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Comparing reflective and formative measures: new insights from relevant simulations 
 

Abstract 

     Previous simulations comparing formative and reflective models specify formative population 

models as the only correct model for a given construct, and compare them with various 

misspecified reflective models. However, this approach does not generalize to situations where 

both reflective and formative specifications can work well to assess constructs. To address this 

limitation, this study presents simulations in which both formative and reflective specifications 

fit the underlying population data equally well. The results show that reflective specifications 

generate less biased and more powerful results than formative specifications, and make a strong 

case for considering standardized rather than unstandardized coefficients for both specifications. 

Therefore, conceptual and empirical consequences of using reflective models for constructs that 

could also be modeled as formative are less dire than past research has suggested.  

 

Keywords: Construct specification; Formative measurement; Reflective measurement; Monte 

Carlo simulation. 
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“Things exist, we don't have to create them; we only have to understand their relationships; and 

it is the threads of these relationships which form poems and orchestras.” 

Stéphane Mallarmé  

Réponses à des Enquêtes sur l’Evolution Littéraire 

1. Introduction 

     Mallarmé’s colorful comment on literature is also relevant to empirical research, because “the 

sine qua non of measurement is that the numbers assigned to objects reflect the relations among 

the objects with respect to the aspect being measured” (Pedhazur & Schmelkin, 1991, p. 16). A 

well-established body of simulation-based research claims that using a reflective measurement 

model to operationalize attributes that “should have been formatively modeled” has serious 

consequences in terms of estimating structural relationships between different objects—that is, 

theoretical constructs (Jarvis, MacKenzie, & Podsakoff, 2003, p. 207; see also MacKenzie, 

Podsakoff, & Jarvis, 2005; Petter, Straub, & Rai, 2007). For example, MacKenzie et al. (2005, p. 

728) assert that “misspecification can inflate unstandardized structural parameter estimates by as 

much as 400% or deflate them by as much as 80%,” with “a substantial probability that 

measurement model misspecification will not be detected with many of the most commonly used 

goodness-of-fit indices.” 

     Aguirre-Urreta and Marakas (2012) counter that these claims rely on comparisons of 

unstandardized coefficients between reflective and formative models, and that using standardized 

coefficients removes the apparent bias in the structural estimates due to claimed reflective 

misspecification. In response, Jarvis, MacKenzie, and Podsakoff (2012) and Petter, Rai, and 

Straub (2012) defend the use of unstandardized coefficients in structural models as a basis for 

comparing empirical findings across specifications. However, focusing on the relative 
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magnitudes of unstandardized coefficients and rejecting the interpretation of standardized results 

is contrary to common research practice, would preclude the use of partial least squares 

modeling (which relies on standardized coefficients) as a formative analysis tool, and overlooks 

such important criteria as the reliability and significance of measurement indicators and the 

variance explained in predicting endogenous constructs (Aguirre-Urreta & Marakas, 2012; Hair, 

Hult, Ringle, & Sarstedt, 2014).   

     Moreover, the conclusions based on existing simulation research (e.g., Jarvis et al., 2003; 

MacKenzie et al., 2005; Petter et al., 2007) are problematic in ways that are far more 

fundamental than those regarding the metric for comparison that Aguirre-Urreta and Marakas 

(2012) point out. For debate about the empirical comparisons to be productive, simulation 

designs must be realistic and appropriate. As this paper shows, existing simulation designs do not 

provide a fair and unbiased comparison of formative and reflective models, meaning that—

whether using standardized or unstandardized coefficients—the comparisons between the 

formative and reflective models in existing simulations are not useful evidence for the strong 

conclusions drawn in prior work. 

     Specifically, previous simulations specify formative population models as the only correct 

model for a given construct, and compare them with various alternative reflective models. This 

approach has several limitations. One is treating arbitrary scalings of latent variables as the only 

true population values, whereas an infinite number of alternative scalings (including standardized 

solutions) would be equally true in the population (Bollen, 1989). Another limitation is 

confounding lack of fit caused by basic misspecifications in the particular reflective models, with 

that which may come from using the reflective model as an alternative to the formative model.  

     The latter issue is particularly important, because existing simulations do not recognize the 
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real possibility that both reflective and formative specifications can work well to conceptualize 

and assess a construct. Various authors identify constructs in marketing and other fields that 

could be or arguably should be analyzed as formative, in contrast to the earlier researchers who 

successfully conceptualized, developed, and analyzed them as reflective (e.g., Diamantopoulos 

& Winklhofer, 2001; MacKenzie et al., 2005). For example, Jarvis et al. (2003) estimate that 

previous authors incorrectly modeled 29% of marketing measures as reflective rather than 

formative. In information systems, Petter et al. (2007) suggest a figure of 31%, and Podsakoff, 

Shen, and Podsakoff (2006) give a figure of 69% in research on strategy. These claims reject the 

original measurement conceptualizations and suggest that many papers include important errors 

in empirical analyses, yet existing simulation studies ensure that the data fit the formative model 

rather than the reflective model (or both models). Thus the available evidence does not in fact 

shed light on the effects of formative analysis of (successful) reflective constructs. 

     A more realistic representation of such situations is to design simulations where formative 

and reflective specifications both fit perfectly in the population, and compare the results between 

the alternative models. The present study is the first to design such unbiased simulations, and 

thus to present comparisons relevant to practicing researchers. Based on simulation results that 

give a privileged position to formative specifications, Aguirre-Urreta and Marakas (2012, p. 124) 

present Heresy #1, that “the consequences of misspecification seem to be much less dire than 

previously thought.” The present paper provides a more extreme Heresy #2, that existing 

simulation evidence is either misleading or not even relevant to the important question of how 

alternative measurement specification affects tests of relationships between constructs when both 

formative and reflective models fit the data. Drawing from the results of these more relevant 

simulation designs, the paper also presents Heresy #3, that formative models with small sample 
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sizes and inappropriate latent-variable scaling produce considerable bias in cases where both 

reflective and formative specifications are viable. Thus the paper makes substantial novel 

contributions to the ongoing conversation on measurement by presenting the first set of 

simulations that avoid preferential (i.e., biased) treatment of either the formative or reflective 

model. 

     This new approach is important because the resulting simulation findings can provide 

researchers with precise insights into how to operationalize constructs under the possible 

existence of multiple meaningful specifications, and with implications of successfully treating a 

measure as reflective when researchers could also have modeled the measure as formative or 

vice versa. Furthermore, the simulation results can help in evaluating the findings of much extant 

literature in marketing where researchers disagree about whether formative or reflective models 

are appropriate. If formative specifications would be consistent with the substantive implications 

of the (published) reflective specifications, then scholars can interpret the literature in marketing 

and other fields with more confidence than previous simulation evidence implies. Conversely, if 

formative specifications are prone to bias with typical research designs, then calls for 

replacement of reflective with formative models may abate.  

     As a foundation for the simulation design, the next section focuses on three issues that are 

critical to proper interpretation of simulation evidence on formative versus reflective 

specifications. The first issue is whether constructs are inherently formative or reflective; if not, 

researchers can reasonably evaluate them with alternative models. The second is why researchers 

can often empirically treat good reflective models as good formative models. The third is the 

arbitrary scaling of latent variables that underlies the interpretation of previous simulation 

results. Empirical examples taken from previous studies illustrate all three of these issues. After 
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this foundation, the paper provides the findings of new simulations with multiple correct 

measurement models by taking random samples from populations where the formative and 

reflective specifications all fit the same data equally well. The final section discusses how the 

simulation results provide new perspectives on how to operationalize constructs under the 

existence of multiple correct models. 

 

2. Conceptual background and illustrations  

2.1. Are constructs inherently formative or reflective? 

     The formative measurement literature is often consistent with a construct-centric view, that 

constructs are inherently either formative or reflective, and thus scholars must model them 

accordingly (Howell, Breivik, & Wilcox, 2007). For example, Diamantopoulos and Siguaw 

(2006, p. 270) identify errors that result from using “the wrong measurement perspective, given 

the nature of the construct.” Similarly, Petter et al. (2012, p. 148) suggest that researchers can 

“alter the meaning of a construct…by misspecifying the measurement model” and that “the 

meaning of the construct changes…based on the measurement specification being formative or 

reflective.” Previous simulation studies comparing formative and reflective models are thus 

consistent with a construct-centric perspective in asserting that a formative model is true and 

reflective variants are false.  

     An alternative to the construct-centric view is the realist ontology of measurement that 

underlies most contemporary measurement theory in organizational and social science (e.g., 

Borsboom, 2005). The key tenet of the realist ontology as applied to measurement is that 

“constructs exist…independent of our attempts to assess them” (Markus & Borsboom, 2013, pp. 

10-11). Therefore, “A given research situation or research tradition may favor either formative or 
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reflective measurement, but constructs themselves, posited under a realist philosophy of science 

as existing apart from their measurement, are neither formative nor reflective” (Wilcox, Howell, 

& Breivik, 2008, p. 1220). The view that a construct is a composite of its formative indicators 

inevitably leads to the conclusion that the construct “has no measurable reality apart from those 

variables which are conceived to be its determinants” (Heise, 1972, p. 153). Many formative 

measurement theorists reject this operationalist perspective (e.g., Diamantopoulos & Winklhofer, 

2001), leading to what may be called an item-centric view. This widely-held perspective takes 

the position that a set of indicators may be formative with respect to one construct but reflective 

with respect to another (e.g., Bollen & Ting, 2000), so that the measures of a construct do not 

define the construct, and the construct exists independent of them. Diamantopoulos (2011, p. 

336), for example, notes that “there seems to be broad consensus in the literature that constructs 

themselves are not inherently formative or reflective.”  

     The realist ontological perspective that constructs exist independent of their measurements 

opens the possibility of multiple viable construct specifications. Therefore, scholars may 

sometimes appropriately model a set of indicators for a construct both reflectively and 

formatively. Indeed, many constructs in marketing and business research have advocates for both 

reflective and formative operationalizations. Two examples (discussed in more detail 

subsequently) are market orientation and customer relationship management, and Bollen (1989) 

even shows formative and reflective models for socioeconomic status, which many scholars 

discuss as an archetypal construct suited to a formative approach. Understanding the empirical 

implications of competing theoretical perspectives is therefore a worthwhile goal. Well-designed 

simulation studies should be able to inform researchers on the comparative utility of formative 

and reflective models on the same data, and also provide guidance to researchers on how to 
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examine their own data. Thus, from a realist, item-centric position, and in contrast to previous 

simulation studies, the relevant comparison of measurement models requires population data 

where both formative and reflective models can fit a given set of indicators equally well.  

 

2.2. Formative analysis of reflective models 

     Prior simulation studies view formative and reflective models as incompatible alternatives. 

However, because of proportionality constraints on relationships between variables, formative 

and reflective approaches may often be more empirically compatible than the literature suggests. 

Formative indicators must have the same relative effect on every outcome that the construct 

influences as they do on the formatively-measured construct (Franke, Preacher, & Rigdon, 2008; 

Hayduk, 1987). Reflective indicators must have the same proportional relationships with the 

antecedents and consequences of the reflectively-measured construct as they have with each 

other (Anderson, Gerbing, & Hunter, 1987). Therefore, indicators that fit the more restrictive 

reflective model are often empirically compatible with a formative specification. 

     Fig. 1. illustrates this pattern. The first model shows a reflectively-measured construct with 

three indicators, influencing a construct with two indicators. If the model fits the data, the 

products of the loadings account for the correlations between indicators x1-x3 (e.g., rx1x2 = 

λx1*λx2). The second model of Fig. 1. also repeats this relationship, where the correlations 

between the formative indicators equal the products of the reflective loadings. Researchers 

conventionally interpret the latent variable in the formative model as the formative construct 

(e.g., MacCallum & Browne, 1993), though empirically the variable represents whatever the 

outcome variables have in common, as the reflective model in Fig. 1 indicates (e.g., Howell, 

2013). The formative model uses the correlations between the indicators as parameters, whereas 
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the reflective model accounts for them with indicator loadings. Thus the reflective model usually 

has more degrees of freedom than the formative model, as well as a higher chi-square value to 

the extent that indicator correlations do not exactly equal the products of the loadings. Various 

indicators of model fit may be better or worse for either specification. 

Fig. 1 here. 

     Because the issue of standardized versus unstandardized coefficients is critical to the 

interpretation of past simulation results, the next section discusses the scaling of latent variables 

in structural models. 

 

2.3. Latent-variable scaling 

     Latent variables do not have an intrinsic scale, and researchers must specify constraints on 

some parameters to identify the models and obtain unique estimates for all the unconstrained 

parameters (e.g., Aguirre-Urreta & Marakas, 2012). Bollen (1989, p. 152) notes that “Virtually 

all latent variables have ambiguous scales…When agreement about the measurement unit for [a 

latent variable] is absent, then the scale choice is largely arbitrary.” Two common approaches to 

setting the scale of latent variables include fixing a selected loading to a nonzero value (normally 

but not necessarily 1.0, called unit loading identification) or fixing the variance of the exogenous 

latent variable to a nonzero value (also commonly to a value of 1.0, called unit variance 

identification). However, other options include fixing causal paths to endogenous constructs, or 

the constructs’ disturbance terms, to 1.0 or some other value (Kenny, Kashy, & Bolger, 1998). 

Aguirre-Urreta and Marakas (2012, p. 125) point out that “different approaches to model 

identification and scale setting, as well as different nonzero values used for this purpose, will 

result in markedly different unstandardized estimates of the relationship between latent variables, 
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even if the alternative models will fit equally well; however, when standardized, the estimates 

will all be identical.” Though the standardized coefficients will be equal, Gonzalez and Griffin 

(2001) show that different scaling approaches, including the indicator chosen for unit loading 

identification, can have a substantial influence on the estimated standard errors. Thus, the true 

parameter values of the formative population models examined in previous simulations could 

take on infinitely many other equally-true values, and significance levels for estimated 

parameters depend in part on the scaling method. 

     Jarvis et al. (2012) and Petter et al. (2012) argue against comparing standardized coefficients 

across random samples. However, even though unstandardized effects should be suitable when 

comparing results across groups, standardized coefficients are quite appropriate when comparing 

the same samples on different models as in the simulations of the current paper. Previous 

research also suggests that standardizing formatively-modeled constructs by constraining their 

structural errors to equal 1.0 minus the variance explained by the formative indicators both 

increases power and allows an assessment of all the formative indicators, rather than fixing one 

coefficient to a value of one (Diamantopoulos, 2011; Franke et al., 2008). The following 

illustrations show these differences. 

  

2.4. Empirical examples 

     This section uses published correlation matrices to examine three constructs that researchers 

conceptualize both formatively and reflectively in previous research. The first example is from 

Chang, Park, and Chaiy (2010), who use a reflective model to analyze customer relationship 

management (CRM) technology. Other scholars prefer formative specifications for CRM 

measurement (e.g., Reinartz, Krafft, & Hoyer, 2004). The second example is from Rigopoulou, 
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Theodosiou, Katsikea, and Perdikis (2012), who treat information control as a second-order, 

more abstract construct that accounts for the covariances between its first-order dimensions. In 

contrast, Challagalla and Shervani (1997) treat the different dimensions as separate constructs 

rather than lower-order factors. The third example is from Kara, Spillan, and DeShields (2004), 

who treat three dimensions of market orientation (MO) as first-order indicators of overall MO. 

Coltman, Devinney, Midgley, and Venaik (2008, p. 1258) argue for a formative perspective in 

conceptualizing MO, but note that “from an ontological standpoint, researchers can measure 

market orientation reflectively (cultural perspective) or formatively (behavioral perspective).” 

     For each example, Table 1 provides four sets of results. One reflective model, labeled RS in 

the table, has the exogenous construct scaled with unit variance identification and the 

endogenous construct scaled with unit loading identification. Table 1 reports the standardized 

loadings. The second reflective model, RU, uses unit loading identification for both the 

exogenous and endogenous constructs. Table 1 also provides two formative models for 

comparison. FS scales the latent variable by constraining the structural error term equal to 1.0 

minus the variance explained by the indicators, which standardizes both the formative 

coefficients and the loadings of the outcome variables. FU scales the construct by setting the 

coefficient for the most significant formative indicator equal to 1.0. This approach gives more 

power for testing the other indicators than results from using a poorer indicator to scale the 

construct. The analyses use LISREL 8.80 to obtain the empirical results. Because the available 

correlations are for lower-order constructs rather than individual measurement items, structural 

relationships, fit, and degrees of freedom differ compared to the original publications. 

Table 1 here. 

     The standardized RS and FS results are almost identical for the loadings of the outcome 



12 

 

variables (except for an arbitrary change in sign for the information control results, resulting 

from a negative effect of the controls on the outcomes). Model fits are all good. In every case the 

direct effect of the exogenous construct is significant, and the reflective models all account for 

somewhat more variance explained (squared multiple correlations or SMC) than the formative 

models. For the reflective analyses, the results imply that the higher-order construct influences 

the outcome variables. Interpretation of the formative models considers the statistical 

significance of the indicators, which depends on the scaling of the latent construct. Scaling by 

fixing a formative loading to 1.0 is consistently less powerful than the standardized approach. 

With standardization, just one formative indicator is significant for CRM technology use; with 

the other method, none is significant. For information control, either all three or just one of the 

formative indicators is significant, depending on the scaling approach. For MO, either one or 

none of the indicators is significant. 

     Though these examples do not examine the theoretical arguments for the competing 

interpretations of the constructs considered, or the conceptualization of higher-order reflective 

models (Edwards & Bagozzi, 2000; Lee & Cadogan, 2013), they do show how formative and 

reflective approaches can be alternative models for the same construct. Both models fit well and 

explain similar amounts of variance overall. The biggest empirical difference is that, depending 

on the scaling of the formatively-measured variables, some or all of the formative indicators are 

nonsignificant. As such, the comparative findings of Table 1 suggest that researchers avoid 

scaling formative models with unit loading identification (i.e., the unstandardized approach), and 

rather use alternatives such as the standardized approach. To compare the effects of modeling 

decisions more systematically, and to examine more complicated models such as those examined 

by Aguirre-Urreta and Marakas (2012), Jarvis et al. (2003), and Petter et al. (2007), the next 
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section presents Monte Carlo simulation results. 

 

3. Simulations with multiple correct models 

3.1. Simulation design 

     The present simulation builds on the design of Jarvis et al. (2003), which attempts to show the 

consequences of treating formative models as reflective. As Fig. 2 shows, Jarvis et al. (2003) 

create two correctly specified formative models (i.e., population models). One contains an 

exogenous formatively-measured construct (Fig. 2A) and the other contains an endogenous 

formatively-measured construct (Fig. 2B)1. Both designs have four reflectively-assessed 

constructs in addition to the formatively-measured construct. Jarvis et al. (2003) examine the 

effects of modeling the initial formatively-measured construct as reflective in the alternative 

model (Fig. 2C) in terms of magnitudes of unstandardized parameter estimates and model fit. 

Subsequent simulations replicate and extend this design (Aguirre-Urreta & Marakas, 2012; Petter 

et al., 2007). Therefore, the simulation of the present study builds on this design to allow 

comparisons with previous findings.  

Fig. 2 here. 

     Except for arbitrary differences between unstandardized structural coefficients, the three sets 

of simulations reveal substantial similarities between the formative and reflective specifications. 

With a few exceptions, most reflective models show good power and fit the data on average 

according to commonly-recommended fit statistics. The simulation designs underlie the 

exceptions. When Jarvis et al. (2003) analyze the exogenous construct assessed by formative 

models in the population (Fig. 2A) reflectively (Fig. 2C), the estimated structural coefficients 

account for measurement error, leading to disattenuated (i.e., overestimated) correlations 
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between other indicators relative to the formative model and thus reducing model fit. This 

pattern is especially evident when the indicator correlations are unrealistically low for reflective 

models (r = 0.10 or r = 0.40), producing the lowest reliability and the greatest degree of 

disattenuation. Conversely, when analyzing the endogenous construct treated as formative in the 

population (Fig. 2B) reflectively (Fig. 2C), the reduction in fit is highest for the highest indicator 

correlations (r = 0.70). This result is a consequence of indicators that are uncorrelated in the 

formative model (Y1-Y4 with Y9-Y12) being forced to correlate in the reflective model.  

     The new simulations in this paper avoid these design effects by making several substantial 

changes to Jarvis et al.’s (2003) specification. Crucially, in contrast to their assumption that 

researchers can correctly measure a construct only with one measurement specification, the new 

simulation allows the possibility that both reflective and formative measurement specifications 

can work for a given set of indicators to measure a construct. Thus, the population model avoids 

preferential treatment for one specification over the other such that the three models in Fig. 2 

perfectly fit the same population covariance matrices. The new simulation design also specifies 

that the reflective indicators in all the models correlate 0.50 and thus have loadings of 0.71, 

rather than the less realistic correlations of 0.10 (with loadings of 0.32) or 0.40 (with loadings of 

0.63). Furthermore, the simulations examine three different sample sizes of 250, 500, and 800 to 

examine how they affect model fit, convergence, and power or bias for the measurement models 

as well as for the structural models. The simulations include one thousand random samples for 

each design from the population covariance matrix and analyze them using LISREL 8.80. The 

population structural paths depend on the measurement model used as shown in Tables 2, 3, and 

4 for the three models. The analyses examine how different the values on average obtained from 

one thousand random samples for each design are from the true values in the population, 
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recognizing that the true values are simply one of infinitely many possible ways of scaling the 

latent constructs. Tables 2, 3, and 4 summarize the simulation results. 

Tables 2, 3, and 4 here. 

     Given the arbitrariness of unstandardized analyses, and the simpler interpretability and higher 

power of standardized analyses, comparing the values obtained from random samples with the 

true population values based on standardized effects is more appropriate than using 

unstandardized effects. However, for comparison purposes, the tables report results for both 

standardized and unconstrained analyses. For consistency with the formative models, the 

completely-reflective analyses scale the exogenous construct with unit loading identification to 

provide unstandardized effects, and they constrain the variance of the endogenous construct for 

standardized effects. 

 

3.2. Simulation results 

     In Table 2, the completely-reflective analyses almost perfectly reproduce the population 

results across three different sample sizes on average. All 1,000 samples produce acceptable 

solutions. The average χ2 value is almost equal to the degrees of freedom as expected; fit 

statistics are good; and both standardized and unstandardized structural effects are essentially 

equal to their population values on average. Standardizing the endogenous constructs by 

constraining their variances increases their t-statistics somewhat. The standardized and 

unstandardized loadings of the reflective indicators of the exogenous construct, shown in the 

table for illustrative purposes, represent the results for all reflective indicators both here and in 

the formative simulations. In every case the loadings of the reflective indicators are almost 

exactly equal to their population values. The t-values of the reflective indicators are all highly 
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significant and very similar between the standardized and unstandardized solutions. 

     Table 3 indicates the results when modeling the exogenous construct formatively. Almost 

16% of the solutions of 1,000 samples are unacceptable with n = 250, mostly due to SMC values 

greater than 1. However, as the sample size increases from 250 to 500 and 800, acceptable 

solutions also increase, and only 2% of the solutions are unacceptable with n = 800. As with the 

reflective analyses, the acceptable models fit very well. The standardized and unstandardized 

structural coefficients are almost identical to their population values across three different 

samples on average. Especially with large samples (n = 800), the standardized and 

unstandardized structural coefficients equal their population values. The standardized loadings of 

the formative indicators are similar to their population values. However, when n = 250, the 

average unstandardized coefficients for the formative indicators are about 33% larger than the 

population values (1.33 versus 1.00). As the sample size increases, the unstandardized 

coefficients of the formative indicators get closer to the population values. 

     The standardized analysis is substantially more powerful than the unstandardized analysis, 

with greater t-statistics for structural relationships. The tests of formative indicators are also 

much more significant in the standardized analysis, with t-statistics of 2.93 or above versus just 

1.71 for the unstandardized analysis. On average, about 3.33 (of 4) formative indicators are 

significant in the standardized analysis with n = 250, whereas on average all four formative 

indicators are significant in the standardized analysis with both n = 500 and n = 800. In contrast, 

in the unstandardized analysis with n = 250, just 0.91 formative indicators (of 3, since the 

analysis uses one indicator to set the scale) are significant. As the sample sizes increase, the 

number of significant formative indicators also increases. When n = 800, on average 2.99 of 3 

formative indicators are significant.  
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     Table 4 presents the simulation findings with an endogenous formatively-measured construct. 

When the formatively-measured construct is endogenous, the results generate a greater 

percentage of unacceptable solutions. With n = 250, almost 19% of the solutions are 

unacceptable, whereas about 12% of solutions with n = 500 and 5% with n = 800 are not 

acceptable, respectively. However, as with the reflective and exogenous formative models, the 

remaining acceptable solutions fit very well. On average, the standardized structural coefficients 

are almost identical to the population values across three different sample sizes. While the 

unstandardized effect of the exogenous construct on the reflectively-measured construct matches 

the population value on average, the upward bias occurs in the unstandardized influence of the 

exogenous construct on the formatively-modeled construct. However, the amount of the bias 

decreases as the sample size increases.  

     For the formative indicators, the standardized formative coefficients are almost equal to the 

population values and significant with a t-value of 2.54 or above. In the standardized analysis, on 

average 2.87 formative indicators of 4 are significant with n = 250, whereas on average 3.99 

formative indicators are significant with n = 800. In the unstandardized analysis with n = 250, 

the formative indicators have an average t-statistic of just 1.48, and only 0.55 (of 3) indicators 

are significant on average. As the sample size increases, the number of significant formative 

indicators improves and on average 2.93 formative indicators of 3 are significant when n = 800. 

When the sample size is small, the unstandardized formative loadings are almost 37% larger than 

the population values on average (1.37 versus 1.00), whereas with a large sample size, the 

unstandardized formative loadings become closer to the population values.  

 

3.3. Implications of the simulation results 
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     A key implication of the new simulation results is that when reflective measurement models 

fit a data set—the situation underlying the motivation but not the design of prior simulation-

based studies—the reflective models do not necessarily lead to different substantive 

interpretations about relationships between constructs from formative models applied to the same 

data. Contrary to the claims of prior simulations, which are drawn from analyses of misspecified 

models and unstandardized coefficients, the structural relationships among constructs are quite 

consistent in formative and reflective approaches. However, the new simulation results 

demonstrate that the reflective models are more powerful, and produce substantially more 

acceptable solutions, than formative models when items correlate highly enough to function as 

acceptable reflective models. Furthermore, the new findings indicate that models with an 

endogenous formatively-measured construct generate substantial bias in estimating the structural 

relationships with small sample sizes and unit loading identification. 

     Another crucial implication of the simulations is the value of standardized analysis that 

constrains the structural error term compared to unstandardized analysis. The superiority of 

standardized analysis is especially evident in loadings of formative indicators. When both 

measurement approaches fit a given set of items, treating them as formative indicators results in 

many nonsignificant formative indicators due in part to the effects of collinearity. In particular, 

this pattern is apparent with small samples and unstandardized analyses, which suggests that 

researchers avoid the use of unstandardized analysis for formatively-measured constructs in 

cases of small sample sizes. In contrast, standardized approaches almost perfectly reproduce 

formative indicators coefficients of the population values on average, are more powerful, and 

provide test results for all indicators. Omitting relevant but nonsignificant indicators misspecifies 

the formatively-modeled construct and produces biased structural coefficients. Therefore, 
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standardized specifications do better than unstandardized specifications to satisfy criteria for 

evaluating formative and structural models (Hair et al., 2014). Because researchers using 

formative models should take steps to maximize the power of their analyses, the higher power of 

standardized analyses that helps detect significance of formative indicators is critical in 

formative models with smaller sample sizes. Other methods of scaling latent constructs not 

examined in the simulations may also be useful, but unit loading identification with a formative 

indicator is clearly not ideal. 

 

4. Discussion and future research 

     One common theme in the measurement literature is that theoretical conceptualization of 

constructs takes precedence over empirical evidence in choosing between formative and 

reflective specifications (e.g., Diamantopoulos & Siguaw, 2006; Jarvis et al., 2012; Petter et al., 

2012). Widespread classifications of measures that supposedly were analyzed with the wrong 

model, based solely on conceptual interpretations, suggest that some scholars discount the need 

for empirical evidence in making such decisions. However, under the circumstances in which 

theory indicates the potential applicability of both reflective and formative perspectives to 

operationalize constructs, researchers need to know the empirical implications of treating a 

construct as reflective when they could also have modeled the construct as formative (Fornell, 

Rhee, & Yi, 1991). To address this question, the current simulations compare the results of 

reflective, exogenous formative, and endogenous formative models by taking samples from the 

population in which all the models fit perfectly.  

     These results are relevant regardless of one’s stance on formative models and the value of 

empirical tests (Treiblmaier, Bentler, & Mair, 2011). Even scholars who doubt the existence of 
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formative measurement models (e.g., Markus & Borsboom, 2013) may usefully model a given 

set of observed variables using both formative and reflective approaches. Moreover, the issues 

this paper addresses are substantively important in the scholarly interpretation of existing work 

that prior simulation studies criticize as being incorrectly modeled—despite showing empirically 

successful measurement analysis. Therefore, conceptual arguments and “mental experiments 

should be used in conjunction with empirical procedures, acknowledging that neither approach 

provides definitive evidence of association between a construct and a measure” (Edwards & 

Bagozzi, 2000, p. 158). 

     The new simulation results make several practical contributions to the measurement literature. 

First, the findings highlight the strength of reflective analysis when researchers can successfully 

assess a construct from both reflective and formative approaches. Treating a construct as 

formative in this situation clearly demonstrates potential bias and limited power in testing 

formative indicators and structural relationships among constructs, even though the formative 

model fits in the population. From this perspective, future researchers need to focus on how best 

to implement reflective analyses of measures that they could also analyze as formative, rather 

than on the consequences of using one model instead of the other. 

     The findings also demonstrate drawbacks of unit loading identification with formative 

indicators in examining formative models. Aguirre-Urreta and Marakas’s (2012) simulation 

results verify that using standardized coefficients to compare formative with reflective analyses 

produces more consistent structural results than previously inferred from differences between 

(arbitrary) unstandardized coefficients. Standardizing formative latent variables by constraining 

their error terms increases statistical power and provides significance tests for all available 

formative indicators. Although Jarvis et al. (2012) and Petter et al. (2012) consider the focus on 
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standardization to be an important weakness of the Aguirre-Urreta and Marakas (2012) paper, 

the arbitrariness of unstandardized analyses and the relative power of constrained standardized 

analyses support the comparison based on standardized effects. In many comparisons, the 

standardized approach is less biased and more powerful than unstandardized analyses, leading to 

fewer Type II statistical errors. Unstandardized approaches in conjunction with small samples 

generate considerable bias in estimating structural relationships among constructs, and to get 

reasonable results with unstandardized solutions requires larger sample sizes than may be 

feasible in many research settings.  

     Unit loading identification of the formative indicators is especially problematic. With smaller 

samples (n = 250), the unstandardized coefficients of the formative indicators are some 31% - 

38% larger than their population value, which researchers might consider a substantial amount of 

bias in the formative loadings. Furthermore, due to the limited power of the unstandardized 

analyses, less than one-third of the unstandardized indicators are significant on average in this 

case. Considering that each formative indicator helps define a construct, the limited power of the 

unstandardized approaches in testing individual significance of each formative indicator could be 

a critical drawback, because researchers are likely to drop the nonsignificant indicator from the 

construct and as a consequence change the meaning of the construct. 

 

5. Conclusion 

     For tests of theory to be meaningful, “it is essential that researchers correctly specify their 

measurement models to match their theoretical conceptualizations” (Jarvis et al., 2012, p. 140). 

In contrast to this principle, much formative literature rejects researchers’ views of their own 

measures, instead suggesting that only one conceptualization is appropriate for particular 
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constructs—a view that contemporary measurement literature almost uniformly rejects (e.g.,  

Markus & Borsboom, 2013). This perspective is also counterproductive if taken as a license to 

ignore the conceptual implications of observing that a supposedly formative construct functions 

effectively when modeled reflectively.  

     Rather than assuming that alternative specifications are necessarily misspecifications, 

researchers need to recognize that under certain circumstances scholars can appropriately model 

constructs using both reflective and formative approaches. In these situations, unit loading 

identification of formative models with small samples creates considerable bias and loss of 

power in estimating formative loadings. Reflective analysis often generates less biased and more 

powerful results, and leads to fewer problems with unacceptable analysis solutions. Because 

reflective indicators, like formative indicators, should have proportional relationships with other 

model variables, the good model fit observed with alternative specifications should not be 

surprising. Thus, in contrast with previous simulation studies, the current analysis shows that 

when researchers conceptualize their measures as reflective, matching their measurement model 

to their conceptualization is both appropriate theoretically and beneficial empirically. Indeed, 

little practical value results from forcing a formative model on existing, empirically successful, 

reflective measurement models. The simulations presented here show that the detrimental 

impacts supposedly caused by using reflective models for constructs that could be modeled 

formatively are virtually nonexistent. Instead, the results presented here suggest that more harm 

may result from modeling constructs as formative when reflective specifications are plausible 

alternatives. 



23 

 

References 

Aguirre-Urreta, M. I., & Marakas, G. M. (2012). Revisiting bias due to construct  

misspecification: Different results from considering coefficients in standardized  

form. MIS Quarterly, 36(1), 123–138. 

Anderson, J. C., Gerbing, D. W., & Hunter, J. E. (1987). On the assessment of unidimensional 

measurement: Internal and external consistency, and overall consistency criteria. Journal 

of Marketing Research, 24(4), 432–437.  

Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons. 

Bollen, K. A., & Ting, K. (2000). A tetrad test for causal indicators. Psychological Methods, 

5(1), 3–22.  

Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. 

Cambridge: Cambridge University Press. 

Cadogan, J. W., & Lee, N. (2013). Improper use of endogenous formative variables. Journal of  

Business Research, 66(2), 233–241. 

Challagalla, G. N., & Shervani, T. A. (1997). A measurement model of the dimensions and types 

of output and behavior control: An empirical test in a salesforce context. Journal of 

Business Research, 39(3), 159–172. 

Chang, W., Park, J. E., & Chaiy, S. (2010). How does CRM technology transform into 

organizational performance? A mediating role of marketing capability. Journal of 

Business Research, 63(8), 849–855. 

Coltman, T., Devinney, T. M., Midgley, D. F., & Venaik, S. (2008). Formative versus reflective 

measurement models: Two applications of formative measurement. Journal of Business 

Research, 61(12), 1250–1262. 



24 

 

Diamantopoulos, A. (2011). Incorporating formative measures into covariance-based structural 

equation models. MIS Quarterly, 35(2), 335–358. 

Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in  

organizational measure development: A comparison and empirical illustration.  

British Journal of Management, 17(4), 263–282. 

Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative  

indicators: An alternative to scale development. Journal of Marketing Research, 

38(2), 269–277. 

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between 

constructs and measures. Psychological Methods, 5(2), 155–174. 

Fornell, C., Rhee, B. D., & Yi, Y. (1991). Direct regression, reverse regression, and covariance 

structure analysis. Marketing Letters, 2(3), 309–320.  

Franke, G. R., Preacher, K. J., & Rigdon, E. E. (2008). Proportional structural effects of 

formative indicators. Journal of Business Research, 61(12), 1229–1237. 

Gonzalez, R., & Griffin, D. (2001). Testing parameters in structural equation modeling: Every 

“one” matters. Psychological Methods, 6(3), 258–269. 

Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least 

squares structural equation modeling (PLS-SEM). Thousand Oaks: SAGE. 

Hayduk, L. A. (1987). Structural equation modelling with LISREL: Essentials and advances.  

Baltimore: The John Hopkins University Press. 

Heise, D. R. (1972). Employing nominal variables, induced variables, and block variables  

in path analyses. Sociological Methods and Research, 1(2), 147–173. 

 



25 

 

Howell, R. D. (2013). Conceptual clarity in measurement–Constructs, composites, and causes: a  

commentary on Lee, Cadogan and Chamberlain. AMS Review, 3(1), 18–23. 

Howell, R. D., Breivik, E., & Wilcox, J. B. (2007). Reconsidering formative measurement. 

Psychological Methods, 12(2), 205–218. 

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct  

indicators and measurement model misspecification in marketing and consumer research. 

Journal of Consumer Research, 30(2), 199–218. 

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2012). The negative consequences of  

measurement model misspecification: A response to Aguirre-Urreta and Marakas. MIS 

Quarterly, 36(1), 139–146. 

Kara, A., Spillan, J. E., & DeShields, Jr., O. W. (2004). An empirical investigation of the link  

between market orientation and business performance in nonprofit service providers. 

Journal of Marketing Theory and Practice, 12(2), 59–72. 

Kenny, D. A., Kashy, D., & Bolger, N. (1998). Data analysis in social psychology. In D. Gilbert,  

S. Fiske, & G. Lindzey (Eds.), Handbook of social psychology (pp. 233–265). New York:  

McGraw-Hill. 

Lee, N., & Cadogan, J. W. (2013). Problems with formative and higher-order reflective 

variables. Journal of Business Research, 66(2), 242–247. 

MacCallum, R. C., & Browne, M. W. (1993). The use of causal indicators in covariance 

structure models: Some practical issues. Psychological Bulletin, 114(3), 533–541.  

MacKenzie, S. B., Podsakoff, P. M., & Jarvis, C. B. (2005). The problem of measurement  

model misspecification in behavioral and organizational research and some 

recommended solutions. Journal of Applied Psychology, 90(4), 710–730. 



26 

 

Markus, K. A., & Borsboom, D. (2013). Frontiers of test validity theory: Measurement, 

causation, and meaning (multivariate applications series). New York: Routledge. 

Pedhazur, E., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated 

approach. Hillsdale: Erlbaum. 

Petter, S., Rai, A., & Straub, D. (2012). The critical importance of construct measurement  

specification: A response to Aguirre-Urreta and Marakas. MIS Quarterly, 36(1), 147–

156. 

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information  

systems research. MIS Quarterly, 31(4), 623–656. 

Podsakoff, N. P., Shen, W., & Podsakoff, P. M. (2006). The role of formative measurement  

models in strategic management research: Review, critique, and implications for future 

research. In D. J. Ketchen, & D. D. Bergh (Eds.), Research methodology in strategy and 

management (pp. 197–252). Oxford: Elsevier.  

Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management  

process: Its measurement and impact on performance. Journal of Marketing Research,  

41(3), 293–305. 

Rigopoulou, I., Theodosiou, M., Katsikea, E., & Perdikis, N. (2012). Information control, role  

perceptions, and work outcomes of boundary-spanning frontline managers. Journal of 

Business Research, 65(5), 626–633. 

Temme, D., Diamantopoulos, A., & Pfegfeidel, V. (2014). Specifying formatively-measured 

constructs in endogenous positions in structural equation models: Caveats and guidelines 

for researchers. International Journal of Research in Marketing, 31(3), 309–316. 

 



27 

 

Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative constructs implemented via  

common factors. Structural Equation Modeling, 18(1), 1–17. 

Wilcox, J. B, Howell, R. D, & Breivik, E. (2008). Questions about formative measurement. 

Journal of Business Research, 61(12), 1219–1228. 



28 

 

Footnote 

1. Models containing formatively-measured endogenous variables are problematic (e.g., 

Cadogan & Lee, 2013; Temme, Diamantopoulos, & Pfegfeidel, 2014). The current research 

includes them to allow comparisons with prior simulations. 
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A. Reflective model 
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B. Formative model with indicator correlations accounted for by reflective loadings 
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Fig. 1. Reflective and formative models. 
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0.28 (3.04) 

1.10 (2.58) 
0.28 (4.26) 

1.06 (3.30)  
0.28 (5.36) 

X
3!

 ξ1  
1 / 0.28 

1.31 (1.71) 
0.28 (2.96) 

1.09 (2.56) 
0.28 (4.22) 

1.05 (3.28) 
0.28 (5.32) 

X
4!

 ξ1  
1 / 0.28 

1.31 (1.71) 
0.27 (2.93) 

1.08 (2.56) 
0.28 (4.20) 

1.05 (3.28) 
0.28 (5.32) 

M
ean num

ber of 
significant 
coefficients 

– 
0.91 

3.33 
2.71 

3.95 
2.99 

4.00 
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 T
able 4 

Sim
ulation results w

ith one endogenous form
atively-m

easured construct. 
  

Population 
R

aw
 

Std. 
R

aw
 

Std. 
R

aw
 

Std. 
Sam

ple size 
– 

250 
250 

500 
500 

800 
800 

U
sable 

replications 
– 

806 
806 

883 
883 

951 
951 

 
 

 
 

 
 

 
 

Fit statistics 
 

 
 

 
 

 
 

C
hi-sq 

0 
156.74 

156.74 
156.14 

156.14 
156.92 

156.92 
d.f. 

156 
156 

156 
156 

156 
156 

156 
N

N
FI 

1 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
R

M
SEA

 
0 

0.01 
0.01 

0.01 
0.01 

0.01 
0.01 

SR
M

R
 

0 
0.04 

0.04 
0.04 

0.04 
0.02 

0.02 
 

 
 

 
 

 
 

 
Structural effects 

R
aw

 / Std. 
 

 
 

 
 

 
ξ1!

 η1  
0.94 / 0.17 

1.39 (1.08) 
0.17 (1.64) 

1.09 (1.66) 
0.17 (2.32) 

1.03 (2.22) 
0.17 (3.00) 

ξ1!
 η3  

0.60 / 0.60 
0.60 (6.70) 

0.60 (7.32) 
0.60 (9.57) 

0.60 (10.44) 
0.60 (12.10) 

0.61 (13.21) 
η1!

 η2  
0.11 / 0.60 

0.11 (2.52) 
0.61 (6.73) 

0.11 (3.53) 
0.60 (9.36) 

0.11 (4.53) 
0.60 (11.85) 

η1!
 η4  

0.11 / 0.60 
0.11 (2.52) 

0.61 (6.73) 
0.11 (3.52) 

0.60 (9.39) 
0.11 (4.53) 

0.60 (11.83) 
 

 
 

 
 

 
 

 
Form

ative 
coefficients  

R
aw

 / Std. 
 

 
 

 
 

 

Y
1!

 η1  
1 / 0.25 

1 (n.a.) 
0.25 (2.60) 

1 (n.a.) 
0.25 (3.63) 

1 (n.a.) 
0.25 (4.68) 

Y
2!

 η1  
1 / 0.25 

1.38 (1.48) 
0.24 (2.55) 

1.14 (2.23) 
0.25 (3.68) 

1.05 (2.89) 
0.25 (4.58) 

Y
3!

 η1  
1 / 0.25 

1.37 (1.51) 
0.25 (2.60) 

1.13 (2.23) 
0.25 (3.67) 

1.07 (2.91) 
0.25 (4.68) 

Y
4!

 η1  
1 / 0.25 

1.37 (1.48) 
0.24 (2.54) 

1.14 (2.24) 
0.25 (3.70) 

1.07 (2.91) 
0.25 (4.68) 

M
ean num

ber of 
significant 
coefficients 

– 
0.55 

2.87 
2.20 

3.81 
2.93 

3.99 

 


