A_{n}\langle m\rangle$	n	$\begin{cases}(n, 0) & m>0 \\ (0, n) & m<0\end{cases}$	$(n+1) \cdot m^{n}$	$C_{(n+1) m} \times C_{m}^{n-1}$	$\left\{\frac{n}{(n+1) m}, \frac{2}{m}, \frac{n(n-1)}{m}\right\}$
$D_{2 n}\langle m\rangle$	$2 n$	$\begin{cases}(2 n, 0) & m>0 \\ (0,2 n) & m<0\end{cases}$	$4 \cdot m^{2 n}$	$C_{2 m}^{2} \times C_{m}^{2 n-2}$	$\left\{\frac{2}{2 m}, \frac{n}{2 m}, \frac{2}{m}\right\}$
$D_{2 n+1}\langle m\rangle$	$2 n+1$	$\begin{cases}(2 n+1,0) & m>0 \\ (0,2 n+1) & m<0\end{cases}$	$4 \cdot m^{2 n+1}$	$C_{4 m} \times C_{m}^{2 n}$	$\left\{\frac{2 n+1}{4 m}, \frac{2}{m}, \frac{2 n}{m}\right\}$
$\langle 2 m\rangle$	1	$\begin{cases}(1,0) & m>0 \\ (0,1) & m<0\end{cases}$	$2 m$	$C_{2 m}$	$\left\{\frac{1}{2 m}\right\}$

Table 2.1: Invariant of Lattices

The row q_{L} lists the values of $q_{L}\left(x_{i}\right)$ where x_{i} are chosen generators of A_{L}, i.e., $A_{L}=$ $\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{\ell(A)}\right\rangle$. Therefore it only encodes partial information of the discriminant form and not the whole of it, but it encodes enough to rule out (in most cases) whether a summand occurs. As U and E_{8} have trivial discriminant group, we use following theorem of Nikulin to identify copies of U and E_{8} sitting inside a given lattice.

Theorem 2.1.3 (Nikulin Nik80, Cor 1.13.15]). Let L be an even lattice of signature $\left(b_{+}, b_{-}\right)$.

- If $b_{+} \geq 1, b_{-} \geq 1$ and $b_{+}+b_{-} \geq 3+\ell\left(A_{L}\right)$ then $L \cong U \oplus T$ for some T.
- If $b_{+} \geq 1, b_{-} \geq 8$ and $b_{+}+b_{-} \geq 9+\ell\left(A_{L}\right)$ then $L \cong E_{8}\langle-1\rangle \oplus T$ for some T.

We note that we can not always have a decomposition of lattices into $A_{n}\langle m\rangle, D_{n}\langle m\rangle, E_{8}\langle m\rangle$ and $U\langle m\rangle$. When this happens, we express our lattices as full rank sublattices of a lattice composed of $A_{n}\langle m\rangle, D_{n}\langle m\rangle, E_{8}\langle m\rangle$ and $U\langle m\rangle$. For this we will use:

Theorem 2.1.4. Nik80, Prop 1.4.1] Let L be an even lattice. Then there is a natural bijection between isotropic subgroups G of A_{L} (subgroups on which the discriminant form q_{L} satisfies $q_{L}(g)=0$ for all $g \in G$) and overlattices L_{G} of L.

Furthermore, the discriminant form $q_{L_{G}}$ is given by the discriminant form q_{L} restricted to G^{\perp} / G, where orthogonality is with respect to b_{L}.

2.2 Basic Definitions

As this thesis deals with properties of general members of families, we start by reviewing some standard definitions. Let K be a field and X be a variety in \mathbb{P}_{K}^{n}.

Definition 2.2.1. A general point of X is a point $p \in X$ outside an (implied) Zariski closed proper subset of X.

Example. Let $X=\mathbb{P}_{\mathbb{Q}}^{1}$, then for a general point $p=[s, t] \in X$, we have that $t \neq 0$. (The implied Zariski closed proper subset being $\{t=0\}$)

Definition 2.2.2. A very general point of X is a point $p \in X$ outside a countable union of Zariski closed proper subsets of X.

Example. Let $X=\mathbb{P}_{\mathbb{Q}}^{1}$, then for a very general point $p=[s, t] \in X$, we have that s / t is not a power of 2 . This can be seen as s / t is a power of 2 if and only if there exists $d \in \mathbb{Z}$ such that $s-2^{d} t=0$. So p outside the countable union $\cup_{d \in \mathbb{Z}}\left\{s-2^{d} t=0\right\}$ is very general.

General and very general points have links with thin sets, which we review here. For the moment, suppose that K has characteristic 0 .

Definition 2.2.3. A subset $\Omega \subseteq \mathbb{P}_{K}^{n}$ is said to be thin if there exists a variety X over K and a morphism $\pi: X \rightarrow \mathbb{P}_{K}^{n}$ such that

1. $\Omega \subset \pi(X(K))$,
2. The fibre of π over the generic point is finite, and π has no rational sections over K.

We differentiate between two types of thin sets.
Type $1 \quad$ A thin set $\Omega \subseteq \mathbb{P}_{K}^{n}$ is said to be of type 1 if there exists a homogenous polynomial $F\left(T_{1}, \ldots, T_{n}\right) \in K[T]$ such that $F(t)=0$ for all $t \in \Omega$. That is, Ω is a proper Zariski closed subset of \mathbb{P}^{n}.

Type 2 A thin set $\Omega \subseteq \mathbb{P}_{K}^{n}$ is said to be of type 2 if it is obtained as follows. Let $F\left(X, T_{1}, \ldots, T_{n}\right) \in K(T)[X]$ be absolutely irreducible (i.e., irreducible over $\bar{K}(T)[X]$), of degree ≥ 2 with respect to X, and such that the coefficients with respect to X are homogenous in T of the same degree m
(i.e., $F(X, \lambda T)=\lambda^{m} F(X, T)$). Then Ω is the set of all $t \in \mathbb{P}_{K}^{n}$ such that t is not a pole of the coefficients of F and $F(X, t)$ has a root in K.

Proposition 2.2.4 ([Ser97] Prop 9.1]). Every thin subset of \mathbb{P}_{K}^{n} is contained in a finite union of thin sets of type 1 and 2 .

Examples.

- The set $\Omega_{1}=\{t: t=0\} \subseteq \mathbb{P}_{K}^{1}$ is a thin set of type 1 . Note that for $K=\mathbb{Q}$, a general point is outside this set.
- Consider the polynomial $S-T X^{2} \in K(S, T)[X]$. Then $\Omega_{2}=\left\{[s, t] \in \mathbb{P}_{K}^{1}\right.$: $s t$ is a square in $K, t \neq 0\}$ is a thin set of type 2 .
- Fix $c \in K$ and let $F_{c}=S-c T X^{2}$, then each distinct class in $K^{*} /\left(K^{2}\right)^{*}$ gives rise to a different thin set Ω_{c} (of type 2). Furthermore, a finite union $\cup_{c \in K^{*} /\left(K^{2}\right)^{*}} \Omega_{c}$ is a thin set.

Definition 2.2.5. A field K, of characteristic 0 , is called Hilbertian if for all $n \geq 1$, \mathbb{P}_{K}^{n} is not thin.

Remark. For K to be Hilbertian it is enough to show that \mathbb{P}_{K}^{1} is not thin (see [Ser97, Rmk 9.5.1]).

Examples.

- By the above example, if K is Hilbertian then $K^{*} /\left(K^{2}\right)^{*}$ is infinite, otherwise the finite union $\cup_{c \in K^{*} /\left(K^{2}\right)^{*}} \Omega_{c}=\mathbb{P}_{K}^{1}$ would be thin. In particular, local fields and algebraically closed fields are not Hilbertian.
- \mathbb{Q} is Hilbertian (Hilbert's irreducibility theorem, see [Ser97] Thm 9.6] for a proof).
- If K is Hilbertian, any finite extension of K is also Hilbertian. In particular, any number field is Hilbertian.

We now turn our attention to reviewing some algebraic geometry notions we will need. We revert back to letting K be an arbitrary field.

Definition. A K3 surface is a smooth surface X over K with irregularity $q=$ $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=0$ and trivial canonical sheaf $\omega_{X} \cong \mathcal{O}_{X}$.

Here a surface is a projective integral separated scheme of finite type and dimension 2 over K (see Har77).

Example. Smooth quartic surfaces in \mathbb{P}^{3} are K3 surfaces.
Definition 2.2.6. Let X be a smooth surface over K :

- A prime divisor on X is a curve Y on X,
- A (Weil) divisor $D=\sum n_{i} Y_{i}$ is a finite formal sum of prime divisors,
- Let $\operatorname{Div}(X)$ be the set of Weil divisors on X,
- Let f be a non-zero rational function on X, we define the divisor of f as $(f)=$ $\sum \nu_{Y_{i}}(f) Y_{i}$, where $\nu_{Y_{i}}(f)$ is the valuation of f in the discrete valuation ring associated to the generic point of Y.

We can define the intersection pairing (,) : $\operatorname{Div}(X) \times \operatorname{Div}(X) \rightarrow \mathbb{Z}$ which is a symmetric bilinear function on $\operatorname{Div}(X)$, refer to Har77, Sec V.1] for more details. There are three basic equivalence relations we can put on $\operatorname{Div}(X)$:

Linear Two divisors $C, D \in \operatorname{Div}(X)$ are linearly equivalent if there exists a rational function f such that $C=D+(f)$

Algebraic Two divisors $C, D \in \operatorname{Div}(X)$ are algebraically equivalent if there exists a curve T, two closed points $0,1 \in T$ and a divisor E in $X \times T$ such that $E_{0}-E_{1}=C-D$.

Numerical Two divisors $C, D \in \operatorname{Div}(X)$ are numerically equivalent if for all $E \in$ $\operatorname{Div}(X),(C, E)=(D, E)$.

We note that linear equivalence implies algebraic equivalence, which in turn implies numerical equivalence.

Definition 2.2.7. We define the Picard group of X to be $\operatorname{Pic}(X):=\operatorname{Div}(X) /$ linear equivalence.
Let $\operatorname{Pic}^{0}(X)$ be the set of divisor classes algebraically equivalent to zero. We define the Néron-Severi group of X to be $\operatorname{NS}(X):=\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)$.

Let $\operatorname{Pic}^{\tau}(X)$ be the set of divisor classes numerically equivalent to zero. We define $\operatorname{Num}(X):=\operatorname{Pic}(X) / \operatorname{Pic}^{\tau}(X)$.

Proposition 2.2.8. Let X be a K3 surface over K, then $\operatorname{Pic}(X) \cong \operatorname{NS}(X) \cong$ Num (X).

See, for example, VA15 Prop 1.8] for a proof.
Proposition 2.2.9. [LN59] The Néron-Severi group of X is a finitely generated abelian group.

Definition 2.2.10. The $\operatorname{rank} \rho:=\operatorname{rank}(\mathrm{NS}(X))$ is called the Picard number of X.
Remark. For a K3 surface X, we have that $\rho(X) \leq 22$ (see BPVdV84 Prop VIII.8.3] and BM77, Thm 5]). If X is defined over a field of characteristic 0 , then $\rho(X) \leq 20$.

A K3 surface X with $\rho(X)=20$ is called a singular K3 surface. A K3 surface X with $\rho(X)=22$ is called a supersingular K3 surface.

Proposition 2.2.11. Let X be a K3 surface. Then $\operatorname{Pic}(X)$ equipped with (,) : $\operatorname{Pic}(X) \times \operatorname{Pic}(X) \rightarrow \mathbb{Z}$ is an even lattice.

Proof. Since for a K3 surface $\operatorname{Pic}(X) \cong \operatorname{Num}(X)$ and by definition $\operatorname{Num}(X)$ is torsion free, we have that $\operatorname{Pic}(X)$ is a lattice. Now using Riemann-Roch for surfaces, if C is a non-singular curve of genus g, then $(C, C)=(C, C+K)=2 g-2$. Therefore, the Picard lattice is even.

2.3 The Family \mathcal{X}

The first half of this thesis will concentrate on the variety $\mathcal{X} \subset \mathbb{P}_{[x, y, z, w]}^{3} \times \mathbb{P}_{[A, B, C, D, E]}^{4}$ defined by the following equation over $\overline{\mathbb{Q}}$
$A\left(x^{4}+y^{4}+z^{4}+w^{4}\right)+B x y z w+C\left(x^{2} y^{2}+z^{2} w^{2}\right)+D\left(x^{2} z^{2}+y^{2} w^{2}\right)+E\left(x^{2} w^{2}+y^{2} z^{2}\right)=0$.

We view \mathcal{X} as a family of quartic surfaces over \mathbb{P}^{3} parametrised by points $[A, B, C, D, E]$ in \mathbb{P}^{4}.

Notation. We will use X_{p} and $[A, B, C, D, E]$ to denote the quartic surface parametrised by the point $p=[A, B, C, D, E] \in \mathbb{P}^{4}$.

Note. If X_{p} is a smooth quartic surface, then it is a K3 surface.
Consider the group Ω acting on $\mathbb{P}^{3} \times \mathbb{P}^{4}$ generated by the following five elements: the point $[x, y, z, w, A, B, C, D, E]$ is sent to

- $[x, y, z,-w, A,-B, C, D, E]$,
- $[x, y, w, z, A, B, C, E, D]$,
- $[x, z, y, w, A, B, D, C, E]$,
- $[x, y, i z, i w, A,-B, C,-D,-E]$,
- $[x-y, x+y, z-w, z+w, 2 A+C, 8(D-E), 12 A-2 C, B+2 D+2 E,-B+2 D+2 E]$.

Denote these five elements by $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}$ and ϕ_{5} respectively. The group Ω fixes \mathcal{X}. While it is a rather large group with order $2^{4} \cdot 6$!, we can pick out a normal subgroup Γ, which is generated by the following four elements

- $\gamma_{1}:=\phi_{3} \phi_{4}^{2} \phi_{3} \phi_{5}^{2}$,
- $\gamma_{2}:=\phi_{4}^{2} \phi_{3} \phi_{5}^{2} \phi_{3}$,
- $\gamma_{3}:=\phi_{4}^{2}$,
- $\gamma_{4}:=\phi_{3} \phi_{4}^{2} \phi_{3}$.

The group Γ consists of all elements of Ω which fix $\mathbb{P}_{[A, B, C, D, E]}^{4}$ in $\mathbb{P}^{3} \times \mathbb{P}^{4}$. In particular upon picking a point $p \in \mathbb{P}^{4}$ we have that Γ is a subgroup of $\operatorname{Aut}\left(X_{p}\right)$ (when projecting the elements of Γ onto the $\mathbb{P}_{[x, y, z, w]}^{3}$ component). Explicitly, when regarding Γ as acting on \mathbb{P}^{3}, we have that its generators are

$$
[x, y, z, w] \mapsto \begin{cases}{[y, x, w, z]} & \gamma_{1} \\ {[z, w, x, y]} & \gamma_{2} \\ {[x, y,-z,-w]} & \gamma_{3} \\ {[x,-y, z,-w]} & \gamma_{4}\end{cases}
$$

From this we know that $\Gamma \cong C_{2}^{4}$. We calculate that $\Omega / \Gamma \cong S_{6}$, but $\Omega \nsubseteq C_{2}^{4} \times S_{6}$ because in particular Ω has trivial centre. For each $\gamma \in \Gamma \backslash\{\mathrm{id}\}$ we make a note of the points of \mathbb{P}^{3} which are fixed by $\gamma\left(\right.$ restricted to $\left.\mathbb{P}^{3}\right)$. Each γ has two skew lines L, \bar{L} of fixed points which are given by its $(+1)$ and (-1) eigenspaces, respectively its $(+i)$ and $(-i)$ eigenspaces. The lines are given in Table 2.2 (along with the Segre planes which we explain after Proposition 2.3.5). Note that every pair of lines is also fixed by any $\gamma \in \Gamma$ (on top of containing the fixed points of a particular γ).

	L_{i}	$\overline{L_{i}}$	Segre plane
γ_{1}	$[s, s, t, t]$	$[s,-s, t,-t]$	$q_{+C}=p_{+0}=p_{-1}=0$
γ_{2}	$[s, t, s, t]$	$[s, t,-s,-t]$	$q_{+D}=p_{+0}=p_{-2}=0$
$\gamma_{1} \gamma_{2}$	$[s, t, t, s]$	$[s, t,-t,-s]$	$q_{+E}=p_{+0}=p_{-3}=0$
γ_{3}	$[s, t, 0,0]$	$[0,0, s, t]$	$A=q_{+C}=q_{-C}=0$
$\gamma_{1} \gamma_{3}$	$[s,-s, t, t]$	$[s, s, t,-t]$	$q_{-C}=p_{-0}=p_{+1}=0$
$\gamma_{2} \gamma_{3}$	$[s, t, i s, i t]$	$[s, t,-i s,-i t]$	$q_{-D}=p_{-1}=p_{+3}=0$
$\gamma_{1} \gamma_{2} \gamma_{3}$	$[s, t, i t, i s]$	$[s, t,-i t,-i s]$	$q_{-E}=p_{-1}=p_{+2}=0$
γ_{4}	$[s, 0, t, 0]$	$[0, s, 0, t]$	$A=q_{+D}=q_{-D}=0$
$\gamma_{1} \gamma_{4}$	$[s, i s, t, i t]$	$[s,-i s, t,-i t]$	$q_{-C}=p_{-2}=p_{+3}=0$
$\gamma_{2} \gamma_{4}$	$[s, t,-s, t]$	$[s, t, s,-t]$	$q_{+D}=p_{-0}=p_{+2}=0$
$\gamma_{1} \gamma_{2} \gamma_{4}$	$[s, t, i t,-i s]$	$[s, t,-i t, i s]$	$q_{-E}=p_{+1}=p_{-2}=0$
$\gamma_{3} \gamma_{4}$	$[s, 0,0, t]$	$[0, s, t, 0]$	$A=q_{+E}=q_{-E}=0$
$\gamma_{1} \gamma_{3} \gamma_{4}$	$[s,-i s, t, i t]$	$[s, i s, t,-i t]$	$q_{-C}=p_{+2}=p_{-3}=0$
$\gamma_{2} \gamma_{3} \gamma_{4}$	$[s, t,-i s, i t]$	$[s, t, i s,-i t]$	$q_{-D}=p_{+1}=p_{-3}=0$
$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$[s, t, t,-s]$	$[s, t,-t, s]$	$q_{+W}=p_{-0}=p_{+3}=0$

Table 2.2: List of Invariant Lines

Notation. We shall denote by \mathcal{L} the union of the 15 pairs of lines.
We now consider the cases when X_{p} is not a smooth surface using the following proposition taken from [Ekl10, Prop 2.1].

Proposition 2.3.1. Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$. The surface X_{p} is singular if and
only if
$\Delta \cdot A \cdot q_{+C} \cdot q_{-C} \cdot q_{+D} \cdot q_{-D} \cdot q_{+E} \cdot q_{-E} \cdot p_{+0} \cdot p_{+1} \cdot p_{+2} \cdot p_{+3} \cdot p_{-0} \cdot p_{-1} \cdot p_{-2} \cdot p_{-3}=0$,
where:

$$
\begin{equation*}
\Delta=16 A^{3}+A B^{2}-4 A\left(C^{2}+D^{2}+E^{2}\right)+4 C D E \tag{2.3.1}
\end{equation*}
$$

$$
\begin{array}{lll}
q_{+C}=2 A+C & q_{+D}=2 A+D & q_{+E}=2 A+E \\
q_{-C}=2 A-C & q_{-D}=2 A-D & q_{-E}=2 A-E \\
p_{+0}=4 A+B+2 C+2 D+2 E & & p_{-0}=4 A-B+2 C+2 D+2 E \\
p_{+1}=4 A+B+2 C-2 D-2 E & & p_{-1}=4 A-B+2 C-2 D-2 E \\
p_{+2}=4 A+B-2 C+2 D-2 E & & p_{-2}=4 A-B-2 C+2 D-2 E \\
p_{+3}=4 A+B-2 C-2 D+2 E & & p_{-3}=4 A-B-2 C-2 D+2 E .
\end{array}
$$

Definition 2.3.2. The surface $S_{3}=\{\Delta=0\} \subset \mathbb{P}^{4}$ is the Segre cubic. We shall refer to the 15 hyperplanes in \mathbb{P}^{4} defined by the 15 equations

$$
\left\{A, p_{ \pm j}, q_{ \pm \alpha}: \alpha \in\{C, D, E\}, j \in\{0,1,2,3\}\right\}
$$

above as the singular hyperplanes.
The Segre cubic has 10 singular points, namely:

$$
[1,0,-2,-2,2],[1,0,-2,2,-2],[1,0,2,-2,-2],[1,0,2,2,2],
$$

$$
[0,-2,1,0,0],[0,2,1,0,0],[0,-2,0,1,0],[0,2,0,1,0],[0,-2,0,0,1] \text {, and }[0,2,0,0,1] .
$$

We shall denote these 10 points by $q_{i}, i \in[1, \ldots, 10]$, as ordered above. These 10 points have associated quartics in \mathbb{P}^{3}, which turns out to be quadrics of multiplicity two. We denote the quadric associated to the point q_{i} by Q_{i}. Explicitly they are:
$x^{2}-y^{2}-z^{2}+w^{2}=0, x^{2}-y^{2}+z^{2}-w^{2}=0, x^{2}+y^{2}-z^{2}-w^{2}=0, x^{2}+y^{2}+z^{2}+w^{2}=0$, $x y-z w=0, x y+z w=0, x z-y w=0, x z+y w=0, x w-y z=0$, and $x w+y z=0$.

Remark 2.3.3. We note that the action Ω on $\mathbb{P}^{3} \times \mathbb{P}^{4}$ induces an action on the set of the 15 singular hyperplanes, and a second action on the set of the 10 singular points q_{i}. The actions induced are as follows (using permutation notation):

- ϕ_{1} acts as $\left(p_{+0}, p_{-0}\right)\left(p_{+1}, p_{-1}\right)\left(p_{+2}, p_{-2}\right)\left(p_{+3}, p_{-3}\right)$ and as $\left(q_{5}, q_{6}\right)\left(q_{7}, q_{8}\right)\left(q_{9}, q_{10}\right)$,
- ϕ_{2} acts as $\left(q_{+D}, q_{+E}\right)\left(q_{-D}, q_{-E}\right)\left(p_{+2}, p_{+3}\right)\left(p_{-2}, p_{-3}\right)$ and as $\left(q_{1}, q_{2}\right)\left(q_{7}, q_{9}\right)\left(q_{8}, q_{10}\right)$,
- ϕ_{3} acts as $\left(q_{+C}, q_{+D}\right)\left(q_{-C}, q_{-D}\right)\left(p_{+1}, p_{+2}\right)\left(p_{-1}, p_{-2}\right)$ and as $\left(q_{2}, q_{3}\right)\left(q_{5}, q_{7}\right)\left(q_{6}, q_{8}\right)$,
- ϕ_{4} acts as $\left(q_{+D}, q_{-D}\right)\left(q_{+E}, q_{-E}\right)\left(p_{+0}, p_{-1}\right)\left(p_{-0}, p_{+1}\right)\left(p_{+2}, p_{-3}\right)\left(p_{-2}, p_{+3}\right)$ and as $\left(q_{1}, q_{2}\right)\left(q_{3}, q_{4}\right)\left(q_{5}, q_{6}\right)$,
- ϕ_{5} acts as $\left(A, q_{+C}\right)\left(q_{+D}, p_{+0}\right)\left(q_{-D}, p_{-1}\right)\left(q_{+E}, p_{-0}\right)\left(q_{-E}, p_{+1}\right)\left(p_{+2}, p_{-3}\right)$ and as $\left(q_{1}, q_{5}\right)\left(q_{2}, q_{6}\right)\left(q_{7}, q_{10}\right)$.

It is known that for a general point on S_{3} the corresponding surface is a Kummer surface ([Ekl10 Prop 2.2]). The following two propositions link such Kummer surfaces with their singular points.

Proposition 2.3.4. Let $p=[x, y, z, w]$ be a point in $\mathbb{P}^{3} \backslash \mathcal{L}$ and let

- $A=(y z+x w)(y z-x w)(x z+y w)(x z-y w)(z w+x y)(z w-x y)$,
- $B=2 x y z w\left(-x^{2}-y^{2}+z^{2}+w^{2}\right)\left(-x^{2}+y^{2}+z^{2}-w^{2}\right)\left(x^{2}-y^{2}+z^{2}-w^{2}\right)\left(x^{2}+y^{2}+z^{2}+w^{2}\right)$,
- $C=(y z+x w)(y z-x w)(x z+y w)(x z-y w)\left(x^{4}+y^{4}-z^{4}-w^{4}\right)$,
- $D=(y z+x w)(y z-x w)(z w+x y)(z w-x y)\left(-x^{4}+y^{4}-z^{4}+w^{4}\right)$,
- $E=(x z+y w)(x z-y w)(z w+x y)(z w-x y)\left(x^{4}-y^{4}-z^{4}+w^{4}\right)$.

Then the point $[A, B, C, D, E]$ lies on the Segre cubic and the associated Kummer surface has the 16 singular points $\{\gamma(p): \gamma \in \Gamma\}$.

Proof. Let $F=A\left(X^{4}+Y^{4}+Z^{4}+W^{4}\right)+\cdots+E\left(X^{2} W^{2}+Z^{2} Y^{2}\right)$. By algebraic manipulation, the system of linear equations

$$
F(p)=\frac{\partial F}{\partial X}(p)=\frac{\partial F}{\partial Y}(p)=\frac{\partial F}{\partial Z}(p)=\frac{\partial F}{\partial W}(p)=0
$$

has a unique solution $[A, B, C, D, E] \in \mathbb{P}^{4}$ as given above. Hence, for the rest of the proof let A, B, C, D, E be as in the proposition. The quartic surface defined by $[A, B, C, D, E]$ has p as a singular point. Substituting $[A, B, C, D, E]$ into the equation Δ, we see that $[A, B, C, D, E]$ lies on on the Segre cubic. Finally, having found one singular point, we note that since Γ fixes the quartic surface defined by $[A, B, C, D, E]$, any point $\gamma(p)$ with $\gamma \in \Gamma$ must also be a point of singularity.

Note that in particular, any point $p \in \mathbb{P}^{3} \backslash \mathcal{L}$ uniquely defines the Kummer surface of which it is a singular point.

Proposition 2.3.5. Let $[A, B, C, D, E]$ be a point on the Segre cubic not lying on one of the 15 singular hyperplanes. Then the associated surface's 16 singular points are $[x, y, z, w]$ where x, y, z and w solve the following equations:

- $a z^{8}+b z^{6} w^{2}+c z^{4} w^{4}+b z^{2} w^{6}+a w^{8}=0$, with $a=-A^{2} B^{2}, b=4(2 A D-$ $C E)(2 A E-C D)$ and $c=2\left(A^{2} B^{2}-2\left(E^{2}+D^{2}\right)\left(4 A^{2}+C^{2}\right)+16 A C D E\right)$,
- $\left(4 A^{2}-C^{2}\right)\left(E z^{2}-D w^{2}\right) y^{2}+A\left(\left(4 A^{2}-C^{2}\right)\left(z^{4}-w^{4}\right)+\left(E^{2}-D^{2}\right)\left(z^{4}+w^{4}\right)\right)+$ $C\left(E^{2}-D^{2}\right) z^{2} w^{2}=0$,
- $2\left(C^{2}-4 A^{2}\right) x y z w+B C z^{2} w^{2}+A B\left(w^{4}+z^{4}\right)=0$.

Proof. Without loss of generality, using the action of Γ, we assume $w=1$. Then the first equation can be considered as a symmetric quartic polynomial with the variable z^{2}, and hence z can be written as a radical function of A, B, C, D, E, i.e,

$$
z= \pm \sqrt{\frac{u_{ \pm} \pm \sqrt{u_{ \pm}^{2}-4}}{2}}, \text { where } u_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a(c-2 a)}}{2 a}
$$

Similarly, we can write x and y as radical functions of A, B, C, D, E. Substituting the point $[x, y, z, 1]$ (written in terms of A, B, C, D, E) into the equations of Proposition 2.3 .4 , we get an equality. Since a point uniquely defines the Kummer surface, we must have that the point $[x, y, z, 1]$ is a singular point of $[A, B, C, D, E]$.

We explain why we need the hypothesis in the two previous propositions, namely taking a point in \mathbb{P}^{3} away from \mathcal{L} and taking a point in \mathbb{P}^{4} away from the singular hyperplanes. First we note that the intersection of one of the singular hyperplanes with the Segre cubic breaks down into 3 planes. For example

$$
\begin{aligned}
\left\{q_{+C}=0\right\} \cap\{\Delta=0\} & =\left\{q_{+C}=0, q_{-C}=0, A=0\right\} \\
& \cup\left\{q_{+C}=0, p_{-0}=0, p_{+1}=0\right\} \\
& \cup\left\{q_{+C}=0, p_{+0}=0, p_{-1}=0\right\} .
\end{aligned}
$$

We check that we get 15 planes this way, which we shall refer to as the 15 Segre planes.
Suppose the surface X_{p} is represented by a point p lying on one of the 15 Segre planes, that is p does not satisfy the hypothesis of Proposition 2.3.5. Then, we calculate that X_{p} does not have only 16 singular points, but rather two skew singular lines. Namely one of the 15 pairs of lines in \mathcal{L}. On the other hand, consider the surface X_{p} with $p \in \mathbb{P}^{4}$, which has the singular point $q \in \mathcal{L}$. By Proposition 2.3.1 we know that either p lies on the Segre cubic or on one of the 15 singular hyperplanes. If p lies on the Segre cubic, then in fact p lies on one of the Segre planes. If p lies on a singular hyperplane and not on the Segre cubic, then q lies on 3 lines contained in \mathcal{L} (c.f. A. 1 in the Appendix).

Hence we have a one to one correspondence between the 15 pairs of skew lines of \mathcal{L} and the 15 Segre planes. Table 2.2 shows which Segre plane corresponds to which pair of lines.

Definition 2.3.6. Let Y be a quartic surface in \mathbb{P}^{3}. We say that a plane T in \mathbb{P}^{3} is a trope of Y if $Y \cap T$ is an irreducible conic counted with multiplicity two.

Lemma 2.3.7. A quartic surface $Y \subset \mathbb{P}^{3}$ which has a trope T is singular.
We now turn to the theorem from Eklund, [Ekl10, Thm 4.3], which motivated the questions of this thesis.

Theorem 2.3.8. A general K3 surface X from the family \mathcal{X} contains at least 320 smooth conics.

Proof. The proof is adapted from [Ekl10, Thm 4.3], which we reproduce here as we will use some elements of the proof in the rest of the thesis. For this proof if Y is a hypersurface, fix \widetilde{Y} to be an equation defining Y.

Pick $p \in \mathbb{P}^{4}$ general and let q_{i} be a singular point of the Segre cubic S_{3} (in particular fix i. We have that the associated surface to q_{i} is Q_{i}^{2}, a quadric of multiplicity two. The line through p and q_{i} intersects S_{3} in exactly one other point, call it p_{i}. Hence we have $\widetilde{X_{p}}=\alpha\left(\widetilde{Q_{i}}\right)^{2}+\alpha^{\prime} \widetilde{X_{p_{i}}}$ for some $\alpha, \alpha^{\prime} \in \widetilde{\mathbb{Q}}$. As p is general by Proposition 2.3.5 we have that the associated surface $X_{p_{i}}$ is Kummer. Pick a singular point on $X_{p_{i}}$, say $[a, b, c, d]$, and consider its dual $T:=\{a x+b y+c z+d w=0\} \subset \mathbb{P}_{[x, y, z, w]}^{3}$. As T is a trope of $X_{p_{i}}$ (see Ekl10, pg 12] for more details) we have that $\widetilde{{X_{p}}_{i}}=\mu\left(Q^{\prime}\right)^{2}+\lambda \widetilde{T}$, for some $\mu \in \overline{\mathbb{Q}}$, a cubic equation λ and a quadratic equation Q^{\prime}. Hence, as an equation,

$$
\begin{align*}
\widetilde{X}_{p} & =\alpha\left(\widetilde{Q_{i}}\right)+\alpha^{\prime} \mu\left(Q^{\prime}\right)^{2}+\alpha^{\prime} \lambda \widetilde{T} \\
& =\left(\sqrt{\alpha} \widetilde{Q_{i}}+\sqrt{-\alpha^{\prime} \mu} Q^{\prime}\right)\left(\sqrt{\alpha} \widetilde{Q_{i}}-\sqrt{-\alpha^{\prime} \mu} Q^{\prime}\right)+\alpha^{\prime} \lambda \widetilde{T} . \tag{2.3.2}
\end{align*}
$$

So $X_{p} \cap T$ is the union of two conics. As the general member of the family does not contain any line (see Ekl10, Prop 2.3]), nor does it have a trope (Lemma 2.3.7), we have that the two conics, $\sqrt{\alpha} \widetilde{Q}_{i} \pm \sqrt{-\alpha^{\prime} \mu} Q^{\prime}$, are smooth (as they cannot be the union of two lines) and distinct.

Since a general Kummer surface of \mathcal{X} is determined by any of its singular points (by Proposition 2.3 .4 and hence by its tropes, all the tropes defined by using the 10 nodes q of S_{3} are different. As two different planes cannot have a smooth conic in common, we conclude that we have constructed $10 \cdot 16 \cdot 2=320$ smooth conics on X_{p}.

Chapter 3

The Galois and Monodromy Group

The motivating question for this chapter is "if X is an invariant quartic K3 surface defined over a number field K, what is the smallest field extension over which the 320 conics are defined?". The first section is dedicated to answering that question. After finding the field of definition of the 320 conics, in the second section, we are interested in studying the Monodromy group of the 320 conics. The main result of this chapter is that both the Galois group of the field of definition of the 320 conics, and the Monodromy group of the 320 conics are isomorphic to C_{2}^{10}. As a corollary we deduce that the moduli space of pairs (X, C), where X is an invariant quartic K3 surface and and C one of the 320 conic, has 10 irreducible components.

The results of this chapter have been put together into a preprint Bou15a.

3.1 The Galois Group

In this section we are going to shift away from working over $\overline{\mathbb{Q}}$ to working over number fields. Let K be a number field, and let $p=[A, B, C, D, E]$ be a very general point in \mathbb{P}_{K}^{4}. Then the associated K3 surface, X_{p}, has 320 conics on it. So let L be the smallest number field containing K over which those conics are defined. Hence L is an extension of of K. We want to work out the Galois group of the field of definition of the 320 conics. That is, we are interested in $\operatorname{Gal}(L / K)$ so we first find L.

From Theorem 2.3.8 we have a constructive proof of the existence of the conics, so we want to construct equations defining the conics. In particular, we want to work out, for a fixed p and for each conic, the field of definition of $\alpha, \alpha^{\prime}, \mu$ and Q^{\prime} (since Q_{i} is defined over $\mathbb{Q} \subseteq K$ for all i). Note that we have that α and α^{\prime} depend only on Q_{i} (or more specifically on the point q_{i}), while μ and Q^{\prime} depend both on Q_{i} and the trope T (of which there are 16 choices once Q_{i} is fixed). So let α_{i} and α_{i}^{\prime} be associated to Q_{i}. Using the equations defining the line through the point p and the point q_{i}, with the cubic equation defining S_{3} we can find the point p_{i}. Hence we write $\left[A_{i}, B_{i}, C_{i}, D_{i}, E_{i}\right]=X_{p_{i}}$ in terms of A, B, C, D and E. Since we know $X_{q_{i}}$,
we can use simple algebra to calculate α_{i} and α_{i}^{\prime}. We find that $\alpha_{i}=\Delta \beta_{i}^{-1}$ and

$$
\begin{aligned}
& \alpha_{i}^{\prime}=\left\{\begin{array}{ll}
\beta_{i}^{-1} & i \in[1, \ldots, 4] \\
\left(4 \beta_{i}\right)^{-1} & i \in[5, \ldots, 10]
\end{array}\right. \text { where } \\
& \beta_{1}=12 A^{2}+\frac{1}{4} B^{2}+4 A(C+D-E)-\left(C^{2}+D^{2}+E^{2}\right)+2(C D-C E-D E) \\
& \beta_{2}=12 A^{2}+\frac{1}{4} B^{2}+4 A(C-D+E)-\left(C^{2}+D^{2}+E^{2}\right)+2(-C D+C E-D E) \\
& \beta_{3}=12 A^{2}+\frac{1}{4} B^{2}+4 A(-C+D+E)-\left(C^{2}+D^{2}+E^{2}\right)+2(-C D-C E+D E) \\
& \beta_{4}=12 A^{2}+\frac{1}{4} B^{2}-4 A(C+D+E)+\left(C^{2}+D^{2}+E^{2}\right)+2(C D+C E+D E)
\end{aligned}
$$

$$
\begin{array}{ll}
\beta_{5}=-(A B+2 A C-D E) & \beta_{6}=A B-2 A C+D E \\
\beta_{7}=-(A B+2 A D-C E) & \beta_{8}=A B-2 A D+C E \\
\beta_{9}=-(A B+2 A E-C D) & \beta_{10}=A B-2 A E+C D
\end{array}
$$

and Δ is defined by Equation 2.3 .1 . In particular, letting \tilde{Y} be the equation defining the hypersurface Y as in Theorem 2.3 .8 we have $\widetilde{X_{p}}=\beta_{i}^{-1}\left(\Delta\left(\widetilde{Q_{i}}\right)^{2}+\widetilde{X_{p_{i}}}\right)$, with the $\frac{1}{4}$ factor absorbed in the equation defining $X_{p_{i}}$ when needed. Hence, using Equation 2.3.2 and by rescaling with β_{i}, we have, for a fixed Q_{i} and T,

$$
X_{p} \cap T=\left\{\left(\widetilde{Q_{i}}+\sqrt{-\frac{\mu_{i}}{\Delta}} Q^{\prime}\right)\left(\widetilde{Q_{i}}-\sqrt{-\frac{\mu_{i}}{\Delta}} Q^{\prime}\right)=0, \widetilde{X_{p}}=0\right\}
$$

In particular, the field of definition of the pair of conics defined by T only depends on $\sqrt{-\frac{\mu_{i}}{\Delta}}$ and Q^{\prime}. So let us fix an i, set $X_{p_{i}}=\left[A_{i}, B_{i}, C_{i}, D_{i}, E_{i}\right]$ and let us fix T by choosing the singular point $\left[r_{3, i}, r_{2, i}, r_{1, i}, 1\right]$ on $X_{p_{i}}$ (using Proposition 2.3.5). That is, T is defined by $r_{3, i} x+r_{2, i} y+r_{1, i} z+w=0$. As the singular point uniquely defines $X_{p_{i}}$, we use the equations in Proposition 2.3 .4 to rewrite the equation defining $X_{p_{i}}$ in terms of $r_{3, i}, r_{2, i}$ and $r_{1, i}$. Since $\widetilde{X_{p_{i}}} \cap \widetilde{T}=\left(Q^{\prime}\right)^{2}$ substituting $w=-\left(r_{3, i} x+r_{2, i} y+r_{1, i} z\right)$ into $X_{p_{i}}$ we find that $\left(Q^{\prime}\right)^{2}=\left(a_{0} x^{2}+a_{1} y^{2}+a_{2} z^{2}+a_{3} x y+a_{4} x z+a_{5} y z\right)^{2}$ where

- $a_{0}=\left(r_{2} r_{3}-r_{1}\right) \cdot\left(r_{2} r_{3}+r_{1}\right) \cdot\left(r_{1} r_{3}-r_{2}\right) \cdot\left(r_{1} r_{3}+r_{2}\right)$,
- $a_{1}=\left(r_{2} r_{3}-r_{1}\right) \cdot\left(r_{2} r_{3}+r_{1}\right) \cdot\left(r_{1} r_{2}-r_{3}\right) \cdot\left(r_{1} r_{2}+r_{3}\right)$,
- $a_{2}=\left(r_{1} r_{3}-r_{2}\right) \cdot\left(r_{1} r_{3}+r_{2}\right) \cdot\left(r_{1} r_{2}-r_{3}\right) \cdot\left(r_{1} r_{2}+r_{3}\right)$,
- $a_{3}=r_{3} \cdot r_{2} \cdot\left(2 r_{1}^{2} r_{2}^{2} r_{3}^{2}-r_{1}^{4}-r_{2}^{4}-r_{3}^{4}+1\right)$,
- $a_{4}=r_{3} \cdot r_{1} \cdot\left(2 r_{1}^{2} r_{2}^{2} r_{3}^{2}-r_{1}^{4}-r_{2}^{4}-r_{3}^{4}+1\right)$,
- $a_{5}=r_{2} \cdot r_{1} \cdot\left(2 r_{1}^{2} r_{2}^{2} r_{3}^{2}-r_{1}^{4}-r_{2}^{4}-r_{3}^{4}+1\right)$.

Hence for a fixed i and trope T, the associated quadratic equation Q^{\prime} is defined over the fixed field $K\left(r_{1, i}, r_{2, i}\right)$ (recall that $r_{3, i}$ is a K-linear combination of $r_{1, i}, r_{2, i}$, see Proposition 2.3.5. Now each trope T, and hence each associated Q^{\prime}, of $X_{p_{i}}$ is defined by Γ acting on the point $\left[r_{3, i}, r_{2, i}, r_{1, i}, 1\right]$. So we have that once i has been fixed, the 16 tropes and the 16 associated quadratic equations are all defined over $K\left(r_{1, i}, r_{2, i}\right)$.

Next we work out μ_{i} (which also depends on the singular point $\left[r_{3, i}, r_{2, i}, r_{1, i}, 1\right]$). We use the fact that (as equations) $\widetilde{X_{p_{i}}}=\mu_{i}\left(Q^{\prime}\right)^{2}+\lambda \widetilde{T}$ and that Q^{\prime} has no w terms, to find that

$$
\mu_{i}=\left(A_{i} r_{1, i}^{4}+C_{i} r_{1, i}^{2}+A_{i}\right) \cdot a_{2}^{-2}
$$

Again we see that the action of Γ on $\left[r_{3, i}, r_{2, i}, r_{1, i}, 1\right]$ will give us the other 15μ 's. In particular, as the 16 singular points have z-coordinates $\pm r_{1, i}, \pm \frac{1}{r_{1, i}}, \pm \frac{r_{2, i}}{r_{3, i}}, \pm \frac{r_{3, i}}{r_{2, i}}$, there are only four different μ 's, namely $\mu, \frac{1}{r_{1, i}^{2}} \mu, \bar{\mu}=\left(A_{i} \frac{r_{2, i}^{4}}{r_{3, i}^{4}}+C_{i} \frac{r_{2, i}^{2}}{r_{3, i}^{2}}+A_{i}\right) \cdot \bar{a}_{2}^{-2}$ and $\frac{r_{3, i}^{2}}{r_{2, i}^{2}} \bar{\mu}$ (where $\overline{a_{2}}$ can be calculated, but will not be needed). Putting all of this together we have proven the following proposition.

Proposition 3.1.1. Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ and fix $i \in[1, \ldots, 10]$. Let $p_{i}=$ $\left[A_{i}, B_{i}, C_{i}, D_{i}, E_{i}\right] \in \mathbb{P}^{4}$ be the third point of intersection between the Segre cubic S_{3}, and the line joining q_{i} and p. Then the 32 conics lying on X_{p} and associated to the point q_{i} (as per the construction in Theorem 2.3.8) are defined over

$$
\begin{equation*}
K_{i}=K\left(r_{1, i}, r_{2, i}, r_{\mu, i}, \overline{r_{\mu, i}}\right) \tag{3.1.1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
r_{1, i} & \text { is a root of } a x^{8}+b x^{6}+c x^{4}+b x^{2}+a, \\
r_{2, i} & \text { is a root of } d\left(E_{i} r_{1, i}^{2}-D_{i}\right) x^{2}+A_{i}\left(d\left(r_{1, i}^{4}-1\right)+e\left(r_{1, i}^{4}+1\right)\right)+C_{i} e r_{1, i}^{2}, \\
r_{\mu, i} & \text { is a root of } x^{2}+\frac{1}{\Delta}\left(A_{i} r_{1, i}^{4}+C_{i} r_{1, i}^{2}+A_{i}\right), \\
\overline{r_{\mu, i}} & \text { is a root of } \tag{3.1.5}\\
x^{2}+\frac{1}{\Delta}\left(A_{i} \bar{r}_{1, i}^{4}+C_{i} \bar{r}_{1, i}^{2}+A_{i}\right),
\end{array}
$$

with $\bar{r}_{1, i}=\frac{r_{2, i}}{r_{3, i}}$ (which can be expressed in terms of $r_{1, i}$) and

$$
\begin{gathered}
a=-A_{i}^{2} B_{i}^{2} \\
b=4\left(2 A_{i} D_{i}-C_{i} E_{i}\right)\left(2 A_{i} E_{i}-C_{i} D_{i}\right) \\
c=2\left(A_{i}^{2} B_{i}^{2}-2\left(E_{i}^{2}+D_{i}^{2}\right)\left(4 A_{i}^{2}+C_{i}^{2}\right)+16 A_{i} C_{i} D_{i} E_{i}\right) \\
d=4 A_{i}^{2}-C_{i}^{2}, \quad e=E_{i}^{2}-D_{i}^{2}
\end{gathered}
$$

Remark. Magma [BCP97] was used for most of the computations leading to the above proposition. Part of the calculations are available on [Bou].

Proposition 3.1.2. Let X_{p} be a $K 3$ surface in the family \mathcal{X}. For each $i \in[1, \ldots, 10]$ define K_{i} as in Proposition 3.1.1. Then $\operatorname{Gal}\left(K_{i} / K\right) \cong C_{2}^{n}$ for some $0 \leq n \leq 5$ (that is n copies of $\mathbb{Z} / 2 \mathbb{Z}$). Futhermore, $K_{i}=K\left(r_{1, i}, r_{2, i}, r_{\mu, i}\right)$ (i.e., adjoining $\overline{r_{\mu, i}}$ is redundant).

Proof. We show that if the polynomials (3.1.2) to (3.1.5) are irreducible then $\operatorname{Gal}\left(K_{i} / K\right) \cong$ C_{2}^{5}. If any of the polynomials are not irreducible, then $\operatorname{Gal}\left(K_{i} / K\right)$ is a subgroup of C_{2}^{5}, and hence must be C_{2}^{n} for some $0 \leq n \leq 5$.

To do so we use the resolvent method. Consider the group

$$
\langle(12)(34)(56)(78),(13)(24)(57)(68),(15)(37)(26)(48)\rangle \leq S_{8} .
$$

Note that this is the group of translations of a fundamental cube inside $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ (label the eight vertices of the cube 1 to 8), hence it is C_{2}^{3}. Let x_{1}, \ldots, x_{8} be indeterminate variables, then S_{8} acts on them by $x_{i} \mapsto x_{\sigma(i)}$. Note that the monomial $x_{1} x_{3}+x_{2} x_{4}+$ $x_{5} x_{7}+x_{6} x_{8}$ is C_{2}^{3}-invariant, so we can construct the resolvent polynomial $R_{C_{2}^{3}}=$ $\prod_{j=1}^{g}\left(X-P_{j}\right)$ where P_{j} are the elements in the S_{8}-orbit of $x_{1} x_{3}+x_{2} x_{4}+x_{5} x_{7}+x_{6} x_{8}$.

We first consider the Galois group of $K\left(r_{1, i}\right)$ over K, and call it G. As the polynomial (3.1.2) has as roots the eight different z coordinates of the 16 singular points, we have that the minimal polynomial of $r_{1, i}$ factorises as

$$
\left(x-r_{1, i}\right)\left(x+r_{1, i}\right)\left(x-\frac{1}{r_{1, i}}\right)\left(x+\frac{1}{r_{1, i}}\right)\left(x-\bar{r}_{1, i}\right)\left(x+\bar{r}_{1, i}\right)\left(x-\frac{1}{\bar{r}_{1, i}}\right)\left(x+\frac{1}{\bar{r}_{1, i}}\right),
$$

where, as above, $\bar{r}_{1, i}=\frac{r_{2, i}}{r_{3, i}}$. If we substitute the x_{j} with the j th root of the minimal polynomial of $r_{1, i}$ (as ordered above), we find that

$$
x_{1} x_{3}+x_{2} x_{4}+x_{5} x_{7}+x_{6} x_{8}=4
$$

Hence in this case $R_{C_{2}^{3}}$ has a K-rational non-repeated root, so $G \subseteq C_{2}^{3}$. But since the minimal polynomial of $r_{1, i}$ is already of degree 8 , we must have $G \cong C_{2}^{3}$. In fact G is generated by $r_{1, i} \mapsto-r_{1, i}, r_{1, i} \mapsto \frac{1}{r_{1, i}}$ and $r_{1, i} \mapsto \bar{r}_{1, i}$; denote them by σ_{2}, σ_{3} and σ_{4} respectively.

Next, we consider the Galois group of $K\left(r_{1, i}, r_{2, i}\right)$ over K. We have that the minimal polynomial of $r_{2, i}$ is of degree 8 (either through direct calculation, see [Bou], or the fact that $r_{2, i}$ solves a quadratic in $r_{1, i}^{2}$ which itself solves a quartic). We can find all the conjugates of $r_{2, i}$, by noting that if we let $\sigma_{2}, \sigma_{3}, \sigma_{4}$ act on the polynomial (3.1.3), we get with $\pm r_{2, i}$ a total of eight conjugates. Furthermore, we know that $\pm r_{2, i}$ corresponds to the y-coordinate of the singular points which have z-coordinate $r_{1, i}$. Similarly, $\sigma_{j}\left(\pm r_{2, i}\right)$ corresponds to the y-coordinate of the singular points which have
z-coordinate $\sigma_{j}\left(r_{1, i}\right)$. Hence we know that the minimal polynomial of $r_{2, i}$ factorises as

$$
\left(x-r_{2, i}\right)\left(x+r_{2, i}\right)\left(x-\frac{1}{r_{2, i}}\right)\left(x+\frac{1}{r_{2, i}}\right)\left(x-\bar{r}_{2, i}\right)\left(x+\bar{r}_{2, i}\right)\left(x-\frac{1}{\bar{r}_{2, i}}\right)\left(x+\frac{1}{\bar{r}_{2, i}}\right)
$$

where $\bar{r}_{2, i}=\frac{r_{1, i}}{\bar{r}_{1, i}} r_{2, i}$. As above, we can see that the Galois group of $K\left(r_{2, i}\right)$ over K is C_{2}^{3}, and in particular, we now know that the field extension $K\left(r_{1, i}, r_{2, i}\right) / K$ is Galois. After having made some choice of sign on $\sigma_{j}\left(r_{2, i}\right)$ for $2 \leq j \leq 4$, it is not hard to see that in fact $\operatorname{Gal}\left(K\left(r_{1, i}, r_{2, i}\right) / K\right) \cong C_{2}^{4}$ generated by $\sigma_{1}, \sigma_{2}, \sigma_{3}$ and σ_{4}, where $\sigma_{1}\left(r_{1, i}\right)=r_{1, i}$ and $\sigma_{1}\left(r_{2, i}\right)=-r_{2, i}$.

Finally we look at $K\left(r_{\mu, i}, \bar{r}_{\mu, i}\right)$, and first note that $r_{\mu, i}$ and $\bar{r}_{\mu, i}$ have the same minimal polynomial over K. In fact, we have that the minimal polynomial of $r_{\mu, i}$ factorises as

$$
\left(x-r_{\mu, i}\right)\left(x+r_{\mu, i}\right)\left(x-\frac{r_{\mu, i}}{r_{1, i}^{2}}\right)\left(x+\frac{r_{\mu, i}}{r_{1, i}^{2}}\right)\left(x-\bar{r}_{\mu, i}\right)\left(x+\bar{r}_{\mu, i}\right)\left(x-\frac{\bar{r}_{\mu, i}}{\bar{r}_{1, i}^{2}}\right)\left(x+\frac{\bar{r}_{\mu, i}}{\bar{r}_{1, i}^{2}}\right) .
$$

In this case, if we substitute the x_{j} with the j th root of the minimal polynomial of $r_{\mu, i}$ (as ordered above), we find that

$$
\begin{aligned}
x_{1} x_{3}+x_{2} x_{4}+x_{5} x_{7}+x_{6} x_{8} & =2\left(\frac{r_{\mu, i}^{2}}{r_{1, i}^{2}}+\frac{\bar{r}_{\mu, i}^{2}}{\bar{r}_{1, i}^{2}}\right) \\
& =-\frac{2}{\Delta}\left(2 C_{1}+A_{1}\left(r_{1, i}^{2}+\frac{1}{r_{1, i}^{2}}+\bar{r}_{1, i}^{2}+\frac{1}{\bar{r}_{1, i}^{2}}\right)\right)
\end{aligned}
$$

Since $r_{1, i}^{2}$ solves a quartic polynomial whose other roots are $\frac{1}{r_{1, i}^{2}}, \bar{r}_{1, i}^{2}, \frac{1}{\bar{r}_{1, i}^{2}}$, we have that the above expression is in K. So $R_{C_{2}^{3}}$ has a K-rational non-repeated root, hence $\operatorname{Gal}\left(K\left(r_{\mu, i}, \bar{r}_{\mu, i}\right) / K\right) \subseteq C_{2}^{3}$. But since the minimal polynomial of $r_{\mu, i}$ is already of degree 8 , we must have $\operatorname{Gal}\left(K\left(r_{\mu, i}, \bar{r}_{\mu, i}\right) / K\right) \cong C_{2}^{3}$, in particular $K\left(r_{\mu, i}, \bar{r}_{\mu, i}\right) \cong K\left(r_{\mu, i}\right)$.

Hence we have $\left[K_{i}: K\right]=2 \cdot 2 \cdot 8=32$, so we are looking for a group of order 32 , which has $C_{2}^{4}=\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\rangle$ as a subgroup (after having extended σ_{j} properly on K_{i} by making some choice of the sign of $\left.\sigma_{j}\left(r_{\mu, i}\right)\right)$. Let σ_{5} be the element fixing $r_{1, i}, r_{2, i}$ and sending $r_{\mu, i} \mapsto \frac{1}{r_{\mu, i}}$, and note it has order 2 but is not in the subgroup $\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\rangle$. Furthermore, one can check that σ_{5} commutes with σ_{j} for $1 \leq j \leq 4$. Hence we have that $\operatorname{Gal}\left(K_{i} / K\right) \cong C_{2}^{5}$.

The following lemma allows us to find another way of expressing K_{i}, which will help us find L. While this lemma is quite standard, the proof has been included as it details how we can construct a field isomorphic to K_{i}.

Lemma 3.1.3. If $\operatorname{Gal}(L / K) \cong C_{2}^{n}$ for some n, then there exist $\Delta_{1}, \ldots, \Delta_{n} \in K$ whose images are linearly independent in the \mathbb{F}_{2}-vector space $K^{*} /\left(K^{*}\right)^{2}$, such that $L \cong K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{n}}\right)$.

Proof. Let $\operatorname{Gal}(L / K)=\left\langle\sigma_{1}, \ldots, \sigma_{n} \mid \sigma_{i}^{2}=\left(\sigma_{i} \sigma_{j}\right)^{2}=1\right\rangle \cong C_{2}^{n}$ and for each $i \in\{1, \ldots, n\}$ let

$$
\widetilde{\sigma}_{i}=\left\langle\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n}\right\rangle \cong C_{2}^{n-1}
$$

For each i, we have $\left[\operatorname{Gal}(L / K): \widetilde{\sigma}_{i}\right]=2$, so $L^{\widetilde{\sigma_{i}}}$ the fixed field of $\widetilde{\sigma}_{i}$, is a degree 2 extension of K. Hence $L^{\widetilde{\sigma}_{i}}=K\left(\sqrt{\Delta_{i}}\right)$ for some square free $\Delta_{i} \in K$.

We prove that $\left[K\left(\sqrt{\Delta_{i}}\right)\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{i-1}}\right): K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{i-1}}\right)\right]=2$ by showing that $\sqrt{\Delta_{i}} \notin K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{i-1}}\right)$. For a contradiction suppose that $\sqrt{\Delta_{i}} \in$ $K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{i-1}}\right)$, then by considering minimal polynomials, we can show that $\sqrt{\Delta_{i}}=\alpha \sqrt{\Delta_{i_{1}} \ldots \Delta_{i_{s}}}$ for some $\alpha \in K$ and subset $\left\{i_{1}, \ldots, i_{s}\right\}$ of $\{1, \ldots, i-1\}$, i.e., Δ_{i} is not linearly independent of $\Delta_{1}, \ldots, \Delta_{i-1}$ in $K^{*} /\left(K^{*}\right)^{2}$. Hence $K\left(\sqrt{\Delta_{i}}\right) \cong$ $K\left(\sqrt{\Delta_{i_{1}} \ldots \Delta_{i_{s}}}\right)$ and $\sigma_{i_{1}} \in \widetilde{\sigma}_{i}$ fixes $\sqrt{\Delta_{i_{1}} \ldots \Delta_{i_{s}}}$. But since $\sigma_{i_{1}} \in \widetilde{\sigma}_{j}$ for $j \in\left\{i_{2}, \ldots, i_{s}\right\}$, we also have that $\sigma_{i_{1}}$ fixes $\sqrt{\Delta_{j}}$. So

$$
\begin{aligned}
\sqrt{\Delta_{i_{1}} \ldots \Delta_{i_{s}}} & =\sigma_{i_{1}}\left(\sqrt{\Delta_{i_{1}} \ldots \Delta_{i_{s}}}\right) \\
& =\sigma_{i_{1}}\left(\sqrt{\Delta_{i_{1}}}\right) \sqrt{\Delta_{i_{2}} \ldots \Delta_{i_{s}}}
\end{aligned}
$$

hence $\sigma_{i_{1}}$ fixes $\sqrt{\Delta_{i_{1}}}$. This is a contradiction, since then $K\left(\sqrt{\Delta_{i_{1}}}\right)$ is the fixed field of $\tilde{\sigma}_{i_{1}} \times\left\langle\sigma_{i_{1}}\right\rangle=\operatorname{Gal}(L / K)$.

As $L^{\widetilde{\sigma}_{i}} \subset L$, we have that $\sqrt{\Delta_{i}} \in L$. So $K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{n}}\right) \subset L$, but by the previous paragraph and the Tower Law, we also have $\left[K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{n}}\right): K\right]=2^{n}$. Hence $L \cong K\left(\sqrt{\Delta_{1}}, \ldots, \sqrt{\Delta_{n}}\right)$.

This means that for each of the fields K_{i} we can find an isomorphic field of the form $K\left(\sqrt{\Delta_{1, i}}, \ldots, \sqrt{\Delta_{5, i}}\right)$. Then L, which is the compositium of the K_{i}, will be $K\left(\sqrt{\Delta_{1,1}}, \ldots, \sqrt{\Delta_{5,10}}\right)$. Hence, our next step is to determine $\Delta_{i, j} \in K$. First, we will look at K_{1}.

Proposition 3.1.4. Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ be a very general point not lying on the Segre cubic nor on the 15 singular hyperplanes, then the 32 conics lying on X_{p} associated to the point q_{1} are defined over the field
$K_{1} \cong K\left(\sqrt{\Delta q_{+C} p_{-0} p_{+1}}, \sqrt{\Delta q_{+C} p_{+0} p_{-1}}, \sqrt{\Delta q_{+D} p_{+0} p_{-2}}, \sqrt{\Delta q_{+D} p_{-0} p_{+2}}, \sqrt{-\Delta q_{-E} p_{+1} p_{-2}}\right)$.
Proof. We use Lemma 3.1.3 to construct K_{1}. From Proposition 3.1.2 $\operatorname{Gal}\left(K_{1} / K\right)=$ $\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\rangle$ where σ_{j} acts on $r_{1,1}, r_{2,1}, r_{\mu, 1}$ according to the following table

	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}
$r_{1,1}$	$-r_{1,1}$	$\frac{1}{r_{1,1}}$	$\bar{r}_{1,1}$	$r_{1,1}$	$r_{1,1}$
$r_{2,1}$	$r_{2,1}$	$\bar{r}_{2,1}$	$\frac{1}{r_{2,1}}$	$-r_{2,1}$	$r_{2,1}$
$r_{\mu, 1}$	$r_{\mu, 1}$	$\frac{r_{\mu, 1}^{2}}{r_{1,1}}$	$\bar{r}_{\mu, 1}$	$r_{\mu, 1}$	$-r_{\mu, 1}$

(with $\bar{r}_{2,1}=\frac{r_{1,1}}{\bar{r}_{1,1}} r_{2,1}$). We calculate the fixed field of $\widetilde{\sigma_{1}}=\left\langle\sigma_{2}, \ldots, \sigma_{5}\right\rangle$ by considering
the expression $r_{1,1}+\frac{1}{r_{1,1}}+\bar{r}_{1,1}+\frac{1}{\bar{r}_{1,1}}$ which is fixed under σ_{j} for $j \in\{2, \ldots, 5\}$ but not under σ_{1}. Hence, upon calculating the discriminant of the minimal polynomial (after checking it is quadratic) of such an expression, we have that the fixed field of $\widetilde{\sigma}_{1}$ is $K\left(\sqrt{p_{-0} p_{+1} p_{+2} p_{-2} q_{+D}\left(-q_{-E}\right)}\right)$ (where $p_{ \pm i}, q_{ \pm \alpha}$ are the equations in Proposition 2.3.1. Similarly we can use the following expressions to calculate the respective fixed fields:

- $r_{1,1}^{2}+\bar{r}_{1,1}^{2}$ for $\widetilde{\sigma}_{2}$ giving $K\left(\sqrt{p_{+1} p_{-1} p_{+2} p_{-2}}\right)$,
- $r_{1,1}^{2}+\frac{1}{r_{1,1}^{2}}$ for $\widetilde{\sigma}_{3}$ giving $K\left(\sqrt{p_{+0} p_{-0} p_{+1} p_{-1}}\right)$,
- $r_{2,1}+\frac{1}{r_{2,1}}+\bar{r}_{2,1}+\frac{1}{\bar{r}_{2,1}}$ for $\widetilde{\sigma}_{4}$ giving $K\left(\sqrt{p_{+0} p_{+1} p_{-1} p_{-2} q_{+C}\left(-q_{-E}\right)}\right)$,
- $r_{\mu, 1}+\frac{r_{\mu, 1}}{r_{1,1}^{2}}+\bar{r}_{\mu, 1}+\frac{\bar{r}_{\mu, 1}}{\bar{r}_{1,1}^{2}}$ for $\widetilde{\sigma}_{5}$ giving $K\left(\sqrt{\Delta p_{+0} p_{-0} q_{+C} q_{+D}\left(-q_{-E}\right)}\right)$.

Putting all of this together and rearranging, we get the required result.
Theorem 3.1.5. Let $p=[A, B, C, D, E] \in \mathbb{P}_{K}^{4}$ be a very general point not lying on the Segre cubic nor on the 15 singular hyperplanes and let L be the field where the 320 conics of X_{p} are defined. Then $\operatorname{Gal}(L / K) \cong C_{2}^{10}$.

Proof. The first step is to calculate K_{i} for $i \in\{2, \ldots, 10\}$ in terms of square roots of elements in K. This is done by doing the same calculations as the above proposition with different q_{i} (and hence $r_{1, i}, r_{2, i}, r_{\mu, i}$). We find, up to rearrangements,

$$
\begin{aligned}
& K_{2} \cong K\left(\sqrt{\Delta q_{+C} p_{-0} p_{+1}}, \sqrt{\Delta q_{+C} p_{+0} p_{-1}}, \sqrt{\Delta q_{+E} p_{+0} p_{-3}}, \sqrt{\Delta q_{+E} p_{-0} p_{+3}}, \sqrt{-\Delta q_{-D} p_{+1} p_{-3}}\right), \\
& K_{3} \cong K\left(\sqrt{\Delta q_{+D} p_{-0} p_{+2}}, \sqrt{\Delta q_{+D} p_{+0} p_{-2}}, \sqrt{\Delta q_{+E} p_{+0} p_{-3}}, \sqrt{\Delta q_{+E} p_{-0} p_{+3}}, \sqrt{-\Delta q_{-C} p_{+2} p_{-3}}\right), \\
& K_{4} \cong K\left(\sqrt{-\Delta q_{-D} p_{+1} p_{-3}}, \sqrt{-\Delta q_{-D} p_{-1} p_{+3}}, \sqrt{-\Delta q_{-E} p_{-1} p_{+2}}, \sqrt{-\Delta q_{-E} p_{+1} p_{-2}}, \sqrt{-\Delta q_{-C} p_{+2} p_{-3}}\right), \\
& K_{5} \cong K\left(\sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{-\Delta A q_{+D} q_{-D}}, \sqrt{\Delta q_{+D} p_{+0} p_{-2}}, \sqrt{\Delta q_{+E} p_{+0} p_{-3}}, \sqrt{-\Delta q_{-E} p_{+1} p_{-2}}\right), \\
& K_{6} \cong K\left(\sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{-\Delta A q_{+D} q_{-D}}, \sqrt{\Delta q_{+D} p_{-0} p_{+2}}, \sqrt{\Delta q_{+E}^{p_{-0} p_{+3}}}, \sqrt{-\Delta q_{-E} p_{-1} p_{+2}}\right), \\
& K_{7} \cong K\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{\Delta q_{+C}^{p_{+0} p_{-1}}}, \sqrt{\Delta q_{+E}^{p_{+0} p_{-3}}}, \sqrt{-\Delta q_{-E}^{p_{+1} p_{-2}}}\right), \\
& K_{8} \cong K\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{\Delta q_{+C}^{p_{-0} p_{+1}}}, \sqrt{\Delta q_{+E}^{p_{-0} p_{+3}}}, \sqrt{-\Delta q_{-E}^{p_{-1} p_{+2}}}\right), \\
& K_{9} \cong K\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+D} q_{-D}}, \sqrt{\Delta q_{+C}^{p_{+0} p_{-1}}}, \sqrt{\Delta q_{+D}^{p_{+0} p_{-2}}}, \sqrt{-\Delta q_{-D}^{p_{+1} p_{-3}}}\right), \\
& K_{10} \cong K\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+D} q_{-D}}, \sqrt{\Delta q_{+C}^{p_{-0} p_{+1}}}, \sqrt{\Delta q_{+D}^{p_{-0} p_{+2}}}, \sqrt{-\Delta q_{-D}^{p_{-1} p_{+3}}}\right) .
\end{aligned}
$$

Then as the 320 conics of X_{p} are defined over the compositum of K_{1}, \ldots, K_{10}, we see that L is the field extension
$K\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+D} q_{-D}}, \sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{\Delta q_{+C} p_{+0} p_{-1}}, \sqrt{\Delta q_{+C} p_{-0} p_{+1}}\right.$,
$\left.\sqrt{\Delta q_{+D} p_{+0} p_{-2}}, \sqrt{\Delta q_{+D} p_{-0} p_{+2}}, \sqrt{\Delta q_{+E} p_{+0} p_{-3}}, \sqrt{\Delta q_{+E} p_{-0} p_{+3}}, \sqrt{-\Delta q_{-C} p_{+2} p_{-3}}\right)$.
Let $\Omega \subseteq \mathbb{P}_{K}^{4}$ be the set of points where the image of the above ten expressions $-\Delta A q_{+C} q_{-C}, \ldots,-\Delta q_{-C} p_{+2} p_{-3}$ are linearly independent in the \mathbb{F}_{2}-vector space $K^{*} /\left(K^{*}\right)^{2}$. Then Ω is a thin set (it is a union of $2^{10}-1$ type 2 thin sets). As K is Hilbertian (it is a number field) the complement of Ω is non empty, so for a very general point $\operatorname{Gal}(L / K) \cong C_{2}^{10}$.

Example. In the case $K=\mathbb{Q}$ and $[A, B, C, D, E]=[3,3,0,3,4]$ or $[1,1,0,4,8]$, we indeed have $\operatorname{Gal}(L / K) \cong C_{2}^{10}$.

Remark. While Magma BCP97] could, in most cases, calculate the minimal polynomial of the expressions needed for Theorem $3.1 .5\left(r_{1, i}^{2}+\bar{r}_{1, i}^{2}, r_{1, i}^{2}+\frac{1}{r_{1, i}^{2}}\right.$ etc, see [Bou] $)$ there were some difficult cases. Explicitly, for $i=5, \ldots, 10$ Magma could not calculate the minimal polynomial of the expression $r_{\mu, i}+\frac{r_{\mu, i}}{r_{1, i}^{2}}+\bar{r}_{\mu, i}+\frac{\bar{r}_{\mu, i}}{\bar{r}_{1, i}^{2}}$. We dealt with this by considering

$$
\begin{gathered}
\left(r_{\mu, i}+\frac{r_{\mu, i}}{r_{1, i}^{2}}+\bar{r}_{\mu, i}+\frac{\bar{r}_{\mu, i}}{\bar{r}_{1, i}^{2}}\right)^{2}= \\
\left(r_{\mu, i}^{2}+\frac{r_{\mu, i}^{2}}{r_{1, i}^{4}}+\bar{r}_{\mu, i}^{2}+\frac{\bar{r}_{\mu, i}^{2}}{\bar{r}_{1, i}^{4}}+2\left(\frac{r_{\mu, i}^{2}}{r_{1, i}^{2}}+\frac{\bar{r}_{\mu, i}^{2}}{\bar{r}_{1, i}^{2}}\right)+2 r_{\mu, i} \bar{r}_{\mu, i}\left(1+\frac{1}{r_{1, i}^{2}}\right)\left(1+\frac{1}{\bar{r}_{1, i}^{2}}\right)\right) .
\end{gathered}
$$

We already know that

$$
\left(\frac{r_{\mu, i}^{2}}{r_{1, i}^{2}}+\frac{\bar{r}_{\mu, i}^{2}}{\bar{r}_{1, i}^{2}}\right) \in K
$$

but we also have that

$$
\begin{gathered}
r_{\mu, i}^{2}+\frac{r_{\mu, i}^{2}}{r_{1, i}^{4}}+\bar{r}_{\mu, i}^{2}+\frac{\bar{r}_{\mu, i}^{2}}{\bar{r}_{1, i}^{4}} \\
=-\frac{1}{\Delta}\left(A_{i}\left(r_{1, i}^{4}+2+\frac{1}{r_{1, i}^{4}}+\bar{r}_{1, i}^{4}+2+\frac{1}{\bar{r}_{1, i}^{4}}\right)+C_{i}\left(r_{1, i}^{2}+\frac{1}{r_{1, i}^{2}}+\bar{r}_{1, i}^{2}+\frac{1}{\bar{r}_{1, i}^{2}}\right)\right) \\
=-\frac{1}{\Delta}\left(A_{i}\left(\left(r_{1, i}^{2}+\frac{1}{r_{1, i}^{2}}\right)^{2}+\left(\bar{r}_{1, i}^{2}+\frac{1}{\bar{r}_{1, i}^{2}}\right)^{2}\right)+C_{i}\left(r_{1, i}^{2}+\frac{1}{r_{1, i}^{2}}+\bar{r}_{1, i}^{2}+\frac{1}{\bar{r}_{1, i}^{2}}\right)\right) \in K .
\end{gathered}
$$

So, instead we ask Magma to calculate the minimal polynomial of

$$
2 r_{\mu, i} \bar{r}_{\mu, i}\left(1+\frac{1}{r_{1, i}^{2}}\right)\left(1+\frac{1}{\bar{r}_{1, i}^{2}}\right)
$$

which turned out to be linear for $i=5, \ldots, 10$, and hence in K. Therefore we explicitly calculate

$$
\left(r_{\mu, i}+\frac{r_{\mu, i}}{r_{1, i}^{2}}+\bar{r}_{\mu, i}+\frac{\bar{r}_{\mu, i}}{\bar{r}_{1, i}^{2}}\right)^{2} \in K
$$

ourselves, and hence could implement the method of Proposition 3.1.4 and finish the proof of Theorem 3.1.5.

Remark. Out of interest, we list the 50 discriminants we got that way in Table A. 2 in the Appendix.

3.2 Monodromy Group

We remark that the field of definition of the 320 conics involves the same equations which characterises when a surface X in \mathcal{X} is singular (c.f. Theorem 3.1.5 and Proposition 2.3.1. We explain this by studying the Monodromy group of the conics over a general non-singular K3 surface in \mathcal{X}. First we briefly recall what this Monodromy group is.

Let Z be an algebraic variety with $\pi: Z \rightarrow X$ a surjective finite map of degree $d>0$. Let $p \in X$ be a general point of X and $\pi^{-1}(p)=\left\{q_{0}, \ldots, q_{d-1}\right\}$ be its fibre. Let $U \subset X$ be a suitable small open subset of X and set $V=\pi^{-1}(U)$. Then for any loop $\lambda:[0,1] \rightarrow U$ based at p, and any point $q_{i} \in \pi^{-1}(p)$, there exists a unique path $\widetilde{\lambda}_{i}$ in V such that $\pi\left(\widetilde{\lambda}_{i}\right)=\lambda$ and $\widetilde{\lambda}_{i}(0)=q_{i}$. So we may define a permutation σ_{λ} of $\pi^{-1}(p)$ by sending each point q_{i} to $\widetilde{\lambda}_{i}(1)=q_{j}$ (for some j). Since σ_{λ} only depends on the homotopy class of λ, we have a homomorphism $\pi_{1}(U, p) \rightarrow S_{d}$. The image of this homomorphism is called the Monodromy group of the map π. Note that where π is smooth $\pi(U)$ is d disjoint subset of Z. Therefore any loop λ in U must lift to a loop $\widetilde{\lambda}$ contained in one component of $\pi^{-1}(U)$, and hence have $\widetilde{\lambda}(0)=\widetilde{\lambda}(1)$. Therefore, to study the Monodromy group of π, one needs to look at where π is not smooth.

In our case the variety Z parametrises the quartic surfaces of \mathcal{X} with the 320 conics on them and the map $\pi: Z \rightarrow \mathbb{P}_{[A, B, C, D, E]}^{4}$ is the natural projection. We want to study the Monodromy group of π, that is, we want to look at the permutations of the conics as we draw loops on \mathbb{P}^{4}. First we study a simpler problem, namely we will look at the Monodromy group of the 16 planes associated to the point $q_{1}=[1,0,-2,-2,2] \in \mathbb{P}^{4}$. We shall denote this set of 16 planes by T_{1} (the planes are the tropes described in the proof of Theorem 2.3.8.

Lemma 3.2.1. Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ be a general point not lying on the Segre cubic nor on the 15 singular hyperplanes. The set T_{1} is $\left\{\gamma\left(r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w\right)=\right.$ $0 \mid \gamma \in \Gamma\}$ where

- $r_{0,1}=2^{3} B \sqrt{-q_{+D} q_{+C} q_{-E}}$,
- $r_{1,1}=\sqrt{q_{+C}}\left(\sqrt{p_{-2} p_{-0} p_{+2} p_{+1}}+p_{+2} \sqrt{p_{+1} p_{+0}}+\sqrt{p_{-2} p_{-1} p_{+2} p_{+0}}+p_{-2} \sqrt{p_{-1} p_{-0}}\right)$,
- $r_{2,1}=\sqrt{q_{+D}}\left(\sqrt{p_{-1} p_{-0} p_{+1} p_{+2}}+p_{+1} \sqrt{p_{+2} p_{+0}}+\sqrt{p_{-1} p_{-2} p_{+1} p_{+0}}+p_{-1} \sqrt{p_{-2} p_{-0}}\right)$,
- $r_{3,1}=-\sqrt{-q_{-E}}\left(\sqrt{p_{-0} p_{-1} p_{+0} p_{+2}}+p_{+0} \sqrt{p_{+2} p_{+1}}+\sqrt{p_{-0} p_{-2} p_{+0} p_{+1}}+p_{-0} \sqrt{p_{-2} p_{-1}}\right)$,
where $p_{ \pm i}, q_{ \pm \alpha}$ are the equations in Proposition 2.3.1.

Proof. Theorem 3.1.1 already gives an expression for the planes, but we use the fact that $K\left(r_{1,1}, r_{2,1}, r_{\mu, 1}\right)$ is isomorphic to
$K\left(\sqrt{\Delta q_{+C} p_{-0} p_{+1}}, \sqrt{\Delta q_{+C} p_{+0} p_{-1}}, \sqrt{\Delta q_{+D} p_{+0} p_{-2}}, \sqrt{\Delta q_{+D} p_{-0} p_{+2}}, \sqrt{-\Delta q_{-E} p_{+1} p_{-2}}\right)$
and rewrite the singular point $\left[r_{3,1}, r_{2,1}, r_{1,1}, 1\right]$ in terms of linear combinations of square roots.

That is, let r be any of the coordinates, we know that r solves a degree 8 polynomial whose terms are all even, and $K(r) \cong K\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}, \sqrt{\Delta_{3}}\right)$ for some Δ_{i} 's. So let $r=a_{0}+a_{1} \sqrt{\Delta_{1}}+a_{2} \sqrt{\Delta_{2}}+\cdots+a_{7} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3}}$. The Galois group of $K\left(\sqrt{\Delta_{1}}, \sqrt{\Delta_{2}}, \sqrt{\Delta_{3}}\right)$ is naturally generated by $\sigma_{1}, \sigma_{2}, \sigma_{3}$ where $\sigma_{i}\left(\sqrt{\Delta_{j}}\right)=\left\{\begin{array}{ll}-\sqrt{\Delta_{j}} & i=j \\ \sqrt{\Delta_{j}} & j \neq i\end{array}\right.$. On one hand we know that the minimal polynomial of r factorises as

$$
(x-r)(x+r)\left(x-\frac{1}{r}\right)\left(x+\frac{1}{r}\right)(x-\bar{r})(x+\bar{r})\left(x-\frac{1}{\bar{r}}\right)\left(x+\frac{1}{\bar{r}}\right),
$$

and on the other hand, it factorises as

$$
\prod_{\sigma \in \operatorname{Gal}(K(r) / K)}\left(x-\sigma\left(a_{0}+a_{1} \sqrt{\Delta_{1}}+\cdots+a_{7} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3}}\right)\right) .
$$

Now comparing the x^{7} coefficient of both factorisation we deduce $0=r-r+\cdots+$ $\frac{1}{\bar{r}}-\frac{1}{\bar{r}}=8 a_{0}$, hence $a_{0}=0$. Without loss of generality, suppose that $\sigma_{1}(r)=-r$, then $0=r-r=a_{2} \sqrt{\Delta_{2}}+a_{3} \sqrt{\Delta_{3}}+a_{6} \sqrt{\Delta_{2} \Delta_{3}}$, so

$$
r=\sqrt{\Delta_{1}}\left(a_{1}+a_{4} \sqrt{\Delta_{2}}+a_{5} \sqrt{\Delta_{3}}+a_{7} \sqrt{\Delta_{2} \Delta_{3}}\right) .
$$

If we suppose $\sigma_{2}(r)=\frac{1}{r}$ and $\sigma_{3}(r)=\bar{r}$, then

$$
\begin{aligned}
r+\frac{1}{r}+\bar{r}+\frac{1}{\bar{r}} & =4 a_{1} \sqrt{\Delta_{1}}, \\
r-\frac{1}{r}+\bar{r}-\frac{1}{\bar{r}} & =4 a_{4} \sqrt{\Delta_{1} \Delta_{2}}, \\
r+\frac{1}{r}-\bar{r}-\frac{1}{\bar{r}} & =4 a_{5} \sqrt{\Delta_{1} \Delta_{3}}, \\
r-\frac{1}{r}-\bar{r}+\frac{1}{\bar{r}} & =4 a_{7} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3}} .
\end{aligned}
$$

Hence we can easily work out $a_{1}, a_{4}, a_{5}, a_{7}$, and therefore r, by calculating the minimal polynomial of the above four expressions. We apply that theory to $r_{3,1}, r_{2,1}$ and $r_{1,1}$ in turn, and after some rearrangement we get the required result.

Remark. Similarly, for every $i \in\{1, \ldots, 10\}$, we can work out T_{i}, the set of the 16 planes associated to the point q_{i}. The list of the 10 sets T_{i} can be found in Appendix
A.3. Furthermore, the implementation of these calculations can be found [Bou].

Hence, to study the Monodromy group of the set T_{1} on a K3 surface, we need the object \mathcal{Z} defined by
$\left\{([A, B, C, D, E],[a, b, c, d]) \mid[a, b, c, d] \in\left\{\gamma\left(\left[r_{0,1}, r_{1,1}, r_{2,1}, r_{3,1}\right]\right): \gamma \in \Gamma\right\}\right\} \subset \mathbb{P}^{4} \times \mathbb{P}^{3}$.
Note that we set up $\mathbb{P}_{[a, b, c, d]}^{3}$ to be the dual of $\mathbb{P}_{[x, y, z, w]}^{3}$, that is a point $[a, b, c, d] \in$ $\mathbb{P}_{[a, b, c, d]}^{3}$ represents the plane $a x+b y+c z+d w=0$ in $\mathbb{P}_{[x, y, z, w]}^{3}$. Now by the above lemma, $r_{i, 1}$ involves square roots and hence \mathcal{Z} is not a variety. So instead of looking at the planes defined by the point $[A, B, C, D, E]$, we look at the points $[A, B, C, D, E]$ that can be defined by a given plane $a x+b y+c z+d w=0$. Pick a point $[a, b, c, d] \in \mathbb{P}^{3}$ and, following Proposition 2.3.4 let

- $A_{1}=(b c+a d)(b c-a d)(a c+b d)(a c-b d)(c d+a b)(c d-a b)$,
- $B_{1}=2 a b c d\left(-a^{2}-b^{2}+c^{2}+d^{2}\right)\left(-a^{2}+b^{2}+c^{2}-d^{2}\right)\left(a^{2}-b^{2}+c^{2}-d^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$,
- $C_{1}=(b c+a d)(b c-a d)(a c+d b)(a c-b d)\left(a^{4}+b^{4}-c^{4}-d^{4}\right)$,
- $D_{1}=(b c+a d)(b c-a d)(c d+a b)(c d-a b)\left(-a^{4}+b^{4}-c^{4}+d^{4}\right)$,
- $E_{1}=(a c+d b)(a c-b d)(c d+a b)(c d-a b)\left(a^{4}-b^{4}-c^{4}+d^{4}\right)$.

The point $[A, B, C, D, E]$ defines a quartic surface whose intersection with the plane $a x+b y+c z+d y=0$ is two conics if and only if $[A, B, C, D, E]$ lies on the line joining $\left[A_{1}, B_{1}, C_{1}, D_{1}, E_{1}\right]$ and $q_{1}=[1,0,-2,-2,2]$. The line in $\mathbb{P}_{[A, B, C, D, E]}^{4}$ joining these two points is defined by the equations

- $g_{1}:=2\left(E_{1}+D_{1}\right) A-\left(2 A_{1}-E_{1}\right) D-\left(2 A_{1}+D_{1}\right) E=0$
- $g_{2}:=2\left(C_{1}-D_{1}\right) A-\left(2 A_{1}+D_{1}\right) C+\left(2 A_{1}+C_{1}\right) D=0$
- $g_{3}:=2 B_{1} A-\left(2 A_{1}+D_{1}\right) B+B_{1} D=0$

So consider the variety \mathcal{V}_{1} defined by

$$
\left\{g_{1}=g_{2}=g_{3}=0\right\} \subseteq \mathbb{P}_{[A, B, C, D, E]}^{4} \times \mathbb{P}_{[a, b, c, d]}^{3}
$$

The variety \mathcal{V}_{1} has the following properties:

- over any point of the dual of \mathcal{L}, we have a copy of $\mathbb{P}_{[A, B, C, D, E]}^{4}$,
- over the conic $a^{2}-b^{2}-c^{2}+d^{2}$, we have a copy of $\mathbb{P}_{[A, B, C, D, E]}^{4}$,
- over the point q_{1}, we have a copy of $\mathbb{P}_{[a: b: c: d]}^{3}$,
- everywhere else, the variety \mathcal{V}_{1} coincides with \mathcal{Z}.

We note that the dual of $\mathcal{L} \subset \mathbb{P}_{[x, y, z, w]}^{3}$ is itself $\mathcal{L} \subset \mathbb{P}_{[a, b, c, d]}^{3}$ (by making the correspondence $x \leftrightarrow a, \ldots, w \leftrightarrow d)$, as each L_{i} is dual to \bar{L}_{i}. Similarly, we have that the dual of each quadric $Q_{i} \subset \mathbb{P}_{[x, y, z, w]}^{3}$ can be identified with the quadric itself $Q_{i} \subset \mathbb{P}_{[a, b, c, d]}^{3}$.

Lemma 3.2.2. Let $\mathcal{V}_{1} \subset \mathbb{P}_{[A, B, C, D, E]}^{4} \times \mathbb{P}_{[a, b, c, d]}^{3}$ be as above and π_{1}, π_{2} the projective maps $\mathcal{V}_{1} \mapsto \mathbb{P}_{[a, b, c, d]}^{3}$ and $\mathcal{V}_{1} \mapsto \mathbb{P}_{[A, B, C, D, E]}^{4}$ respectively. Then the projective map $\pi_{2}: \mathcal{V}_{1} \rightarrow \mathbb{P}_{[A, B, C, D, E]}^{4}$ is smooth away from the points p such that $\pi_{1}(p)$ lies on 10 quadrics Q_{i}, or $\pi_{2}(p)$ is the point $q_{1}=[1,0,-2,-2,2]$.

Proof. Note that the union of the 15 pairs of lines \mathcal{L} are contained in the 10 quadrics Q_{i}. Away from these 15 pairs of lines, once we have fixed $[a, b, c, d]$, we have that the point $[A, B, C, D, E]$ is of the form

$$
\left[\mu A_{1}+(1-\mu), \mu B_{1}, \mu C_{1}-2(1-\mu), \mu D_{1}-2(1-\mu), \mu E_{1}+2(1-\mu)\right]
$$

for some $\mu \in K$. We want to show that the Jacobian matrix

$$
\left(\left.\frac{\partial g_{i}}{\partial x_{j}}\right|_{A=\mu A_{1}+(1-\mu), B=\mu B_{1}, C=\mu C_{1}-2(1-\mu), D=\mu D_{1}-2(1-\mu), E=\mu E_{1}+2(1-\mu)}\right)_{i, j}
$$

has rank 3. This is equivalent to showing that the determinant of at least one of the four matrices obtained from deleting a row in the Jacobian is non-zero. We calculate ($\overline{\mathrm{Bou}}]$) that the four determinants are $8 \mu^{3} a F,-8 \mu^{3} b F, 8 \mu^{3} c F$, and $-8 \mu^{3} d F$ where

$$
\begin{aligned}
F= & (b c-a d)^{4}(b c+a d)^{4}(a c-b d)^{2}(a c+b d)^{2}(a b-c d)^{4}(a b+c d)^{4} \\
& \cdot\left(a^{2}-b^{2}-c^{2}+d^{2}\right)^{6}\left(a^{2}-b^{2}+c^{2}-d^{2}\right)^{2}\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{4}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2} .
\end{aligned}
$$

Note that F is a product of the 10 quadratics defining Q_{i}, and hence cannot be 0 . While if $\mu=0$, then the surface $[A, B, C, D, E]$ is $[1,0,-2,-2,2]$. If $F \neq 0$ and $\mu \neq 0$, then one of the four determinants must be non-zero, hence the projection map is smooth at that place.

So we only need to worry about points lying on one of the 10 quadrics Q_{i}. From our construction (i.e., the object \mathcal{Z} and not the variety \mathcal{V}_{1}), any such point either lies on \mathcal{L} or gives rise to one of the 10 singular points on S_{3}, and hence corresponds to a quartic K3 surface lying on one of the 15 singular hyperplanes. Therefore to study the Monodromy group of T_{1}, we only need to look at the 15 singular hyperplanes. We will study this on the level of the object \mathcal{Z} and not the variety \mathcal{V}_{1}.

Proposition 3.2.3. Given a non-singular K3 surface defined by the point $p=[A, B, C, D, E] \in$ \mathbb{P}^{4}, we can find a loop based at p that:

1. goes around the singular hyperplane $\left\{q_{+C}=0\right\}$ and avoids the 15 singular hyperplanes,
2. changes the sign of $\sqrt{q_{+C}}$ in the equations defining $r_{0,1}, r_{1,1}, r_{2,1}$ and $r_{3,1}$.

This loop sends the plane

$$
r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w=0
$$

to the plane

$$
\gamma_{3}\left(r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w\right)=0
$$

(where $\gamma_{3} \in \Gamma<\Omega$ as defined in Section 2.3).
Proof. Pick a point $[A, B, C, D, E] \in \mathbb{P}^{4}$ which does not represent a singular K3 surface, and note that $C \in K \subset \mathbb{C}$ can be written uniquely as $-2 A+r e^{i \phi}$ for some $r \in \mathbb{R}_{>0}$ and $\phi \in[0,2 \pi)$. Define a loop $\widetilde{\lambda}(t)=\left[\widetilde{\lambda}_{A}(t), \widetilde{\lambda}_{B}(t), \widetilde{\lambda}_{C}(t), \widetilde{\lambda}_{D}(t), \widetilde{\lambda}_{E}(t)\right](0 \leq t \leq 3)$ as $\widetilde{\lambda}_{j}=j$ for all $t \in[0,3], j \in\{A, B, D, E\}$ and $\widetilde{\lambda}_{C}=-2 A+f(t)$, with f composed of the following three segments:

$$
f(t)= \begin{cases}(\rho t+r(1-t)) e^{i \phi} & t \in[0,1] \\ \rho e^{i \phi+i(t-1) 2 \pi} & t \in[1,2] \\ (\rho(3-t)+r(t-2)) e^{i \phi} & t \in[2,3]\end{cases}
$$

and where $\rho \in \mathbb{R}_{>0}$ satisfies

$$
\rho<\min \{|B+2 D+2 E|,|-B+2 D+2 E|,|8 A+B+2 D-2 E|,|8 A-B+2 D-2 E|\} .
$$

Now consider how the point $\left[r_{0,1}, r_{1,1}, r_{2,1}, r_{3,1}\right]$ (where we have fixed a root for each square roots) changes as we travel along this loop. As t changes, the 10 equations occurring in $r_{0,1}, r_{1,1}, r_{2,1}$ and $r_{3,1}$ are affected in the following ways:

- $q_{+C}=f(t)$,
- q_{+D}, q_{-E}, and B all stay the same,
- $p_{+0}=-p_{-1}=B+2 D+2 E+2 f(t)$,
- $p_{-0}=-p_{+1}=-B+2 D+2 E+2 f(t)$,
- $p_{+2}=8 A+B+2 D-2 E-2 f(t)$,
- $p_{-2}=8 A-B+2 D-2 E-2 f(t)$.

For ease of argument we assume that for $0 \leq t \leq 1$, none of $\left\{p_{+0}, p_{-0}, p_{+1}, p_{-1}, p_{+2}, p_{-2}\right\}$ are 0 (if they are, the argument can be changed by slightly curving the first segment instead of using a straight line). So for the first segment, we see that nothing remarkable happens. During the second segment, we have chosen ρ small enough so that none of $p_{+0}, p_{-0}, p_{+1}, p_{-1}, p_{+2}$ and p_{-2} are 0 , but we see that $\sqrt{q_{+C}}$ is affected. Indeed, if
we choose the square root of $e^{i \phi}$ to be $e^{\frac{i \phi}{2}}$, we see that $\sqrt{q_{+C}}=\sqrt{\rho} e^{\frac{i \phi}{2}+i(t-1) \pi}$. Hence at $t=1, \sqrt{q_{+C}}$ is the chosen root, but at $t=2$ the sign has changed. Note that the third segment is the same as the first segment but backwards.

Finally, one can see that by changing the sign of $\sqrt{q_{+C}}$, we have $r_{0,1} \mapsto-r_{0,1}$, $r_{1,1} \mapsto-r_{1,1}, r_{2,1} \mapsto r_{2,1}$ and $r_{3,1} \mapsto r_{3,1}$. Hence the plane $r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w=$ 0 gets mapped to the plane $r_{0,1} x+r_{1,1} y-r_{2,1} z-r_{3,1} w=0=\gamma_{3}\left(r_{0,1} x+r_{1,1} y+r_{2,1} z+\right.$ $\left.r_{3,1} w\right)$.

A very similar argument works for the singular hyperplanes defined by q_{+D}, q_{-E}, $p_{+0}, p_{-0}, p_{+1}, p_{-1}, p_{+2}$ and p_{-2}. For the singular hyperplanes defined by A, q_{-C}, q_{-D}, q_{+E}, p_{+3} and p_{-3}, we note that either $\left[r_{0,1}, r_{1,1}, r_{2,1}, r_{3,1}\right]$ are completely unaffected, or see by direct calculations that we still have 16 different planes when substituting in $A=0$, or $q_{-C}=0, \ldots$ etc.

Notation. Out of the 15 singular hyperplanes, the point q_{1} lies on nine of them, namely those defined by $q_{+C}, q_{+D}, q_{-E}, p_{+0}, p_{-0}, p_{+1}, p_{-1}, p_{+2}$ and p_{-2}. We shall denote the set of these nine singular hyperplanes by $\Sigma_{q_{1}}$.

Proposition 3.2.4. The Monodromy group of the set T_{1} is isomorphic to Γ and hence C_{2}^{4}.

Proof. By the above discussion, the permutations of the 16 planes in T_{1} come from changing the sign of the square roots $\sqrt{\Delta_{i}}$ for $\Delta_{i} \in \Sigma_{q_{1}}$. By direct calculation, letting Π be the plane $r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w=0$, we have:

- $\sqrt{q_{+C}} \mapsto-\sqrt{q_{+C}}$ corresponds to $\Pi \mapsto \gamma_{3}(\Pi)$,
- $\sqrt{q_{+D}} \mapsto-\sqrt{q_{+D}}$ corresponds to $\Pi \mapsto \gamma_{4}(\Pi)$,
- $\sqrt{-q_{-E}} \mapsto-\sqrt{-q_{-E}}$ corresponds to $\Pi \mapsto \gamma_{3} \gamma_{4}(\Pi)$,
- $\sqrt{p_{+0}} \mapsto-\sqrt{p_{+0}}$ corresponds to $\Pi \mapsto \gamma_{1} \gamma_{2}(\Pi)$,
- $\sqrt{p_{-0}} \mapsto-\sqrt{p_{-0}}$ corresponds to $\Pi \mapsto \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}(\Pi)$,
- $\sqrt{p_{+1}} \mapsto-\sqrt{p_{+1}}$ corresponds to $\Pi \mapsto \gamma_{2} \gamma_{3} \gamma_{4}(\Pi)$,
- $\sqrt{p_{-1}} \mapsto-\sqrt{p_{-1}}$ corresponds to $\Pi \mapsto \gamma_{2} \gamma_{3}(\Pi)$,
- $\sqrt{p_{+2}} \mapsto-\sqrt{p_{+2}}$ corresponds to $\Pi \mapsto \gamma_{1} \gamma_{3} \gamma_{4}(\Pi)$,
- $\sqrt{p_{-2}} \mapsto-\sqrt{p_{-2}}$ corresponds to $\Pi \mapsto \gamma_{1} \gamma_{4}(\Pi)$.

Hence, we see that the Monodromy group of T_{1} is isomorphic to Γ.
Next we want to calculate the Monodromy group of the 160 planes which intersect a surface in \mathcal{X} to give the 320 conics. First, for each $i \in[2, \ldots, 10]$, we want to
calculate the Monodromy group of the 16 planes in T_{i}. To do so, we use the action induced by the group Ω acting on $\mathbb{P}^{3} \times \mathbb{P}^{4}$ as described in Remark 2.3.3 with the Monodromy group of T_{1}. The idea is as follows: if we pick an element $\phi \in \Omega$ which permutes q_{1} and q_{i}, then the Monodromy group of T_{1} on $\phi(X)$ is the same as the Monodromy group of T_{i} on X.

In more detail, pick an element $\phi \in \Omega$ which permutes q_{1} and q_{i}. Let H be a singular hyperplane, then $\phi(H)$ is also a singular hyperplane as Ω acts on the 15 singular hyperplanes. Using the isomorphism between the Mondromy group of T_{1} and Γ, let $\gamma_{\phi(H)} \in \Gamma$ be the element associated to $\phi(H)$. Then the element of the Monodromy group associated to H is $\phi^{-1} \cdot \gamma_{\phi(H)} \cdot \phi \in \Gamma$, as Γ is normal in Ω.

Example. We work out explicitly some of the cases for the point q_{2}. We use the element ϕ_{2} which permutes the points q_{1} and q_{2}.

Since $\phi_{2}(A)=A$, the element corresponding to the hyperplane A in the Monodromy group of T_{2} is $\phi_{2}^{-1} \gamma_{A} \phi_{2}=\phi_{2}^{-1} \cdot \mathrm{id} \cdot \phi_{2}=\mathrm{id}$.

Since $\phi_{2}\left(q_{+E}\right)=q_{+D}$, the element corresponding to the hyperplane q_{+E} in the Monodromy group of T_{2} is $\phi_{2}^{-1} \gamma_{q_{+D}} \phi_{2}=\phi_{2}^{-1} \cdot \gamma_{4} \cdot \phi_{2}=\gamma_{3} \gamma_{4}$.

We summarise the information in Table 3.1 below, the row headings are the equations defining the 15 singular hyperplanes and the column headings are the 10 set T_{i}. Each entry is an element $\gamma \in \Gamma$ and represents how changing the sign of the square root of that equation permutes the 16 planes in T_{i} (which we know can be represented as an element of Γ). An empty box stands for the identity element in Γ.

Lemma 3.2.2 why we need to look at the 15 singular hyperplanes for the Monodromy group of the 16 planes. We argue here that for the 160 planes, it is sufficient to look at the 15 singular hyperplanes. Let $\mathcal{V}_{1} \subset \mathbb{P}_{[A, B, C, D, E]}^{4} \times \mathbb{P}_{[a, b, c, d]}^{3}$ be as before, and let $\mathcal{V}_{i} \subset \mathbb{P}_{[A, B, C, D, E]}^{4} \times \mathbb{P}_{\left[a_{i}, b_{i}, c_{i}, d_{i}\right]}^{3}$ be the corresponding variety for T_{i}, $i \in[2, \ldots, 10]$. For $1 \leq i \leq 10$, let $\pi_{i}: \mathcal{V}_{i} \rightarrow \mathbb{P}_{[A, B, C, D, E]}^{4}$ be the natural projections, which we know are smooth away from the 15 singular hyperplanes. Embed each \mathcal{V}_{i} in $\mathbb{P}_{[A, B, C, D, E]}^{4} \times \mathbb{P}_{[a, b, c, d]}^{3} \times \mathbb{P}_{\left[a_{2}, b_{2}, c_{2}, d_{2}\right]}^{3} \times \cdots \times \mathbb{P}_{\left[a_{10}, b_{10}, c_{10}, d_{10}\right]}^{3}$, and let $\mathcal{V}=\cap \mathcal{V}_{i}$ be the variety for the 160 planes. Considering $\pi: \mathcal{V} \rightarrow \mathbb{P}_{[A, B, C, D, E]}^{4}$, we see that the Jacobian matrix of π is $J_{\pi}=\oplus_{i=1}^{10} J_{\pi_{i}}$. Hence, we conclude that π is smooth away from the 15 singular hyperplane.

Theorem 3.2.5. The Monodromy group of the 160 planes is C_{2}^{9}.
Proof. We use the information given in Table 3.1. The Monodromy group is a subgroup of S_{160}. After embedding in S_{160} the elements associated to the 15 singular planes, we check ($(\widehat{\mathrm{Bou}})^{\prime}$ that they generate a subgroup of order 2^{9}. From the table, we see that the elements associated to the 15 singular planes commute with each other and have order 2, hence we know that all non-trivial element of the Monodromy group has order 2 . Since the only group of order 2^{9} with every non-trivial elements being involutions is C_{2}^{9}, the Monodromy group of the 160 planes is C_{2}^{9}.

	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}	T_{6}	T_{7}	T_{8}	T_{9}	T_{10}
A					γ_{3}	γ_{3}	γ_{4}	γ_{4}	$\gamma_{3} \gamma_{4}$	$\gamma_{3} \gamma_{4}$
q_{+C}	γ_{3}	γ_{3}					$\gamma_{1} \gamma_{3}$	γ_{1}	$\gamma_{1} \gamma_{3}$	γ_{1}
$-q_{-C}$			γ_{3}	γ_{3}			$\gamma_{1} \gamma_{4}$	$\gamma_{1} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{4}$
q_{+D}	γ_{4}		γ_{4}		$\gamma_{2} \gamma_{4}$	γ_{2}			$\gamma_{2} \gamma_{4}$	γ_{2}
$-q_{-D}$		γ_{4}		γ_{4}	$\gamma_{2} \gamma_{3}$	$\gamma_{2} \gamma_{3} \gamma_{4}$			$\gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{2} \gamma_{3}$
q_{+E}		$\gamma_{3} \gamma_{4}$	$\gamma_{3} \gamma_{4}$		$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2}$	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2}$		
$-q_{-E}$	$\gamma_{3} \gamma_{4}$			$\gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2} \gamma_{3}$	$\gamma_{1} \gamma_{2} \gamma_{4}$	$\gamma_{1} \gamma_{2} \gamma_{4}$	$\gamma_{1} \gamma_{2} \gamma_{3}$		
p_{+0}	$\gamma_{1} \gamma_{2}$	γ_{2}	γ_{1}		γ_{1}		γ_{2}		$\gamma_{1} \gamma_{2}$	
p_{-0}	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{2} \gamma_{4}$	$\gamma_{1} \gamma_{3}$			$\gamma_{1} \gamma_{3}$		$\gamma_{2} \gamma_{4}$		$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$
p_{+1}	$\gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2} \gamma_{4}$		$\gamma_{1} \gamma_{3}$	$\gamma_{1} \gamma_{3}$			$\gamma_{2} \gamma_{3} \gamma_{4}$		$\gamma_{1} \gamma_{2} \gamma_{4}$
p_{-1}	$\gamma_{2} \gamma_{3}$	$\gamma_{1} \gamma_{2} \gamma_{3}$		γ_{1}		γ_{1}	$\gamma_{2} \gamma_{3}$		$\gamma_{1} \gamma_{2} \gamma_{3}$	
p_{+2}	$\gamma_{1} \gamma_{3} \gamma_{4}$		$\gamma_{1} \gamma_{2} \gamma_{3}$	$\gamma_{2} \gamma_{4}$		$\gamma_{1} \gamma_{3} \gamma_{4}$	$\gamma_{2} \gamma_{4}$			$\gamma_{1} \gamma_{2} \gamma_{3}$
p_{-2}	$\gamma_{1} \gamma_{4}$		$\gamma_{1} \gamma_{2} \gamma_{4}$	γ_{2}	$\gamma_{1} \gamma_{4}$			γ_{2}	$\gamma_{1} \gamma_{2} \gamma_{4}$	
p_{+3}		$\gamma_{1} \gamma_{4}$	$\gamma_{2} \gamma_{3}$	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$		$\gamma_{1} \gamma_{4}$		$\gamma_{2} \gamma_{3}$	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	
p_{-3}		$\gamma_{1} \gamma_{3} \gamma_{4}$	$\gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2}$	$\gamma_{1} \gamma_{3} \gamma_{4}$		$\gamma_{2} \gamma_{3} \gamma_{4}$			$\gamma_{1} \gamma_{2}$

Table 3.1: The Monodromy group of the 160 planes

Definition 3.2.6. Each conic comes in a natural pair, i.e., each of the 160 plane intersecting the K3 surface gives two conics. We shall call two such conics conjugates of each other.

Recall from Section 3.1 that given the K3 surface X_{p} and the plane $T: r_{0,1} x+r_{1,1} y+$ $r_{2,1} z+r_{3,1} w=0$ in T_{1}, the two conics in $T \cap X_{p}$ are $Q_{1}+\sqrt{\frac{\mu_{1}}{\Delta}} Q^{\prime}$ and $Q_{1}-\sqrt{\frac{\mu_{1}}{\Delta}} Q^{\prime}$. Let $r_{\mu, 1}=\sqrt{\frac{\mu_{1}}{\Delta}}$, so that the conics are expressed as $Q_{1} \pm r_{\mu, 1} Q^{\prime}$. Using the same method as in the proof of Lemma 3.2.1, we express $r_{\mu, 1}$ explicitly in terms of A, B, C, D, E and find that:

$$
r_{\mu, 1}=\frac{\sqrt{-q_{+C} q_{+D} q_{-E}}}{\sqrt{\Delta} a_{2}}\left(b_{1} \sqrt{p_{-0} p_{+0}}+b_{2} \sqrt{p_{+1} p_{-1}}+b_{3} \sqrt{p_{+2} p_{-2}}+b_{4} \sqrt{p_{+0} p_{-0} p_{+1} p_{-1} p_{+2} p_{-2}}\right)
$$

$$
\text { where } a_{2}=b_{5} \sqrt{p_{+1} p_{-1} p_{+2} p_{-2}}+b_{6} \sqrt{p_{+0} p_{-0} p_{+2} p_{-2}}+b_{7} \sqrt{p_{+0} p_{-0} p_{+1} p_{-1}}+b_{8}
$$

where $b_{i} \in \mathbb{Z}[A, B, C, D, E]$. From the equation of the conics $Q_{1} \pm r_{\mu, 1} Q^{\prime}$ we get the equations of the other 30 conics associated to the point q_{1} using the action of Γ. From $r_{\mu, 1}$ we see that on top of looking at the loops going around the 15 singular hyperplanes, we need to look at loops going around the Segre cubic. For this, we need the following lemma.

Lemma 3.2.7. Let $|x|<\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$, then x satisfies $\left|a x+b x^{2}\right| \leq$ $|a x|+\left|b x^{2}\right|<|c|$. In particular this implies that $c+a x+b x^{2} \neq 0$.

Proof. This is a simple case by case proof:
Case 1. $|x|<1=\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$. Then $|a x|+\left|b x^{2}\right|<|a|+|b|$, since $1 \leq\left|\frac{c}{2 a}\right|$ and $\left|\frac{c}{2 b}\right|$, we know that $a, b \leq\left|\frac{c}{2}\right|$. Hence $|a|+|b| \leq|c|$.

Case 2. $\quad|x|<\frac{1}{|a|}=\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$. Then $|a x|+\left|b x^{2}\right|<1+\left|\frac{b}{a^{2}}\right| \leq$ $1+\left|\frac{b}{a}\right|$. Since $\frac{1}{|a|} \leq \frac{1}{|b|}$ implies $\left|\frac{b}{a}\right| \leq 1$, and $\frac{1}{|a|} \leq \frac{|c|}{|2 a|}$ implies $2 \leq|c|$, then $1+\left|\frac{b}{a}\right| \leq|c|$.

Case 3. $\quad|x|<\frac{1}{|b|}=\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$. Then $|a x|+\left|b x^{2}\right|<\left|\frac{a}{b}\right|+\left|\frac{1}{b}\right|$. As in case 2 , we see that $\left|\frac{a}{b}\right| \leq 1$ and $2 \leq|c|$, hence $\left|\frac{a}{b}\right|+\left|\frac{1}{b}\right| \leq 2 \leq|c|$.

Case 4. $\quad|x|<\left|\frac{c}{2 a}\right|=\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$. Then $|a x|+\left|b x^{2}\right|<\left|\frac{c}{2}\right|+\left|\frac{b c^{2}}{2 a^{2}}\right| \leq$ $\left|\frac{c}{2}\right|+\left|\frac{b c}{2 a}\right|$. As $\left|\frac{c}{2 a}\right| \leq\left|\frac{c}{2 b}\right|$ implies $\left|\frac{b}{a}\right| \leq 1$, we have that $\left|\frac{c}{2}\right|+\left|\frac{b}{a}\right|\left|\frac{c}{2}\right| \leq|c|$.

Case 5. $|x|<\left|\frac{c}{2 b}\right|=\min \left\{1,\left|\frac{1}{a}\right|,\left|\frac{1}{b}\right|,\left|\frac{c}{2 a}\right|,\left|\frac{c}{2 b}\right|\right\}$. Then $|a x|+\left|b x^{2}\right|<\left|\frac{a}{b}\right|\left|\frac{c}{2}\right|+$ $\left|\frac{c}{2 b}\right|\left|\frac{c}{2}\right| \leq\left|\frac{c}{2}\right|+\left|\frac{c}{2}\right| \leq|c|$.

Proposition 3.2.8. Given a non-singular K3 surface defined by the point $p=[A, B, C, D, E] \in$ \mathbb{P}^{4}, we can find a loop based at p that:

1. goes around the singular hyperplane $\left\{q_{+C}=0\right\}$ and avoids the 15 singular hyperplanes,
2. changes the sign of $\sqrt{-q}$ in the equations defining $r_{0,1}, r_{1,1}, r_{2,1}, r_{3,1}$ and $r_{\mu, 1}$.

This loop sends a conic on the plane $r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w=0$ to a conic on the plane $\gamma_{3}\left(r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w\right)=0$.

Proof. We construct the same loop as in Theorem 3.2 .3 with a slight modification. This time we put the constraint that $\rho \in \mathbb{R}_{>0}$ satisfies

$$
\begin{aligned}
& \rho<\min \{|B+2 D+2 E|,|-B+2 D+2 E|,|8 A+B+2 D-2 E|,|8 A-B+2 D-2 E|, 1, \\
& \left.\frac{1}{\left|-4 A^{2}+4 D E\right|}, \frac{1}{|4 A|}, \frac{\left|A^{2} B-4 A\left(D^{2}+E^{2}\right)+8 A D E\right|}{2\left|-4 A^{2}+4 D E\right|}, \frac{\left|A^{2} B-4 A\left(D^{2}+E^{2}\right)+8 A D E\right|}{2|4 A|}\right\} .
\end{aligned}
$$

The extra conditions mean that, by Lemma 3.2.7. $\Delta=\left(A^{2} B-4 A\left(D^{2}+E^{2}\right)+8 A D E\right)+$ $\left(4 C D-4 A^{2}\right) f(t)-4 A f(t)^{2} \neq 0$ during the second segment of the loop. At the same time, we see that the sign of the square root cannot change. Finally, this extra condition on ρ does not effect the rest of the proof of Theorem 3.2.3.

As with Theorem 3.2.3 we can adapt the above proof for loops going around the 15 singular planes. The next proposition looks at loops going around the Segre cubic.

Proposition 3.2.9. Given a non-singular K3 surface defined by the point $p=[A, B, C, D, E] \in$ \mathbb{P}^{4}, we can find a loop based at p that:

1. goes around the Segre cubic $\{\Delta=0\}$ and avoids the 15 singular hyperplanes,
2. changes the sign of $\sqrt{\Delta}$ in the equations defining $r_{0,1}, r_{1,1}, r_{2,1}, r_{3,1}$ and $r_{\mu, 1}$.

This loop permutes the two conjugate conics on the plane $r_{0,1} x+r_{1,1} y+r_{2,1} z+r_{3,1} w=0$.
Proof. First we claim that given such a K 3 surface there exists B^{\prime} such that the surface $\left[A, B^{\prime}, C, D, E\right]$ lies on the Segre cubic but not on the 15 singular hyperplanes. This first part of the statement is easy to see, solve

$$
16 A^{3}+A\left(B^{\prime}\right)^{2}-4 A\left(C^{2}+D^{2}+E^{2}\right)+4 C D E=0
$$

in terms on B^{\prime}. Since $A \neq 0$ as our surface is non-singular and we are working over $\overline{\mathbb{Q}}$, this has a solution (in fact B^{\prime} is at worse in a degree 2 extension of the field of definition of $A, B, C, D, E)$. For the second part, recall that if a point lies on the Segre cubic and one of the 15 singular hyperplanes, then it lies on a Segre plane, i.e., it must lie on a further two singular hyperplanes. But note that any surface lying on a Segre plane must lie on one singular hyperplane which is defined with no B (and hence B^{\prime})
term. Therefore if $\left[A, B^{\prime}, C, D, E\right]$ lied on such an singular hyperplane then so would $[A, B, C, D, E]$, contradicting our assumption that the surface is non-singular.

We construct a loop similar to the one in the proof of Theorem 3.2.3. Note that B can be written uniquely as $B^{\prime}+r e^{i \phi}$ for some $r \in \mathbb{R}_{>0}$ and $\phi \in[0,2 \pi)$. Define a loop $\widetilde{\gamma}(t)=\left[\widetilde{\gamma}_{A}(t), \widetilde{\gamma}_{B}(t), \widetilde{\gamma}_{C}(t), \widetilde{\gamma}_{D}(t), \widetilde{\gamma}_{E}(t)\right](0 \leq t \leq 3)$ as $\widetilde{\gamma}_{i}=i$ for all t and $i \in\{A, C, D, E\}$ and $\widetilde{\gamma}_{B}=B^{\prime}+f(t)$, where f is composed of the following 3 segments:

$$
f(t)= \begin{cases}(\rho t+r(1-t)) e^{i \phi} & t \in[0,1] \\ \rho e^{i \phi+i(t-1) 2 \pi} & t \in[1,2] \\ (\rho(3-t)+r(t-2)) e^{i \phi} & t \in[2,3]\end{cases}
$$

and $\rho \in \mathbb{R}_{>0}$ satisfies

$$
\begin{aligned}
\rho< & \min \left\{\left|4 A \pm B^{\prime}+2 C+2 D+2 E\right|,\left|4 A \pm B^{\prime}+2 C-2 D-2 E\right|\right. \\
& \left.\left|4 A \pm B^{\prime}-2 C+2 D-2 E\right|,\left|4 A \pm B^{\prime}-2 C-2 D+2 E\right|,\left|2 B^{\prime}\right|\right\}
\end{aligned}
$$

Note that with the conditions on ρ the loop γ never loops around the 15 singular hyperplanes, hence as we have seen before, the 15 square roots (of the defining equations of the 15 singular hyperplanes) do not have a sign change. As for $\sqrt{\Delta}$, note that the first and third segments leave it untouched, while for the second segment

$$
\begin{aligned}
\Delta & =16 A^{3}-4 A\left(C^{2}+D^{2}+E^{2}\right)+4 C D E+A\left(B^{\prime}+\rho e^{i \phi+i(t-1) 2 \pi}\right)^{2} \\
& =-A B^{\prime 2}+A\left(B^{\prime}+\rho e^{i \phi+i(t-1) 2 \pi}\right)^{2} \\
& =A\left(B^{\prime}+\rho e^{i \phi+i(t-1) 2 \pi}+B^{\prime}\right)\left(B^{\prime}+\rho e^{i \phi+i(t-1) 2 \pi}-B^{\prime}\right) \\
& =A \rho e^{i \phi+i(t-1) 2 \pi}\left(2 B^{\prime}+\rho e^{i \phi+i(t-1) 2 \pi}\right) .
\end{aligned}
$$

Hence as in the previous proof, we find that as we loop around the Segre cubic, $\Delta=0$, the sign of $\sqrt{\Delta}$ changes. As only the sign of $\sqrt{\Delta}$ changes, we see $Q_{1}+r_{\mu, 1} Q^{\prime}$ is sent to $Q_{1}-r_{\mu, 1} Q^{\prime}$.

Note that the above only works under the assumption that $B^{\prime} \neq 0$. In the case $B^{\prime}=0$, we first need to find a path from our point $[A, B, C, D, E]$ to the point $[A+\epsilon, B, C, D, E]$, where ϵ is small enough that we do not go near any singular hyperplane nor the Segre cubic. In that case, we use the point $[A+\epsilon, B, C, D, E]$ as our starting point.

Hence we use the explicit equations of the conics to find the Monodromy group of the 32 conics defined by the point q_{1}. Then, as before, we use the group Ω acting on our set of points $\left\{q_{i}\right\}$ and 15 singular hyperplanes to find the Monodromy group of the 32 conics defined by each of the points q_{i}. We summarise the information in Table
3.2 where again the rows are the 15 singular hyperplanes or the Segre cubic and the columns are the points q_{i}. Entries are empty for the identity element or are elements of Γ with a \pm sign. A -1 denotes the elements that conjugate conics, that is permute conics defined on the same plane, and $\gamma \in \Gamma$ corresponds to the permutation of the defining plane (as with Table 3.1).

Theorem 3.2.10. The Monodromy group of the 320 conics is C_{2}^{10}.
Proof. We use the information given in Table 3.2. The Monodromy group is a subgroup of S_{320}. After embedding in S_{320} the elements associated to the 15 singular planes and Segre cubic, we check (||Bou|) that they generate a subgroup of order 2^{10}. From the table, we see that the elements associated to the 15 singular planes and Segre cubic commute with each other and have order 2, hence we know that every non-trivial element of the Monodromy group has order 2. Since the only group of order 2^{10} with all non-trivial elements being involutions is C_{2}^{10}, the Monodromy group of the 320 conics is C_{2}^{10}.

Corollary 3.2.11. The moduli space of pairs (X, C), where X is a Heisenberginvariant quartic $K 3$ surface and C one of the 320 conic on X, has 10 irreducible components.

Proof. Let Z be the moduli space of pairs (X, C) with X a surface in \mathcal{X} and C a conic lying on X. We showed that the Monodromy group of $\pi, \pi: Z \rightarrow \mathbb{P}_{[A, B, C, D, E]}^{4}$, breaks the 320 conics on X in 10 orbits of size 32. Since calculating the Monodromy group involves lifting a path in $\mathbb{P}_{[A, B, C, D, E]}^{4}$ to a path in Z, any two elements in the same orbit represent two connected elements in Z. Finally, since the paths avoided where π was not smooth, the 10 orbits correspond to 10 smooth connected components of Z, i.e., 10 irreducible components.

3.3 K3 surfaces with many \mathbb{Q}-conics

We finish this chapter by using the field of definition of the conics, and the construction of the planes, to find rational invariant K3 surfaces with as many rational conics as possible.

Lemma 3.3.1. Let X be an invariant K 3 surface containing one rational conic. Then X contains 32 rational conics all associated to the same point q_{i} for some $i \in[1, \ldots, 10]$.

Proof. Without loss of generality, assume the rational conic X contains is associated to the point q_{1}. Its conjugate (i.e., the other conic lying on the same plane) must also be defined over \mathbb{Q} and is associated to the point q_{1}. Let Γ act on X. As Γ is defined over \mathbb{Q}, the orbit of the two conics, which are 32 conics, are defined over \mathbb{Q}. As Γ fixes X and q_{1} in \mathbb{P}^{4}, the 32 conics are all associated to the point q_{1}.

	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}	q_{10}	
Δ	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
A					$-\gamma_{3}$	$-\gamma_{3}$	$-\gamma_{4}$	$-\gamma_{4}$	$-\gamma_{3} \gamma_{4}$	$-\gamma_{3} \gamma_{4}$	
q_{+C}	$-\gamma_{3}$	$-\gamma_{3}$					$-\gamma_{1} \gamma_{3}$	$-\gamma_{1}$	$-\gamma_{1} \gamma_{3}$	$-\gamma_{1}$	
$-q_{-C}$			$-\gamma_{3}$	$-\gamma_{3}$			$-\gamma_{1} \gamma_{4}$	$-\gamma_{1} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{4}$	
q_{+D}	$-\gamma_{4}$		$-\gamma_{4}$		$-\gamma_{2} \gamma_{4}$	$-\gamma_{2}$			$-\gamma_{2} \gamma_{4}$	$-\gamma_{2}$	
$-q_{-D}$		$-\gamma_{4}$		$-\gamma_{4}$	$-\gamma_{2} \gamma_{3}$	$-\gamma_{2} \gamma_{3} \gamma_{4}$			$-\gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{2} \gamma_{3}$	
q_{+E}		$-\gamma_{3} \gamma_{4}$	$-\gamma_{3} \gamma_{4}$		$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{2}$	$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{2}$			
$-q_{-E}$	$-\gamma_{3} \gamma_{4}$			$-\gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{2} \gamma_{3}$	$-\gamma_{1} \gamma_{2} \gamma_{4}$	$-\gamma_{1} \gamma_{2} \gamma_{4}$	$-\gamma_{1} \gamma_{2} \gamma_{3}$			
p_{+0}	$-\gamma_{1} \gamma_{2}$	$-\gamma_{2}$	$-\gamma_{1}$		$-\gamma_{1}$		$-\gamma_{2}$		$-\gamma_{1} \gamma_{2}$		
p_{-0}	$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{2} \gamma_{4}$	$-\gamma_{1} \gamma_{3}$			$-\gamma_{1} \gamma_{3}$		$-\gamma_{2} \gamma_{4}$		$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	
p_{+1}	$-\gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{2} \gamma_{4}$		$-\gamma_{1} \gamma_{3}$	$-\gamma_{1} \gamma_{3}$			$-\gamma_{2} \gamma_{3} \gamma_{4}$			$-\gamma_{1} \gamma_{2} \gamma_{4}$
p_{-1}	$-\gamma_{2} \gamma_{3}$	$-\gamma_{1} \gamma_{2} \gamma_{3}$		$-\gamma_{1}$		$-\gamma_{1}$	$-\gamma_{2} \gamma_{3}$		$-\gamma_{1} \gamma_{2} \gamma_{3}$		
p_{+2}	$-\gamma_{1} \gamma_{3} \gamma_{4}$		$-\gamma_{1} \gamma_{2} \gamma_{3}$	$-\gamma_{2} \gamma_{4}$		$-\gamma_{1} \gamma_{3} \gamma_{4}$	$-\gamma_{2} \gamma_{4}$		$-\gamma_{1} \gamma_{2} \gamma_{3}$		
p_{-2}	$-\gamma_{1} \gamma_{4}$		$-\gamma_{1} \gamma_{2} \gamma_{4}$	$-\gamma_{2}$	$-\gamma_{1} \gamma_{4}$			$-\gamma_{2}$	$-\gamma_{1} \gamma_{2} \gamma_{4}$		
p_{+3}		$-\gamma_{1} \gamma_{4}$	$-\gamma_{2} \gamma_{3}$	$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$		$-\gamma_{1} \gamma_{4}$		$-\gamma_{2} \gamma_{3}$	$-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$		
p_{-3}		$-\gamma_{1} \gamma_{3} \gamma_{4}$	$-\gamma_{2} \gamma_{3} \gamma_{4}$	$-\gamma_{1} \gamma_{2}$	$-\gamma_{1} \gamma_{3} \gamma_{4}$		$-\gamma_{2} \gamma_{3} \gamma_{4}$				$-\gamma_{1} \gamma_{2}$

Table 3.2: Monodromy of the 320 conics

Proposition 3.3.2. Over \mathbb{Q}, there exists a four dimensional subfamily of \mathcal{X}, parametrised by $\mathbb{P}_{[a, b, c, d]}^{3} \times \mathbb{P}_{[m, n]}^{1}$, such that every rational member contains at least 32 conics defined over \mathbb{Q}.

Proof. As in the previous section instead of starting with an invariant K3 surface and constructing a plane, we instead start with a plane and construct an invariant K3 surface. We start with a point $[a, b, c, d] \in \mathbb{P}^{3}$ defined over \mathbb{Q} (i.e., there exists $\lambda \in \overline{\mathbb{Q}}^{*}$ such that $\lambda a, \lambda b, \lambda c, \lambda d \in \mathbb{Q})$. Following Proposition 2.3.4 let $\left[A_{1}, B_{1}, C_{1}, D_{1}, E_{1}\right] \in \mathbb{P}^{4}$ represent the Kummer surface which has $[a, b, c, d]$ as a singular point. Then any points on the line joining $\left[A_{1}, B_{1}, C_{1}, D_{1}, E_{1}\right]$ and $[1,0,-2,-2,2]=q_{1}$ represents an invariant K3 surface which intersects the plane $T: a x+b y+c z+d w=0$ in two conics. Parametrise the line joining $\left[A_{1}, B_{1}, C_{1}, D_{1}, E_{1}\right]$ and q_{1} by the set of points $p_{m, n}=\left[A_{1} m+n, B_{1} m, C_{1} m-2 n, D_{1} m-2 n, E_{1} m+2 n\right]$ with $[m, n] \in \mathbb{P}^{1}$. Let $X_{m, n}$ be the invariant K 3 surface defined by the point $p_{m, n}$. Then, whenever $[m, n] \in \mathbb{P}^{1}$ is defined over $\mathbb{Q}, X_{m, n}$ is defined over \mathbb{Q}, and since T is defined over \mathbb{Q}, we have that the two conics on $X_{m, n} \cap T$ are at most on a degree 2 extension of \mathbb{Q}. We can use Proposition 3.1.1 substituting in $X_{m, n}$, to find that the field of definition of the 32 conics associated to the point q_{1} is $K_{1}=\mathbb{Q}(\sqrt{n m})$.

Hence the family of surfaces $X_{m^{2}, n^{2}}$ parametrised by $\mathbb{P}_{[a, b, c, d]}^{3} \times \mathbb{P}_{[m, n]}^{1}$ contain at least 32 conics defined over \mathbb{Q}, namely the conics associated to the point $q_{1}=$ $[1,0,-2,-2,2]$.

Remark. The above argument applies to any choice of q_{i}. Hence, given any rational plane and a point q_{i}, there exists infinitely many invariant K3 surfaces which contain two rational conics defined on that plane, and are associated to the point q_{i}.

Now that we can easily construct invariant K3 surfaces with 32 conics, we make the following remark. Let $p \in \mathbb{P}_{[A, B, C, D, E]}^{4}$ define an invariant K 3 surface, with 32 conics defined over \mathbb{Q} associated to the point q_{i}, and let p_{i} be the point of intersection between the Segre cubic and the line joining p and q_{i}. Consider the action on $\mathbb{P}_{[A, B, C, D, E]}^{4}$ induced by Ω and notice the Segre cubic is fixed by Ω. Let $\phi \in \Omega$ and notice that $\phi(p)$ defines an invariant K3 surface, with 32 conics defined over \mathbb{Q} associated to the point $\phi\left(q_{i}\right)$, and $\phi\left(p_{i}\right)$ is the point of intersection between the Segre cubic and the line joining $\phi(p)$ and $\phi\left(q_{i}\right)$. Hence if p is such that $\phi(p)=p$, then it defines an invariant K3 surface with 64 conics defined over \mathbb{Q}.

While Ω has no fixed points in \mathbb{P}^{4}, finding a large subgroup of Ω which has some fixed points would give us good candidates for invariant K3 surfaces with many conics defined over \mathbb{Q}. Note for example the subfamily $[A, 0, C, C, C]$ of \mathcal{X} is fixed by ϕ_{1}, ϕ_{2} and ϕ_{3}. This leads us to the next proposition.

Proposition 3.3.3. Over \mathbb{Q}, there exists a one dimensional subfamily of \mathcal{X}, parametrised by $\mathbb{P}_{[m, n]}^{1}$, such that for every member, X, there exists $160 \mathbb{Q}$-planes intersecting X in two conics.

Proof. Let $A, C \in \mathbb{Q}$ and consider the surface X defined by the point $[A, 0, C, C, C]$. Using the same method as in the proof of Theorem 3.1.5 (using the data of Appendix A. 2 but not including $r_{\mu, i}$), we see that the field of definition of the 160 planes is

$$
K_{T}=\mathbb{Q}(\sqrt{-(2 A+C)(2 A+3 C)}, \sqrt{A(2 A+C)})
$$

Without loss of generality, we can assume that $A \in \mathbb{Z}_{>0}, C \in \mathbb{Z}$ and $\operatorname{gcd}(A, C)=1$. Hence $\operatorname{gcd}(A, 2 A+C)=1$, so $K_{T} \cong \mathbb{Q}$ if and only if there exists $r, s, t \in \mathbb{Q}$ such that $A=r^{2}, 2 A+C=s^{2}$ and $2 A+3 C=-t^{2}$. Hence consider the equation

$$
\begin{aligned}
3(2 A+C)-(2 A+3 C) & =4 A \\
3 s^{2}+t^{2} & =4 r^{2}
\end{aligned}
$$

This describes a conic in $\mathbb{P}_{[r, s, t]}^{2}$ with a rational point $[1,0,2]$, hence its rational points can be parametrise by $\mathbb{P}_{[m, n]}^{1}$. We find the following parametrisation $\left[4 m^{2}+\right.$ $\left.3 n^{2}, 8 m n, 8 m^{2}-6 n^{2}\right]$.

Hence let $m, n \in \mathbb{Q}$, the surface X defined by the point

$$
\left[\left(4 m^{2}+3 n^{2}\right)^{2}, 0,2\left(8 m^{2} n^{2}-16 m^{4}-9 n^{4}\right), 2\left(8 m^{2} n^{2}-16 m^{4}-9 n^{4}\right), 2\left(8 m^{2} n^{2}-16 m^{4}-9 n^{4}\right)\right]
$$

has the 160 planes defined over \mathbb{Q}.
Let $A, C \in \mathbb{Q}$ and consider the surface X defined by the point $[A, 0, C, C, C]$. If X has one conic defined over \mathbb{Q}, then as the conics come in pairs, X has two conics defined over \mathbb{Q}. Using the action of Γ, we see that X has 32 conics defined over \mathbb{Q}, all associated to one point q_{i}. So, let us use Theorem 3.1.5 and find the field of definition of each 32 conics. Note that since ϕ_{1}, ϕ_{2} and ϕ_{3} fix X, and the set $\left\{q_{i}: i \in[1, \ldots, 10]\right\}$ partitions into three orbits, $\left\{q_{1}, q_{2}, q_{3}\right\},\left\{q_{4}\right\}$ and $\left\{q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}\right\}$, under ϕ_{1}, ϕ_{2} and ϕ_{3}, we just need to calculate K_{1}, K_{4} and K_{5}. We find that

$$
\begin{aligned}
& K_{1} \cong \mathbb{Q}(\sqrt{-(A+C)(2 A-C)}, \sqrt{-(2 A+C)(2 A+3 C)}) \\
& K_{4} \cong \mathbb{Q}(\sqrt{-(A+C)(2 A-C)}) \\
& K_{5} \cong \mathbb{Q}(\sqrt{-(A+C)(2 A-C)}, \sqrt{-(2 A+C)(2 A+3 C)}, \sqrt{A(2 A+C)})
\end{aligned}
$$

We see that there is a parametrisation (namely $A=m^{2}-n^{2}, C=2 m^{2}+n^{2}$)) of the invariant K3 surfaces of the form $[A, 0, C, C, C]$ with 32 conics defined over \mathbb{Q} and associated to the point q_{4}. We use the next lemma to show that invariant K3 surfaces of the form $[A, 0, C, C, C]$ cannot have more than 32 conics defined over \mathbb{Q}.

Lemma 3.3.4. Let $A, C \in \mathbb{Q}$, then $-(A+C)(2 A-C)$ and $-(2 A+C)(2 A+3 C)$ cannot both be non-zero squares.

Proof. Without loss of generality assume that $A \in \mathbb{Z}_{>0}, C \in \mathbb{Z}$ and $\operatorname{gcd}(A, C)=1$, then note that $\operatorname{gcd}(A+C, 2 A-C) \mid 3$ and $\operatorname{gcd}(2 A+C, 2 A+3 C) \mid 2$. If $-(2 A+C)(2 A+3 C)$ is a square, we need $-2 A<C<0$, so we have the number line

Hence, the above two expression are both squares if and only if we are in one of the following cases:

1. There exists $r, s, t, u \in \mathbb{Q}$ such that $A+C=-r^{2}, 2 A-C=s^{2}, 2 A+C=t^{2}$ and $2 A+3 C=-u^{2}$,
2. There exists $r, s, t, u \in \mathbb{Q}$ such that $A+C=-3 r^{2}, 2 A-C=3 s^{2}, 2 A+C=t^{2}$ and $2 A+3 C=-u^{2}$,
3. There exists $r, s, t, u \in \mathbb{Q}$ such that $A+C=-r^{2}, 2 A-C=s^{2}, 2 A+C=2 t^{2}$ and $2 A+3 C=-2 u^{2}$,
4. There exists $r, s, t, u \in \mathbb{Q}$ such that $A+C=-3 r^{2}, 2 A-C=3 s^{2}, 2 A+C=2 t^{2}$ and $2 A+3 C=-2 u^{2}$.

To see if such $r, s, t, u \in \mathbb{Q}$ exists, we use a proof similar to the proof showing there exists no (non-trivial) arithmetic progression with four consecutive terms being squares.

1. We rearrange, using the number line above, to see we need r, s, t, u to satisfy the following two conditions

$$
\begin{aligned}
s^{2}-t^{2} & =2\left(t^{2}+2 r^{2}\right) \\
t^{2}+2 r^{2} & =-2 r^{2}+u^{2}
\end{aligned}
$$

This describes a genus one curve in $\mathbb{P}_{[r, s, t, u]}^{3}$, and as it has the rational point [$1,2,0,2$], it is an elliptic curve. Using Magma BCP97, we find that it is isomorphic to the elliptic curve $E: y^{2}=x^{3}+x^{2}-2 x$. This elliptic curve has $E(\mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$, so we conclude that the only such r, s, t, u are $[1,2,0,2]$, $[1,2,0,-2],[1,-2,0,2]$ and $[1,-2,0,-2]$. But as all four cases leads to $2 A+C=$ 0 , hence contradicting the assumption of $-(2 A+C)(2 A+3 C)$ being a non-zero squares.
2. Similarly, we rearrange to get the conditions

$$
\begin{aligned}
& 3 s^{2}-t^{2}=2\left(t^{2}+6 r^{2}\right) \\
& t^{2}+6 r^{2}=-6 r^{2}+u^{2}
\end{aligned}
$$

This has the rational point $[0,1,1,1]$ and hence is isomorphic to the elliptic curve $E: y^{2}=x^{3}+x^{2}-2 x$. Like in case 1 , we conclude the four different solutions lead to cases we do not want.
3. This time, we get the conditions

$$
\begin{aligned}
s^{2}-2 t^{2} & =2\left(2 t^{2}+2 r^{2}\right) \\
2 t^{2}+2 r^{2} & =-2 r^{2}+2 u^{2} .
\end{aligned}
$$

We show that this has no rational points by showing, without loss of generality, it has no integral points with $\operatorname{gcd}(r, s, t, u)=1$. Looking at the first equation $6 t^{2}+4 r^{2}-s^{2}$ modulo 4 , we conclude that $2 \mid s$ and $2 \mid t$. Using the second equation $t^{2}+2 r^{2}-u^{2}$, we conclude $2 \mid u$, and hence $2 \mid r$, contradicting that they are all coprime.
4. For this last case, we get the conditions

$$
\begin{aligned}
& 3 s^{2}-2 t^{2}=2\left(2 t^{2}+6 r^{2}\right) \\
& 2 t^{2}+6 r^{2}=-6 r^{2}+2 u^{2}
\end{aligned}
$$

Again, looking at the first equation modulo 4 and the second (once we have divided by 2), we reach the conclusion that this has no rational points.

Corollary 3.3.5. Let $A, C \in \mathbb{Q}$, the surface defined by the point $[A, 0, C, C, C]$ has no more than 32 conics defined over \mathbb{Q}.

Proof. Keeping with the notation above, Lemma 3.3 .4 implies that $K_{1} \not \approx \mathbb{Q}$ for any $A, C \in \mathbb{Q}$. Furthermore K_{5} is an extension of K_{1}, hence $K_{5} \not \approx \mathbb{Q}$. Therefore, using Lemma 3.3.1 none of the conics associated to q_{1}, q_{2}, q_{3} (which has field of definition K_{1}) or $q_{5}, q_{6}, q_{7}, q_{8}, q_{9}, q_{10}$ (which has field of definition K_{5}) are defined over \mathbb{Q}. We conclude that only the conics associated to the point q_{4} could be defined over \mathbb{Q}.

Corollary 3.3.6. Pick a point $[m, n] \in \mathbb{P}^{1}$ with $m, n \in \mathbb{Q}$, and let $A=\left(4 m^{2}+3 n^{2}\right)^{2}$, $C=2\left(8 m^{2} n^{2}-16 m^{4}-9 n^{4}\right)$. Then the surface X associated to the point $[A, 0, C, C, C]$ has none of its 320 conics defined over \mathbb{Q}. Instead, all 320 conics are defined over $\mathbb{Q}(\sqrt{-(A+C)(2 A-C)})$.

Proof. By Proposition 3.3.3 X has all 160 planes defined over \mathbb{Q}, hence

$$
\mathbb{Q}(\sqrt{-(2 A+C)(2 A+3 C)}, \sqrt{A(2 A+C)}) \cong \mathbb{Q} .
$$

As $K_{5} \cong K_{4}(\sqrt{-(2 A+C)(2 A+3 C)}, \sqrt{A(2 A+C)})$ (keeping with the notation above), we have $K_{5} \cong K_{4} \cong K_{1}$. In particular, if $K_{4} \cong \mathbb{Q}$ then X would have all 320 conics defined over \mathbb{Q}, contradicting the previous corollary.

We conclude that all 320 conics are defined over $K_{4} \cong \mathbb{Q}(\sqrt{-(A+C)(2 A-C)}) \not \equiv$ \mathbb{Q} by Lemma 3.3.4.

We know turn our attention to surfaces which are fixed under ϕ_{1} and ϕ_{3}, i.e., surfaces defined by points of the form $[A, 0, C, C, E]$. This time $\left\{q_{i}: i \in[1, \ldots, 10]\right\}$ is partitioned in $5,\left\{q_{1}\right\},\left\{q_{2}, q_{3}\right\},\left\{q_{4}\right\},\left\{q_{5}, q_{6}, q_{7}, q_{8}\right\}$ and $\left\{q_{9}, q_{10}\right\}$. Using the fact that for surfaces fixed under ϕ_{1} and ϕ_{2} we have $q_{+C}=q_{+D}, q_{-C}=q_{-D}, p_{-0}=p_{+0}$, $p_{-1}=p_{+1}=p_{-2}=p_{+2}$ and $p_{-3}=p_{3}$, we notice from Theorem 3.1.5 that

$$
\begin{aligned}
& K_{1} \cong \mathbb{Q}\left(\sqrt{\Delta q_{+C} p_{-0} p_{-1}}, \sqrt{-\Delta q_{-E}}\right) \\
& K_{2} \cong \mathbb{Q}\left(\sqrt{\Delta q_{+C} p_{-0} p_{-1}}, \sqrt{-\Delta q_{-C} p_{-1} p_{-3}}, \sqrt{\Delta q_{+E} p_{-0} p_{-3}}\right) \\
& K_{4} \cong \mathbb{Q}\left(\sqrt{-\Delta q_{-C} p_{-1} p_{-3}}, \sqrt{-\Delta q_{-E}}\right) \\
& K_{5} \cong \mathbb{Q}\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{-\Delta A q_{+E} q_{-E}}, \sqrt{\Delta q_{+C} p_{-0} p_{-1}}, \sqrt{\Delta q_{+E} p_{-0} p_{-3}}, \sqrt{-\Delta q_{-E}}\right) \\
& K_{9} \cong \mathbb{Q}\left(\sqrt{-\Delta A q_{+C} q_{-C}}, \sqrt{\Delta q_{+C} p_{-0} p_{-1}}, \sqrt{-\Delta q_{-C} p_{-1} p_{-3}}\right) .
\end{aligned}
$$

We see that $K_{1} \subset K_{5}$ and $K_{2}, K_{4}, K_{9} \subset K_{5}\left(\sqrt{-\Delta q_{-C} p_{-1} p_{-3}}\right)$. Hence, we try to use Proposition 3.3 .2 to construct an invariant K 3 surface which contains a \mathbb{Q}-conic associated to q_{5}. By the above, such a K3 surface would have $5 \cdot 32=160$ conics defined over \mathbb{Q}, and the other 160 conics defined over $\mathbb{Q}\left(\sqrt{-\Delta q_{-C} p_{-1} p_{-3}}\right)$.

Proposition 3.3.7. Let $a, b, c, d \in \mathbb{Z}$ satisfy

1. $a b c d\left(a^{2}-b^{2}-c^{2}+d^{2}\right)\left(a^{2}-b^{2}+c^{2}-d^{2}\right)\left(a^{2}+b^{2}-c^{2}-d^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ is a non-zero square, and
2. $a d\left(a^{2}-d^{2}\right)=b c\left(b^{2}-c^{2}\right)$,

Define

- $A=(b c+a d)(b c-a d)(a c+b d)(a c-b d)(c d+a b)(c d-a b)$,
- $C=(b c+a d)(b c-a d)(c d+a b)(c d-a b)\left(-a^{4}+b^{4}-c^{4}+d^{4}\right)$,
- $E=(a c+d b)(a c-b d)(c d+a b)(c d-a b)\left(a^{4}-b^{4}-c^{4}+d^{4}\right)$.

Then the invariant K 3 surface X defined by the point $[A, 0, C, C, E]$ is non-singular, and has all 320 conics defined over \mathbb{Q}.

Proof. As in proof of Proposition 3.3 .2 we start from the point $[a, b, c, d] \times[m, n] \in$ $\mathbb{P}^{3} \times \mathbb{P}^{1}$ with $a, b, c, d, m, n \in \mathbb{Q}$, and construct the invariant K 3 surfaces X defined by the point $\left[A_{1} m^{2}, B_{1} m^{2}-2 n^{2}, C_{1} m^{2}+n^{2}, D_{1} m^{2}, E_{1} m^{2}\right]$. Then X contains $32 \mathbb{Q}$-conics associated to the point q_{5}.

As we want X to be invariant under ϕ_{1}, we need $B_{1} m^{2}-2 n^{2}=0$. As
$B_{1}=2 a b c d\left(a^{2}-b^{2}-c^{2}+d^{2}\right)\left(a^{2}-b^{2}+c^{2}-d^{2}\right)\left(a^{2}+b^{2}-c^{2}-d^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$
then $B_{1} m^{2}-2 n^{2}=0$ if and only if condition 1 is satisfied. In this case, without loss of generality, we assume $m^{2}=1$ and $n^{2}=B_{1} / 2$. If $B_{1}=0$, then $n^{2}=0$ and hence X is the Kummer surface associated to the point $\left[A_{1}, B_{1}, C_{1}, D_{1}, E_{1}\right]$, i.e., it is singular.

As we want X to be invariant under ϕ_{3}, we need $C_{1} m^{2}+n^{2}=D_{1} m^{2}$. As
$C_{1}+\frac{B_{1}}{2}-D_{1}=(a b+c d)(a b-c d)\left(a^{2}-b^{2}-c^{2}+d^{2}\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(a^{3} d-a d^{3}-b^{3} c+b c^{3}\right)$
and we want X to be non-singular, i.e., $A_{1} \neq 0$ and as seen above $B_{1} \neq 0$, then $C_{1} m^{2}+n^{2}=D_{1} m^{2}$ if and only if condition 2 , is satisfied.

Hence, if both condition 1 and 2 are satisfied, X is defined by the point $\left[A_{1}, 0, D_{1}, D_{1}, E_{1}\right]=$ $[A, 0, C, C, E]$ (with A, C, E as defined in the proposition). From the construction, X has the 32 conics associated to q_{5} defined over \mathbb{Q}. As X is invariant under ϕ_{1} and ϕ_{3}, by the above discussion X has 160 conics (associated respectively to $q_{1}, q_{5}, q_{6}, q_{7}$ and $\left.q_{8}\right)$ defined over \mathbb{Q}. The other 160 conics are defined over $\mathbb{Q}\left(\sqrt{-\Delta q_{-C} p_{-1} p_{-3}}\right)$.

To finish the proof we show that, if $a, b, c, d \in \mathbb{Z}$ satisfy conditions 1 and 2 then $\mathbb{Q}\left(\sqrt{-\Delta q_{-C} p_{-1} p_{-3}}\right) \cong \mathbb{Q}$. We have $-\Delta q_{-C} p_{-1} p_{-3}$ is

$$
\begin{array}{r}
2^{4} \cdot(b c-a d)^{2} \cdot(b c+a d)^{2} \cdot(a c-b d)^{2} \cdot(a c+b d)^{2} \cdot(-a b+c d)^{6} \cdot(a b+c d)^{6} \\
\cdot\left(-a^{2}+b^{2}+c^{2}-d^{2}\right)^{3} \cdot\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{5} \cdot\left(a^{2}-b^{2}+c^{2}-d^{2}\right) \\
\cdot\left(-b^{2} c^{2}+c^{4}+a^{2} d^{2}-d^{4}\right) \cdot\left(a^{4}-b^{4}+b^{2} c^{2}-a^{2} d^{2}\right) \cdot f
\end{array}
$$

where

$$
\begin{aligned}
f= & a^{4} c^{2}+a^{2} b^{2} c^{2}-2 b^{4} c^{2}-a^{2} c^{4}+2 b^{2} c^{4}-2 a^{4} d^{2} \\
& +a^{2} b^{2} d^{2}+b^{4} d^{2}-a^{2} c^{2} d^{2}-b^{2} c^{2} d^{2}+2 a^{2} d^{4}-b^{2} d^{4}
\end{aligned}
$$

Using condition 1, up to squares we have

$$
\begin{aligned}
& \left(-a^{2}+b^{2}+c^{2}-d^{2}\right)^{3} \cdot\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{5} \cdot\left(a^{2}-b^{2}+c^{2}-d^{2}\right) \\
= & -a b c d\left(a^{2}+b^{2}-c^{2}-d^{2}\right)
\end{aligned}
$$

So consider

$$
\begin{aligned}
& -a b c d\left(-b^{2} c^{2}+c^{4}+a^{2} d^{2}-d^{4}\right)\left(a^{4}-b^{4}+b^{2} c^{2}-a^{2} d^{2}\right) \\
= & -b c\left(a d^{2}\left(a^{2}-d^{2}\right)-a c^{2}\left(b^{2}-c^{2}\right)\right)\left(a^{2} d\left(a^{2}-d^{2}\right)-b^{2} d\left(b^{2}-c^{2}\right)\right) \\
= & -b c\left(c(b d-a c)\left(b^{2}-c^{2}\right)\right)\left(b(a c-b d)\left(b^{2}-c^{2}\right)\right) \text { by condition } 2 \\
= & b^{2} c^{2}(b d-a c)^{2}\left(b^{2}-c^{2}\right)^{2}
\end{aligned}
$$

At this stage, we have that up to squares $-\Delta q_{-C} p_{-1} p_{-3}$ is $\left(a^{2}+b^{2}-c^{2}-d^{2}\right) \cdot f$. But note that $f=(a c-b d)^{2}\left(a^{2}+b^{2}-c^{2}-d^{2}\right)-2(a d-b c)\left[a d\left(a^{2}-d^{2}\right)-b c\left(b^{2}-c^{2}\right)\right]$. Hence by condition 2, $\left(a^{2}+b^{2}-c^{2}-d^{2}\right) \cdot f=(a c-b d)^{2}\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}$, and $-\Delta q_{-C} p_{-1} p_{-3}$ is a square, finishing the proof.

Corollary 3.3.8. The invariant K3 surface X defined by the point

$$
[425,0,-1025,-1025,1207]
$$

has 320 conics defined over \mathbb{Q}.
Proof. Note that $a=5, b=7, c=15$ and $d=16$ satisfy conditions 1 and 2 of Proposition 3.3.7. Hence the surface, X, defined by [425, $0,-1025,-1025,1207]$, (dividing by $\operatorname{gcd}(A, C, E))$, has all 320 conics defined over \mathbb{Q}.

Remark. As all the conics of the surface X defined by the point [425, $0,-1025,-1025,1207]$ are defined over \mathbb{Q}, we can easily calculate explicit equations for them using the formulas for the planes listed in Appendix A.3. Doing so enables us to find that 128 conics have a rational point (and hence infinitely many) and the other 192 have no rational points.

These calculations, and other complementary calculations made in this section can be found online Bous.

Chapter 4

Picard Lattices of Subfamilies

This chapter was motivated by the question: "if X is an invariant quartic surface containing a line, what can we say about its Picard Group?". As Eklund Ekl10] studied the quartic surfaces parametrised by the Niento quintic, N_{5}, we look at the surfaces parametrised by the tangent cones of the 10 singular points of N_{5}.

In particular we consider :

- a four dimensional family \mathcal{X} (as described in Section 2.3),
- a three dimensional family $\mathcal{X}_{C, D, E}$,
- a two dimensional family $\mathcal{X}_{C, D}$,
- a one dimensional family \mathcal{X}_{B},
- a one dimensional family \mathcal{X}_{C},
- a specific quartic K3 surface Y,
- and the Fermat quartic, F_{4}.

For each of these families, we look at the lines a very general member contains. We use these and the 320 conics that Eklund found to calculate the Picard group of a very general member. Our main result (Theorem 4.2.8) can be summarised as follows:

Theorem (Summarised Theorem 4.2.8).

- A very general member of \mathcal{X} contains no lines, and has Picard rank 16,
- A very general member of $\mathcal{X}_{C, D, E}$ contains exactly 8 lines, and has Picard rank 17,
- A very general member of $\mathcal{X}_{C, D}$ contains exactly 16 lines, and has Picard rank 18,
- A very general member of \mathcal{X}_{B} contains exactly 24 lines, and has Picard rank 19,
- A very general member of \mathcal{X}_{C} contains exactly 32 lines, and has Picard rank 19,
- The surface Y contains exactly 32 lines, and has Picard rank 20,
- The Fermat quartic, F_{4}, contains exactly 48 lines, and has Picard rank 20.

Possibly except for the surface Y, the Picard group is generated by the lines and conics lying on the surface. In all cases, we decompose the Picard group into known lattices.

Remark. The result about a very general member of \mathcal{X} having Picard rank 16, with the Picard group generated by the conics, was already proven by Eklund Ekl10, Thm 3.5 , Cor 7.4] but in this chapter we prove this using a different method.

The fact that the Fermat quartic has 48 lines, who generate the Picard group of rank 20, is a classical result. We will use that result in our proof of Theorem 4.2.8.

We note that Theorem 4.2.8 fits nicely with the fact that certain moduli spaces of K3 surfaces whose Picard group contains a fixed lattice M have dimension 20 $\operatorname{rank}(M)$. That is, in each of the above, a Picard group of rank r, fits nicely with a $20-r$ dimensional family.

The results of this chapter have been put together into a preprint Bou15b.

4.1 The Families and Lines

Definition 4.1.1. We define the Nieto quintic, $N_{5} \subseteq \mathbb{P}_{[A, B, C, D, E]}^{4}$, by the equation

$$
\begin{aligned}
& 4 A^{3}\left(48 A^{2}-B^{2}\right)-A\left(32 A^{2}-B^{2}\right)\left(C^{2}+D^{2}+E^{2}\right)+B^{2} C D E \\
& +4 A(C+D+E)(C+D-E)(C-D+E)(-C+D+E)=0
\end{aligned}
$$

The Nieto quintic was studied by Barth and Nieto when they were looking at K3 surfaces in \mathcal{X} containing lines. In particular, they proved in [BN94, Section 7 and 8] the following proposition.

Proposition 4.1.2. Let $p \in \mathbb{P}^{4}$, then the surface X_{p} contains a line, L, if and only if p is in N_{5} or in one of the 10 tangent cones to the isolated singular points of N_{5} (i.e., the 10 nodes of S_{3}).

In the case where p lies on the tangent cone of q_{i}, then L lies on Q_{i}.
As Eklund studies in detail the K3 surfaces defined by a point lying on the Nieto quintic [Ekl10], we study here those surfaces defined by a point lying on the 10 tangent cones. We first make the following remark:

Remark. The four roots of the equation $f=x^{4}+c x^{2}+1$ are of the form

$$
\alpha=\frac{1}{2}(\sqrt{-c+2}+\sqrt{-c-2}) .
$$

To see this, note that $\alpha^{2}=\frac{1}{2}\left(-c+\sqrt{c^{2}-4}\right)$ which solves $y^{2}+c y+1$.

Proposition 4.1.3. Let $p \in \mathbb{P}^{4}$ lie on one of the 10 tangent cones to the isolated singular points of N_{5}, away from N_{5} and the 15 singular planes. Then the surface X_{p} contains eight lines. In the case where p lies on a unique tangent cone, X_{p} contains exactly eight lines.

Proof. If $p \in \mathbb{P}^{4} \backslash N_{5}$ lies on a unique tangent cone, say q_{i}, then by Proposition 4.1.2 all the lines lying on X_{p} must be lines lying on Q_{i}.

We first prove that when $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ lies on the tangent cone of the point q_{6}, there are exactly eight lines lying on $Q_{6} \cap X_{p} \subseteq \mathbb{P}^{3}$. By the work done in Section 3.1. we have that p satisfies the equation $A B-2 A C+D E=0$. The quadric $Q_{6}: x y+w z=0$ has the following lines (for any $\alpha \in K^{*}$)

- $x+\alpha z=y-\alpha^{-1} w=0$,
- $x+\alpha w=y-\alpha^{-1} z=0$,
- $x=z=0$,
- $x=w=0$,
- $y=z=0$,
- $y=w=0$.

Note that the last four lines can not lie on X_{p}, as p does not lie on the 15 singular planes (hence $A \neq 0$). Now $X_{p} \cap\left\{x+\alpha z=y-\alpha^{-1} w=0\right\}$ is defined by the equations:

$$
\begin{aligned}
x+\alpha z & =0 \\
y-\alpha^{-1} w & =0 \\
\left(A \alpha^{4}+D \alpha^{2}+A\right)\left(z^{4}+\frac{w^{4}}{\alpha^{4}}\right)+\left(E \alpha^{4}+(2 C-B) \alpha^{2}+E\right) \frac{z^{2} w^{2}}{\alpha^{2}} & =0
\end{aligned}
$$

As $A B-2 A C+D E=0$ implies

$$
\begin{aligned}
E \alpha^{4}+(2 C-B) \alpha^{2}+E & =E \alpha^{4}+\frac{D E}{A} \alpha^{2}+E \\
& =\frac{E}{A}\left(A \alpha^{4}+D \alpha^{2}+A\right)
\end{aligned}
$$

we have that the last equation becomes

$$
\begin{aligned}
& \left(A \alpha^{4}+D \alpha^{2}+A\right)\left(z^{4}+\frac{w^{4}}{\alpha^{4}}\right)+\left(A \alpha^{4}+D \alpha^{2}+A\right) \frac{E z^{2} w^{2}}{A \alpha^{2}} \\
= & \left(A \alpha^{4}+D \alpha^{2}+A\right)\left(z^{4}+\frac{E z^{2} w^{2}}{A \alpha^{2}}+\frac{w^{4}}{\alpha^{4}}\right)
\end{aligned}
$$

This is identically zero if and only $A \alpha^{4}+D \alpha^{2}+A=0$. Hence there are exactly four lines of the form $x+\alpha z=y-\alpha^{-1} w=0$ on X_{p}, corresponding to the four roots of
$A \alpha^{4}+D \alpha^{2}+A=0$. We can run through exactly the same process for lines of the form $x+\alpha w=y-\alpha^{-1} z=0$ and find that this time α needs to solve $A \alpha^{4}+E \alpha^{2}+A=0$. Hence by letting

$$
\begin{aligned}
& \alpha=\frac{\sqrt{A}}{2 A}\left(\sqrt{q_{-D}}+\sqrt{-q_{+D}}\right) \\
& \beta=\frac{\sqrt{A}}{2 A}\left(\sqrt{q-E}+\sqrt{-q_{+E}}\right)
\end{aligned}
$$

we have the eight lines

- $x+\alpha z=y-\alpha^{-1} w=0$,
- $x+\alpha^{-1} z=y-\alpha w=0$,
- $x-\alpha z=y+\alpha^{-1} w=0$,
- $x-\alpha^{-1} z=y+\alpha w=0$,
- $x+\beta w=y-\beta^{-1} z=0$,
- $x+\beta^{-1} w=y-\beta z=0$,
- $x-\beta w=y+\beta^{-1} z=0$,
- $x-\beta^{-1} w=y+\beta z=0$,
which lie on our surface X_{p}, and these are the only lines on $X_{p} \cap Q_{6}$.
To finish the proof, we use the action induced by the group Ω acting on $\mathbb{P}^{3} \times \mathbb{P}^{4}$ as described in Remark 2.3.3. That is by applying the appropriate element $\phi \in \Omega$ on the above eight lines, we get the equations of the eight lines lying on the surface $X_{\phi(p)}$. We have listed the equations of the lines in Table A.4 in the Appendix.

Using the fact that the eight lines come from the two different rulings of the quadric (one set using α, the other β), it is not hard to see that the lines come in two sets of four skew lines. Furthermore each line from one set intersects each of the four lines in the other set.

Finally, using the explicit equations, we note that given two (not necessarily distinct) lines in one set, L_{1} and L_{2}, and two in the other set M_{1} and M_{2}, there exists a unique $\gamma \in \Gamma$ interchanging L_{1} with L_{2} and M_{1} with M_{2}.

We can use Proposition 4.1.3 to find various families containing 8, 16, 24, 32 and 48 lines.

Lemma 4.1.4.

- A very general surface in the family $[A,(D E-2 A C) / A, C, D, E]$ contains exactly 8 lines. We denote this family by $\mathcal{X}_{C, D, E}$,
- A very general surface in the family $[A, 0, C, D, 2 A C / D]$ contains exactly 16 lines. We denote this family by $\mathcal{X}_{C, D}$,
- A very general surface in the family $[A, B(2 A-B) / A, B, B, B]$ contains exactly 24 lines. We denote this family by \mathcal{X}_{B},
- A very general surface in the family $[A, 0, C, 0,0]$ contains exactly 32 lines. We denote this family by \mathcal{X}_{C},
- The surface $[\sqrt{-3}, 12(\sqrt{-3}-1), 6,6,-6]$ contains exactly 32 lines. We denote this surface by Y,
- The Fermat quartic $[1,0,0,0,0]$ contains exactly 48 lines. We denote this surface by F_{4}.

Up to an action of Ω, there are no other families whose very general member is smooth and lies on the tangent cones to one of the points q_{i}.

Proof. Note that for each family, a very general point will not be on N_{5}, hence if for each family a very general member lie on m distinct tangent cones, then it will contain $8 m$ lines as claimed.

Recall that Ω acts on the 10 points q_{i} (as described in Remark 2.3.3), and hence on the 10 tangent cones. For each $m \in\{1, \ldots, 10\}$, we find representatives of the action of Ω on sets of size m. For example, when $m=2$, as Ω is two-transitive, we have the representative $\left\{q_{1}, q_{2}\right\}$, for $m=3$, we have two representative $\left\{q_{1}, q_{2}, q_{3}\right\}$ and $\left\{q_{2}, q_{4}, q_{5}\right\}$. Starting from $m=10$ to 1 , for each representative we intersect the corresponding tangent cones. We look at its irreducible components and discard any that is a subset of \mathcal{L} (the union of the 15 singular hyperplanes), any component remaining give us a family that we list. This also verifies that our list is complete. This calculation is available online [Bou].

We illustrate how the families fit together with Figure 4.1.1. The lines show which family is a subfamily of another family.

Dimension

Figure 4.1.1: The various families

4.2 The Picard Group

We now turn to proving that the Picard rank of the families given above are those claimed by (the summarised) Theorem 4.2.8. Note that we already know this to be true for the Fermat quartic, $x^{4}+y^{4}+z^{4}+w^{4}$ (see for example [AS83]) and the family, \mathcal{X}, parameterised by $\left.\mathbb{P}^{4}(\boxed{\text { Ekl10 }}]\right)$. To achieve this, for each family we will bound the rank from below and above. To bound the Picard rank from below, we use Theorem 2.3.8 that is a very general invariant quartic K3 surface contains 320 conics.

The equations of the conics can be listed explicitly in terms of the point $[A, B, C, D, E] \in$ \mathbb{P}^{4} associated to the surface X, as explained in Lemma 3.2.1. As the lines and conics are elements of $\operatorname{Pic}(X)$, they form a sublattice of it. Hence by using the explicit equations of the 320 conics and $8 m$ lines, we can calculate their intersection matrix. The rank of said matrix, which is the rank of the sublattice generated by the lines and conics, is a lower bound to the rank of the Picard group.

To calculate an upper bound, we use three main ideas:

4.2.1 Reduction at a good prime

The first idea is due to Van Luijk [vL07], which we briefly recap here.
Theorem 4.2.1. Let X be a K3 surface defined over a number field K. Choose a finite prime $\mathfrak{p} \subseteq \mathcal{O}_{K}$ of good reduction for X. Let $R=\left(\mathcal{O}_{K}\right)_{\mathfrak{p}}$ and k its residue field. Fix an algebraic closure \bar{K} of K, \bar{R} the integral closure of R in \bar{K}, and let $\bar{k}=\bar{R} / \mathfrak{p}$ be the algebraic closure of k. There are natural injective homomorphisms

$$
\mathrm{NS}\left(X_{\bar{K}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow \operatorname{NS}\left(X_{\bar{k}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow H_{\text {êt }}^{2}\left(X_{\bar{k}}, \mathbb{Q}_{\ell}(1)\right)
$$

of finite dimensional vector space over \mathbb{Q}_{ℓ}. The second injection respects the Galois action $\operatorname{Gal}(\bar{k} / k)$.

Proposition 4.2.2. Let X be a K3 surface defined over a finite field \mathbb{F}_{q} with $q=p^{r}$. Let $F_{q}: X \rightarrow X$ be the absolute Frobenius map of X, which acts on the identity on points, and by $x \mapsto x^{p}$ on the structure sheaf. Set $\Phi_{q}=F_{q}^{r}$ and let Φ_{q}^{*} denote the automorphism on $H_{\text {ét }}^{2}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ induced by $\Phi_{q} \times 1$ acting on $X_{\overline{\mathbb{F}}_{q}}$. Then the rank of $N S\left(X_{\overline{\mathbb{F}}_{q}}\right)$ is bounded above by the number of eigenvalues λ of Φ_{q}^{*} for which λ / q is a root of unity (counted with multiplicity).

Hence, given a K3 surface over a number field K, its Picard rank, $\rho\left(X_{\bar{K}}\right)$, is bounded above by eigenvalues in a certain form of Φ_{q}^{*}. Such eigenvalues can be read off from the characteristic polynomial, $f_{q}(x)$, of Φ_{q}^{*}. To calculate the characteristic polynomial we use the Lefschetz formula:

$$
\operatorname{Tr}\left(\left(\Phi_{q}^{*}\right)^{i}\right)=\# X_{k}\left(\mathbb{F}_{q^{i}}\right)-1-q^{2 i}
$$

and the following lemma:
Lemma 4.2.3 (Newton's Identity). Let V be a vector space of dimension n and $T a$ linear operator on V. Let t_{i} denote the trace of T^{i}. Then the characteristic polynomial of T is equal to

$$
f_{T}(x)=\operatorname{det}(x \cdot \operatorname{id}-T)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+\cdots+c_{n}
$$

where the c_{i} are given recursively by $c_{1}=-t_{1}$ and

$$
-k c_{k}=t_{k}+\sum_{i=1}^{k-1} c_{i} t_{k-i}
$$

So in theory, since $n=22$ as X is a K3 surface, we can calculate the characteristic polynomial by counting points over $\mathbb{F}_{q^{i}}$ for $i=1, \ldots, 22$. But this is computationally infeasible. To make the computation more feasible we use the fact that from the Weil conjectures we have the functional equation

$$
p^{22} f_{q}(x)= \pm x^{22} f_{q}\left(p^{2} / x\right)
$$

Second of all, in our cases we have an explicit submodule $M \subseteq \mathrm{NS}_{\bar{k}}$ of rank r, namely the one generated by the lines and conics lying on X. Hence we can calculate the characteristic polynomial $f_{M}(x)$ of Frobenius acting on M. Since $f_{M}(x) \mid f_{q}(x)$, we can compute two possible polynomials $f_{q,+}(x)$ and $f_{q,-}(x)$ (one for each possible sign in the functional equation) by counting points on $X_{k}\left(\mathbb{F}_{q^{i}}\right)$ for $i=1, \ldots(22-r) / 2$. Explicitly, suppose $f_{M}(x)=\prod_{j} g_{j}(x)^{e_{j}}$ with $\operatorname{deg}\left(g_{j}\right)=d_{j}$, hence $\sum d_{j} e_{j}=r$. Note that $f_{q}^{\prime}(x)=f_{M}(x) h^{\prime}(x)+f_{M}^{\prime}(x) h(x)$, hence if $e_{j}>1$ then $g_{j}(x) \mid f_{q}^{\prime}(x)$, and in general $g_{j}(x)$ divides the $\left(e_{j}-1\right)$ th derivative of $f_{q}(x)$. Therefore, we can use the roots of M to construct $r / 2$ linear equations in the 11 coefficients of $f_{q}(x)$ (by assuming $f_{q}(x)$ satisfies one of the functional equation). Hence we just need to count points on $X_{k}\left(\mathbb{F}_{q^{i}}\right)$ for $i=1, \ldots(22-r) / 2$ to be able to use linear algebra and find the 11 coefficients of $f_{q}(x)$. Note that when we assume the negative functional equations, we have in fact only 10 coefficients of $f_{q}(x)$, as $c_{11}=0$. Hence, we end up not using all the information from $f_{M}(x)$, therefore it is possible to construct $f_{q}(x)$ such that $f_{M}(x) \nmid f_{q}(x)$. This is a contradiction, meaning that $f_{q}(x)$ satisfies the positive functional equation and not the negative.

Finally, note that by rescaling $f_{q}(x)$ by $f_{q}(x / p)$, we just need to count the roots which are also roots of unity.

4.2.2 Artin-Tate conjecture

Unfortunately, as the roots come in conjugate pairs, the above method can only ever give an even upper bound. The following proposition can potentially reduce the upper
bound by one more than the above bound.
Proposition 4.2.4. Let X be a K3 surface defined over a number field K and let \mathfrak{p} and \mathfrak{p}^{\prime} be two primes of good reductions. Suppose that $\rho\left(\bar{X}_{\mathfrak{p}}\right)=\rho\left(\bar{X}_{\mathfrak{p}^{\prime}}\right)=n$ but the discriminants $\operatorname{Disc}\left(\mathrm{NS}\left(\bar{X}_{\mathfrak{p}}\right)\right)$ and $\operatorname{Disc}\left(\mathrm{NS}\left(\bar{X}_{\mathfrak{p}^{\prime}}\right)\right)$ are different in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$. Then $\rho(\bar{X})<n$.

Proof. By the above, we know that $\rho(\bar{X}) \leq n$. If $\rho(\bar{X})=n$, then NS (\bar{X}) is a full rank sublattice of NS $\left(\bar{X}_{\mathfrak{p}}\right)$ and NS $\left(\bar{X}_{\mathfrak{p}^{\prime}}\right)$. But in that case, as elements of $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$, all three discriminants should be equal, which is a contradiction to the hypothesis.

As the proposition requires us to calculate the discriminants of $\operatorname{NS}\left(\bar{X}_{\mathfrak{p}}\right)$ and $\operatorname{NS}\left(\bar{X}_{\mathfrak{p}^{\prime}}\right)$ we use the following conjecture:

Conjecture 4.2.5 (Artin - Tate). Let X be a K3 surface over a finite field \mathbb{F}_{q}. Let ρ and Disc denote respectively the rank and discriminant of the Picard group defined over \mathbb{F}_{q}. Then

$$
|\operatorname{Disc}|=\frac{\lim _{T \rightarrow q} \frac{\Phi(T)}{(T-q)^{\rho}}}{q^{21-\rho} \# \operatorname{Br}(X)}
$$

Here Φ is the characteristic polynomial of Frob on $H_{e ́ \mathrm{t}}^{2}\left(X_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}\right)$. Finally, $\operatorname{Br}(X)$ is the Brauer group of X.

In the case when q is odd, then the above conjecture has been proven to be true (using the fact that it follows from the Tate Conjecture [Mil75] which has been proven for K3 surfaces Nyg83, NO85, Cha13, Mau14, MP15]). Furthermore in the case the conjecture is true we have that $\# \operatorname{Br}(X)$ is a square. Hence, by picking q large enough so that $\rho\left(X_{q}\right)=\rho\left(\bar{X}_{q}\right)$, we can find $|\operatorname{Disc}|$ as an element of $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$.

4.2.3 Only finitely many singular K3 surfaces

Suppose that a general member of the family \mathcal{Y} has Picard rank at least 19 and the family \mathcal{Y} is parameterised by a one dimensional curve. The third idea uses the fact that, up to $\overline{\mathbb{Q}}$-isomorphism, there only finitely many K 3 surfaces over \mathbb{Q} which are singular, i.e., with Picard rank 20. Hence if a very general member of \mathcal{Y} has Picard rank 20, then every member of \mathcal{Y} is singular. Therefore \mathcal{Y} parametrises a set of isomorphic surfaces. If we can show that there are two \mathbb{Q}-surfaces in \mathcal{Y} which are not isomorphic, then a very general member of the family \mathcal{Y} has Picard rank at most 19 (as it can not be 20).

We implement this by noting that in each of the cases we are interested in, the Fermat quartic, F_{4}, belongs to our family \mathcal{Y}. Furthermore the Fermat quartic is supersingular over algebraically closed fields of characteristic $3 \bmod 4$, i.e., $\rho\left(\overline{F_{4, p}}\right)=22$ for $p \equiv 3 \bmod 4$ Tat65]. Hence if there is another surface in \mathcal{Y} with $\rho\left(\bar{X}_{p}\right)=20$ over
a prime $p \equiv 3 \bmod 4$, then F_{4} and X are not isomorphic (since their specialisations to the field \mathbb{F}_{p} are not isomorphic, as they have different Picard rank).

With all these tools we tackle the following proposition:

Proposition 4.2.6.

- A very general surface in the family \mathcal{X} has Picard rank 16,
- A very general surface in the family $\mathcal{X}_{C, D, E}$ has Picard rank 17,
- A very general surface in the family $\mathcal{X}_{C, D}$ has Picard rank 18,
- A very general surface in the family \mathcal{X}_{B} has Picard rank 19,
- A very general surface in the family \mathcal{X}_{C} has Picard rank 19,
- The surface Y is singular.

Proof. To get the lower bound we want to calculate the intersection matrix of the conics and lines lying on a very general member of each family. The lines and conics are defined over a degree 2^{10} field extension, hence calculating the intersection matrix is computationally infeasible. Instead we do the calculations over finite fields. Pick X in one of the families (call it \mathcal{X}_{*}) and let p be a prime of good reduction. Then we know that the conics and lines of $X_{\mathbb{F}_{p}}$ are defined over $\mathbb{F}_{p^{2}}$ (due to having explicit equations and there are only two square classes in \mathbb{F}_{p}) and so we calculate with ease the intersection matrix. By Theorem $4.2 .1 \mathrm{NS}\left(X_{\overline{\mathbb{Q}}}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow \mathrm{NS}\left(X_{\overline{\mathbb{F}_{p}}}\right) \otimes \mathbb{Q}_{\ell}$ is injective, so the intersection matrix of the lines and conics over $\mathbb{F}_{p^{2}}$ is the same as the intersection matrix of the lines and conics over $\overline{\mathbb{Q}}$. Furthermore, as the set of surfaces in \mathcal{X}_{*} which reduce to $X_{\mathbb{F}_{p}}$ is Zariski open, the intersection matrix calculated is the same as the intersection matrix of a very general member of \mathcal{X}_{*}.

As the intersection matrix is a large matrix, we have included in Appendix A.5 a full rank minor of the matrix for each family (in particular, the lower bound is the dimension of said minor). We work (see $[\overline{\mathrm{Bou}}]$) through the families in reverse order from the list above.

- As M_{Y} has rank 20, we know that $\rho(Y)=20$ and hence the surface Y is singular.
- As M_{C} has rank 19 , we know that a very general surface X_{C} of \mathcal{X}_{C} has $\rho\left(X_{C}\right) \geq$ 19. Using the idea in Subsection 4.2.3 we see that the surface X_{0}, associated to the point $[1,0,0,0,0]$, is the Fermat quartic so it is supersingular over $\overline{\mathbb{F}}_{19}$. On the other hand consider the surface X_{5}, associated to the point $[1,0,5,0,0]$, over \mathbb{F}_{19}. The characteristic polynomial of Frobenius acting on conics and lines on X_{5} is $f(x)=(x-1)^{10}(x+1)^{9}$. Hence we just need to count points over \mathbb{F}_{19} and $\mathbb{F}_{19^{2}}$ to find the two possible characteristic polynomials for Φ_{19}^{*}. We find, after rescaling, $f_{19,+}(x)=\frac{1}{19}(x-1)^{10}(x+1)^{10}\left(19 x^{2}-22 x+19\right)$ and a contradiction
for $f_{19,-}(x)=\frac{1}{19}(x-1)^{9}(x+1)^{9}\left(19 x^{4}-22 x^{3}-22 x+19\right)$ as $f(x) \nmid f_{19,-}(x)$. As X_{2} is not supersingular, X_{0} and X_{2} are not isomorphic over $\overline{\mathbb{F}}_{19}$. Therefore a very general surface in \mathcal{X}_{C} has Picard number 19.
- As M_{B} has rank 19 , we know that a very general surface X_{B} of \mathcal{X}_{B} has $\rho\left(X_{B}\right) \geq$ 19. Using the idea in Subsection 4.2.3 we see that X_{2}, associated to the point $[1,0,0,0,0]$, is the Fermat quartic so is supersingular over $\overline{\mathbb{F}}_{19}$. On the other hand consider the surface X_{1}, associated to the point $[1,1,1,1,1]$, over \mathbb{F}_{19}. The characteristic polynomial of Frobenius acting on conics and lines on X_{1} is $f(x)=(x-1)^{16}(x+1)^{3}$. After point counting over \mathbb{F}_{19} and $\mathbb{F}_{19^{2}}$ we find the possible two characteristic polynomials for Φ_{19}^{*}, namely $f_{19,+}(x)=\frac{1}{19}(x-$ $1)^{16}(x+1)^{4}\left(19 x^{2}-18 x+19\right)$ and a contradiction for $f_{19,-}(x)=\frac{1}{19}(x-1)^{15}(x+$ $1)^{3}\left(19 x^{4}-18 x^{3}-18 x+19\right)$. As X_{1} is not supersingular, X_{2} and X_{1} are not isomorphic over $\overline{\mathbb{F}}_{19}$. Therefore a very general surface in \mathcal{X}_{B} has Picard number 19.
- As $M_{C, D}$ has rank 18 , we know that a very general surface $X_{C, D}$ of $\mathcal{X}_{C, D}$ has $\rho\left(X_{C, D}\right) \geq 18$. We use the idea in Subsection 4.2.1 and find a surface whose reduction at a prime p gives an upper bound of 18 . To make point counting easier, we will work over \mathbb{F}_{13} and the surface $X_{4,1}$, associated to the point $[1,0,4,1,8]$. Our first step is to calculate the characteristic polynomial of Frobenius acting on conics and lines, which is $f(x)=(x-1)^{10}(x+1)^{8}$. After point counting over \mathbb{F}_{13} and $\mathbb{F}_{13^{2}}$ we find the two possible characteristic polynomials for Φ_{13}^{*}, namely $f_{13,+}(x)=\frac{1}{13}(x-1)^{10}(x+1)^{8}\left(13 t^{4}+12 t^{3}+14 t^{2}+12 t+13\right)$ and a contradiction for $f_{13,-}(x)=\frac{1}{13}(x-1)^{9}(x+1)^{9}\left(13 t^{4}-14 t^{3}+16 t^{2}-14 t+13\right)$ (since $\left.f(x) \nmid f_{13,-}(x)\right)$. Hence $\rho\left(\bar{X}_{4,1}\right) \leq 18$, so a very general surface in $\mathcal{X}_{C, D}$ has Picard number 18.
- As $M_{C, D, E}$ has rank 17 , we know that a very general surface $X_{C, D, E}$ of $\mathcal{X}_{C, D, E}$ has $\rho\left(X_{C, D, E}\right) \geq 17$. We use the idea in Subsection 4.2 .1 and find a surface whose reduction at two primes p and p^{\prime} gives an upper bound of 18 . We work with the surface $X_{3,5,7}$, associated to the point $[1,29,3,5,7]$, over the fields \mathbb{F}_{13} and \mathbb{F}_{19}. The characteristic polynomial of Frobenius acting on conics and lines over \mathbb{F}_{13} is $f_{13}(x)=(x-1)^{8}(x+1)^{9}$ and over \mathbb{F}_{19} is $f_{19}(x)=(x-1)^{9}(x+1)^{8}$. We find the following possible characteristic polynomials (after rescaling):

	f_{+}	f_{-}
\mathbb{F}_{13}	$\frac{1}{13}(x-1)^{8}(x+1)^{10}\left(13 x^{4}+\right.$	$\frac{1}{13}(x-1)^{9}(x+1)^{9}\left(13 x^{4}+26 x^{3}+\right.$
	$\left.22 x^{2}+13\right)$	$\left.48 x^{2}+26 x+13\right)$
\mathbb{F}_{19}	$\frac{1}{19}(x-1)^{10}(x+1)^{8}\left(19 x^{4}+\right.$	$\frac{1}{19}(x-1)^{9}(x+1)^{9}\left(19 x^{4}-6 x^{3}+\right.$
	$\left.32 x^{3}+42 x^{2}+32 x+19\right)$	$\left.16 x^{2}-6 x+19\right)$

We then apply the idea in Subsection 4.2.2 by working over $\mathbb{F}_{13^{2}}$ and $\mathbb{F}_{19^{2}}$. We find that, up to squares, the discriminants are as follow:

	\mid Disc $_{+} \mid$	\midDisc $_{-} \mid$
$\mathbb{F}_{13^{2}}$	13	$13 \cdot 17 \cdot 61$
$\mathbb{F}_{19^{2}}$	18691	75011

As these four discriminants are all different elements in $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$ we have $\operatorname{Disc}\left(\operatorname{NS}\left(X_{3,5,7, \mathbb{F}_{13^{2}}}\right)\right) \neq \operatorname{Disc}\left(\operatorname{NS}\left(X_{3,5,7, \mathbb{F}_{19^{2}}}\right)\right)$ and so a very general surface in $\mathcal{X}_{C, D, E}$ has Picard number 17.

- As M has rank 16 , we know a very general surface X of \mathcal{X} has $\rho(X) \geq 16$. We use the idea in Subsection 4.2.1 and find a surface whose reduction at a prime p gives an upper bound of 16 . We work over \mathbb{F}_{19} and let X be the surface defined by the point $[1,2,7,11,13]$. We calculate that the characteristic polynomial of Frobenius acting on conics and lines is $f(x)=(x-1)^{8}(x+1)^{8}$, hence we need to count points over $\mathbb{F}_{19}, \mathbb{F}_{19^{2}}$ and $\mathbb{F}_{19^{3}}$ to find the two possible characteristic polynomials for Φ_{19}^{*}. We find that, after rescaling

$$
f_{19,+}(x)=\frac{1}{19}(x-1)^{8}(x+1)^{8}\left(19 x^{6}+10 x^{5}+29 x^{4}+12 x^{3}+29 x^{2}+10 x+19\right)
$$

and a contradiction for

$$
f_{19,-}(x)=\frac{1}{19}(x-1)^{7}(x+1)^{9}\left(19 x^{6}-28 x^{5}+47 x^{4}-64 x^{3}+47 x^{2}-28 x+19\right)
$$

as $f(x) \nmid f_{19,-}(x)$. Hence a very general surface in \mathcal{X} has Picard number 16 .

Now that we know the rank of the Picard group of a very general member of each family, we can prove the following proposition:

Proposition 4.2.7. For a very general member of the families $\mathcal{X}, \mathcal{X}_{C, D, E}, \mathcal{X}_{C, D}, \mathcal{X}_{B}$ and \mathcal{X}_{C}, as well as the Fermat quartic, F_{4}, the Picard groups are generated by lines and conics.

In particular the matrices $M, M_{C, D, E}, M_{C, D}, M_{B}$ and M_{C} as defined in Appendix A.5define the Picard group of a very general member of the families $\mathcal{X}, \mathcal{X}_{C, D, E}, \mathcal{X}_{C, D}, \mathcal{X}_{B}$ and \mathcal{X}_{C} respectively.

Proof. First note that if $L_{1} \hookrightarrow L_{2}$ is primitive, then no overlattice L^{\prime} of L_{1} can be a sublattice of L_{2}. Let \mathcal{X} and \mathcal{Y} are two families of K 3 surfaces, with \mathcal{Y} a subfamily of \mathcal{X}. If X and Y denote a very general member of \mathcal{X} and \mathcal{Y}, then $\operatorname{Pic}(X) \hookrightarrow \operatorname{Pic}(Y)$ as the elements of $\operatorname{Pic}(X)$ must specialise to elements of $\operatorname{Pic}(Y)$.

With this in mind we start with the proven fact (see for example SSvL10) that the Picard group of the Fermat quartic, denoted by $\operatorname{Pic}\left(F_{4}\right)$, is generated by lines. Upon calculating the Gram matrix of the 48 lines on F_{4}, we find that the Picard group has discriminant -64 . On the other hand we calculate the following Gram matrix, which we denote $M_{F_{4}}$, generated by 16 conics and four lines (each line coming from a different set of eight lines associated to a point q_{i}):

$$
\left.\left(\begin{array}{rrrrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 1 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 0 & 1 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 & 0 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 & 1 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\
0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 & 0 & 1 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -2 & 0 \\
0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)-2\right)
$$

$M_{F_{4}}$ has determinant -64 and hence does represent $\operatorname{Pic}\left(F_{4}\right)$.
Let X_{C} be a very general surface in \mathcal{X}_{C}. We extracted the matrix M_{C}, from the intersection matrix of the lines and conics on X_{C}, by looking at the lines and conics which specialise to a subset of the 16 conics and four lines that lie on the Fermat quartic (which makes sense since $X_{0} \in \mathcal{X}_{C}$ is the Fermat quartic). We ended up with 16 conics and three lines (which must come from three different sets of eight lines) and hence we have a rank 19, i.e. full rank, sublattice of $\operatorname{Pic}\left(X_{C}\right)$. Notice that M_{C} is a minor of $M_{F_{4}}$ (just remove the last row and column), and the lines and conics generating M_{C} specialise to those generating the corresponding minor of $M_{F_{4}}$. Hence the lattice defined by M_{C} is a primitive sublattice of $\operatorname{Pic}\left(F_{4}\right)$. If M_{C} did not define $\operatorname{Pic}\left(X_{C}\right)$ then $\operatorname{Pic}\left(X_{C}\right)$ would be an overlattice of M_{C}. Furthermore by the remark at the beginning of the proof $\operatorname{Pic}\left(X_{C}\right)$ would be a sublattice of $\operatorname{Pic}\left(F_{4}\right)$. This is a contradiction to the fact that M_{C} is already a primitive sublattice of $\operatorname{Pic}\left(F_{4}\right)$. Hence the lattice defined by M_{C}, which is generated by lines and conics, is $\operatorname{Pic}\left(X_{C}\right)$.

Similarly we extracted $M_{C, D}$ from the intersection matrix using M_{C} (and note it is a minor of M_{C} by removing the last row and column), $M_{C, D, E}$ using $M_{C, D}$ (a minor of
$M_{C, D}$ by removing the last row and column) and M using $M_{C, D, E}$. Hence by the same argument, they represent respectively $\operatorname{Pic}\left(X_{C, D}\right), \operatorname{Pic}\left(X_{C, D, E}\right)$ and $\operatorname{Pic}(X)$. Finally, we extracted M_{B} from F_{4} using the same process (and notice it is a minor of F_{4} by removing column and row 18), finishing the proof.

Notation. Let M, N be matrices, then we use M^{N} to mean $N^{T} \cdot M \cdot N$.
We now have all the tools to prove our main result.
Theorem 4.2.8. Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ define the quartic $X_{p}: A\left(x^{4}+y^{4}+\right.$ $\left.z^{4}+w^{4}\right)+B x y z w+C\left(x^{2} y^{2}+z^{2} w^{2}\right)+D\left(x^{2} z^{2}+y^{2} w^{2}\right)+E\left(x^{2} w^{2}+y^{2} z^{2}\right) \subset \mathbb{P}^{3}$. Then

- A very general member of family parameterised by \mathbb{P}^{4} contains no lines, has Picard rank 16 and Picard group isomorphic to $E_{8}\langle-1\rangle \oplus U \oplus D_{5}\langle-2\rangle \oplus\langle-4\rangle$,
- A very general member of the family parameterised by $[A,(D E-2 A C) / A, C, D, E]$ contains exactly eight lines, has rank 17 and Picard group isomorphic to $E_{8}\langle-1\rangle \oplus$ $U \oplus A_{2}\langle-2\rangle \oplus\left(D_{4}\langle-1\rangle \oplus\langle-2\rangle\right)^{N}$, with

$$
N=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 2
\end{array}\right),
$$

- A very general member of the family parameterised by $[A, 0, C, D, 2 A C / D]$ contains exactly 16 lines, has rank 18 and Picard group isomorphic to $E_{8}\langle-1\rangle \oplus$ $U \oplus A_{7}\langle-1\rangle^{I_{4,2}} \oplus\langle-8\rangle$, with $I_{4,2}=\operatorname{Diag}([1,1,1,2,1,1,1])$,
- A very general member of the family parameterised by $[A, B(2 A-B) / A, B, B, B]$ contains exactly 24 lines, has rank 19 and Picard group isomorphic to $E_{8}\langle-1\rangle \oplus$ $U \oplus D_{8}\langle-1\rangle \oplus\langle-40\rangle$,
- A very general member of the family parameterised by $[A, 0, C, 0,0]$ contains exactly 32 lines, has rank 19 and Picard group isomorphic to $E_{8}\langle-1\rangle \oplus U \oplus$ $D_{8}\langle-1\rangle^{I_{8,2}} \oplus\langle-8\rangle$ with $I_{8,2}=\operatorname{Diag}([1,1,1,1,1,1,1,2])$,
- The surface defined by the point $[\sqrt{-3}, 12(\sqrt{-3}-1), 6,6,-6]$ contains exactly 32 lines, has rank 20 and Picard group isomorphic either to $E_{8}\langle-1\rangle^{\oplus 2} \oplus U \oplus$ $\langle-4\rangle \oplus\langle-24\rangle$ or to $E_{8}\langle-1\rangle^{\oplus 2} \oplus U \oplus\langle-4\rangle \oplus\langle-6\rangle$ (but not both),
- The Fermat quartic defined by the point $[1,0,0,0,0]$ contains exactly 48 lines, has rank 20 and Picard group isomorphic to $E_{8}\langle-1\rangle^{\oplus 2} \oplus U \oplus\langle-8\rangle \oplus\langle-8\rangle$.

Possibly except for the point $[\sqrt{-3}, 12(\sqrt{-3}-1), 6,6,-6]$, the Picard group is generated by the lines and conics lying on the surface.

Proof. The claim about the number of lines each very general member contains is proven in Lemma 4.1.4 while the rank is proven in Proposition 4.2.6. Apart from the surface defined by $[\sqrt{-3}, 12(\sqrt{-3}-1), 6,6,-6]$, the claim that the Picard group of a very general member is defined by lines and conics is proven by Proposition 4.2.7.

As all the Picard groups are even and indefinite, and in each case the rank is large enough, we can apply Theorem 2.1 .2 to each of our Picard groups. Specifically one can check (see $\overline{\mathrm{Bou}}$) that the discriminant form, rank and signature of the lattices defined by $M, M_{C, D, E}, M_{C, D}, M_{B}, M_{C}$ and $M_{F_{4}}$ are the same as the discriminant form, rank and signature of the lattice

- $E_{8}\langle-1\rangle \oplus U \oplus D_{5}\langle-2\rangle \oplus\langle-4\rangle$,
- $E_{8}\langle-1\rangle \oplus U \oplus A_{2}\langle-2\rangle \oplus\left(D_{4}\langle-1\rangle \oplus\langle-2\rangle\right)^{N}$,
- $E_{8}\langle-1\rangle \oplus U \oplus A_{7}\langle-1\rangle^{I_{4,2}} \oplus\langle-8\rangle$,
- $E_{8}\langle-1\rangle \oplus U \oplus D_{8}\langle-1\rangle \oplus\langle-40\rangle$,
- $E_{8}\langle-1\rangle \oplus U \oplus D_{8}\langle-1\rangle^{I_{8,2}} \oplus\langle-8\rangle$,
- and $E_{8}\langle-1\rangle^{\oplus 2} \oplus U \oplus\langle-8\rangle \oplus\langle-8\rangle$ respectively.

For the surface Y, defined by $[\sqrt{-3}, 12(\sqrt{-3}-1), 6,6,-6]$, the lattice defined by M_{Y} is isomorphic to $E_{8}\langle-1\rangle^{\oplus 2} \oplus U \oplus\langle-4\rangle \oplus\langle-24\rangle$. While we don't know that the lattice defined by M_{Y} is the Picard group of Y, we know that it is a full rank sublattice of it. One can then use Theorem 2.1.4 to find all overlattices of it, of which there is only one, and use Theorem 2.1 .2 to identify said lattice using its discriminant form, rank and signature.

Recall that we had a diagram, Figure 4.1.1 illustrating the various subfamilies of \mathcal{X} containing lines and how they fitted together. In Figure 4.2.1 we reproduce the same diagram, where instead of the families, we put together the Picard group of the generic member of each family (except for the surface Y, where we put the two possible Picard groups), and instead of the dimension of each family we put the rank of the Picard group.

4.2.4 Method

We include here two examples of how the isomorphic lattices were found for Theorem 4.2 .8 , which the reader might find useful. Those two examples illustrate the two different approaches we took in identifying the lattices.

We start with the lattice defined by M, i.e. the Picard group of a very general member X of \mathcal{X}. We know that M has signature $(1,15)$ and rank 16 . We calculate its discriminant group to be $C_{2}^{4} \times C_{4} \times C_{8}$, and $\operatorname{Pic}(X)$ has discriminant -512 (this concurs
rank

Figure 4.2.1: Lattices of the families
with the proof of Ekl10, Thm 7.3, Cor 7.4]). By Theorem 2.1.3, we see that we can fit in one copy of $E_{8}(-1)$ and one copy of U in $\operatorname{Pic}(X)$, i.e., $\operatorname{Pic}(X)=U \oplus E_{8}\langle-1\rangle \oplus T$ where T is a lattice with the same discriminant group and discriminant form as $\operatorname{Pic}(X)$, but with signature $(0,6)$.

Recall that A_{L} denotes the discriminant group of a lattice L, and q_{L} its discriminant form. We calculate the discriminant form and find that:

- If $x \in A_{\operatorname{Pic}(X)}$ has order 2 then $q_{\operatorname{Pic}(X)}(x) \in\{0,1\}$,
- If $x \in A_{\operatorname{Pic}(X)}$ has order 4 then $q_{\operatorname{Pic}(X)}(x) \in\left\{-\frac{3}{4},-\frac{2}{4},-\frac{1}{4}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right\}$,
- If $x \in A_{\operatorname{Pic}(X)}$ has order 8 then $q_{\operatorname{Pic}(X)}(x) \in\left\{-\frac{7}{8},-\frac{5}{8}, \frac{1}{8}, \frac{3}{8}\right\}$.

As the lattice $\langle-4\rangle$ has discriminant form $-\frac{1}{4}$ and discriminant group C_{4}, we guess that it appears as one of the summands of $\operatorname{Pic}(X)$. Using Table 2.1 and the fact we need negative definite lattices, we see that the C_{8} factor could arise from $A_{7}\langle-1\rangle$, $A_{3}\langle-2\rangle,\langle-8\rangle$ or $D_{2 n+1}\langle-2\rangle$. As $A_{7}\langle-1\rangle$ has too large of a rank (greater than six), and both $A_{3}\langle-2\rangle$ and $\langle-8\rangle$ have an element of order 8 with discriminant form $-\frac{3}{8}$ and $-\frac{1}{8}$ respectively, they can not be a factor of $\operatorname{Pic}(X)$. On the other hand, $D_{5}\langle-2\rangle$ does not give any obvious contradiction while having discriminant group $C_{2}^{4} \times C_{8}$. We guess that it is a factor of $\operatorname{Pic}(X)$. Hence putting everything together we check that $\operatorname{Pic}(X) \cong U \otimes E_{8}\langle-1\rangle \otimes D_{5}\langle-2\rangle \otimes\langle-4\rangle$. It is easy to see they have the same rank and signature; and a calculation checks they have the same discriminant form, namely both discriminant group have a basis $\left\{g_{1}, \ldots, g_{6}\right\}$ such that the discriminant form is given by

$$
\begin{aligned}
M_{q_{L}}\left(a_{i j}\right) & = \begin{cases}q_{L}\left(g_{i}+g_{j}\right) & i \neq j \\
q_{L}\left(g_{i}\right) & i=j\end{cases} \\
& =\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & -\frac{1}{4} & -\frac{5}{8} \\
1 & 1 & 1 & 0 & \frac{3}{4} & -\frac{5}{8} \\
1 & 1 & 1 & 0 & \frac{3}{4} & -\frac{5}{8} \\
1 & 0 & 0 & 0 & -\frac{1}{4} & \frac{3}{8} \\
-\frac{1}{4} & \frac{3}{4} & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} & -\frac{7}{8} \\
-\frac{5}{8} & -\frac{5}{8} & -\frac{5}{8} & \frac{3}{8} & -\frac{7}{8} & -\frac{5}{8}
\end{array}\right) .
\end{aligned}
$$

Our second example is with the lattice defined by M_{C}, i.e. the Picard group of a very general member X_{C} of \mathcal{X}_{C}. We know that M_{C} has signature $(1,18)$ and rank 19. We calculate that $\operatorname{Pic}\left(X_{C}\right)$ has discriminant 128 and discriminant group $C_{4}^{2} \times C_{8}$. By Theorem 2.1.3 we know that $\operatorname{Pic}\left(X_{C}\right) \cong E_{8}\langle-1\rangle \oplus U \oplus T$, where T is a lattice of signature $(0,9)$ with discriminant group $C_{4}^{2} \times C_{8}$ and discriminant form as:

- If $x \in A_{\operatorname{Pic}\left(X_{C}\right)}$ has order 2 then $q_{\operatorname{Pic}\left(X_{C}\right)}(x) \in\{0\}$,
- If $x \in A_{\operatorname{Pic}\left(X_{C}\right)}$ has order 4 then $q_{\operatorname{Pic}\left(X_{C}\right)}(x) \in\left\{-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$,
- If $x \in A_{\operatorname{Pic}\left(X_{C}\right)}$ has order 8 then $q_{\operatorname{Pic}\left(X_{C}\right)}(x) \in\left\{-\frac{5}{8},-\frac{1}{8}, \frac{3}{8}, \frac{7}{8}\right\}$.

As there is no negative definite lattice in Table 2.1 which gives a copy of C_{4} without giving an element of discriminant form $\frac{2 n+1}{4}$ for some n, we deduce that T can not be written simply in terms of scaled root lattices. Instead we use Theorem 2.1.4 to find an overlattice of $\operatorname{Pic}\left(X_{C}\right)$ that we can identify. In particular, if we let $\left\{e_{i}\right\}$ be the basis given by M_{C}, then $\frac{1}{2}\left(e_{4}+e_{5}+e_{10}+e_{11}+e_{13}+e_{14}\right) \in A_{\operatorname{Pic}\left(X_{C}\right)}$ has order two and discriminant form zero. This generates an isotropic subgroup of $A_{\operatorname{Pic}\left(X_{C}\right)}$ and gives a corresponding index two overlattice. This overlattice, L, has discriminant group $C_{2}^{2} \times C_{8}$ and discriminant form given as:

- If $x \in A_{L}$ has order 2 then $q_{L}(x) \in\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$,
- If $x \in A_{L}$ has order 4 then $q_{L}(x) \in\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$,
- If $x \in A_{L}$ has order 8 then $q_{L}(x) \in\left\{-\frac{5}{8},-\frac{1}{8}, \frac{3}{8}, \frac{7}{8}\right\}$.

Following our first example this allows us to guess that $L \cong E_{8}\langle-1\rangle \oplus U \oplus D_{8}\langle-1\rangle \oplus$ $\langle-8\rangle$. We check that is the case, as they both have rank 19 , signature $(1,18)$ and discriminant form given by

$$
\begin{aligned}
M_{q_{L}}\left(a_{i j}\right) & = \begin{cases}q_{L}\left(g_{i}+g_{j}\right) & i \neq j \\
q_{L}\left(g_{i}\right) & i=j\end{cases} \\
& =\left(\begin{array}{ccc}
0 & 1 & -\frac{1}{8} \\
1 & 0 & \frac{7}{8} \\
-\frac{1}{8} & \frac{7}{8} & \frac{7}{8}
\end{array}\right) .
\end{aligned}
$$

Knowing that $\operatorname{Pic}(X)$ is an index two full rank sublattice of $E_{8}\langle-1\rangle \oplus U \oplus D_{8}\langle-1\rangle \oplus$ $\langle-8\rangle$, we enumerate the index two full rank sublattices of $E_{8}\langle-1\rangle \oplus U \oplus D_{8}\langle-1\rangle \oplus\langle-8\rangle$ until we find one that has the same discriminant form as $\operatorname{Pic}(X)$.

Chapter 5

Examples of CM Curves of Genus two Defined over the Reflex Field

In this chapter, based on the collaborative paper [BS15], we assume that the field k has characteristic different from $2,3,5$.

We say that a curve C / k of genus g has complex multiplication (CM) if the endomorphism ring of its Jacobian over \bar{k} contains an order in a number field K of degree $2 g$. A $C M$-field is a totally imaginary quadratic extension K of a totally real number field K_{0}. If C has CM with $K \cong \operatorname{End}\left(\operatorname{Jac}(C)_{\bar{k}}\right)$ then K is a CM-field.

It is known that there exists exactly $13 j$-invariants giving elliptic curves over \mathbb{Q} with CM, see for example [Cox13, Thm 7.30ii]. Analogously, Van Wamelen vW99a] gives a list of 19 curves of genus two over \mathbb{Q} with CM by a maximal order. We extend Van Wamelen's list by finding genus two hyperelliptic curves defined over certain real quadratic extensions of \mathbb{Q}. Our main result is:

Theorem. For every row of the Tables $1 a, 1 b$, and $2 b$ on pages 79 89, let $K=$ $\mathbb{Q}[X] /\left(X^{4}+A X^{2}+B\right)$, where $[D, A, B]$ is as in the first column of the table. Then the curves $C: y^{2}=f(x)$ where f is as in the last column are exactly all curves with complex multiplication by the maximal order of K, up to isomorphism over $\overline{\mathbb{Q}}$ and up to automorphism of $\overline{\mathbb{Q}}$.

The number a that may appear in the coefficients of f is as follows. In table $1 b$, let $D^{\prime}=D$, and in table $2 b$, let $\left[D^{\prime}, A^{\prime}, B^{\prime}\right]$ be as in the second column. Let $\epsilon \in\{0,1\}$ be D^{\prime} modulo 4. Then a is a root of $x^{2}+\epsilon x+\left(\epsilon-D^{\prime}\right) / 4=0$.

Section 5.3 contains the more detailed Theorem 5.3.2 including an explanation of the other columns. Recently Pinar Kilicer and Marco Streng proved the completeness of the list KS15. That is, they proved that the first columns of Table 1a, 1b, and 2 b contain exactly the quartic fields K for which there exists a curve C of genus two with $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$ such that C is defined over the real quadratic subfield of the reflex field.

The first section briefly recaps the Igusa invariants of genus two hyperelliptic curves and Mestre's algorithm. The second section is dedicated to the theory of reducing the coefficients of the models we found. This is needed since Mestre's algorithm gives models for genus two hyperelliptic curves with coefficients of hundreds of digits. This is unpractical, so we use a reduction algorithm to reduce the coefficient size. The final section gives a more precise statement of the above theorem, as well as the curves found by applying our algorithm to the fields in the Echidna database $\left[\mathrm{K}^{+} 07\right]$.

5.1 Invariants

In the same way that the j-invariant uniquely specifies isomorphism classes of elliptic curves over \bar{k}, the Igusa Invariants classify genus two hyperelliptic curves. These were introduced by Igusa [gu60].

Let C / k be a hyperellitic curve of genus two, that is $C: y^{2}=f(x)$ where $f \in k[x]$ has degree 6 and disctinct roots $\alpha_{1}, \ldots, \alpha_{6}$. Let a_{6} be the leading coefficient of f. For any $\sigma \in S_{6}$ let $(i j)$ denote the difference $\left(\alpha_{\sigma(i)}-\alpha_{\sigma(j)}\right)$. Then we can define the Igusa Invariants as the following, where the sums are taken over the distinct expressions as σ ranges in S_{6} :

$$
\begin{aligned}
I_{2} & =a_{6}^{2} \sum_{15 \text { terms }}(12)^{2}(34)^{2}(56)^{2} \\
I_{4} & =a_{6}^{4} \sum_{10 \text { terms }}(12)^{2}(23)^{2}(31)^{2}(45)^{2}(56)^{2}(64)^{2} \\
I_{6} & =a_{6}^{6} \sum_{60 \text { terms }}(12)^{2}(23)^{2}(31)^{2}(45)^{2}(56)^{2}(64)^{2}(14)^{2}(25)^{2}(36)^{2} \\
I_{10} & =a_{6}^{10} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
\end{aligned}
$$

For two curves C and C^{\prime}, we have that $C_{\bar{k}} \cong C_{\bar{k}}^{\prime}$ if and only if there exists $\lambda \in \bar{k}^{*}$ such that $I_{j}(C)=\lambda^{j} I_{j}\left(C^{\prime}\right)$ for $j=2,4,6,10$. Note that the Igusa Invariants are available in the software packages Magma ($(\overline{\mathrm{BCP} 97]})$ and Sage $\left.\left(\underline{\mathrm{S}^{+} 13}\right]\right)$.

Given a quartic CM-field K there exists polynomials, called Igusa class polynomials, which allows us to recover $I_{j}(C)$ for all C with CM by \mathcal{O}_{K}. Details on how to compute these can be found in [Str10] and BS15]. For now we assume that for each quartic CM-field, we have the list of Igusa Invariants defined over a number k. We want to decide whether there is a curve of genus two over k with those Igusa Invariants, and if so compute a model of the form $y^{2}=f(x), f \in k[x]$, for that curve.

Let k be any field of characteristic not 2,3 , or 5 . Let

$$
\mathcal{M}_{2}(\bar{k})=\left\{\left(x_{2}, x_{4}, x_{6}, x_{10}\right) \in \bar{k}^{4} \mid x_{10} \neq 0\right\} / \overline{k^{*}}
$$

where $\lambda \in \overline{k^{*}}$ acts by a weighted scaling $\lambda\left(x_{2}, x_{4}, x_{6}, x_{10}\right)=\left(\lambda^{2} x_{2}, \lambda^{4} x_{4}, \lambda^{6} x_{6}, \lambda^{10} x_{10}\right)$.

We say that a point $x \in \mathcal{M}_{2}(\bar{k})$ is defined over k if $x \in \mathcal{M}_{2}(\bar{k})$ is stable under the action of $\operatorname{Gal}(\bar{k} / k)$. One can show (using Hilbert's Theorem 90) that this condition is satisfied if and only if x is the equivalence class of a quadruple with $x_{n} \in k$ for all $n \in[2,4,6,10]$. The field of moduli k_{0} of C / \bar{k} is the smallest field over which the point $x=\left(I_{n}(C)\right)_{n} \in \mathcal{M}_{2}(\bar{k})$ is defined. We say that a field $l \subset \bar{k}$ is a field of definition for C if there exists a curve D / l with $D_{\bar{k}} \cong C$.

Unlike the elliptic case, there is no simple formula for C given $\left(I_{n}(C)\right)_{n}$, and C cannot always be defined over its field of moduli. Mestre [Mes91] designed an algorithm which finds a model for C given x, but it involves solving a conic, which is not always possible without extending the field. When it is possible to solve a conic over the base field, then it usually introduces large numbers, so that the output polynomial may have coefficients that are much too large to be practical.

In more detail, Mestre's algorithm works as follows. First of all, assume that the curve C with $x=\left(I_{n}(C)\right)_{n}$ does not have any automorphisms other than the hyperelliptic involution $\iota:(x, y) \mapsto(x,-y)$. (If it does, then use the construction of Cardona and Quer [CQ05] instead of Mestre's.) From the coordinates x_{n} in the field of moduli k_{0}, one constructs homogeneous ternary forms $Q=Q_{x}$ and $T=T_{x} \in$ $k_{0}[U, V, W]$ of degrees 2 and 3 (for equations, see [Mes91] or [SBa]). Let $M_{x} \subset \mathbb{P}^{2}$ be the conic defined by Q. If M_{x} has a point over a field $k \supset k_{0}$, then this gives rise to a parametrisation $\varphi: \mathbb{P}^{1} \rightarrow M_{x}$ over k. Let $\varphi^{*}: k[U, V, W] \rightarrow k[X, Z]$ be the ring homomorphism inducing this parametrisation. We get a hyperelliptic curve $C_{\varphi}: Y^{2}=\varphi^{*}(T)$, i.e., $C_{\varphi}: y^{2}=T(\varphi(x: 1))$. The curve C_{φ} is a double cover of \mathbb{P}^{1}, ramified at the six points of \mathbb{P}^{1} that map (under φ) to the six zeroes of T_{x} on M_{x}.

Theorem 5.1.1. Given $x \in \mathcal{M}_{2}(k)$, assume that the curve C / \bar{k} with $x=\left(I_{n}(C)\right)_{n}$ satisfies $\operatorname{Aut}(C)=\{1, \iota\}$.

- If $M_{x}(k)=\emptyset$, then C has no model over k,
- If $M_{x}(k) \neq \emptyset$, then C_{φ} / k as above is a model of C.

We use Magma BCP97 to solve conics over number fields and we contributed our Sage implementation of Mestre's algorithm to Sage [S ${ }^{+}$13], where it is available (as of version 5.13) through the command HyperellipticCurve_from_Invariants.

5.2 Reduction

In the previous section we described Mestre's algorithm for finding models of genus two curves over a number field k. However, these hyperelliptic models in practice have coefficients of hundreds of digits. In this section we describe how we make hyperelliptic curve equations over k smaller. We start by explaining the relation between twists of hyperelliptic curves and an action of $\mathrm{GL}_{2}(k) \times k^{*}$ on binary forms. The rest of
the section is then about $\left(\mathrm{GL}_{2}(k) \times k^{*}\right)$-reduction of binary forms, and our algorithm consists of two parts:

1. Making a binary form integral with discriminant of small norm (Section 5.2.2,
2. Making the heights of the coefficients small by $\left(\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times \mathcal{O}_{k}^{*}\right)$-transformations, which preserve integrality and affect the discriminant only by units (Section 5.2.3).

We give the reduction algorithm for binary forms of general degree n, though it only applies to hyperelliptic curves in the case that n is even and greater than six.

5.2.1 Isomorphisms and twists

Fix an integer $n \geq 3$ and a field k, and let $H_{n}(k)$ be the set of separable binary forms of degree n in $k[X, Z]$. We interpret $F(X, Z) \in H_{n}(k)$ also as the pair $(n, f(x))$, where $f(x)=F(x, 1) \in k[x]$ is a polynomial of degree n or $n-1$. In the case where n is even and greater than six, let $g=(n-2) / 2$ and interpret F as the hyperelliptic curve $C=C_{f}=C_{F}$ of genus g given by the affine equation $y^{2}=f(x)$. We can also write C as the smooth curve given by $Y^{2}=F(X, Z)$ in weighted projective space $\mathbb{P}^{(1, g+1,1)}$.

Given any element of $H_{2 g+2}(k)$, we would like to find an isomorphic hyperelliptic curve with coefficients of small height, so first we determine when two hyperelliptic curves are isomorphic.

Note the natural right group actions of scaling and substitution for any n,

$$
\begin{array}{ll}
H_{n}(k) \circlearrowright k^{*} & : \quad(F(X, Z), u) \mapsto u F(X, Z), \quad \text { and } \\
H_{n}(k) \circlearrowright \mathrm{GL}_{2}(k) & : \quad(F(X, Z), A) \mapsto F(A \cdot(X, Z)),
\end{array}
$$

which together induce an action of $\mathrm{GL}_{2}(k) \times k^{*}$ on $H_{n}(k)$.
In terms of the polynomial $f(x)=F(x, 1) \in k[x]$, the action is

$$
f(x) \cdot\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), u\right]=u(c x+d)^{n} f\left(\frac{a x+b}{c x+d}\right) .
$$

Note that a hyperelliptic curve C always has the identity automorphism and the hyperelliptic involution $\iota: C \rightarrow C:(x, y) \mapsto(x,-y)$. We will often assume that these are the only automorphisms.

Proposition 5.2.1. Given any two $F, F^{\dagger} \in H_{2 g+2}(k)$, assume $\operatorname{Aut}\left(\left(C_{F}\right)_{\bar{k}}\right)=\{1, \iota\}$. Then C_{F} and $C_{F^{\dagger}}$ are isomorphic over \bar{k} if and only if F and F^{\dagger} are in the same orbit under $\mathrm{GL}_{2}(k) \times k^{*}$.

Proof. It is a standard result (see e.g. [CF96, p. 1] for the case of genus two) that two hyperelliptic curves C_{F} and $C_{F^{\dagger}}$ in $H_{n}(k)$ are isomorphic over k if and only if they are in the same orbit under $\mathrm{GL}_{2}(k) \times\left(k^{*}\right)^{2}$. Using $\operatorname{Aut}\left(C_{\bar{k}}\right)=\{1, \iota\}$, we get (see
e.g. HS00, Example C.5.1]) that all twists, up to isomorphisms over k, are given by the action of $H^{1}(k,\{1, \iota\})=k^{*} / k^{* 2}=\{1\} \times\left(k^{*} / k^{* 2}\right)$.

Remark. If $F^{\dagger}=F \cdot\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), v^{2}\right]$, then an isomorphism $C_{F^{\dagger}} \rightarrow C_{F}$ is given by $(x, y) \rightarrow$ $\left(\frac{a x+b}{c x+d}, v^{-1}(c x+d)^{-g-1} y\right)$.

By Proposition 5.2.1, finding small-height models over k of hyperelliptic curves C / k with $\operatorname{Aut}\left(C_{\bar{k}}\right)=\{1, \iota\}$ is equivalent to finding small elements of $\mathrm{GL}_{2}(k) \times k^{*}$-orbits of binary forms of even degree ≥ 6. By BS15, Lem 5.6] the hypothesis $\operatorname{Aut}\left(C_{\bar{k}}\right)=\{1, \iota\}$ is satisfied for the curves we deal with, except for one curve for which we do not need a reduction algorithm. If $\operatorname{Aut}\left(C_{\bar{k}}\right) \neq\{1, \iota\}$, then $\mathrm{GL}_{2}(k) \times k^{*}$-actions may be too restrictive, but by Remark 5.2.1. they do always give valid twists.

Our goal for the remainder of Section 5.2 is, given a binary form $F \in H_{n}(k)$, to find a $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent form with small coefficients. We start by computing a discriminant-minimal form in Section 5.2.2 followed by discriminant-preserving $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times \mathcal{O}_{k}^{*}$-reduction in Section 5.2 .3

5.2.2 Reduction of the discriminant

Given a binary form $F(X, Z) \in k[X, Z]$ of any degree $n \geq 3$, we wish to find a $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent form with minimal discriminant. First we recall that the discriminant of a separable binary form

$$
F(X, Z)=\prod_{i=1}^{n}\left(\gamma_{i} X-\alpha_{i} Z\right) \in k[X, Z]
$$

with $\alpha_{i}, \gamma_{i} \in \bar{k}$ is

$$
\Delta(F)=\prod_{i<j}\left(\gamma_{j} \alpha_{i}-\gamma_{i} \alpha_{j}\right)^{2} \in k^{*}
$$

In terms of the polynomial $f=F(x, 1)$ of degree n or $n-1$ with leading coefficient c, this is

$$
\Delta(F)=\left\{\begin{aligned}
\Delta(f) & \text { if } \operatorname{deg} f=n \\
c^{2} \Delta(f) & \text { if } \operatorname{deg} f=n-1
\end{aligned}\right.
$$

Let $g \in \mathbb{Z}$ be given by $n=2 g+2$ if n is even and $n=2 g+3$ if n is odd. If n is even and ≥ 6, then F corresponds to a hyperelliptic curve C_{F} of genus g with

$$
\Delta\left(C_{F}\right)=2^{4 g} \Delta(F)
$$

If n is odd, then there is no interpretation in terms of hyperelliptic curves and the number g is simply a convenient number in the algorithms and proofs.

The discriminant changes under the action of the group $\mathrm{GL}_{2}(k) \times k^{*}$ via

$$
\begin{equation*}
\Delta(F \cdot[A, u])=u^{2(n-1)} \operatorname{det}(A)^{n(n-1)} \Delta(F) \tag{5.2.1}
\end{equation*}
$$

Remark. In case $n=6$, the Igusa Invariants of Section 5.1 satisfy $I_{10}(C)=2^{12} \Delta(C)=$ $2^{20} \Delta(F)$ and

$$
I_{j}\left(C_{F \cdot[A, u]}\right)=u^{j} \operatorname{det}(A)^{3 j} I_{j}\left(C_{F}\right) .
$$

Before we describe how to reduce the discriminant globally over a number field, we first outline how to reduce the discriminant at just one prime.

5.2.2.1 Local reduction of the discriminant

Assume for now that k is the field of fractions of a discrete valuation ring R with valuation v. Let π be a uniformiser of v and $\mathfrak{m}=\pi R$ the maximal ideal.

We call F minimal at v if $v(\Delta(F))$ is minimal among all $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent forms with v-integral coefficients.

Proposition 5.2.2. Suppose $F \in H_{n}(k)$ has coefficients in R. Let $g=\lfloor n / 2\rfloor-1$ be the largest integer smaller than or equal to $(n-2) / 2$, so $n \in\{2 g+2,2 g+3\}$. Then F is non-minimal at v if and only if we are in one of the following three cases:

1. The polynomial F is not primitive, so $F^{\dagger}=F \cdot\left[\mathrm{id}_{2}, \pi^{-1}\right]$ is integral and satisfies $v\left(\Delta\left(F^{\dagger}\right)\right)<v(\Delta(F))$,
2. The polynomial $(F(x, 1)$ mod $\mathfrak{m})$ has a $(g+2)$-fold root \bar{t} in the residue field. Moreover, for some (equivalently every) lift $t \in R$ of \bar{t}, the form $F^{\dagger}=F$. $\left[\left(\begin{array}{ll}\pi \\ 0 & t\end{array}\right), \pi^{-(g+2)}\right]=F(\pi X+t Z, Z) \pi^{-(g+2)}$ is integral and satisfies $v\left(\Delta\left(F^{\dagger}\right)\right)<$ $v(\Delta(F))$,
3. The polynomial $(F(x, 1) \bmod \mathfrak{m})$ has degree $\leq n-(g+2)$. Moreover, the form $F^{\dagger}=F \cdot\left[\binom{10}{0}, \pi^{-(g+2)}\right]=\pi^{-(g+2)} F(X, \pi Z)$ is integral and satisfies $v\left(\Delta\left(F^{\dagger}\right)\right)<$ $v(\Delta(F))$.

Proof. For the "if" part, note that in each of the three cases, the proposition gives an explicit equivalent form that proves that F is not minimal.

Conversely, suppose that F is non-minimal. Then there exists $[A, u] \in \mathrm{GL}_{2}(k) \times k^{*}$ with $F \cdot[A, u]$ integral of smaller discriminant. Write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Let T be the subgroup $T=\left\{\left[\mu \mathrm{id}_{2}, \mu^{-n}\right]: \mu \in k^{*}\right\}$ of the centre of $\mathrm{GL}_{2}(k) \times k^{*}$, and note that T acts trivially on $H_{n}(k)$, so without loss of generality A has coprime coefficients in R. So either
(i) $c \in R^{*}$ or $d \in R^{*}$, or
(ii) $c \equiv d \equiv 0 \bmod \pi$ and either a or b is in R^{*}.

Note also that GL $(R) \times R^{*}$ preserves integrality and the discriminant, so we use multiplication by GL (R) on the right to perform elementary column operations over R on A. Hence we get that without loss of generality either
(i) $d=1, c=0$, or
(ii) $a=1, b=0, c \equiv d \equiv 0 \bmod \pi$.

Note that in both cases $a \neq 0$ and $d \neq 0$, so with more $\mathrm{GL}(R) \times R^{*}$-multiplication, we get $a=\pi^{k}, d=\pi^{l}, u=\pi^{-m}$ with $k, l, m \in \mathbb{Z}, k, l \geq 0$, and by equation (5.2.1) also

$$
\begin{equation*}
2 m>n(k+l) \tag{5.2.2}
\end{equation*}
$$

We start with case (i).
Let $H(X, Z)=F(X+b Z, Z)$ and write $H(X, Z)=\sum_{i} h_{i} X^{i} Z^{n-i}$. Then $F \cdot[A, u]=$ $\pi^{-m} H\left(\pi^{k} X, Z\right)$ is integral, so $v\left(h_{i}\right) \geq m-k i$. Together with 5.2.2), this gives

$$
v\left(h_{i}\right)>\left(\frac{n}{2}-i\right) k .
$$

In particular, if $k=0$, then H is integral and non-primitive, hence so is $F(X, Z)=$ $H(X-b Z, Z)$ and we are in case 1 .

If $k \geq 1$, then for all i, we have $v\left(h_{i}\right)>\frac{n}{2}-i$, hence $v\left(h_{i}\right)>\lfloor n / 2\rfloor-i=g+1-i$, so $v\left(h_{i}\right) \geq g+2-i$. In particular, the form

$$
F \cdot\left[\left(\begin{array}{ll}
\pi & b \\
0 & 1
\end{array}\right), \pi^{-(g+2)}\right]=H \cdot\left[\left(\begin{array}{ll}
\pi & b \\
0 & 1
\end{array}\right), \pi^{-(g+2)}\right]
$$

is integral, and of strictly smaller discriminant than F. This proves that we are in case 2 for some lift $t=b$ of a $(g+2)$-fold root $\bar{t}=\bar{b}$. To finish the proof of case 2 , we need to prove that for every t^{\prime} satisfying $\overline{t^{\prime}}=\bar{b}$, the transformation $\left[\left(\begin{array}{ll}\pi & b \\ 0 & 1\end{array}\right), \pi^{-(g+2)}\right]$ also gives an integral equation. Let $y=\left(t^{\prime}-b\right) / \pi \in \mathcal{O}_{k}$ and note

$$
\left(\begin{array}{ll}
\pi & t^{\prime} \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
\pi & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) \in\left(\begin{array}{ll}
\pi & b \\
0 & 1
\end{array}\right) \mathrm{GL}_{2}(R)
$$

which proves that we are in case 2 for every lift t. This finishes case (i).
Now assume that we are in case (ii). Equation 5.2.2 gives $m>\frac{n}{2} \geq g+1$. Write $F=\sum_{i=0}^{n} f_{i} X^{i} Z^{n-i}$. We will prove by induction that $v\left(f_{j}\right) \geq j+g+2-n$ holds for all j, which implies that $F(X, \pi Z) \pi^{-(g+2)}$ is integral, so we are in case 3 . Note that the assertion is trivial for $j \leq n-g-2$. Now suppose that it is true for all $j<J$. Then $F \cdot[A, u]=\pi^{-m} F(X, c X+d Z)$ is integral, so modulo π^{g+2}, we get $0 \equiv \sum_{i=0}^{n} f_{i} X^{i}(c X+d Z)^{n-i} \equiv \sum_{i=J}^{n} f_{i} X^{i}(c X+d Z)^{n-i}$. Looking at the coefficient of $X^{J} Z^{n-J}$, we get $f_{J} d^{n-J} \equiv 0 \bmod \pi^{g+2}$, so $\pi^{g+2-n+J} \mid f_{J}$. This finishes the proof.

We use Proposition 5.2 .2 to create the following reduction algorithm.

Algorithm 5.2.3.

Input: A binary form $F \in H_{n}(k) \cap R[X, Y]$ and a prime element $\pi \in R$.
Output: A binary form F^{\dagger} that is $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent to F and minimal at ord_{π}. First let $g=\lfloor n / 2\rfloor-1$.

1. If $F \bmod \pi R$ is zero, then repeat the algorithm with $F^{\dagger}=F \cdot\left[\mathrm{id}_{2}, \pi^{-1}\right]$. (This corresponds to case 1. of 5.2.2.)
2. If $F(x, 1) \bmod \pi R$ has degree $\leq n-(g+2)$, then let $F^{\dagger}=F(X, \pi Z) \pi^{-(g+2)}$. If F^{\dagger} is integral, then repeat the algorithm with F^{\dagger}. (This corresponds to case 3. of 5.2.2.)
3. Factor $\bar{f}=(f \bmod \pi)$ over the finite $R / \pi R$. If \bar{f} has a root \bar{t} of multiplicity $\geq g+2$, then let t be a lift of \bar{t} to R. If $F^{\dagger}=F(\pi X+t Z, Z) \pi^{-(g+2)}$ is integral, then repeat the algorithm with F^{\dagger}. (This corresponds to case 2. of 5.2.2.)
4. Return F.

Proof of correctness of Algorithm 5.2.3. Every step of the algorithm leaves the model integral, and every iteration reduces $v(\Delta(F))$, so the algorithm terminates. It therefore suffices to prove that the output is not in any of the three cases of Proposition 5.2.2.

In case 1, the algorithm reduces the discriminant in step 1 and starts over. In case 3 , the same happens with step 2 , and in case 2 , it happens with step 3 because a polynomial of degree $\leq 2 g+3$ has at most one $(g+2)$-fold root \bar{t}.

In many cases, we can do step 3 as follows without having to think about factoring of polynomials.

Lemma 5.2.4. If π is coprime to n !, then step 3 can be replaced by the following.

3'. Let $f=F(x, 1)$, calculate $\operatorname{gcd}\left(f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(g+1)}\right)$ over the finite field $R / \pi R$, and write it as $\sum_{i=0}^{s} a_{i} x^{s}$ with $a_{s} \neq 0$. If $s>0$, then let t be such that $t \equiv$ $-a_{s-1} /\left(s a_{s}\right) \bmod \pi R$. If $F^{\dagger}=F(\pi X+t Z, Z) \pi^{-(g+2)}$ is integral, then repeat the algorithm with F^{\dagger}.

Proof. It suffices to show that if \bar{f} has a root \bar{t} of multiplicity $\geq g+2$, then it is equal to $\left(-a_{s-1} /\left(s a_{s}\right) \bmod \pi R\right)$.

Let a be a root of exact multiplicity m of \bar{f} over the algebraic closure of $R / \pi R$, that is, we have $\bar{f}=(x-a)^{m} g(x)$ with $g(a) \neq 0$. Then the i-th derivative $\bar{f}^{(i)}$ for $i \leq m$ is

$$
\frac{m!}{(m-i)!}(x-a)^{m-i} g(x) \quad \bmod (x-a)^{m-i+1}
$$

In particular, $(x-a)$ is a factor of $\operatorname{gcd}\left(\bar{f}, \bar{f}^{\prime}, \ldots, \bar{f}^{(m-1)}\right)$, but not of $\bar{f}^{(m)}$. Here we use that m ! is coprime to π.

It follows that only the (unique) root of multiplicity $\geq g+2$ appears in $\operatorname{gcd}\left(\bar{f}, \bar{f}^{\prime}, \ldots, \bar{f}^{(g+1)}\right)$, that is, we get gcd $=a_{s}(x-\bar{t})^{s}$, hence $a_{s-1}=-s \bar{t} a_{s}$, so $\bar{t}=-a_{s-1} /\left(s a_{s}\right)$.

5.2.2.2 Global reduction of the discriminant

Now let us get back to the case where k is a number field with ring of integers \mathcal{O}_{k}. We prefer to have a binary form F where $v(\Delta(F))$ is minimal for all discrete valuations v of k.

If k has class number one, then such a form exists. Indeed, if we take π in Algorithm 5.2.3 to be a generator of the prime ideal corresponding to v, then this affects only v and no other valuations, so we can do this for each v separately. See Section 5.2.2.3 for what to do if the class group is non-trivial.

To be able to use our local reduction algorithm one prime at a time, we need to know the valuations v for which $v(\Delta(F))$ is non-minimal. The most straightforward method is to factor $\Delta(F)$. However, factorisation is computationally hard, so we will give some tricks for trying to avoid factorisation below. We needed to use a combination of sophisticated factorisation software and the tricks below for creating our tables. Indeed, on the one hand, without the tricks below, even the state-of-the-art factorisation software left us unable to reduce a couple of the curves. On the other hand, when just using the tricks below and the built-in factorisation functionality of pari-gp [PAR11] (through Sage [$\left.S^{+} 13\right]$), there are some curves that we were still unable to reduce. Only the combination of factoring software and the tricks below allowed us to complete the table.

For serious factoring, we combined the built-in implementation of Pollard's rho method and the elliptic curve method of Magma [BCP97], the GMP-ECM implementation of the elliptic curve method $\left[\overline{Z^{+} 12}\right]$, and the CADO-NFS implementation of the number field sieve $\left[\mathrm{GKM}^{+}\right]$.

The method for avoiding factorisation is based on the following proposition.
Proposition 5.2.5. Let $\mathfrak{a}=\pi \mathcal{O}_{k}$ be any (possibly non-prime) principal ideal in a number field k. Modify Algorithm 5.2.3 as follows.

1. Whenever testing whether an element b of \mathcal{O}_{k} is zero modulo $\pi^{j} \mathcal{O}_{k}=\mathfrak{a}^{j}$ or whether an element $b / \pi^{j} \in k$ is integral (in steps 1, 2, and 3), compute $\mathfrak{d}_{i}=$ $\operatorname{gcd}\left(b \mathcal{O}_{k}, \mathfrak{a}^{i}\right)$ for $i=1, \ldots j-1$. If there exists an i with $\mathfrak{d}_{i} \notin\left\{\mathfrak{a}^{i-1}, \mathfrak{a}^{i}\right\}$, then for the smallest such i output the non-trivial factor $\mathfrak{d}_{i} / \mathfrak{a}^{i-1}$ of \mathfrak{a}.
2. Replace step 3 with step 3' of Lemma 5.2.4 regardless of whether π is coprime to $n!$. Compute $\operatorname{gcd} s$ of polynomials in $\mathcal{O}_{k} / \mathfrak{a}$ using Euclid's algorithm. For each division with remainder by a polynomial g, first compute the gcd of the leading coefficient of g with \mathfrak{a} as in item 1.

Then all steps of Algorithm 5.2.3 are polynomial-time computable and the output is either a polynomial F^{\dagger} equivalent to F with $\Delta\left(F^{\dagger}\right) \mid \Delta(F)$ or a non-trivial factor of \mathfrak{a}. Moreover, if \mathfrak{a} is square-free and coprime to $n!$ and the algorithm runs without returning a factor of \mathfrak{a}, then the output polynomial F^{\dagger} is minimal at all primes dividing \mathfrak{a}.

Proof. Since the leading coefficient of a polynomial over \mathcal{O}_{k} is either invertible modulo \mathfrak{a} or has a non-trivial factor in common with \mathfrak{a}, division with remainder either works or provides such a non-trivial factor. This proves the first assertion in Proposition 5.2.5.

Next, suppose that \mathfrak{a} is square-free and coprime to n ! and let F be as in Algorithm 5.2.3. If F is minimal at all primes dividing \mathfrak{a}, then we are done. If there is an $i \in\{1,2,3\}$ such that all primes dividing \mathfrak{a} are as in case i. of Proposition 5.2.2 then the corresponding step (1,3 ' or 2) in Algorithm 5.2.3 reduces the discriminant of F and we start over with a new F.

So without loss of generality, there are $i \in\{1,2,3\}$ and primes $\mathfrak{p}, \mathfrak{q} \mid \mathfrak{a}$ such that \mathfrak{p} is as in case i. of Proposition 5.2 .2 and \mathfrak{q} is not. But then the corresponding step (1, 3 ' or 2) in Algorithm 5.2.3 returns a non-trivial factor of \mathfrak{a}.

Based on Proposition 5.2.5 we get the following algorithm that tries to minimise the amount of factoring.

Algorithm 5.2.6.

Input: A binary form $F \in H_{n}(k)$ for a number field k of class number one.
Output: A binary form F^{\dagger} that is integral, is $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent to F, and has minimal discriminant.

1. Let $\mathfrak{a}=\Delta(F) \mathcal{O}_{k}$ and $A=\{\mathfrak{a}\}$.
2. If the unit ideal is in A, remove it from A. If A is empty, return F.
3. For each $\mathfrak{a} \in A$, test if \mathfrak{a} is a perfect power and replace it by its highest-power root.
4. Fix $B \in \mathbb{Z}$ with $B \geq n$ and apply trial division up to B to each element of A to find a small prime factor $\mathfrak{p}=(\pi)$. If no prime is found, go to Step 5. If a prime is found, then reduce the form locally using Algorithm 5.2.3 on \mathfrak{p}, remove all factors \mathfrak{p} from all elements of A, and go to step 2.
5. For each $\mathfrak{a} \in A$, run Algorithm 5.2.3 on \mathfrak{a} with the modifications of Proposition 5.2.5.
(a) If it returns a non-trivial factor \mathfrak{b} of \mathfrak{a}, then replace \mathfrak{a} in A by \mathfrak{b} and $\mathfrak{a} / \mathfrak{b}$ and go to step 3.
(b) If it returns a binary form $F^{\dagger} \neq F$, then replace all $\mathfrak{a} \in A$ by $\mathfrak{a}+\Delta\left(F^{\dagger}\right) \mathcal{O}_{k}$, replace F by F^{\dagger}, and go to step 2.
(c) If it returns F, then go to the next \mathfrak{a} in A.
6. Go to step 4 with a strictly larger trial division bound B (or more sophisticated factoring methods).

Let us first show that this algorithm terminates in finite time and returns a minimal form. For minimality of the form, note that at every step in the algorithm, all primes at which F is non-minimal divide some element of A, and the algorithm terminates only if A is empty. To see that the algorithm ends, note that the norm $N=N_{k / \mathbb{Q}}(\Delta(F))$ never increases, while at every iteration either $N \in \mathbb{Z}$ decreases or $B \in \mathbb{Z}$ increases, so at some point we have $B>N$ after which a repeated application of step 4 finishes the algorithm.

Remark. There is no way to completely avoid factoring. Indeed, let p, q be large primes and consider the hyperelliptic curve

$$
y^{2}=f(x)=N^{2} x^{6}+x+1 \quad \text { where } N=p q^{2}
$$

which has discriminant $\Delta(f)=\left(5^{2}-6^{6} n^{2}\right) n^{8}$. Then for most p, q the twist-reduced hyperelliptic curve is

$$
y^{2}=f^{\dagger}(x)=f(x / p) p^{2}=q^{2} x^{6}+p x+p^{2}
$$

which has discriminant $\Delta\left(f^{\dagger}\right)=\left(5^{5}-6^{6} n^{2}\right) p^{6} q^{8}=\Delta(f) / p^{10}$. Hence, reducing f is equivalent to finding $p=\sqrt[10]{\Delta(f) / \Delta\left(f^{\dagger}\right)}$ and factorising N.

Remark. In the genus two case (that is, $n=6$) we can replace $\Delta(F) \mathcal{O}_{k}$ in the algorithm by the ideal $\operatorname{gcd}\left(I_{2}\left(C_{F}\right), I_{4}\left(C_{F}\right), I_{6}\left(C_{F}\right), \Delta(F)\right)$, where I_{2}, I_{4}, I_{6} are the Igusa-Clebsch invariants from Section 5.1. Indeed, we have that I_{2}, I_{4}, and I_{6} satisfy the transformation formula of the remark after Equation 5.2.1, so all primes at which the model is non-minimal divide this gcd. The advantage is that this ideal is smaller than $\Delta(F)$, which speeds up the algorithm.

Remark. All of the above works if one wants a hyperelliptic curve model that is isomorphic over \bar{k}, but not necessarily over k. To get a minimal model of C_{F} that is isomorphic over k, one could do the following. First reduce F as above, and do some bookkeeping to find not only a twist-reduced model $C_{F^{\dagger}} / k$, but also $[A, u] \in \mathrm{GL}_{2}(k) \times k^{*}$ with $F^{\dagger}=F \cdot[A, u]$ and some information on the factorisation of u. Then all one needs is a minimal element $v \in u\left(k^{*}\right)^{2} \cap \mathcal{O}_{k}$, because $C_{v F^{\dagger}}$ is then a minimal model. Such an element v exists if k has class number one, and can then be easily found if one is able to factor $u \mathcal{O}_{k}$.

5.2.2.3 Class number >1

Everything in Section 5.2.2.2 is under the assumption that k had class number one, and hence a global minimal form exist. If k does not have class number one, then this is not always possible. Indeed, let F_{v} be a $\mathrm{GL}_{2}(k) \times k^{*}$-equivalent binary form with $v\left(\Delta\left(F_{v}\right)\right)$ minimal, and let $\Delta_{\text {min }}$ be the ideal with $v\left(\Delta_{\text {min }}\right)=v\left(\Delta\left(F_{v}\right)\right)$ for all v. If $\Delta_{\min }$ is not principal, then there is no form with that discriminant. In fact, if F is any form, and there exists a globally minimal equivalent form $F_{\min }$ with $\Delta\left(F_{\min }\right)=\Delta_{\min }$, then the ideal $\sqrt[\operatorname{gcd}(n, 2)(n-1)]{\Delta(F) / \Delta_{\min }}$ is a principal ideal.

So instead of a globally reduced form, we look for an almost reduced form. Let S be a (small) set of (small) prime ideals that generate the class group. It is easy to change the methods above into an algorithm that finds a form that is reduced outside S. We now give the details of the algorithm that we used for this, which also makes the form reasonably simple at the primes of S.

Let T be any set of prime ideals that generate the class group and \mathfrak{a} an ideal supported outside T. In Algorithm 5.2.3 to reduce at \mathfrak{a} and stay reduced outside of T, we do the following. Take $\pi_{u} \in \mathfrak{a}$ and $\pi_{l}^{-1} \in \mathfrak{a}^{-1}$ such that π_{u} / \mathfrak{a} and \mathfrak{a} / π_{l} are supported on T. Then in that algorithm replace the formulas for F^{\dagger} in cases $1,2,3$ with

$$
\begin{equation*}
\pi_{l}^{-1} F(X, Z), \quad F\left(X / \pi_{l}, Z\right) \pi_{u}^{n-(g+2)}, \quad \text { and } \quad F\left(\pi_{u} X+t Z, Z\right) \pi_{l}^{-(g+2)} \tag{5.2.3}
\end{equation*}
$$

respectively, where we make sure that t is divisible by π_{u} / \mathfrak{a}. Note that this gives integral forms, and worsens the discriminant only at T.

Our algorithm starts by taking T disjoint from S. First reduce at all primes of S, possibly worsening at T. Then take $T=S$ and reduce outside of S, possibly worsening at S.

Since we had a minimal form at the primes of S, the only non-minimality of the form at this stage is what was introduced by (5.2.3). In particular, it can be removed by transformations of the form $a^{-1} b^{g} F\left(b^{-1} X, Z\right)$. So we take $a, b \in \mathcal{O}_{k}$ with $a^{2} b^{n-2 g}$ of maximal norm such that $a^{-1} b^{g} F\left(b^{-1} X, Z\right)$ is integral. Note that no hard factoring is required in finding a and b since they are supported on the set of primes S.

We did the above for the field $K=\mathbb{Q}[X] /\left(X^{4}+46 X^{2}+257\right)$ (denoted by $[17,46,257]$ in $\left[\mathrm{K}^{+} 07\right]$). We used $S=\{\mathfrak{p}\}$ for a (non-principal) prime \mathfrak{p} of norm 2 in the quadratic field $K_{0}^{r}=\mathbb{Q}(\sqrt{257})$, which has class group of order 3 .

5.2.3 Reduction of coefficients: Stoll-Cremona reduction

At this point, we have an integral form $F \in H_{n}(k)$ where the norm $N(\Delta(F))$ is small. Next, we try to make the coefficients small. As we do not want to break integrality nor disturb the discriminant, we take transformations in $\left(\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times \mathcal{O}_{k}^{*}\right)$.

We use a notion of 'reduced' based on Stoll and Cremona [SC03]. We do not prove that this notion of 'reduced' yields small coefficients, but in practice it does.

5.2.3.1 The case $k=\mathbb{Q}$

Stoll and Cremona [SC03, Definition 4.3] give a definition of reduced for binary forms of degree ≥ 3 over \mathbb{Q} under the action of $\mathrm{SL}_{2}(\mathbb{Z}) \times 1$, which we will summarise here.

Recall that $H_{n}(k)$ is the set of separable binary forms $F(X, Y)$ of degree n. Let $\mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half plane. We turn the standard left $\mathrm{GL}_{2}^{+}(\mathbb{R})$-action on \mathcal{H} into a right action by

$$
z \cdot A=A^{-1}(z)=\frac{d z-b}{-c z+a}
$$

for $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
The idea behind [SC03] is to use an $\mathrm{SL}_{2}(\mathbb{R})$-covariant map $z: H_{n}(\mathbb{R}) \rightarrow \mathcal{H}$, which we do not explain here. In \mathcal{H}, there is a notion of $\mathrm{SL}_{2}(\mathbb{Z})$-reduction, and we just pull back that notion to $H_{n}(\mathbb{Q})$ via z. In other words, we have the following definition.

Definition 5.2.7. We call $F \in H_{n}(\mathbb{Q})$ reduced for $\mathrm{SL}_{2}(\mathbb{Z})$ if $z(F)=z=x+i y$ satisfies

$$
\begin{equation*}
|x| \leq \frac{1}{2}, \text { and } \tag{R}
\end{equation*}
$$

(M) $\quad|z| \geq 1$.

This gives rise to the following algorithm.
Algorithm 5.2.8 (Stoll-Cremona reduction).
Input: $F \in H_{n}(\mathbb{Q})$
Output: an $\mathrm{SL}_{2}(\mathbb{Z})$-reduced element of the orbit $F \cdot\left(\mathrm{SL}_{2}(\mathbb{Z}) \times 1\right)$.

1. Let m be the integer nearest to $x=\operatorname{Re}(z(F))$ and let $F \leftarrow F \cdot\left(\begin{array}{ll}1 & m \\ 0 & 1\end{array}\right)=F(X+$ $m Z, Z)$.
This replaces $z(F)$ with $\left(\begin{array}{cc}1 & -m \\ 0 & 1\end{array}\right) z(F)=z(F)-m$, which satisfies (R) above.
2. If $|z(F)|<1$, then let $F \leftarrow F \cdot\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)=F(Z,-X)$ and go back to step 1. This replaces $z(F)$ with $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) z(F)=-1 / z(F)$, which satisfies (M) above.

Stoll and Cremona [SC03, after Proposition 4.4] outline how one could extend the definition of reduced to binary forms over any number field k under the action of $\mathrm{SL}_{2}\left(\mathcal{O}_{k}\right) \times 1$. We work out the details in the case of a totally real field, and give an implementation and an improvement.

To generalise the algorithm, we need two ingredients: a covariant map, and a reduction algorithm on the codomain of that map.

5.2.3.2 The covariant for totally real fields

Let k be a totally real number field of degree d and let $\phi_{1}, \ldots, \phi_{d}$ be the d embeddings $k \rightarrow \mathbb{R}$. This induces embeddings $k \rightarrow \mathbb{R}^{d}, H_{n}(k) \rightarrow H_{n}(\mathbb{R})^{d}$ and $\mathrm{SL}_{2}(k) \rightarrow \mathrm{SL}_{2}(\mathbb{R})^{d}$, which we will use implicitly. Composing with the covariant map z on every component, we get a map $H_{n}(k) \rightarrow \mathbb{H}^{d}$, which is $\mathrm{SL}_{2}(k)$-covariant and which we also denote by z.

In fact, we can do slightly better. We identify \mathcal{H} with $(\mathbb{C} \backslash \mathbb{R})$ modulo complex conjugation, that is, we identify $z \in-\mathcal{H}$ with $\bar{z} \in \mathcal{H}$. Then the $\mathrm{SL}_{2}(\mathbb{R})$-action on \mathcal{H} extends to a $\mathrm{GL}_{2}(\mathbb{R})$-action also given by $z \cdot A=A^{-1}(z)=(d z-b) /(-c z+a)$ (up to complex conjugation). The covariant z as defned in [SC03] then turns out to also be $\mathrm{GL}_{2}(\mathbb{R})$-covariant. In particular, we get a map $z: H_{n}(k) \rightarrow \mathbb{H}^{d}$, which is $\mathrm{GL}_{2}(k)$-covariant.

5.2.3.3 Reduction for $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right)$ in \mathbb{H}^{d}

Let $N: \mathbb{R}^{d} \rightarrow \mathbb{R}:\left(x_{m}\right)_{m} \mapsto \prod_{m} x_{m}$, define $\operatorname{Re}, \operatorname{Im},|\cdot|: \mathbb{C}^{d} \rightarrow \mathbb{R}^{d}$ component-wise and let $\log : \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}:\left(x_{m}\right)_{m} \mapsto\left(\log \left|x_{m}\right|\right)_{m}$.

Definition 5.2.9. We call $z \in \mathbb{H}^{d}$ reduced for $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right)$ if it satisfies the following conditions:
(R) the point $\operatorname{Re}(z) \in \mathbb{R}^{d}$ is in some fixed chosen fundamental hyper-parallelogram for addition by \mathcal{O}_{k},
(I) the point $\log (\operatorname{Im}(z)) \in \mathbb{R}^{d}$ is in some fixed chosen fundamental domain for addition by $\log \left(\mathcal{O}_{k}^{*}\right)$, and
the norm $N(\operatorname{Im}(z))$ is maximal for the $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right)$-orbit $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) z$.
Let us first see how this is an analogue of Definition 5.2.7. Note that in the case $k=\mathbb{Q}$, we can choose the hyper-parallelogram $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and then conditions $5.2 .7(\mathrm{R})$ and 5.2 .9 (R) coincide and condition $5.2 .9(\mathrm{I})$ is empty. It is well-known that under condition $5.2 .7(\mathrm{R})$, we have $5.2 .9(\mathrm{M})$ if and only if $5.2 .7(\mathrm{M})$.

The above gives rise to a notion of reduction for $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times 1$ on $H_{n}(k)$. We then get the following sketch of a reduction algorithm.

Algorithm 5.2.10 (Reduction for $\left.\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times \mathcal{O}_{k}^{*}\right)$.
Input: $F \in H_{n}(k)$.
Output: $F^{\dagger} \in H_{n}(k)$ that is $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right) \times \mathcal{O}_{k}^{*}$-equivalent to F and $\mathrm{GL}_{2}\left(\mathcal{O}_{k}\right)$-reduced.

1. Compute a fundamental domain \mathcal{F} for addition by \mathcal{O}_{k} in \mathbb{R}^{d}.
2. Compute a fundamental domain \mathcal{G} for addition by $\log \left(\mathcal{O}_{k}^{*}\right)$ in \mathbb{R}^{d}.
3. Take $u \in \mathcal{O}_{k}^{*}$ such that $\log \operatorname{Im}(z(F))-\left(\log \left|\phi_{m}(u)\right|\right)_{m} \in \mathcal{G}$ and replace F by

$$
F \cdot\left[\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right), 1\right]=F(u X, Z)
$$

This replaces $z(F)$ by $u^{-1} z(F)$, hence makes sure F satisfies (I) and preserves $N(\operatorname{Im}(z))$.
4. Take $b \in \mathcal{O}_{k}$ such that $\operatorname{Re}(z(F))-b \in \mathcal{F}$ and replace F by

$$
F \cdot\left[\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right), 1\right]=F(X+b Z, Z)
$$

This replaces $z(F)$ by $z(F)-b$, hence makes sure F satisfies (R) and preserves (I) and $N(\operatorname{Im}(z))$.
5. Try to find a matrix M such that $N(\operatorname{Im}(M z))>N(\operatorname{Im}(z))$. If no such matrix exists, go to step 6. If such a matrix exists, replace F by $F \cdot\left[M^{-1}, 1\right]$ and go to step 3.
6. Try to find $u \in \mathcal{O}_{k}^{*}$ such that the maximum of the heights of the coefficients of $u F$ is minimal and return $F\left[1_{2}, u\right]=u F$.

Details on how we implemented this algorithm and on its correctness can be found in [BS15]. Furthermore we implemented this algorithm in Sage and it is available online at $[\mathrm{SBb}]$.

5.3 Results

To be able to read the tables presented in this section, first we need to explain what a CM-type is.

5.3.1 CM-types and reflex fields

We let k be a field of characteristic 0 . Let K be a quartic CM field, $K=K_{0}(\sqrt{r})$, then K has a unique complex conjugation automorphism, which is the generator $\rho=\mp$ of $\operatorname{Gal}\left(K / K_{0}\right)$. For an embedding $\phi: K \rightarrow \bar{k}$, we write $\bar{\phi}: \phi \circ \rho$. Hence K has four embeddings into \bar{k} : $\left\{\phi_{1}, \phi_{2}, \bar{\phi}_{1}, \overline{\phi_{2}}\right\}$.

Definition 5.3.1. A $C M$-type, Φ, of a quartic CM field K, is a set of two embeddings $K \rightarrow \bar{k}$, such that $\Phi \cup \bar{\Phi}$ is the set of all four embeddings.

Let A be an abelian variety of dimension two with CM by K. The tangent space $T_{0}\left(A_{\bar{k}}\right)$ of A over \bar{k} at 0 is a two-dimensional \bar{k}-vector space. Differentiation gives a map $\operatorname{End}\left(A_{\bar{k}}\right) \rightarrow \operatorname{End}\left(T_{0}\left(A_{\bar{k}}\right)\right)$. Choose an isomorphism $i: K \rightarrow \operatorname{End}\left(A_{\bar{k}}\right)$, this
induces a map $K \rightarrow \operatorname{End}\left(T_{0}\left(A_{\bar{k}}\right)\right.$), i.e., a two-dimensional k-linear representation of K. By CM theory ([ST61]) there is a CM-type Φ, such that this representation is isomorphic to a direct sum of the two elements of Φ. We say that (A, i) is of type Φ and that Φ is the CM-type of (A, i). The type norm of Φ is the multiplicative map $N_{\Phi}: K \rightarrow \bar{k}$ defined by $\alpha \rightarrow \prod_{\phi \in \Phi} \phi(\alpha)$. The reflex field K^{r} is the field generated over \mathbb{Q} by the set $\left\{N_{\Phi}(\alpha): \alpha \in K\right\}$. The reflex field is again a quartic CM-field, hence it is a totally imaginary quadratic extension of a quadratic totally real number field K_{0}^{r}.

Note that the reflex field of the CM-type of (A, i) depends only on A, since composition of Φ with elements of $\operatorname{Aut}(K)$ does not change N_{Φ}.

5.3.2 The case distinctions

There are three possibilities for the Galois group of a quartic CM-field ([ST61, Example 8.4(2)]):

1. K / \mathbb{Q} is Galois with cyclic Galois group C_{4} of order 4 ,
2. K / \mathbb{Q} is not normal, and its normal closure has dihedral Galois group D_{4} of order 8,
3. K / \mathbb{Q} is Galois over \mathbb{Q} with Galois group $V_{4}=C_{2} \times C_{2}$.

It is known that case 3 of a biquadratic CM-field contradicts our assumption that $A=J(C)$ is simple over \bar{k}, that is A is not isogenious to a product of elliptic curves. So following the Echidna database $\left[\mathrm{K}^{+} 07\right]$, our tables will be partitioned into cases 1 and 2.

Recall that we are interested in curves with CM by the maximal order of a quartic CM-field K, which are defined over the reflex field K^{r}. We distinguish whether the curves are defined over:
a. \mathbb{Q},
b. K_{0}^{r}, but not \mathbb{Q},
c. K^{r}, but not K_{0}^{r}.

The motivation for this chapter was that case 2 a is not possible, and during the construction of our list we found no example for case 1c. Hence we conjecture that case 1 c is empty and we construct four tables corresponding to the four cases $1 \mathrm{a}, 1 \mathrm{~b}$, 2b, and 2c. Case 1a corresponds to Van Wamelen vW99a.

5.3.3 Legend for the tables

In case 1 , we have $K^{r} \cong K$ and $\operatorname{Aut}(K)=C_{4}$, so every abelian variety with CM by \mathcal{O}_{K} is of all four CM-types, we therefore give K and f, but not Φ or K^{r}.

In case 2, we have two Aut (K)-orbits of CM-types, and, given A, only one of these orbits correspond to A. We specify the correct CM-type orbit by specifying its reflex field K^{r} as an extension of the quadratic field $K_{0}^{r}=\mathbb{Q}(a)$.

A quartic CM-field K is given up to isomorphism by a unique triplet $[D, A, B]$ as follows, following the Echidna database $\left\lfloor\mathrm{K}^{+} 07 \rrbracket\right.$. Write $K=K_{0}(\sqrt{r})$ for some real quadratic field K_{0} and some totally negative $r \in K_{0}$. Without loss of generality, we take $r \in \mathcal{O}_{K_{0}}$ with $A=-\operatorname{Tr}_{K_{0} / \mathbb{Q}}(r) \in \mathbb{Z}_{>0}$ minimal. Then let $B=N_{K_{0} / \mathbb{Q}}(r) \in \mathbb{Z}_{>0}$ and assume B is minimal for this A. Finally, let $D=\Delta_{K_{0} / \mathbb{Q}}$. We use the triplet $[D, A, B]$ to represent the isomorphism class of K, and note $K \cong \mathbb{Q}[X] /\left(X^{4}+A X^{2}+\right.$ $B)$.

Let us briefly state what the notation in the table means.
$\mathrm{DAB} \quad$ With $[D, A, B]$ as in the first column, let $K=\mathbb{Q}(\beta)$, where β is a root of $X^{4}+A X^{2}+B$.
$\mathrm{DAB}^{r} \quad$ In Tables 2 b and 2c, let $\left[D^{r}, A^{r}, B^{r}\right]$ be as in the column DAB^{r}. Then let $K^{r}=\mathbb{Q}(\alpha)$, where α is a root of $X^{4}+A^{r} X^{2}+B^{r}$. In Tables 1a and 1b, we have $K^{r} \cong K$ and $\left[D^{r}, A^{r}, B^{r}\right]=[D, A, B]$.
$a \quad$ A root of $X^{2}+\epsilon X+\left(D^{r}-\epsilon\right) / 4$ with $\epsilon \in\{0,1\}$ congruent to D^{r} modulo 4. We have $\mathbb{Z}[a]=\mathcal{O}_{K_{0}^{r}}$. In case 1 , the field K^{r} is uniquely determined as a subset of \bar{k} by $K^{r} \cong K$. In case 2 , there are two quadratic extensions $K^{r} / \mathbb{Q}(a)$ that satisfy $K^{r} \cong \mathbb{Q}[X] /\left(X^{4}+A X^{2}+B\right)$, and they are conjugate over \mathbb{Q}. The expression of a in terms of α (in the column "a") tells us which of these extensions is $K^{r}=\mathbb{Q}(\alpha)$.
$f, C \quad$ The polynomial $f \in \mathbb{Z}[a][x]$ given in the final column defines a hyperelliptic curve $C: y^{2}=f(x)$ of genus two.
$\Delta(C) \quad$ The discriminant of the given model $y^{2}=f(x)$ of C.
$\Delta_{\text {stable }} \quad$ The minimal discriminant of all models of C over $\overline{\mathbb{Q}}$ of the form $y^{2}+h(x) y=$ $g(x)$ with coefficients in $\overline{\mathbb{Z}}$.
$\Phi \quad$ One fixed CM-type of K with reflex field K^{r}, uniquely determined up to right-composition with $\operatorname{Aut}(K)$ by the following recipe. In case 1, we have $\operatorname{Aut}(K)=C_{4}$ and we fix an arbitrary CM-type. In case 2 , the type Φ is unique up to complex conjugation and given as follows: Φ is a CM-type of K with values in a normal closure of K^{r} and reflex field K^{r}.
$(x a+y)_{n}^{e}$ The e th power of the principal $\mathbb{Z}[a]$-ideal of norm n generated by $x a+y$. This notation is used in the discriminant and obstruction columns.

5.3.4 Statement and proof of results regarding the table

Theorem 5.3.2. With the notation as in the legend above, we have the following:

1. For every row of Tables $1 a, 1 b$, and $2 b$, let K be as specified in that row (see "DAB" in the legend), and consider the curves C given in that row. Then the following holds.
(a) In Table 1 , the given curves are exactly all $\overline{\mathbb{Q}}$-isomorphism classes of curves satisfying $\operatorname{End}\left(J(C)_{\overline{\mathbb{Q}}}\right) \cong \mathcal{O}_{K}$.
(b) In Tables $1 b$ and 2b, the given curves and their quadratic conjugates over \mathbb{Q} are exactly all $\overline{\mathbb{Q}}$-isomorphism classes of curves satisfying $\operatorname{End}\left(J(C)_{\overline{\mathbb{Q}}}\right) \cong$ \mathcal{O}_{K}.
(c) In Tables 1 a and 1b, the curves have CM-type Φ for every CM-type Φ of K.
(d) In Table 2b, the given curves has the given CM-type Φ, and its quadratic conjugate has CM-type Φ^{\prime} where $\Phi^{\prime} \notin\{\Phi, \bar{\Phi}\}$.
2. The curves in Tables $1 a, 1 b$, and $2 b$ are all defined over K_{0}^{r}, and the entries $\Delta(C) / \Delta_{\text {stable }}$ and $\Delta_{\text {stable }}$ are as explained in the legend above.
3. In Tables $1 b$ and 2b, the discriminant $\Delta(C)$ is minimal (as defined in Section 5.2.2.1) among all $\overline{\mathbb{Q}}$-isomorphic models of the form $y^{2}=g(x)$ with $g(x) \in$ $\mathcal{O}_{K_{0}^{r}}[x]$, except for the case of the field $[17,46,257]$ in Table 2b, where a global minimal model does not exist, and the given model is minimal outside $(2, a+1)$. In Table $1 a$, the discriminant is minimal among such models with $g(x) \in \mathbb{Z}[x]$.
4. The curves in Tables $1 b$ and $2 b$ have Igusa Invariants that do not lie in \mathbb{Q}. In particular, they have no model over \mathbb{Q}.
5. For every row of Table 2c, the number in the final column is the number of curves over $\overline{\mathbb{Q}}$ with $\operatorname{End}\left(J(C)_{\overline{\mathbb{Q}}}\right) \cong \mathcal{O}_{K}$ of type Φ up to isomorphism over $\overline{\mathbb{Q}}$. These curves all have Igusa Invariants in K_{0}^{r} but no model over K_{0}^{r}. They do have a model over K^{r}. The column "obstructions" gives exactly the set of places of K_{0}^{r} at which Mestre's conic locally has no point.

Remark. Note that the curves in 1(a) and Table 1a were already given by Van Wamelen vW99a and proven correct by Van Wamelen [vW99b] and Bisson and Streng [BS13].

This list has been proven to be complete recently by Kilicer and Streng [KS15].

Proof. We compute the isomorphism class of the reflex field as follows. The reflex field is again a non-biquadratic quartic CM-field. In fact, one can compute that it is isomorphic to $\mathbb{Q}[X] /\left(X^{4}+2 A X^{2}+\left(A^{2}-4 B\right)\right)$. Let $\left[D^{\prime}, A^{\prime}, B^{\prime}\right]$ be the triplet that represents K^{r} as before. We do not necessarily have $A^{\prime}=2 A$ and $B^{\prime}=A^{2}-4 B$, because those values are not always minimal. Note that we do have $K_{0}^{r} \cong \mathbb{Q}\left(\sqrt{D^{\prime}}\right) \cong$ $\mathbb{Q}(\sqrt{B})$.

Our computation of Igusa class polynomials, as explained in BS15, Sec 2], shows that we have the correct number of curves for each field. Since we use interval arithmetic and the denominator formulas of Lauter and Viray [LV15], these computations even prove that the Igusa Invariants themselves are correct, including the ones for Table 2c, which are not listed. We used the Igusa Invariants to compute the curves and obstructions with Mestre's algorithm, which proves that the curves and obstructions are correct. In case 1 , all CM-types are in the same orbit for $\operatorname{Aut}(K)$, so they are all correct. In cases 2 b and 2 c , the correct CM-type is determined using reduction modulo a suitable prime and the Shimura-Taniyama formula ST61, Theorem 1(ii) in Section 13.1]. Proposition 5.2 .2 and our reduction algorithm prove that the discriminant is minimal. The stable discriminant is computed directly from Igusa's arithmetic invariants Igu60. The set of obstructions in Table 2c is non-empty, hence there is no model over K_{0}^{r}. It remains to prove that there is a model over K^{r}, which can be verified by checking that the obstructions are inert or ramified in K^{r} / K_{0}^{r}, but which also follows from [BS15, Thm 5.3].

Table 1a

DAB	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
$[5,5,5]$	1	$2^{8} \cdot 5^{5}$	$x^{5}-1$
[5,10,20]{}	2^{12}	$2^{10} \cdot 5^{5}$	$4 x^{5}-30 x^{3}+45 x-22$
	$2^{12} \cdot 11^{12}$	$2^{10} \cdot 5^{5}$	$8 x^{6}+52 x^{5}-250 x^{3}+321 x-131$
[5,65,845]{}	11^{12}	$2^{20} \cdot 5^{5} \cdot 13^{10}$	$8 x^{6}-112 x^{5}-680 x^{4}+8440 x^{3}+28160 x^{2}-55781 x+111804$
	$31^{12} \cdot 41^{12}$	$2^{20} \cdot 5^{5} \cdot 13^{10}$	$-9986 x^{6}+73293 x^{5}-348400 x^{3}-118976 x-826072$
[5,85,1445]{}	71^{12}	$2^{20} \cdot 5^{5} \cdot 17^{10}$	$-73 x^{6}+1005 x^{5}+14430 x^{4}-130240 x^{3}-1029840 x^{2}+760976 x-2315640$
	$11^{12} \cdot 41^{12} \cdot 61^{12}$	$2^{20} \cdot 5^{5} \cdot 17^{10}$	$2160600 x^{6}-8866880 x^{5}+2656360 x^{4}-582800 x^{3}+44310170 x^{2}+$
			$6986711 x-444408$
$[8,4,2]$	2^{6}	2^{15}	$x^{5}-3 x^{4}-2 x^{3}+6 x^{2}+3 x-1$
[8,20,50]{}	$2^{6} \cdot 7^{12} \cdot 23^{12}$	$2^{15} \cdot 5^{10}$	$-8 x^{6}-530 x^{5}+160 x^{4}+64300 x^{3}-265420 x^{2}-529 x$
	$2^{6} \cdot 7^{12} \cdot 17^{12} \cdot 23^{12}$	$2^{15} \cdot 5^{10}$	$4116 x^{6}+64582 x^{5}+139790 x^{4}-923200 x^{3}+490750 x^{2}+233309 x-9347$
$[13,13,13]$	1	$2^{20} \cdot 13^{5}$	$x^{6}-8 x^{4}-8 x^{3}+8 x^{2}+12 x-8$
[13,26,52]{}	$2^{12} \cdot 3^{12} \cdot 23^{12}$	$2^{10} \cdot 13^{5}$	$-243 x^{6}-2223 x^{5}-1566 x^{4}+19012 x^{3}+903 x^{2}-19041 x-5882$
	$2^{12} \cdot 3^{12} \cdot 23^{12} \cdot 131^{12}$	$2^{10} \cdot 13^{5}$	$59499 x^{6}-125705 x^{5}-801098 x^{4}+1067988 x^{3}+2452361 x^{2}+707297 x-145830$
[13,65,325]{}	3^{12}	$2^{20} \cdot 5^{10} \cdot 13^{5}$	$36 x^{5}-1040 x^{3}+1560 x^{2}+1560 x+1183$
	$3^{12} \cdot 53^{12}$	$2^{20} \cdot 5^{10} \cdot 13^{5}$	$-1323 x^{6}-1161 x^{5}+9360 x^{4}+9590 x^{3}-34755 x^{2}+1091 x+32182$
$[29,29,29]$	5^{12}	$2^{20} \cdot 29^{5}$	$43 x^{6}-216 x^{5}+348 x^{4}-348 x^{2}-116 x$
$[37,37,333]$	$3^{12} \cdot 11^{12}$	$2^{20} \cdot 37^{5}$	$-68 x^{6}+57 x^{5}+84 x^{4}-680 x^{3}+72 x^{2}-1584 x-4536$
$[53,53,53]$	$17^{12} \cdot 29^{12}$	$2^{20} \cdot 53^{5}$	$-3800 x^{6}+15337 x^{5}+160303 x^{4}-875462 x^{3}+896582 x^{2}-355411 x+50091$
$[61,61,549]$	$3^{24} \cdot 5^{12} \cdot 41^{12}$	$2^{20} \cdot 61^{5}$	$40824 x^{6}+103680 x^{5}-67608 x^{4}-197944 x^{3}-17574 x^{2}+41271 x+103615$

Table 1b: Continued from previous page

DAB	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[17, 119, 3332]	$\begin{aligned} & (2 a+15)_{179}^{12} \cdot(a+2)_{2}^{36} \cdot(a-1)_{2}^{12} \\ & (4 a+7)_{43}^{12} \cdot(7)^{6} \end{aligned}$	$(2 a+1)_{17}^{10}$	$\begin{aligned} & (213 a+1875) x^{6}+(8071 a+4059) x^{5}+(-1045 a+58039) x^{4}+ \\ & (32898 a+26657) x^{3}+(-12585 a+3550) x^{2}+ \\ & (-46889 a-136176) x-42057 a-104692 \end{aligned}$
[17, 255, 15300]	$\begin{aligned} & (2 a-5)_{19}^{12} \cdot(a+2)_{2}^{24} \cdot(a-1)_{2}^{24} \cdot(3)^{6} \\ & (2 a+31)_{883}^{12} \end{aligned}$	$(2 a+1)_{17}^{10} \cdot(5)^{10}$	$\begin{aligned} & (-4264 a-13208) x^{6}+(9516 a-94116) x^{5}+ \\ & (331770 a-503670) x^{4}+(-1195640 a+1593625) x^{3}+ \\ & (1141785 a-2476410) x^{2}+(-69927 a+2540472) x- \\ & 301251 a-1280828 \end{aligned}$
	$\begin{aligned} & (2 a+3)_{13}^{12} \cdot(4 a+17)_{157}^{12} \cdot(2 a+7)_{19}^{12} \\ & (a+2)_{2}^{12} \cdot(a-1)_{2}^{12} \cdot(3)^{6} \cdot(4 a+3)_{67}^{12} \\ & (2 a-9)_{83}^{12} \cdot(2 a+11)_{83}^{12} \end{aligned}$	$(2 a+1)_{17}^{10} \cdot(5)^{10}$	$\begin{aligned} & (3703196 a+9037010) x^{6}+(12666396 a+36366348) x^{5}+ \\ & (33133830 a+56148570) x^{4}+(35333760 a+111063545) x^{3}+ \\ & (71845845 a+45282705) x^{2}+(154100103 a-105860229) x+ \\ & 81081415 a-36366223 \end{aligned}$

Table 2b

DAB	$\mathbf{D A B}^{r}$	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[5,11,29]{}	$[29,7,5]$	$\alpha^{2}+3$	$(2)^{12} \cdot(a-1)_{5}^{12} \cdot(a+1)_{7}^{12}$	$(a+2)_{5}^{10}$	$(18 a+60) x^{6}+(-76 a-246) x^{5}+(127 a+329) x^{4}+$ $(-77 a-209) x^{3}+(-30 a+155) x^{2}+(29 a-69) x+71 a-156$
			$(2)^{12} \cdot(a+6)_{23}^{12} \cdot(a-1)_{5}^{12}$	$(a+2)_{5}^{10}$	$(2 a+1) x^{6}+(-a-26) x^{5}+(9 a+38) x^{4}+(-40 a-25) x^{3}+$ $(-21 a-37) x^{2}+(100 a+218) x+102 a+268$
	$[41,11,20]$	$\alpha^{2}+5$	$(a-3)_{2}^{12}$	$(a+4)_{2}^{20} \cdot(2 a-5)_{5}^{10}$	$(-a+3) x^{6}+(4 a-8) x^{5}+10 x^{4}+(-a+20) x^{3}+(4 a+5) x^{2}+$ $(a+4) x+1$

Table 2b: Continued from previous page

Table 2b: Continued from previous page

DAB	DAB^{r}	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[$5,66,909]$	[101, 33, 45]	$\frac{1}{3} \alpha^{2}+5$	$\begin{aligned} & (a-2)_{19}^{12} \cdot(3)^{6} \cdot(2 a+ \\ & 13)_{43}^{12} \cdot(a-4)_{5}^{12} \end{aligned}$	$(2)^{20} \cdot(a+5)_{5}^{10}$	$\begin{aligned} & (-340 a-1674) x^{6}+(-4179 a-26820) x^{5}+ \\ & (-26433 a-118800) x^{4}+(-38358 a-315240) x^{3}+ \\ & (-46686 a-41130) x^{2}+(40761 a-15348) x-13013 a+39100 \end{aligned}$
			$\begin{aligned} & (3)^{6} \cdot(a+8)_{31}^{12} \cdot(2 a-7)_{37}^{12} . \\ & (a-4)_{5}^{12} \end{aligned}$	$(2)^{20} \cdot(a+5)_{5}^{10}$	$\begin{aligned} & (-6120 a-36189) x^{6}+(-22143 a-102375) x^{5}+ \\ & (-21378 a-184140) x^{4}+(-31356 a-65810) x^{3}+ \\ & (765 a-81765) x^{2}+(-3783 a+6192) x \end{aligned}$
[8, 10, 17]	[17, 5, 2]	$\alpha^{2}+2$	$(a+2)_{2}^{6}$	$(a+2)_{2}^{45} \cdot(a-1)_{2}^{20}$	$\begin{aligned} & x^{6}+(2 a+4) x^{5}+(3 a+14) x^{4}+(10 a+8) x^{3}+(-9 a+32) x^{2}+ \\ & (16 a-16) x-4 a+8 \end{aligned}$
[8, 18, 73]	[73, 9, 2]	$\alpha^{2}+4$	$(a-4)_{2}^{6} \cdot(a+5)_{2}^{12} \cdot(4 a-15){ }_{3}^{12}$	$(a-4)_{2}^{45}$	$\begin{aligned} & (a+5) x^{6}+(28 a+132) x^{5}+(214 a+1026) x^{4}+ \\ & (349 a+1658) x^{3}+(259 a+1242) x^{2}+(47 a+222) x-3 a-14 \end{aligned}$
[8, 22, 89]	[$89,11,8]$	$\alpha^{2}+5$	$(a-4)_{2}^{12} \cdot(a+5)_{2}^{6} \cdot(4 a-17)_{5}^{12}$	$(a+5)_{2}^{45}$	$\begin{aligned} & (a-4) x^{6}+(8 a-36) x^{5}+(16 a-62) x^{4}+(-13 a+57) x^{3}+ \\ & (-17 a+73) x^{2}+(13 a-57) x-a+5 \end{aligned}$
[8, 34, 281]	[281, 17, 2]	$\alpha^{2}+8$	$\begin{aligned} & (42 a-331)_{17}^{12} \cdot(a-8)_{2}^{6} . \\ & (a+9)_{2}^{24} \cdot(76 a+675)_{5}^{12} \\ & (8 a-63)_{7}^{12} \end{aligned}$	$(a-8)_{2}^{45}$	$\begin{aligned} & (-15024 a+118185) x^{6}+(310153 a-2435026) x^{5}+ \\ & (-2658057 a+20990488) x^{4}+(12047831 a-97400942) x^{3}+ \\ & (-33280854 a+231380920) x^{2}+(34989188 a-413796872) x- \\ & 37610304 a+81055944 \end{aligned}$
[8, 38, 233]	[233, 19, 32]	$\alpha^{2}+9$	$\begin{aligned} & (38 a-271)_{12}^{12} \cdot(a+8)_{2}^{12} \cdot(a- \\ & 7)_{2}^{6} \cdot(8 a+65)_{7}^{12} \cdot(8 a-57)_{7}^{12} \end{aligned}$	$(a-8)_{2}^{45}$	$\begin{aligned} & (-166628 a-1355047) x^{6}+(-354121 a-2879769) x^{5}+ \\ & (-318274 a-2588269) x^{4}+(-153661 a-1249743) x^{3}+ \\ & (-41827 a-339754) x^{2}+(-6158 a-48444) x-441 a-2400 \end{aligned}$
[8, 50, 425]	[17, 25, 50]	$\frac{1}{5} \alpha^{2}+2$	$(a+2)_{2}^{6} \cdot(a-1)_{2}^{12} \cdot(5)^{6}$	$(a+2)_{2}^{45} \cdot(5)^{15}$	$\begin{aligned} & (34 a+80) x^{6}+(140 a+224) x^{5}+(110 a-220) x^{4}+ \\ & (-455 a+220) x^{3}+(-5 a+190) x^{2}+(91 a-104) x+254 a-395 \end{aligned}$

Table 2b: Continued from previous page

Table 2b: Continued from previous page

DAB	$\mathbf{D A B}^{r}$	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[17, 5, 2]	[$8,10,17]$	$\frac{1}{2} \alpha^{2}+\frac{5}{2}$	1	$(3 a+1)_{17}^{10} \cdot(a)_{2}^{30}$	$(-3 a+4) x^{5}-x^{4}+(6 a-2) x^{3}+(9 a-5) x^{2}+(-3 a+8) x-3 a+6$
[17, 15, 52]	[13, 9, 17]	$\alpha^{2}+4$	$(a){ }_{3}^{12}$	$(a-4)_{17}^{10} \cdot(2)^{20}$	$\begin{aligned} & -x^{6}-2 a x^{5}+(3 a-3) x^{4}+(8 a+4) x^{3}+(-19 a+39) x^{2}+ \\ & (16 a-30) x+3 a-36 \end{aligned}$
[17, 25, 50]	[8, 50, 425]	$\frac{1}{10} \alpha^{2}+\frac{5}{2}$	$(a)_{2}^{24} \cdot(2 a+1)_{7}^{12}$	$(3 a+1)_{17}^{10} \cdot(5)^{10}$	$\begin{aligned} & (6 a-2) x^{6}+(-50 a-64) x^{5}+(285 a+485) x^{4}+ \\ & (-485 a-435) x^{3}+(-70 a+90) x^{2}+(244 a+92) x+70 a-166 \end{aligned}$
			$(a)_{2}^{36} \cdot(a+7)_{47}^{12} \cdot(2 a+1)_{7}^{12}$	$(3 a+1)_{17}^{10} \cdot(5)^{10}$	$\begin{aligned} & (315 a+422) x^{6}+(1212 a+1757) x^{5}+(-2605 a-3240) x^{4}+ \\ & (-50 a-625) x^{3}+(1730 a-570) x^{2}+(864 a-212) x+72 a+456 \end{aligned}$
$[17,46,257]$ Class number not one	[257, 23, 68]	$\alpha^{2}+11$	$\begin{aligned} & (11, a+5)^{12} \\ & (13, a+10)^{12} \cdot(2, a)^{12} \\ & (2, a+1)^{24} \cdot(59, a+14)^{12} \end{aligned}$	$\begin{aligned} & (17, a+6)^{10} \\ & (2, a+1) \end{aligned}$	$\begin{aligned} & (-22 a-1802) x^{6}+(3596 a+11488) x^{5}+(-30700 a-354072) x^{4}+ \\ & (243927 a+1843299) x^{3}+(-616892 a-5576996) x^{2}+ \\ & (647768 a+5283496) x-198146 a-1755298 \end{aligned}$
[17, 47, 548]	[137, 35, 272]	$\alpha^{2}+17$	$\begin{aligned} & (14 a-75)_{11}^{12} \cdot(4 a+25)_{19}^{12} . \\ & (3 a-16)_{2}^{12} \cdot(3 a+19)_{2}^{24} \end{aligned}$	$(8 a+51)_{17}^{10}$	$\begin{aligned} & (285 a+1620) x^{6}+(-2683 a-19110) x^{5}+(13341 a+76698) x^{4}+ \\ & (-28642 a-195577) x^{3}+(40284 a+245904) x^{2}+ \\ & (-27600 a-177408) x+8154 a+51670 \end{aligned}$
[29, 7, 5]	[$5,11,29]$	$\alpha^{2}+5$	$(2)^{12} \cdot(2 a+1)_{5}^{12}$	$(a-5)_{29}^{10}$	$\begin{aligned} & (-4 a-5) x^{6}+(11 a+37) x^{5}+(-65 a-62) x^{4}+(111 a+104) x^{3}+ \\ & (-28 a-189) x^{2}+(-28 a+157) x-19 a-76 \\ & \hline \end{aligned}$
			$(2)^{12} \cdot(5 a+3)_{31}^{12} \cdot(2 a+1)_{5}^{12}$	$(a-5)_{29}^{10}$	$\begin{aligned} & (18 a+42) x^{6}+(62 a+194) x^{5}+(-209 a+31) x^{4}+ \\ & (-648 a-471) x^{3}+(116 a+338) x^{2}+(244 a+259) x-65 a-159 \end{aligned}$
[29, 9, 13]	[13, 18, 29]	$\frac{1}{4} \alpha^{2}+\frac{7}{4}$	$(a){ }_{3}^{12}$	$(2)^{20} \cdot(3 a+2)_{29}^{10}$	$\begin{aligned} & (-25 a+56) x^{6}+(172 a-39) x^{5}+(-39 a+561) x^{4}+ \\ & (312 a+234) x^{3}+(73 a+354) x^{2}+(76 a+141) x+15 a+37 \end{aligned}$

Table 2b: Continued from previous page

DAB	DAB^{r}	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[29, 21, 45]	[$5,33,261]$	$\frac{1}{3} \alpha^{2}+5$	$(4 a+1)_{19}^{12} \cdot(3)^{6}$	$(2)^{20} \cdot(a-5)_{29}^{10}$	$\begin{aligned} & \hline(-a+20) x^{6}+(-87 a-18) x^{5}+(-48 a+198) x^{4}+ \\ & (-8 a-296) x^{3}+(384 a+360) x^{2}+(-384 a-480) x+144 a+216 \end{aligned}$
[29, 21, 45]	[$5,33,261]$	$\frac{1}{3} \alpha^{2}+5$	$(3)^{6}$	$(2)^{20} \cdot(a-5)_{29}^{10}$	$\begin{aligned} & (-102 a-165) x^{5}+(45 a+72) x^{4}+(-174 a-262) x^{3}+ \\ & (36 a-66) x^{2}+(69 a-144) x+5 a-107 \end{aligned}$
[29, 26, 53]	[$53,13,29]$	$\alpha^{2}+6$	$(a-1)_{11}^{12} \cdot(a+1)_{13}^{12} \cdot(a+6)_{17}^{12}$	$(2)^{20} \cdot(a-6)_{29}^{10}$	$\begin{aligned} & (-790 a+1564) x^{6}+(241 a-12431) x^{5}+(-15139 a-14345) x^{4}+ \\ & (-2950 a-165614) x^{3}+(-51588 a-116086) x^{2}+ \\ & (-58139 a-53507) x+12653 a-123381 \end{aligned}$
[41, 11, 20]	[$5,13,41]$	$\alpha^{2}+6$	1	$(2)^{20} \cdot(a-6)_{29}^{10}$	$\begin{aligned} & (a+4) x^{6}+(6 a-2) x^{5}+17 x^{4}+(-12 a-16) x^{3}+(24 a-5) x^{2}+ \\ & (-54 a-16) x+33 a+9 \end{aligned}$
[53, 13, 29]	[29, 26, 53]	$\frac{1}{4} \alpha^{2}+\frac{11}{4}$	$(a+6)_{23}^{12} \cdot(a-1)_{5}^{12} \cdot(a)_{7}^{12}$	$(2)^{20} \cdot(3 a+5)_{53}^{10}$	$\begin{aligned} & (-31 a+70) x^{6}+(151 a-322) x^{5}+(-405 a+658) x^{4}+ \\ & (238 a-846) x^{3}+(3288 a+2437) x^{2}+(-3262 a+12157) x- \\ & 27420 a-58255 \end{aligned}$
[61, 9, 5]	[$5,17,61]$	$\frac{1}{3} \alpha^{2}+\frac{7}{3}$	1	$(2)^{20} \cdot(7 a+4)_{61}^{10}$	$\begin{aligned} & (a+2) x^{6}+(-2 a-15) x^{5}+(36 a-4) x^{4}+(72 a+24) x^{3}+ \\ & (8 a-24) x^{2}+(-48 a-80) x-24 a-40 \end{aligned}$
[73, 9, 2]	[8, 18, 73]	$\frac{1}{2} \alpha^{2}+\frac{9}{2}$	$(a)_{2}^{24} \cdot(2 a-1)_{7}^{12}$	$(2 a-9)^{10}$	$\begin{aligned} & (-12 a-6) x^{6}+(8 a+82) x^{5}+(-51 a+92) x^{4}+(-126 a-1) x^{3}+ \\ & (-36 a+35) x^{2}+(32 a+50) x+10 a+8 \end{aligned}$
[73, 47, 388]	[97, 94, 657]	$\frac{1}{8} \alpha^{2}+\frac{43}{8}$	$\begin{aligned} & (20 a+109)_{101}^{12} \cdot(7 a+38)_{2}^{24} . \\ & (7 a-31)_{2}^{12} \cdot(2 a-9)_{3}^{12} . \\ & (2 a+11)_{3}^{12} \cdot(30 a+163)_{79}^{12} \end{aligned}$	$(22 a+119)_{73}^{10}$	$\begin{aligned} & (23 a-43) x^{6}+(-149 a-1221) x^{5}+(8675 a+44883) x^{4}+ \\ & (-128038 a-698079) x^{3}+(928849 a+5037588) x^{2}+ \\ & (123515 a+671208) x+4023 a+21640 \end{aligned}$
[89, 11, 8]	[8,22, 89]	$\frac{1}{4} \alpha^{2}+\frac{11}{4}$	$(a)_{2}^{24}$	$(7 a+3)_{89}^{10}$	$-x^{5}+(-4 a+2) x^{4}+21 x^{3}+(-16 a+64) x^{2}-160 x+142 a-190$

Table 2b: Continued from previous page

DAB	$\mathbf{D A B}^{r}$	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[97, 94, 657]	[73, 47, 388]	$\frac{1}{3} \alpha^{2}+\frac{22}{3}$	$\begin{aligned} & (a-4)_{2}^{12} \cdot(a+5)_{2}^{12} \cdot \\ & (14 a-53)_{23}^{12} \cdot(4 a-15)_{3}^{12} . \\ & (4 a+19)_{3}^{12} \cdot(30 a+ \\ & 143)_{41}^{12} \cdot(10 a+47)_{61}^{12} \end{aligned}$	$(24 a+115){ }_{97}^{10}$	$\begin{aligned} & (-128252 a-611298) x^{6}+(-984572 a-4709700) x^{5}+ \\ & (-3071730 a-15394554) x^{4}+(-6889006 a-20077475) x^{3}+ \\ & (-39650571 a+105355350) x^{2}+(174191751 a-679664106) x+ \\ & 256866525 a-973717416 \end{aligned}$
[101, 33, 45]	[$5,66,909]$	$\frac{1}{12} \alpha^{2}+\frac{9}{4}$	$(3)^{6} \cdot(2 a+1)_{5}^{12} \cdot(7 a+3)_{61}^{12}$	$(9 a+5)_{101}^{10} \cdot(2)^{20}$	$\begin{aligned} & (-216 a+464) x^{6}+(-2304 a-48) x^{5}+(-3984 a-960) x^{4}+ \\ & (-864 a+3088) x^{3}+(-720 a+1422) x^{2}+(-4047 a-5322) x- \\ & 818 a-2423 \end{aligned}$
			$\begin{aligned} & (4 a+3)_{19}^{12} \cdot(4 a+1)_{19}^{12} \\ & (3)^{6} \cdot(5 a+3)_{31}^{12} \cdot(2 a+1)_{5}^{12} \end{aligned}$	$(9 a+5)_{101}^{10} \cdot(2)^{20}$	$\begin{aligned} & (-5229 a+4019) x^{6}+(-6132 a-6909) x^{5}+(44637 a-2364) x^{4}+ \\ & (53094 a+58660) x^{3}+(-39159 a+19266) x^{2}+ \\ & (-30363 a-55761) x-16848 a-16911 \end{aligned}$
[109, 17, 45]	[$5,21,109]$	$\alpha^{2}+10$	$(2 a+1)^{12}$	$(a-10)_{109}^{10} \cdot(2)^{20}$	$\begin{aligned} & (-8 a-8) x^{6}-16 x^{5}+(8 a+72) x^{4}+(152 a+184) x^{3}+ \\ & (6 a+84) x^{2}+(-255 a-339) x-319 a-524 \end{aligned}$
[113, 33, 18]	[8, 66, 1017]	$\frac{1}{6} \alpha^{2}+\frac{11}{2}$	$\begin{aligned} & (3 a+11)_{103}^{12} \cdot(a)_{2}^{24} \cdot(3)^{6} . \\ & (4 a-1)_{31}^{12} \cdot(2 a-1)_{7}^{12} . \\ & (2 a+1)_{7}^{12} \end{aligned}$	$(2 a-11)_{113}^{10}$	$\begin{aligned} & (122 a+800) x^{6}+(-1509 a-909) x^{5}+(36762 a-85470) x^{4}+ \\ & (-116871 a+265713) x^{3}+(-467682 a+704460) x^{2}+ \\ & (-480528 a+365352) x-7616 a+226442 \end{aligned}$
			$\begin{aligned} & (a)_{2}^{24} \cdot(3)^{6} \cdot(4 a+1)_{31}^{12} . \\ & (2 a+1)_{7}^{12} \end{aligned}$	$(2 a-11)_{113}^{10}$	$\begin{aligned} & (-418 a-190) x^{6}+(1476 a-660) x^{5}+(1146 a+6810) x^{4}+ \\ & (2145 a+2175) x^{3}+(-1437 a-3489) x^{2}+(-42 a-2736) x+ \\ & 830 a+394 \end{aligned}$
[137, 35, 272]	[17, 47, 548]	$\alpha^{2}+23$	$(2 a-5)_{19}^{12} \cdot(a+2)_{2}^{12} \cdot(a-1)_{2}^{12}$	$(6 a-1)_{137}^{10}$	$\begin{aligned} & (4 a+6) x^{6}+(8 a+36) x^{5}+(-4 a+42) x^{4}+(586 a+1289) x^{3}+ \\ & (1066 a+2808) x^{2}+4 a x+25596 a+65566 \end{aligned}$

Continued on next page

Table 2b: Continued from previous page

DAB	$\mathbf{D A B} \mathbf{B}^{r}$	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[149, 13, 5]	[$5,26,149]$	$\frac{1}{4} \alpha^{2}+\frac{11}{4}$	$(3 a+1)_{11}^{12}$	$(11 a+7)_{149}^{10} \cdot(2)^{20}$	$\begin{aligned} & 8 x^{6}+96 x^{5}+(-24 a+168) x^{4}+(-576 a-808) x^{3}+ \\ & (66 a-132) x^{2}+(292 a+47) x+86 a-87 \end{aligned}$
[157, 25, 117]	[13, 41, 157]	$\frac{1}{9} \alpha^{2}+\frac{16}{9}$	$\begin{aligned} & (a-4)_{17}^{12} \cdot(3 a-1)_{23}^{12} . \\ & (a)_{3}^{24} \cdot(a+1)_{3}^{12} \end{aligned}$	$(7 a+5)_{157}^{10} \cdot(2)^{20}$	$\begin{aligned} & (-3328 a-7633) x^{6}+(-17510 a-39323) x^{5}+ \\ & (-32518 a-68044) x^{4}+(-17960 a-66720) x^{3}+ \\ & (256 a-51704) x^{2}+(5184 a-22864) x+1432 a-5264 \\ & \hline \end{aligned}$
[181, 41, 13]	[13, 29, 181]	$\frac{1}{3} \alpha^{2}+\frac{13}{3}$	$\begin{aligned} & (a+5)_{17}^{12} \cdot(3 a+2)_{29}^{12} \cdot \\ & (a)_{3}^{24} \cdot(a+1)_{3}^{12} \end{aligned}$	$(3 a-13)_{181}^{10} \cdot(2)^{20}$	$\begin{aligned} & (330 a+1417) x^{6}+(11102 a+1701) x^{5}+(1396 a+59742) x^{4}+ \\ & (24016 a+92792) x^{3}+(74408 a+38064) x^{2}+(35248 a+26160) x- \\ & 5784 a+21888 \end{aligned}$
[233, 19, 32]	[8, 38, 233]	$\frac{1}{8} \alpha^{2}+\frac{19}{8}$	$\begin{aligned} & (a)_{2}^{24} \cdot(a-5)_{23}^{12} \cdot(a+5)_{23}^{12} . \\ & (2 a+1)_{7}^{12} \end{aligned}$	$(11 a+3)_{233}^{10}$	$\begin{aligned} & (2348 a-3554) x^{6}+(11828 a-12348) x^{5}+(4498 a-23598) x^{4}+ \\ & (12704 a+9133) x^{3}+(-3151 a-14433) x^{2}+(5344 a-1974) x+ \\ & 18 a-604 \end{aligned}$
[257, 23, 68]	$[17,46,257]$	$\frac{1}{8} \alpha^{2}+\frac{19}{8}$	$\begin{aligned} & (2 a+3)_{13}^{12} \cdot(a+2)_{2}^{12} \cdot \\ & (a-1)_{2}^{24} \cdot(4 a-3)_{43}^{12} \\ & (2 a+9)_{47}^{12} \cdot(4 a+13)_{53}^{12} \end{aligned}$	$(8 a-19)^{10}{ }_{257}$	$\begin{aligned} & (-2809 a-7326) x^{6}+(5069 a+3572) x^{5}+(52427 a-51416) x^{4}+ \\ & (249518 a+105951) x^{3}+(-311115 a-180355) x^{2}+ \\ & (156533 a-20215) x-34657 a+19003 \end{aligned}$
[269, 17, 5]	[$5,34,269]$	$\frac{1}{4} \alpha^{2}+\frac{15}{4}$	$(3 a+1)_{11}^{12} \cdot(2 a+1)_{5}^{12}$	$\begin{aligned} & (2)^{20} . \\ & (15 a+11)_{269}^{10} \\ & \hline \end{aligned}$	$\begin{aligned} & (-168 a-272) x^{6}+(960 a+1696) x^{5}+(472 a-1008) x^{4}+ \\ & (-4448 a-1552) x^{3}+(358 a+904) x^{2}+(945 a+1690) x \end{aligned}$
[281, 17, 2]	[8, 34, 281]	$\frac{1}{2} \alpha^{2}+\frac{17}{2}$	$\begin{aligned} & (a)_{2}^{36} \cdot(4 a+1)_{31}^{12} . \\ & (2 a-1)_{7}^{12} \cdot(2 a+1)_{7}^{12} \end{aligned}$	$(2 a-17)_{281}^{10}$	$\begin{aligned} & (-835 a+1960) x^{6}+(1343 a+7589) x^{5}+(19630 a+6428) x^{4}+ \\ & (26923 a+13601) x^{3}+(-6743 a+44228) x^{2}+ \\ & (-5762 a+18262) x+17138 a-23184 \end{aligned}$

Table 2b: Continued from previous page

DAB	$\mathbf{D A B}^{r}$	a	$\Delta_{\text {stable }}$	$\Delta(C) / \Delta_{\text {stable }}$	f, where $C: y^{2}=f$
[389,37,245]{}	$[5,41,389]$	$\frac{1}{5} \alpha^{2}+\frac{18}{5}$	$(3 a+1)_{11}^{12} \cdot(3 a+2)_{11}^{12} \cdot$ $(4 a+3)_{19}^{12} \cdot(4 a+1)_{19}^{12} \cdot$ $(a+6)_{29}^{12} \cdot(2 a+1)_{5}^{12}$	$(2)^{20} \cdot$	$(-22952 a-6848) x^{6}+(162272 a-61136) x^{5}+$
				$(296568 a+208208) x_{389}^{10}+(-212600 a-959344) x^{3}+$	

Table 2c

DAB	DAB reflex	a	Obstructions	Curves
$[8,14,41]$	$[41,7,2]$	$\alpha^{2}+3$	$(a+4)_{2},(a-3)_{2}$	2
$[8,26,137]$	$[137,13,8]$	$\alpha^{2}+6$	$(3 a-16)_{2},(3 a+19)_{2}$	2
$[8,30,153]$	$[17,15,18]$	$\frac{1}{3} \alpha^{2}+2$	$(a+2)_{2},(a-1)_{2}$	4
$[12,8,13]$	$[13,10,12]$	$\frac{1}{2} \alpha^{2}+2$	$(a+1)_{3},(2)$	2
$[12,10,13]$	$[13,5,3]$	$\alpha^{2}+2$	$(a+1)_{3},(2)$	2
$[12,14,37]$	$[37,7,3]$	$\alpha^{2}+3$	$(a+3)_{3},(2)$	2
$[12,26,61]$	$[61,13,27]$	$\alpha^{2}+6$	$(a-3)_{3},(2)$	2
$[12,26,157]$	$[157,13,3]$	$\alpha^{2}+6$	$(a-6)_{3},(2)$	2
$[12,50,325]$	$[13,25,75]$	$\frac{1}{5} \alpha^{2}+2$	$(a+1)_{3},(2)$	4
$[44,8,5]$	$[5,14,44]$	$\frac{1}{2} \alpha^{2}+3$	$(2),(3 a+2)_{11}$	2
$[44,14,5]$	$[5,7,11]$	$\alpha^{2}+3$	$(2),(3 a+2)_{11}$	2
$[44,42,45]$	$[5,21,99]$	$\frac{1}{3} \alpha^{2}+3$	$(2),(3 a+2)_{11}$	4
$[76,18,5]$	$[5,9,19]$	$\alpha^{2}+4$	$(2),(4 a+3)_{19}$	2
$[172,34,117]$	$[13,17,43]$	$\frac{1}{3} \alpha^{2}+\frac{7}{3}$	$(2),(4 a+5)_{43}$	2
$[236,32,20]$	$[5,16,59]$	$\frac{1}{2} \alpha^{2}+\frac{7}{2}$	$(2),(7 a+5)_{59}$	2

Appendix A

A. 1 List of Singular Points

The following table gives the list of the four singular points for the surface X_{p}, where $p \in \mathbb{P}_{[A, B, C, D, E]}^{4}$ lies on one of the 15 singular hyperplane.

Hyperplane	List of Singular Points $(i=\sqrt{-1})$
$A=0$	$[1: 0: 0: 0],[0: 1: 0: 0],[0: 0: 1: 0],[0: 0: 0: 1]$
$q_{+C}=0$	$[1: 1: 0: 0],[1:-1: 0: 0],[0: 0: 1: 1],[0: 0: 1:-1]$
$q_{-C}=0$	$[1: i: 0: 0],[1:-i: 0: 0],[0: 0: 1: i],[0: 0: 1:-i]$
$q_{+D}=0$	$[1: 0: 1: 0],[1: 0:-1: 0],[0: 1: 0: 1],[0: 1: 0:-1]$
$q_{-D}=0$	$[1: 0: i: 0],[1: 0:-i: 0],[0: 1: 0: i],[0: 1: 0:-i]$
$q_{+E}=0$	$[1: 0: 0: 1],[1: 0: 0:-1],[0: 1: 1: 0],[0: 1:-1: 0]$
$q_{-E}=0$	$[1: i: 0: 0],[1:-i: 0: 0],[0: 1: i: 0],[0: 1:-i: 0]$
$p_{+0}=0$	$[1: 1: 1: 1],[1:-1: 1:-1],[1: 1:-1:-1],,[1:-1:-1: 1]$
$p_{-0}=0$	$[1: 1: 1:-1],[1: 1:-1: 1],[1:-1: 1: 1],[1:-1:-1:-1]$
$p_{+1}=0$	$[1: 1: i:-i],[1: 1:-i: i],[1:-1:-i:-i],[1:-1: i: i]$
$p_{-1}=0$	$[1: 1: i: i],[1:-1: i:-i],[1:-1:-i: i],[1: 1:-i:-i]$
$p_{+2}=0$	$[1: i: 1:-i],[1:-i: 1: i],[1:-i:-1:-i],[1: i:-1: i]$
$p_{-2}=0$	$[1: i: 1: i],[1: i:-1:-i],[1:-i:-1: i],[1:-i: 1:-i]$
$p_{+3}=0$	$[1: i:-i: 1],[1:-i: i: 1],[1:-i:-i:-1],[1: i: i:-1]$
$p_{-3}=0$	$[1: i: i: 1],[1: i:-i:-1],[1:-i: i:-1],[1:-i:-i: 1]$

Table A.1: Table of singular surfaces and their singular points

A. 2 List of Discriminants

The table below lists the 50 discriminants (up to squares) calculated for Theorem 3.1.5.

Field	Discriminant
$K\left(r_{1,1}^{2}+\frac{1}{r_{1,1}^{2}}\right)$	$p_{+1} \cdot p_{-1} \cdot p_{-0} \cdot p_{+0}$
$K\left(r_{1,1}^{2}+\bar{r}_{1,1}^{2}\right)$	$p_{+1} \cdot p_{-1} \cdot p_{+2} \cdot p_{-2}$
$K\left(r_{1,1}+\frac{1}{r_{1,1}}+\bar{r}_{1,1}+\frac{1}{\bar{r}_{1,1}}\right)$	$-1 \cdot p_{+1} \cdot p_{-0} \cdot p_{+2} \cdot p_{-2} \cdot q_{-E} \cdot q_{+D}$

Table A. 2 List Of Discriminants

Field	Discriminant
$K\left(r_{2,1}+\frac{1}{r_{2,1}}+\bar{r}_{2,1}+\frac{1}{\bar{r}_{2,1}}\right)$	${ }^{1} 1 \cdot p_{+1} \cdot p_{-1} \cdot p_{+0} \cdot p_{-2} \cdot q_{-E} \cdot q_{+C}$
$K\left(r_{\mu, 1}+\frac{r_{\mu, 1}}{r_{1,1}^{2}}+\bar{r}_{\mu, 1}+\frac{\bar{r}_{\mu, 1}}{\bar{r}_{1,1}^{2}}\right)$	$-1 \cdot p_{+0} \cdot p_{-0} \cdot q_{+C} \cdot q_{-E} \cdot q_{+D} \cdot \Delta$
$K\left(r_{1,2}^{2}+\frac{1}{r_{1,2}^{2}}\right)$	$p_{+1} \cdot p_{-1} \cdot p_{-0} \cdot p_{+0}$
$K\left(r_{1,2}^{2}+\bar{r}_{1,2}^{2}\right)$	$p_{+3} \cdot p_{-3} \cdot p_{-0} \cdot p_{+0}$
$K\left(r_{1,2}+\frac{1}{r_{1,2}}+\bar{r}_{1,2}+\frac{1}{\bar{r}_{1,2}}\right)$	$-1 \cdot p_{-1} \cdot p_{+0} \cdot p_{-3} \cdot p_{+3} \cdot q_{-D} \cdot q_{+E}$
$K\left(r_{2,2}+\frac{1}{r_{2,2}}+\bar{r}_{2,2}+\frac{1}{\bar{r}_{2,2}}\right)$	$p_{+1} \cdot p_{+3} \cdot q_{+E} \cdot q_{+C}$
$K\left(r_{\mu, 2}+\frac{r_{\mu, 1}}{r_{1,2}^{2}}+\bar{r}_{\mu, 2}+\frac{\bar{r}_{\mu, 1}}{\bar{r}_{1,2}^{1}}\right)$	$-1 \cdot p_{+1} \cdot p_{-1} \cdot q_{+C} \cdot q_{-D} \cdot q_{+E} \cdot \Delta$
$K\left(r_{1,3}^{2}+\frac{1}{r_{1,3}^{2}}\right)$	$p_{+3} \cdot p_{-3} \cdot p_{+2} \cdot p_{-2}$
$K\left(r_{1,3}^{2}+\bar{r}_{1,3}^{2}\right)$	$p_{+3} \cdot p_{-3} \cdot p_{+0} \cdot p_{-0}$
$K\left(r_{1,3}+\frac{1}{r_{1,3}}+\bar{r}_{1,3}+\frac{1}{\bar{r}_{1,3}}\right)$	$p_{-3} \cdot p_{-2} \cdot q_{+E} \cdot q_{+D}$
$K\left(r_{2,3}+\frac{1}{r_{2,3}}+\bar{r}_{2,3}+\frac{1}{\bar{r}_{2,3}}\right)$	${ }^{1} 1 \cdot p_{+3} \cdot p_{-3} \cdot p_{-2} \cdot p_{+0} \cdot q_{-C} \cdot q_{+E}$
$K\left(r_{\mu, 3}+\frac{r_{\mu, 3}}{r_{1,3}^{2}}+\bar{r}_{\mu, 3}+\frac{\bar{r}_{\mu, 3}}{\bar{r}_{1,3}^{2}}\right)$	$-1 \cdot p_{+3} \cdot p_{-3} \cdot p_{+2} \cdot p_{-2} \cdot p_{+0} \cdot p_{-0} \cdot q_{-C} \cdot q_{+D} \cdot q_{+E} \cdot \Delta$
$K\left(r_{1,4}^{2}+\frac{1}{r_{1,4}^{2}}\right)$	$p_{+3} \cdot p_{-3} \cdot p_{+2} \cdot p_{-2}$
$K\left(r_{1,4}^{2}+\bar{r}_{1,4}^{2}\right)$	$p_{+1} \cdot p_{-1} \cdot p_{+2} \cdot p_{-2}$
$K\left(r_{1,4}+\frac{1}{r_{1,4}}+\bar{r}_{1,4}+\frac{1}{\bar{r}_{1,4}}\right)$	$p_{-3} \cdot p_{-2} \cdot q_{-D} \cdot q_{-E}$
$K\left(r_{2,4}+\frac{1}{r_{2,4}}+\bar{r}_{2,4}+\frac{1}{\bar{r}_{2,4}}\right)$	$p_{-1} \cdot p_{-3} \cdot q_{-C} \cdot q_{-E}$
$K\left(r_{\mu, 4}+\frac{r_{\mu, 4}}{r_{1,4}^{2}}+\bar{r}_{\mu, 4}+\frac{\bar{r}_{\mu, 4}}{\bar{r}_{1,4}^{2}}\right)$	$-1 \cdot p_{+1} \cdot p_{-1} \cdot p_{+2} \cdot p_{-2} \cdot p_{+3} \cdot p_{-3} \cdot q_{-C} \cdot q_{-D} \cdot q_{-E} \cdot \Delta$
$K\left(r_{1,5}^{2}+\frac{1}{r_{1,5}^{2}}\right)$	$q_{+D} \cdot q_{+E} \cdot q_{-D} \cdot q_{-E}$
$K\left(r_{1,5}^{2}+\bar{r}_{1,5}^{2}\right)$	$-1 \cdot p_{+0} \cdot p_{+1} \cdot p_{-2} \cdot p_{-3} \cdot q_{+D} \cdot q_{-D}$
$K\left(r_{1,5}+\frac{1}{r_{1,5}}+\bar{r}_{1,5}+\frac{1}{\bar{r}_{1,5}}\right)$	$p_{-2} \cdot p_{-3} \cdot q_{-D} \cdot q_{-E}$
$K\left(r_{2,5}+\frac{1}{r_{2,5}}+\bar{r}_{2,5}+\frac{1}{\bar{r}_{2,5}}\right)$	$A \cdot p_{+1} \cdot p_{-3} \cdot q_{-D} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{\mu, 5}+\frac{r_{\mu, 5}}{r_{1,5}^{2}}+\bar{r}_{\mu, 5}+\frac{\bar{r}_{\mu, 5}}{\bar{r}_{1,5}}\right)$	${ }^{-1} \cdot A \cdot p_{+1} \cdot p_{+0} \cdot q_{-D} \cdot q_{-E} \cdot \Delta$
$K\left(r_{1,6}^{2}+\frac{1}{r_{1,6}^{2}}\right)$	$q_{+D} \cdot q_{+E} \cdot q_{-D} \cdot q_{-E}$
$K\left(r_{1,6}^{2}+\bar{r}_{1,6}^{2}\right)$	$-1 \cdot p_{-0} \cdot p_{-1} \cdot p_{+2} \cdot p_{+3} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{1,6}+\frac{1}{r_{1,6}}+\bar{r}_{1,6}+\frac{1}{\bar{r}_{1,6}}\right)$	$p_{+2} \cdot p_{+3} \cdot q_{+D} \cdot q_{+E}$
$K\left(r_{2,6}+\frac{1}{r_{2,6}}+\bar{r}_{2,6}+\frac{1}{\bar{r}_{2,6}}\right)$	$A \cdot p_{-1} \cdot p_{+3} \cdot q_{-D} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{\mu, 6}+\frac{r_{\mu, 6}}{r_{1,6}^{2}}+\bar{r}_{\mu, 6}+\frac{\bar{r}_{\mu, 6}}{\left.\bar{r}_{1,6}\right)^{\prime}}\right)$	$A \cdot p_{-0} \cdot p_{-1} \cdot q_{+D} \cdot q_{+E} \cdot \Delta$
$K\left(r_{1,7}^{2}+\frac{1}{r_{1,7}^{2}}\right)$	$-1 \cdot p_{+0} \cdot p_{-1} \cdot p_{+2} \cdot p_{-3} \cdot q_{-E} \cdot q_{+E}$

Table A. 2 List Of Discriminants

Field	Discriminant
$K\left(r_{1,7}^{2}+\bar{r}_{1,7}^{2}\right)$	$q_{+C} \cdot q_{-C} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{1,7}+\frac{1}{r_{1,7}}+\bar{r}_{1,7}+\frac{1}{\bar{r}_{1,7}}\right)$	${ }^{-1} \cdot A \cdot p_{+0} \cdot p_{-1} \cdot q_{-C}$
$K\left(r_{2,7}+\frac{1}{r_{2,7}}+\bar{r}_{2,7}+\frac{1}{\bar{r}_{2,7}}\right)$	$p_{-1} \cdot p_{-3} \cdot q_{-C} \cdot q_{-E}$
$K\left(r_{\mu, 7}+\frac{r_{\mu, 7}}{r_{1,7}^{2}}+\bar{r}_{\mu, 7}+\frac{\bar{r}_{\mu, 7}}{\bar{r}_{1,7}^{2}}\right)$	$A \cdot p_{-1} \cdot p_{-3} \cdot q_{+C} \cdot q_{-E} \cdot \Delta$
$K\left(r_{1,8}^{2}+\frac{1}{r_{1,8}^{2}}\right)$	${ }^{-1} \cdot p_{-0} \cdot p_{+1} \cdot p_{-2} \cdot p_{+3} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{1,8}^{2}+\bar{r}_{1,8}^{2}\right)$	$q_{-C} \cdot q_{+C} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{1,8}+\frac{1}{r_{1,8}}+\bar{r}_{1,8}+\frac{1}{\bar{r}_{1,8}}\right)$	$A \cdot p_{-2} \cdot p_{+3} \cdot q_{-C} \cdot q_{+E} \cdot q_{-E}$
$K\left(r_{2,8}+\frac{1}{r_{2,8}}+\bar{r}_{2,8}+\frac{1}{\bar{r}_{2,8}}\right)$	$p_{+1} \cdot p_{+3} \cdot q_{+C} \cdot q_{+E}$
$K\left(r_{\mu, 8}+\frac{r_{\mu, 8}}{r_{1,8}^{2}}+\bar{r}_{\mu, 8}+\frac{\bar{r}_{\mu, 8}}{\bar{r}_{1,8}^{2}}\right)$	$A \cdot p_{-0} \cdot p_{-2} \cdot q_{+C} \cdot q_{+E} \cdot \Delta$
$K\left(r_{1,9}^{2}+\frac{1}{r_{1,9}^{2}}\right)$	$-1 \cdot p_{+0} \cdot p_{-1} \cdot p_{-2} \cdot p_{+3} \cdot q_{+D} \cdot q_{-D}$
$K\left(r_{1,9}^{2}+\bar{r}_{1,9}^{2}\right)$	$q_{+C} \cdot q_{-C} \cdot q_{+D} \cdot q_{-D}$
$K\left(r_{1,9}+\frac{1}{r_{1,9}}+\bar{r}_{1,9}+\frac{1}{\bar{r}_{1,9}}\right)$	$A \cdot p_{-2} \cdot p_{+3} \cdot q_{-C} \cdot q_{+D} \cdot q_{-D}$
$K\left(r_{2,9}+\frac{1}{r_{2,9}}+\bar{r}_{2,9}+\frac{1}{\bar{r}_{2,9}}\right)$	$A \cdot p_{-1} \cdot p_{+3} \cdot q_{+C} \cdot q_{-C} \cdot q_{-D}$
$K\left(r_{\mu, 9}+\frac{r_{\mu, 9}}{r_{1,9}^{2}}+\bar{r}_{\mu, 9}+\frac{\bar{r}_{\mu, 9}}{\bar{r}_{1,9}^{2}}\right)$	$-1 \cdot A \cdot p_{+0} \cdot p_{+3} \cdot q_{+C} \cdot q_{+D} \cdot \Delta$
$K\left(r_{1,10}^{2}+\frac{1}{r_{1,10}}\right)$	$-1 \cdot p_{-0} \cdot p_{+1} \cdot p_{+2} \cdot p_{-3} \cdot q_{-D} \cdot q_{+D}$
$K\left(r_{1,10}^{2}+\bar{r}_{1,10}^{2}\right)$	${ }^{-1} \cdot p_{-0} \cdot p_{+1} \cdot p_{+2} \cdot p_{-3} \cdot q_{+C} \cdot q_{-C}$
$K\left(r_{1,10}+\frac{1}{r_{1,10}}+\bar{r}_{1,10}+\frac{1}{\bar{r}_{1,10}}\right)$	${ }_{-1} \cdot A \cdot p_{+1} \cdot p_{-0} \cdot q_{-C}$
$K\left(r_{2,10}+\frac{1}{r_{2,10}}+\bar{r}_{2,10}+\frac{1}{\bar{r}_{2,10}}\right)$	$A \cdot p_{+1} \cdot p_{-3} \cdot q_{+C} \cdot q_{-C} \cdot q_{-D}$
$K\left(r_{\mu, 10}+\frac{r_{\mu, 10}}{r_{1,10}^{2}}+\bar{r}_{\mu, 10}+\frac{\bar{r}_{\mu, 10}}{\bar{r}_{1,10}^{2}}\right)$	$A \cdot p_{-0} \cdot p_{-3} \cdot q_{+C} \cdot q_{+D} \cdot \Delta$

Table A. 2 List Of Discriminants

A. 3 List of Planes

Let $p=[A, B, C, D, E] \in \mathbb{P}^{4}$ be a general point not lying on the Segre cubic nor the 15 singular hyperplanes. There exists $10 \cdot 16$ planes intersecting the quartic K3 surface X_{p} into $2 \cdot 10 \cdot 16$ conics (see Theorem 2.3.8). Each plane is associated to a singular point, q_{i}, of the Segre cubic. So let T_{i} be the set of the 16 planes associated to the point q_{i}. Then $\left.T_{i}=\left\{\gamma\left(r_{0, i} x+r_{1, i} y+r_{2, i} z+r_{3, i} w\right)=0 \mid \gamma \in \Gamma\right)\right\}$, where $r_{j, i}$ is listed below (c.f. Lemma 3.2.1)
The point $q_{1}=[1,0,-2,-2,2]$:

- $r_{1,0}=2^{3} B \sqrt{-q_{+D} q_{+C} q_{-E}}$
- $r_{1,1}=\sqrt{q_{+C}}\left(\sqrt{p_{-2} p_{-0} p_{+2} p_{+1}}+p_{+2} \sqrt{p_{+1} p_{+0}}+\sqrt{p_{-2} p_{-1} p_{+2} p_{+0}}+p_{-2} \sqrt{p_{-1} p_{-0}}\right)$
- $r_{1,2}=\sqrt{q_{+D}}\left(\sqrt{p_{-1} p_{-0} p_{+1} p_{+2}}+p_{+1} \sqrt{p_{+2} p_{+0}}+\sqrt{p_{-1} p_{-2} p_{+1} p_{+0}}+p_{-1} \sqrt{p_{-2} p_{-0}}\right)$
- $r_{1,3}=-\sqrt{-q_{-E}}\left(\sqrt{p_{-0} p_{-1} p_{+0} p_{+2}}+p_{+0} \sqrt{p_{+2} p_{+1}}+\sqrt{p_{-0} p_{-2} p_{+0} p_{+1}}+p_{-0} \sqrt{p_{-2} p_{-1}}\right)$

The point $q_{2}=[1,0,-2,2,-2]$:

- $r_{2,0}=2^{3} B \sqrt{-q_{+C} q_{-D} q_{+E}}$
- $r_{2,1}=\sqrt{q_{+C}}\left(\sqrt{p_{-3} p_{-0} p_{+3} p_{+1}}+p_{+3} \sqrt{p_{+1} p_{+0}}+\sqrt{p_{-3} p_{-1} p_{+3} p_{+0}}+p_{-3} \sqrt{p_{-1} p_{-0}}\right)$
- $r_{2,2}=-\sqrt{-q_{-D}}\left(p_{-0} \sqrt{p_{-1} p_{-3}}+p_{+0} \sqrt{p_{+1} p_{+3}}+\sqrt{p_{-1} p_{-0} p_{+0} p_{+3}}+\sqrt{p_{-3} p_{-0} p_{+0} p_{+1}}\right)$
- $r_{2,3}=\sqrt{q_{+E}}\left(p_{-1} \sqrt{p_{-0} p_{-3}}+p_{+1} \sqrt{p_{+0} p_{+3}}+\sqrt{p_{-3} p_{-1} p_{+1} p_{+0}}+\sqrt{p_{-0} p_{-1} p_{+1} p_{+3}}\right)$

The point $q_{3}=[1,0,2,-2,-2]$:

- $r_{3,0}=2^{3} B \sqrt{-q_{-C} q_{+D} q_{+E}}$
- $r_{3,1}=-\sqrt{-q_{-C}}\left(\sqrt{p_{-2} p_{-0} p_{+3} p_{+0}}+p_{+0} \sqrt{p_{+3} p_{+2}}+\sqrt{p_{-3} p_{-0} p_{+2} p_{+0}}+p_{-0} \sqrt{p_{-3} p_{-2}}\right)$
- $r_{3,2}=\sqrt{q_{+D}}\left(\sqrt{p_{-0} p_{-3} p_{+2} p_{+3}}+p_{+3} \sqrt{p_{+0} p_{+2}}+\sqrt{p_{-2} p_{-3} p_{+0} p_{+3}}+p_{-3} \sqrt{p_{-0} p_{-2}}\right)$
- $r_{3,3}=\sqrt{q_{+E}}\left(\sqrt{p_{-0} p_{-2} p_{+3} p_{+2}}+p_{+2} \sqrt{p_{+0} p_{+3}}+\sqrt{p_{-3} p_{-2} p_{+0} p_{+2}}+p_{-2} \sqrt{p_{-0} p_{-3}}\right)$

The point $q_{4}=[1,0,2,2,2]$:

- $r_{4,0}=2^{3} B \sqrt{-q_{-C} q_{-D} q_{-E}}$
- $r_{4,1}=\sqrt{-q_{-C}}\left(\sqrt{p_{-3} p_{-1} p_{+2} p_{+1}}+p_{+1} \sqrt{p_{+2} p_{+3}}+\sqrt{p_{-2} p_{-1} p_{+3} p_{+1}}+p_{-1} \sqrt{p_{-2} p_{-3}}\right)$
- $r_{4,2}=\sqrt{-q-D}\left(\sqrt{p_{-1} p_{-2} p_{+3} p_{+2}}+p_{+2} \sqrt{p_{+1} p_{+3}}+\sqrt{p_{-3} p_{-2} p_{+1} p_{+2}}+p_{-2} \sqrt{p_{-1} p_{-3}}\right)$
- $r_{4,3}=\sqrt{-q_{-E}}\left(\sqrt{p_{-2} p_{-3} p_{+1} p_{+3}}+p_{+3} \sqrt{p_{+1} p_{+2}}+\sqrt{p_{-1} p_{-3} p_{+2} p_{+3}}+p_{-3} \sqrt{p_{-1} p_{-2}}\right)$

The point $q_{5}=[0,2,-1,0,0]$:

- $r_{5,0}=4 \sqrt{A}(\Delta-2 B(A B+2 A C-D E))$
- $r_{5,1}=\sqrt{A} \cdot\left(p_{+1} \sqrt{p_{-3} p_{-2} q_{+E} q_{+D}}-p_{+0} \sqrt{p_{-3} p_{-2} q_{-E} q_{-D}}\right.$

$$
\left.+p_{-2} \sqrt{-p_{+1} p_{+0} q_{+E} q_{-D}}+p_{-3} \sqrt{-p_{+1} p_{+0} q_{-E} q_{+D}}\right)
$$

- $r_{5,2}=2 \cdot\left(q_{+D} \sqrt{q_{-E} q_{+E} q_{-D} p_{-3} p_{+1}}-q_{-D} \sqrt{-q_{-E} q_{+E} q_{+D} p_{-2} p_{+0}}\right.$

$$
\left.+(A B+2 A C-D E) \cdot\left(\sqrt{-q_{-D} p_{-2} p_{+0}}+\sqrt{q_{+D} p_{-3} p_{+1}}\right)\right)
$$

- $r_{5,3}=2 \cdot\left(q_{+E} \sqrt{q_{-D} q_{+D} q_{-E}^{p_{-2} p_{+1}}}-q_{-E} \sqrt{-q_{-D} q_{+D} q_{+E} p_{-3} p_{+0}}\right.$

$$
\left.+(A B+2 A C-D E) \cdot\left(\sqrt{-q_{-E} p_{-3} p_{+0}}+\sqrt{q_{+E} p_{-2} p_{+1}}\right)\right)
$$

The point $q_{6}=[0,2,1,0,0]$:

- $r_{6,0}=4 \sqrt{A}(\Delta-2 B(A B-2 A C+D E))$
- $r_{6,1}=\sqrt{A} \cdot\left(p_{-1} \sqrt{p_{+3} p_{+2} q_{+D} q_{+E}}-p_{-0} \sqrt{p_{+3} p_{+2} q_{-D} q_{-E}}\right.$

$$
\left.+p_{+2} \sqrt{-p_{-0} p_{-1} q_{-D} q_{+E}}+p_{+3} \sqrt{-p_{-0} p_{-1} q_{+D} q_{-E}}\right)
$$

- $r_{6,2}=-2 \cdot\left(-q_{+D} \sqrt{q_{-D} q_{+E} q_{-E} p_{-1} p_{+3}}+q_{-D} \sqrt{-q_{+D} q_{+E} q_{-E} p_{-0} p_{+2}}\right.$

$$
\left.+(A B-2 A C+D E) \cdot\left(\sqrt{q_{+D} p_{-1} p_{+3}}+\sqrt{-q_{-D} p_{-0} p_{+2}}\right)\right)
$$

- $r_{6,3}=2 \cdot\left(-q_{+E} \sqrt{q_{-D} q_{+D} q_{-E} p_{-1} p_{+2}}+q_{-E} \sqrt{-q_{+D} q_{-D} q_{+E} p_{-0} p_{+3}}\right.$

$$
\left.+(A B-2 A C+D E) \cdot\left(\sqrt{q_{+E} p_{-1} p_{+2}}+\sqrt{-q_{-E} p_{-0} p_{+3}}\right)\right)
$$

The point $q_{7}=[0,2,0,-1,0]$:

- $r_{7,0}=4 \sqrt{A}(\Delta-2 B(A B+2 A D-C E))$
- $r_{7,1}=2 \cdot\left(q_{+C} \sqrt{q_{-C} q_{+E} q_{-E} p_{+2} p_{-3}}-q_{-C} \sqrt{-q_{+C} q_{+E} q_{-E} p_{+0} p_{-1}}\right.$

$$
\left.+(A B+2 A D-C E) \cdot\left(\sqrt{q_{+C} p_{+2} p_{-3}}+\sqrt{-q_{-C} p_{+0} p_{-1}}\right)\right)
$$

- $r_{7,2}=\sqrt{A} \cdot\left(p_{-1} \sqrt{-q_{+E} q_{-C} p_{+2} p_{+0}}-p_{+0} \sqrt{q_{-E} q_{-C} p_{-1} p_{-3}}\right.$

$$
\left.+p_{+2} \sqrt{q_{+C} q_{+E} p_{-1} p_{p-3}}+p_{-3} \sqrt{-q_{+C} q_{-E} p_{+0} p_{+2}}\right)
$$

- $r_{7,3}=2 \cdot\left(q_{+E} \sqrt{q_{-C} q_{+C} q_{-E} p_{-1} p_{+2}}-q_{-E} \sqrt{-q_{-C} q_{+C} q_{+E} p_{+0} p_{-3}}\right.$

$$
\left.+(A B+2 A D-C E) \cdot\left(\sqrt{q_{+E} p_{-1} p_{+2}}+\sqrt{-q_{-E} p_{+0} p_{-3}}\right)\right)
$$

The point $q_{8}=[0,2,0,1,0]$:

- $r_{8,0}=4 \sqrt{A}(\Delta-2 B(A B-2 A D+C E))$
- $r_{8,1}=2 \cdot\left(-q_{+C} \sqrt{q_{-C} q_{+E} q_{-E} p_{-2} p_{+3}}+q_{-C} \sqrt{-q_{+C} q_{+E} q_{-E} p_{-0} p_{+1}}\right.$

$$
\left.+(A B-2 A D+C E) \cdot\left(\sqrt{q_{+C} p_{-2} p_{+3}}+\sqrt{-q_{-C} p_{-0} p_{+1}}\right)\right)
$$

- $r_{8,2}=\sqrt{A} \cdot\left(p_{+1} \sqrt{-q_{-C} q_{+E} p_{-0} p_{-2}}-p_{-0} \sqrt{q_{-C} q_{-E} p_{+1} p_{+3}}\right.$

$$
\left.+p_{-2} \sqrt{q_{+C} q_{+E} p_{+1} p_{+3}}+p_{+3} \sqrt{-q_{+C} q_{-E} p_{-0} p_{-2}}\right)
$$

- $r_{8,3}=-2 \cdot\left(-q_{+E} \sqrt{q_{-C} q_{+C} q_{-E} p_{+1} p_{-2}}+q_{-E} \sqrt{-q_{+C} q_{-C} q_{+E} p_{-0} p_{+3}}\right.$

$$
\left.+(A B-2 A D+C E) \cdot\left(\sqrt{q_{+E} p_{+1} p_{-2}}+\sqrt{-q_{-E} p_{-0} p_{+3}}\right)\right)
$$

The point $q_{9}=[0,2,0,0,-1]$:

- $r_{9,0}=4 \sqrt{A}(\Delta-2 B(A B+2 A E-C D))$
- $r_{9,1}=2 \cdot\left(q_{+C} \sqrt{q_{-C} q_{-D} q_{+D} p_{-2} p_{+3}}-q_{-C} \sqrt{-q_{+C} q_{-D} q_{+D} p_{+0} p_{-1}}\right.$

$$
\left.+(A B+2 A E-C D) \cdot\left(\sqrt{q_{+C} p_{-2} p_{+3}}+\sqrt{-q_{-C} p_{+0} p_{-1}}\right)\right)
$$

- $r_{9,2}=2 \cdot\left(q_{+D} \sqrt{q_{+C} q_{-C} q_{+D} p_{-1} p_{+3}}-q_{-D} \sqrt{-q_{+C} q_{-C} q_{+D} p_{+0} p_{-2}}\right.$

$$
\left.+(A B+2 A E-C D) \cdot\left(\sqrt{q_{+D} p_{-1} p_{+3}}+\sqrt{-q_{-D} p_{+0} p_{-2}}\right)\right)
$$

- $r_{9,3}=\sqrt{A} \cdot\left(p_{-1} \sqrt{-q_{-C} q_{+D} p_{+0} p_{+3}}-p_{+0} \sqrt{q_{-C} q_{-D} p_{-1} p_{-2}}\right.$

$$
\left.+p_{-2} \sqrt{-q_{+C} q_{-D} p_{+0} p_{+3}}+p_{+3} \sqrt{q_{+C} q_{+D} p_{-1} p_{-2}}\right)
$$

The point $q_{10}=[0,2,0,0,1]$:

- $r_{10,0}=4 \sqrt{A}(\Delta-2 B(A B-2 A E+C D))$
- $r_{10,1}=-2 \cdot\left(-q_{+C} \sqrt{q_{-C} q_{+D} q_{-D} p_{+2} p_{-3}}+q_{-C} \sqrt{-q_{+C} q_{-D} q_{+D} p_{-0} p_{+1}}\right.$

$$
\left.+(A B-2 A E+C D) \cdot\left(\sqrt{q_{+C} p_{+2} p_{-3}}+\sqrt{-q_{-C} p_{-0} p_{+1}}\right)\right)
$$

- $r_{10,2}=2 \cdot\left(-q_{+D} \sqrt{q_{-C} q_{+C} q_{-D} p_{+1} p_{-3}}+q_{-D} \sqrt{-q_{-C} q_{+C} q_{+D} p_{-0} p_{+2}}\right.$

$$
\left.+(A B-2 A E+C D) \cdot\left(\sqrt{q_{+C} p_{+2} p_{-3}}+\sqrt{-q_{-C} p_{-0} p_{+1}}\right)\right)
$$

- $r_{9,3}=\sqrt{A} \cdot\left(p_{+1} \sqrt{-q_{-C} q_{+D} p_{-0} p_{-3}}-p_{-0} \sqrt{q_{-C} q_{-D} p_{+1} p_{+2}}\right.$

$$
\left.+p_{+2} \sqrt{-q_{+C} q_{-D} p_{-0} p_{-3}}+p_{-3} \sqrt{q_{+C} q_{+D} p_{+1} p_{+2}}\right)
$$

A. 4 The Equations of the Lines

In the table below (Table A.4) let p lie on the tangent cone to q_{i} on N_{5}, the Neron surface. Then X_{p} has eight lines (see Proposition 4.1.3), of which we list two. The other lines can be obtained through the action of Γ on X. Note that the pair of lines come from two different ruling of the associated quadric.

Point	Associated Quadric	Lines
q_{1}	$x^{2}-y^{2}-z^{2}+w^{2}$	$\begin{aligned} & 2 \sqrt{q_{+C}} x+\sqrt{p_{-1}} z+\sqrt{-p_{+0}} w=2 \sqrt{q_{+C}} y+\sqrt{-p_{+0}} z+\sqrt{p_{-1}} w=0 \\ & 2 \sqrt{q_{+C}} x+\sqrt{p_{+1}} z+\sqrt{-p_{-0}} w=2 \sqrt{q_{+C}} y-\sqrt{-p_{-0}} z-\sqrt{p_{+1}} w=0 \end{aligned}$
q_{2}	$x^{2}-y^{2}+z^{2}-w^{2}$	$\begin{aligned} & 2 \sqrt{q_{+C}} x+\sqrt{-p_{+0}} z+\sqrt{p_{-1}} w=2 \sqrt{q_{+C}} y+\sqrt{p_{-1}} z+\sqrt{-p_{+0}} w=0 \\ & 2 \sqrt{q_{+C}} x+\sqrt{-p_{-0}} z+\sqrt{p_{+1}} w=2 \sqrt{q_{+C}} y-\sqrt{p_{+1}} z-\sqrt{-p_{-0}} w=0 \end{aligned}$
q_{3}	$x^{2}+y^{2}-z^{2}-w^{2}$	$\begin{aligned} & 2 \sqrt{q_{-C}} x+\sqrt{p_{+3}} z+\sqrt{p_{-2}} w=2 \sqrt{q_{-C}} y-\sqrt{p_{-2}} z+\sqrt{p_{+3}} w=0 \\ & 2 \sqrt{q_{-C}} x+\sqrt{p_{-3}} z+\sqrt{p_{+2}} w=2 \sqrt{q_{-C}} y+\sqrt{p_{+2}} z-\sqrt{p_{-3}} w=0 \end{aligned}$
q_{4}	$x^{2}+y^{2}+z^{2}+w^{2}$	$\begin{aligned} & 2 \sqrt{q_{-C}} x+\sqrt{-p_{-2}} z+\sqrt{-p_{+3}} w=2 \sqrt{q_{-C}} y-\sqrt{-p_{+3}} z+\sqrt{-p_{-2}} w=0 \\ & 2 \sqrt{q_{-C}} x+\sqrt{-p_{+2}} z+\sqrt{-p_{-3}} w=2 \sqrt{q_{-C}} y+\sqrt{-p_{-3}} z-\sqrt{-p_{+2}} w=0 \end{aligned}$
q_{5}	$x y-z w$	$\begin{aligned} & 2 \sqrt{A} x+\left(\sqrt{q_{-D}}+\sqrt{-q_{+D}}\right) z=2 \sqrt{A} y+\left(\sqrt{q_{-D}}-\sqrt{-q_{+D}}\right) w=0 \\ & 2 \sqrt{A} x+\left(\sqrt{q_{-E}}+\sqrt{-q_{+E}}\right) w=2 \sqrt{A} y+\left(\sqrt{q_{-E}}-\sqrt{-q_{+E}}\right) z=0 \end{aligned}$
q_{6}	$x y+z w$	$\begin{aligned} & 2 \sqrt{A} x+\left(\sqrt{q_{-D}}+\sqrt{-q_{+D}}\right) z=2 \sqrt{A} y-\left(\sqrt{q_{-D}}-\sqrt{-q_{+D}}\right) w=0 \\ & 2 \sqrt{A} x+\left(\sqrt{q_{-E}}+\sqrt{-q_{+E}}\right) w=2 \sqrt{A} y-\left(\sqrt{q_{-E}}-\sqrt{-q_{+E}}\right) z=0 \end{aligned}$
q_{7}	$x z-y w$	$\begin{aligned} 2 \sqrt{A} x+\left(\sqrt{q_{-C}}+\sqrt{-q_{+C}}\right) y & =2 \sqrt{A} z+\left(\sqrt{q_{-C}}-\sqrt{-q_{+C}}\right) w=0 \\ 2 \sqrt{A} x+\left(\sqrt{q_{-E}}+\sqrt{-q_{+E}}\right) w & =2 \sqrt{A} z+\left(\sqrt{q_{-E}}-\sqrt{-q_{+E}}\right) z y=0 \end{aligned}$
q_{8}	$x z+y w$	$\begin{aligned} & 2 \sqrt{A} x+\left(\sqrt{q_{-C}}+\sqrt{-q_{+C}}\right) y=2 \sqrt{A} z-\left(\sqrt{q_{-C}}-\sqrt{-q_{+C}}\right) w=0 \\ & 2 \sqrt{A} x+\left(\sqrt{q_{-E}}+\sqrt{-q_{+E}}\right) w=2 \sqrt{A} z-\left(\sqrt{q_{-E}}-\sqrt{-q_{+E}}\right) y=0 \end{aligned}$
q_{9}	$x w-y z$	$\begin{aligned} & 2 \sqrt{A} x+\left(\sqrt{q_{-C}}+\sqrt{-q_{+C}}\right) y=2 \sqrt{A} w+\left(\sqrt{q_{-C}}-\sqrt{-q_{+C}}\right) z=0 \\ & 2 \sqrt{A} x+\left(\sqrt{q_{-D}}+\sqrt{-q_{+D}}\right) z=2 \sqrt{A} w+\left(\sqrt{q_{-D}}-\sqrt{-q_{+D}}\right) y=0 \end{aligned}$
q_{10}	$x w+y z$	$\begin{aligned} & 2 \sqrt{A} x+\left(\sqrt{q_{-C}}+\sqrt{-q_{+C}}\right) y=2 \sqrt{A} w-\left(\sqrt{q_{-C}}-\sqrt{-q_{+C}}\right) z=0 \\ & 2 \sqrt{A} x+\left(\sqrt{q_{-D}}+\sqrt{-q_{+D}}\right) z=2 \sqrt{A} w-\left(\sqrt{q_{-D}}-\sqrt{-q_{+D}}\right) y=0 \end{aligned}$

A. 5 List of Gram Matrices

For Proposition 4.2.6, for each of the families $\mathcal{X}, \mathcal{X}_{C, D, E}, \mathcal{X}_{C, D}, \mathcal{X}_{B}$ and \mathcal{X}_{C}, we calculated the intersection matrix of the lines and conics of a general member of that family. As discussed in the proof of Proposition 4.2.7 for each intersection matrix we extracted a full rank minor which we list below. For the surface Y, by seeing the intersection matrix as a lattice, we calculate an integral basis to extract a minor with minimal discriminant.
For a very general member of the family \mathcal{X} a full rank minor, denoted by M, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2
\end{array}\right)
$$

For a very general member of the family $\mathcal{X}_{C, D, E}$, a full rank minor, denoted by $M_{C, D, E}$, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2
\end{array}\right)
$$

For a very general member of the family $\mathcal{X}_{C, D}$, a full rank minor, denoted $M_{C, D}$, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 0 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 0 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 & 0 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -2
\end{array}\right)
$$

For a very general member of the family \mathcal{X}_{B}, a full rank minor, denoted M_{B}, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 1 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 1 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 0 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 & 1 \\
1 & 0 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 & 0 \\
0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & -2 \\
0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
-2
\end{array}\right)
$$

For a very general member of the family \mathcal{X}_{C}, a full rank minor, denoted M_{C}, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 1 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 0 & 1 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 & 0 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 0 & 1 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 & 0 & 1 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -2 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & -2
\end{array}\right)
$$

For the surface Y, a full rank minor of minimal discriminant, denoted M_{Y}, is:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrr}
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 2 \\
0 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 2 \\
0 & 2 & -2 & 0 & 2 & 2 & 1 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 & 1 & 0 \\
2 & 2 & 0 & -2 & 2 & 2 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & -2 & 2 & 0 & 2 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2 & 2 & 2 & -2 & 1 & 0 & 2 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 0 & 1 & -2 & 1 & 2 & 1 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 & 2 & 0 & 1 & -2 & 1 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 1 & 1 \\
2 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 & 0 & 2 & 0 & 1 & 1 & 2 & -2 & 0 & 0 & 2 & 2 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & -2 & 0 & 2 & 2 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 2 & 0 & 0 & -2 & 1 & 1 & 0 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 2 & 2 & 1 & -2 & 0 & 2 & 0 & 1 & 1 \\
1 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 & 0 & -2 & 2 & 2 & 0 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 & 2 & 2 & -2 & 2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & -2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 0 \\
2 & 2 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
-2 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 1 \\
0 & 0 & -2
\end{array}\right)
$$

Bibliography

[AS83] Noboru Aoki and Tetsuji Shioda. Generators of the Néron-Severi group of a Fermat surface. In Arithmetic and geometry, Vol. I, volume 35 of Progr. Math., pages 1-12. Birkhäuser Boston, Boston, MA, 1983.
[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[BM77] E. Bombieri and D. Mumford. Enriques' classification of surfaces in char. p. II. In Complex analysis and algebraic geometry, pages 23-42. Iwanami Shoten, Tokyo, 1977.
[BN94] W. Barth and I. Nieto. Abelian surfaces of type $(1,3)$ and quartic surfaces with 16 skew lines. J. Algebraic Geom., 3(2):173-222, 1994.
[Bou] Florian Bouyer. Magma Code for Thesis. https://sites.google.com/ site/fjscbouyer/publication/thesis-code.
[Bou15a] Florian Bouyer. On the Monodromy and Galois Group of Conics Lying on Heisenberg Invariant Quartic K3 Surfaces. 2015. Preprint: http: //arxiv.org/abs/1511.01299
[Bou15b] Florian Bouyer. The Picard Group of Various Families of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ invariant Quartic K3 surfaces. 2015. Preprint: http://arxiv.org/abs/ 1511.01781
[BPVdV84] W. Barth, C. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1984.
[BS13] Gaetan Bisson and Marco Streng. On polarised class groups of orders in quartic CM-fields. preprint, arXiv:1302.3756, 2013.
[BS15] Florian Bouyer and Marco Streng. Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math., 18(1):507-538, 2015.
[CD12] Ciro Ciliberto and Thomas Dedieu. On universal Severi varieties of low genus $K 3$ surfaces. Math. Z., 271(3-4):953-960, 2012.
[CF96] J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of curves of genus 2, volume 230 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.
[Cha13] François Charles. The Tate conjecture for $K 3$ surfaces over finite fields. Invent. Math., 194(1):119-145, 2013.
[Cox13] David A. Cox. Primes of the form $x^{2}+n y^{2}$. Pure and Applied Mathematics (Hoboken). John Wiley \& Sons, Inc., Hoboken, NJ, second edition, 2013. Fermat, class field theory, and complex multiplication.
[CQ05] Gabriel Cardona and Jordi Quer. Field of moduli and field of definition for curves of genus 2. In Computational aspects of algebraic curves, volume 13 of Lecture Notes Ser. Comput., pages 71-83. World Sci. Publ., Hackensack, NJ, 2005.
[Ekl10] David Eklund. Curves on Heisenberg invariant quartic surfaces in projective 3-space. October 2010.
$\left[\mathrm{GKM}^{+}\right] \quad$ P. Gaudry, A. Kruppa, F. Morain, L. Muller, E. Thome, and P. Zimmermann. cado-nfs 1.1, An implementation of the number field sieve method. http://cado-nfs.gforge.inria.fr/.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New YorkHeidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[HS00] Marc Hindry and Joseph H. Silverman. Diophantine geometry, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction.
[Igu60] Jun-ichi Igusa. Arithmetic variety of moduli for genus two. Ann. of Math. (2), 72:612-649, 1960.
[$\left.\mathrm{K}^{+} 07\right]$ David Kohel et al. ECHIDNA algorithms for algebra and geometry experimentation. http://echidna.maths.usyd.edu.au/~kohel/dbs/ complex_multiplication2.html, 2007.
[KS15] Pinar Kiliçer and Marco Streng. The CM class number one problem for curves of genus 2. 2015. Preprint: http://arxiv.org/abs/1511.04869.
[LN59] S. Lang and A. Néron. Rational points of abelian varieties over function fields. Amer. J. Math., 81:95-118, 1959.
[LV15] Kristin Lauter and Bianca Viray. An arithmetic intersection formula for denominators of Igusa class polynomials. Amer. J. Math., 137(2):497-533, 2015.
[Mau14] Davesh Maulik. Supersingular K3 surfaces for large primes. Duke Math. J., 163(13):2357-2425, 2014. With an appendix by Andrew Snowden.
[Mes91] Jean-François Mestre. Construction de courbes de genre 2 à partir de leurs modules. In Effective methods in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math., pages 313-334, Boston, MA, 1991. Birkhäuser Boston.
[Mil75] J. S. Milne. On a conjecture of Artin and Tate. Ann. of Math. (2), 102(3):517-533, 1975.
[MP15] Keerthi Madapusi Pera. The Tate conjecture for K3 surfaces in odd characteristic. Invent. Math., 201(2):625-668, 2015.
[Nik80] Vyacheslav Valentinovich Nikulin. Integral symmetric bilinear forms and some of their applications. Mathematics of the USSR-Izvestiya, 14(1):103, 1980.
[NO85] Niels Nygaard and Arthur Ogus. Tate's conjecture for $K 3$ surfaces of finite height. Ann. of Math. (2), 122(3):461-507, 1985.
[Nyg83] N. O. Nygaard. The Tate conjecture for ordinary $K 3$ surfaces over finite fields. Invent. Math., 74(2):213-237, 1983.
[PAR11] PARI Group, The, Bordeaux. PARI/GP, version 2.4.3, 2011. http: //pari.math.u-bordeaux.fr/
$\left[\mathrm{S}^{+} 13\right] \quad$ William A. Stein et al. Sage Mathematics Software (Version 5.12). 2013. http://www.sagemath.org.
[SBa] Marco Streng and Florian Bouyer. Implementation of Mestre's algorithm in Sage. http://trac.sagemath.org/sage_trac/ticket/6341.
[SBb] Marco Streng and Florian Bouyer. Sage code for reduction of hyperelliptic curves, and data files for "Examples of CM curves of genus two defined over the reflex field". https://bitbucket.org/mstreng/reduce.
[SC03] Michael Stoll and John E. Cremona. On the reduction theory of binary forms. J. Reine Angew. Math., 565:79-99, 2003.
[Ser97] Jean-Pierre Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg \& Sohn, Braunschweig, third edition, 1997.

Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre.
[SSvL10] Matthias Schütt, Tetsuji Shioda, and Ronald van Luijk. Lines on fermat surfaces. Journal of Number Theory, 130(9):1939-1963, 2010.
[ST61] Goro Shimura and Yutaka Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo, 1961.
[Str10] Marco Streng. Complex multiplication of abelian surfaces. PhD thesis, Universiteit Leiden, 2010. http://hdl.handle.net/1887/15572.
[Tat65] John T. Tate. Algebraic cycles and poles of zeta functions. In Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pages 93-110. Harper \& Row, New York, 1965.
[VA15] Anthony Varilly-Alvarado. Arithmetic of K3 Surfaces Lecture Notes, 2015. http://www.math.rice.edu/ av15/Files/AWS2015Notes.pdf.
[vL07] Ronald van Luijk. K3 surfaces with Picard number one and infinitely many rational points. Algebra Number Theory, 1(1):1-15, 2007.
[vW99a] Paul van Wamelen. Examples of genus two CM curves defined over the rationals. Mathematics of Computation, 68(225):307-320, 1999.
[vW99b] Paul van Wamelen. Proving that a genus 2 curve has complex multiplication. Math. Comp., 68(228):1663-1677, 1999.
$\left[Z^{+} 12\right]$ Paul Zimmermann et al. GMP-ECM 6.4.2 (elliptic curve method for integer factorization), 2012. https://gforge.inria.fr/projects/ecm/.

