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Linear response for intermittent maps with summable
and nonsummable decay of correlations

Alexey Korepanov *
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updated March 15, 2016

Abstract
We consider a family of Pomeau-Manneville type interval maps T, parametrized
by « € (0,1), with the unique absolutely continuous invariant probability measures
Ve, and rate of correlations decay n!'~1/®. We show that despite the absence of a
spectral gap for all @ € (0,1) and despite nonsummable correlations for o > 1/2,
the map « — [ ¢ dv, is continuously differentiable for ¢ € L9[0, 1] for ¢ sufficiently
large.

1 Introduction

Let T,: X — X be afamily of transformations on a Riemannian manifold X parametrized
by a and admitting unique SRB measures v,,. Having an observable p: X — R, it may be
important to know how [ ¢ dv, changes with . If the map a — [ ¢ dv, is differentiable,
then linear response holds.

An interesting question is, which families of maps and observables have linear response.
Ruelle proved linear response in the Axiom A case [R97, [R98, [R09, R09.1]. It was shown
in [D04, BO7, MO7, BS08] that spectral gap and structural stability are not necessary or
sufficient conditions.

We consider a family of Pomeau-Manneville type maps with slow (polynomial) decay
of correlations: T, : [0,1] — [0, 1], given by

I(z) = {x(l +297°)  if x€0,1/2]

221 if ze(1/2,1] (1.1)

parametrized by « € [0,1). By [LSV99], each T, admits a unique absolutely continuous
invariant probability measure v,, and the sharp rate of decay of correlations for Holder
observables is n'~/* [Y99, [S02, [G04, [04].

We prove linear response on the interval a € (0, 1), including the case when a > 1/2,
and correlations are not summable. This is the first time that linear response has been
proved in the case of nonsummable decay of correlations. We develop a machinery which,
when applied to the family 7, yields:
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Theorem 1.1. For any ¢ € C*(0,1], the map a — [ @ dv, is continuously differentiable
on (0,1).

Using additional structure of the family 7,,, we prove a stronger result:

Theorem 1.2. Let p, be the density of v,. For every a,x € (0,1) x (0,1] there ezists
a partial derivative Onpo(x). Both po(x) and Onpa(x) are jointly continuous in o,z on
(0,1) x (0,1]. Moreover, for every interval [o—, ] C (0,1) there exists a constant K,
such that for all x € (0,1] and a € [a_, o]

palz) < Ko™ and |0upa(z)| < K27 (1 —logz).

In particular, for any ¢ > (1 — ay)™" and observable ¢ € L7[0,1], the map o — [ o dv,
is continuously differentiable on [a_, ay].

The same problem of linear response for the family 7}, has been solved independently
by Baladi and Todd [BT15] using different methods. They prove that for oy € (0,1),
q > (1—ay) tand p € L90,1], the map a — [ ¢ dv, is differentiable on [0, ay.), plus they
give an explicit formula for the derivative in terms of the transfer operator corresponding
to T,. We obtain more control of the invariant measure, as in Theorem [I.2] but do not
give such a formula. Instead we provide explicit formulas for p, and J,p, in terms of
the transfer operator for the induced map (see Subsections and , but we do not
state them here because they are too technical. Whereas [BT15] were the first to treat
the case av < 1/2, we were the first to treat the case o > 1/2.

In a more recent paper [BS15], Bahsoun and Saussol consider a class of dynamical
systems which includes (L.I)). They prove in particular that for 5 € (0,1) and «a € (0, 8),

pa+5 - pa
g

=0.

lim sup z”

— OaPa
£=0 2¢(0,1]

That is, p, is differentiable as an element of a Banach space of continuous functions
on (0, 1] with a norm |[|¢|| = sup,¢( 1 2P|p(x)]. We remark that for the map this
follows from Theorem [T.2]

The paper is organized as follows. In Section [2| we introduce an abstract framework,
and in Section [3] we apply it to the family 7,,, and prove Theorem [I.1]

Technical parts of proofs are presented separately: in Section {4 for the abstract frame-
work, and in Section [5| for the properties of the family 7.

Theorem is proven in Subsection [5.3] We do not give the proof earlier in the
paper, because it uses rather special technical properties of T,.

2 Setup and Notations

Let I C R be a closed bounded interval, and F,, : I — I be a family of maps, parametrized
by a € [a_,a]. Assume that each F, has finitely or countably many full branches,
indexed by r € R, the same set R for all a.

Technically we assume that I = (J, [a,, b,] modulo a zero measure set (branch bound-
aries a, and b, may depend on «), and that for each r the map F,, : [a,,b,] — [ is
a diffeomorphism; here F, , equals to F, on (a,,b,), and is extended countinuously to
la,, b,].



e We use the letter ¢ for spatial variable, and notation (-)" for differentiation with
respect to &, and 9, for differentiation with respect to a.

e Denote Go, = |(F,})
only on r.

, defined on I. Note that G, = %(F )", the sign depends

e For each i let ||h]

o = max(||Allse; |W[lscs - - - » [|A?]|oc) denote the C* norm of h.

e Let m be the normalized Lebesgue measure on I, and P, be the transfer operator
for F,, with respect to m. By definition, [(P,u)vdm = [u(voF,)dm for u € L*(I)
and v € L>(I). There is an explicit formula for P,:

(Pah)(€) =) GarlOR(ES ().

We assume that F + and G, as functions of @ and £, have continuous second order
partial derivatives for each » € R, and there are constants

0<o<1, Ky>0 and v >1,reR
such that uniformly in o € [a_, ay] and r € R:
AL [[Garllw < o, AL (|0uF 2 <0

A5. H(aocGa,r)/Ga,rHoo < Vrs

A2. |G, /Gaylle < Ko,
AG. |[(0aG),,) [ Ganll . < s

A3. ||GL, ) Garlls < Ko, AT S NGarll e < Ko.

It is well known that under conditions[AT] [A2] the map F,, admits a unique absolutely
continuous invariant measure (see for example [P8(0, [Z04]), which we denote by p,, and
its density by h, = dji,/dm.

Theorem 2.1. h, € C*(I) and dyh, € C*(I) for each a € [a_, ;). The maps

[a_, ay] — C*(I) [a_, o] — C(I)
and
a—> ha o — aocha

are continuous.

The proof of Theorem [2.1] is postponed until Section [

Remark 2.2. Later in the proof of Theorem we explicitly compute constants K; and
K5, such that ||h.]lc2 < K; and ||04hal|/cr < Ks. These constants depend only on Kj
and o. Below we use K; and K as reference bounds on ||h,||c2 and [|0aha||cr-

Remark 2.3. Both h, (&) and (9,h4)(€) are continuous in «, and continuous in £ uniformly
in «, because ||hy||c2 < K7. Therefore both are jointly continuous in « and €.



Corollary 2.4. Assume that ®, is a family of observables, such that ®.(F,}(§)) and
Da|Pu(FHE))] are jointly continuous in o and & for each r, and

o,T

[Pa 0 Fotlloc <0, [|0a[®a 0 Fytlllee < 00

for some constants 6, > 1, r € R. Assume also that ) v, 6, |Gayr|l,, < Ks. Then the
map o — [ Do du, is continuously differentiable on [a_, ay].

/CDQ dpg, = /ha(I)a dm = /Pa(ha(ba) dm

— /(Z(ha o F 1)(®q 0 Fm;)Ga,r> dm.

Proof. First,

r

By Theorem and our assumptions, h, o F, !, ®,0 F ! and G, are jointly continuous

a,T)?

in o and &, and have jointly continuous partial derlvatlves by a. Since ||hqllcz < K,
@ 0 Fy tlloo < 0, and 3 6,7 |Garlloo < K, the series inside the integral converges
uniformly to a function which is jointly continuous in a and . Therefore, [ @, dpuq

depends continuously on «.
Moreover, since [|0ahallcr < Ka, |0aF 5 oo < Yy (a0 Fy})| < 0,y [0a(Pao Fy)| <
§y and |0,[Gar]| < v Gar, We can write

lﬁa(ha o Fa’i)‘ = |[8aha] o Fa*i + (h, o Foji)aaF(;i
< Ky + K17, and
’aa[(ha © Fa_,b(q)a ° Fa_,i)Ga,r” < (K2 + Kiy,) + Ky + Ky, 6, Ga
< BK1 + K2) 6,7 Gayr

Since Y 0,V [|Garlloe < K3, we can write

d _d - -
- / o dpio = - / (Z(ha o F, ) (@4 0 Fam)Ga,r) dm
_ Z/a [(ho 0 F) (@, 0 F )G, ] dim.

The series converges uniformly, and is bounded by K3(3K; + K5). The terms are contin-
uous in «, thus so is the sum. O

3 Application to Pomeau-Manneville type maps

In this section we work with the family of maps T, defined by equation (1.1)). Assume
that a € [a_,a;] C (0,1). Let 7,(z) = min{k > 1: T*z € [1/2,1]} be the return time to
the interval [1/2,1]. Let

F,:[1/2,1] — [1/2,1], z = T7@)(g)

be the induced map.



Branches. Let 2y = 1, ; = 1/2, and define z;, € (0,1/2] for k¥ > 1 by setting z; =
Tox1. Note that TF: (241, 2) — (1/2,1) is a diffeomorphism. Let y, = (1 + a3)/2.
Then TFH: (yri1,yx) — (1/2,1) is a diffeomorphism. It is clear that 7, = k + 1 on
(Yk+1, Yk), so the map F,, has full branches on the intervals (yg,1,yx) for & > 0.

We index branches by r € R = NU {0}, the r-th branch being the one on (y,11,¥;).
Let Fop @ [Yr+1,Yr] — [0, 1] be the continuous extension of Fy, : (yr+1,9r) — (0, 1).

For notational convenience we introduce a function

loga (1) 1 r<e
ogg(r) = :
58 log(r) r>e
Let ¢ € C'[0, 1] be an observable; let
Ta—1
2, =3 pott (3.1)
k=0

be the corresponding observable for the induced system.

Theorem 3.1. The family of maps F, = TI~: [1/2,1] — [1/2,1] with observables D,
fits into the setup of Theorem and Corollary with branches indexed as above,
6. = K(r+1)|l¢llcr, o = 1/2, and v, = K(loggr)?, where K is a constant, depending
only on a_ and o .

The proof consists of verification of the assumptions of Theorem [2.1]and Corollary [2.4]
and is carried out in Subsection 5.2l Here we use Theorem to prove our main result —
Theorem [

Proof of Theorem[1.1l The invariant measure v, for T, is related to the invariant measure
1o for F, by Kac’s formula:

/(dea:/q)ad,ua//Tad,uaa

where @, is given by (3.1). Note that if ¢ = 1, then ®, = 7,. By Theorem [3.1] both
integrals are continuously differentiable in a. Also, 7, > 1, so [7adp, > 1. Hence
[ ¢ dv, is continuously differentiable in c. O]

4 Proof of Theorem [2.1]

For h € CY(I) and a € [a_, a,] define Q,h = 0,(P,h), if the derivative exists. Denote

() = Quh, Pr(a) = P,h.

4.1 Outline of the proof

The proof consists of three steps:



(a) Continuity (Subsection [4.2]). We show that for i = 1,2 the linear operators
P,: C'(I) = C'(I) and  Qu.: C'(I) — C"!(I)

are well defined, and their norms are bounded uniformly in a. Plus, they continuously
depend on « in the following sense: for each h € C*(I) the maps Py: [a_, ay] — C*(I)
and Qy: [a_,a ] — CI(I) are continuous. Moreover, the map Py,: [a_, a ] — C*1(I)
is continuously differentiable, and its derivative is Qp: [a_, a ] — C7Y(T).

In addition, [ Q.hdm = 0 for every h € C'(I).

(b) Distortion bounds and coupling (Subsection 4.3)).
e If hisin C/(I) for i = 1 or 2, and [hdm = 0, then ||PFh|

fast, uniformly in a.

ci — 0 exponentially

o If h € C*(I) and [hdm =1, then h, = limy_yoo PXh = h+ > 1"y P¥(Pyh — h)

e The series above converges exponentially fast in C?, and ||h.|/c2 is bounded on
[Oé,7 O[+] :

e The map o+ h, from [a_, ay] to C?(I) is continuous.

(c) Computation of d,h,. Fix o € [a_,a;]. Start with a formula, which holds for
every «, [ and n:

n—1
Piho — Piho =Y P§(Ps — Pa)ha.
k=0

Since the terms in the above sum converge exponentially fast in C?, we can take the limit
n — oo. Note that P’h, = h, and lim,,_, Pgha = hg. Hence

hg —ha =Y P§(Ps — Po)ha.
k=0
For fixed a, recall that the map 8 +— Psh, from [a_, a ] to C*(I) is continuously differ-
entiable, and its derivative is the map 8 — ()ghq, hence

(Pﬁ_PCV)ha: (B_O‘) Qaha+RB7

with || Rs||c1 = o(f — «). Note that both Q,h and Rz have zero mean. Next,
hg —ha = (8—0a) ) PiQuha+ >  PiRs.
k=0 k=0

Both series converge exponentially fast in C1(I), uniformly in a and 3, and the C! norm
of the second one is o(a — ).
Observe that the maps

[a_,ai] x CH(I) — C*() and [a_, ai] x C*(I) — C*(1)
a,h— P.,h a,h — Quh



are continuous in «, and continuous in A uniformly in «, because P, and @), are linear
operators, bounded uniformly in «. Thus both maps are jointly continuous in a and
h. Recall that the map a — h, from [a_,a,] to C*(I) is continuous. Thus the map
a, f = PyQohg from [a_, ay]? to C'(I) is continuous.

Therefore, in C'(I) topology,

: hﬁ — hq - k
1 = P ahou
e f—a« ; 20

and > ° PEQqh, continuously depends on a. Note that the above also implies that
Oaha =Y peo PEQohe (if understood pointwise).

Therefore the map a + h, from [a_, ;] to C'(I) is continuously differentiable, and
its derivative is & = Opha = Y ey PEQoha.

In the remainder of this section we make the above precise.

4.2 Continuity
Lemma 4.1. Let K¢ = 4K,(1 + Ky). For each i = 1,2 and h € CY(I):
a) The map Py: [a_, ] — CY(I) is continuous. Also, |Pyh|c: < Kgllh| e

b) The map Qy: [a_,ay] — CI(I) is continuous. Also, ||Quh|

ci-1 < Kg| Al

ci-

c) The map Qn: [a_,ay] — CYI) is the derivative of the map Py: [a_,ay] —
CH).

d) [Qahdm =0.

Proof. We do the case ¢ = 2; the case ¢ = 1 is similar and simpler.
a) Let po, = (ho F;},)Gmr. Then

Poy = £(W 0 FL)GE, + (ho FL) G

a,r’

pg,r = (h// © Fo:i)Gi,r :I: 3(h/ © Fo:Tl)Ga,TG/a,r + (h’ © FC?,:)G”

a,r)

and

where the sign of £ depends only on r. By assumptions , and , |1Parllc2 <
(4K0 + 1)||h||02||Goc,T||oo-

Since pa,r; Py, and p,, are jointly continuous in a and &, we obtain that the map
Q> Py from [a_, o] to C%(I) is continuous.

By assumption[A7} 3° |Garllec < Ko, so the map o = Poh = 37, pa,, is continuous
from [a_, o] to C?, and ||Pyhl|c2 < Ko(4Ko + 1)||A||c=.

b) Let oy = Oa[(h o F})Ga,]. We use the fact that F ), as a function of o and ¢,

a,r)

has continuous partial derivatives up to second order, to compute
q;,r = O [((h © Foz_ﬂl‘)GOéW)/} = O, [i(h/ © Foz_ﬂl‘)chr + (ho Fa_ﬂ%) G:)c,r] .
We use assumptions [AT], [A4] [A5] and [AG] to estimate

lgarller < N Garlloo(4 + Ko)wl[hllc2-

7



Since qq, and ¢, , are jointly continuous in o and £, we obtain that the map a + gq,r
from [a_, o] to C'(I) is continuous.

By assumption Yo VrllGarlloo < Ko, so the map o +—= Qah =), ¢a,, is contin-
uous from [a_, ay] to Ct, and [|Quh||cr < Ko(4 + Ko)l||h||cz-

c¢) Note that (Quh)(§) and (Q.h) (€) are jointly continuous in o and £. By definition
of Q,, for every £ and j = 0,1 we can write

B
(Pah)9)(€) — (Pah)O) () = / Q)9 (¢) di
B8
= (8- a)(Quh)I(€) + / (@) (€) — (Quh) 9 (€)] dt.

67

Fix a. Since limy,, ||Qih — Quhllcr = 0, the integral on the right is o(f — «)
uniformly in &. Therefore,

| Psh — Poh — (B — a)Quh|lcr = o8 — ),
thus Qp: [a_, ay] — C(I) is the derivative of Pyla_, ay] — CH(T).

d) To prove that [ Qu,hdm = 0, we differentiate the identity | P,hdm = [ hdm by

a:
d
/Qahdm:—/Pahdmzo,
da

the order of differentiation and integration can be changed because both P,h and
O0u(P.h) = Quh are jointly continuous in o and €.

O

4.3 Distortion bounds and coupling

If h € C' and h is positive, denote ||h||y = ||I//h|ls. If also h € C?, denote ||h||p =
15"/ hllco-

Lemma 4.2 (Distortion bounds). If h € C' and h > 0, then
[1PahllL < o[kl + Ko. (4.1)

If also h € C?, then
[Pahllp < 0|2l p + 30 Kol |kl + Ko. (4.2)

Proof. Recall that P,h =" (ho FJ})GW and (Fa‘ﬂ)’ = +G,,, where the sign depends
only on 7. Inequality (4.1)) follows from the following computation:

(Poh)| |22, £ (W o Fy)GE 4 (ho Fy ) Gy,

‘Pah :' >, (ho Fy )Gay
< ] EW 0 Fap)Gar + (o Fop) G, <max(!h’oFa‘,iG +IG’Q,TI)
= (ho FyNGayr T\ hoFl T Ga,

< mTaX(HhHLHGa,THOO + HGOMTHL)

8



and assumptions [AT] and
Next,

(Pyh)" = Z (W o F, )G £ 3(W 0 F, 1 )GayGl, + (ho F 1 )Gr .

T

Thus
(Pub)'| _ |00 Fal)GS, 30K 0 Fit)Gay Gy + (ho F})G|
Boh | = (ho Fy )Gy
Lo (W R L, o EIGL] Gl
>~ mﬁlX ho F(;} a,r + ho FO:}, Gam a,r + Ga’r
< le’fLX(Hth HGa,r”go + 3L G arllL [Garlloo + ||Ga7r||P)~
The inequality (4.2)) follows from the above and assumptions , and . n

Let K, >0, Kp >0 and 6 € (0,1) be constants satisfying

Kp(1—-0e"50y > 0 K + Ky, and

4.3
Kp(1—0el5t)y > 62 Kp 4 30Ky K, + Ko, (4.3)

where |I| means the length of the interval 7. It is clear that such constants can be chosen,
because o < 1.

Definition 4.3. We say that a function h is regular, if it is positive, belongs in C'(T),
and ||h||, < K. If in addition h € C%*(I) and ||h||p < Kp, we say that h is superregular.

Remark 4.4. It readily follows from Lemma that if A is a regular function, then so is
P,h. If h is superregular, then so is P,h.

Remark 4.5. We observe that regular functions are explicitly bounded from above and
from below. If h is regular, so ||///h|l < K, then h(zy)/h(xy) < elllKt for all zy, .
Also, there is & € I such that h(Z) = [ hdm, hence

e ML [ hdm < h(x) < B [hdm for all z € I. (4.4)

Lemma 4.6. Assume that h is reqular. Let g = Poh— 6 [ hdm. Then g is reqular. If h
15 superregular, then so s g.

Proof. Since P,h > e WKL [ P hdm = e HEL [ hdm by equation (4.4)),

0 [ hdm

g= Pah(l -5 ) > P,h(1 — gelllKr).

Thus g > 0. By Lemma and equation (4.3

_ g _ (Puh)’ (Pah) 1 _ 1
||g||L N ‘ E s n H g o = Pah 001 — PelllKL - ||PahHL1 — PelllKL < K.
Hence g is regular. An analogous proof works for ||g||p. O



Lemma 4.7 (Coupling Lemma). Let f and g be two regular functions with [ fdm =
[gdm =M. Let fo = f and go = g, and define

fn+1:Pafn_9ffndma gn+1:Pagn_9fgndm-

Then for all n
Pg(f_g) :fn_gm
where f, and g, are reqular, and [ f,dm = [ g,dm = (1 —0)"M.
In particular, || follso, [|gnllee < (1 — )KL M | and

1 lloos ll9E oo < E2(1 — O)me1EL AL
If in addition f and g are superregular, then
//oo ,/oongl—Q”emKLM'
I flloos 10

Proof. The proof of [ f,dm = [ g,dm = (1 —6)"M is by induction.

By equation (4.4)), ||f|lsc and ||g|/oc are bounded by (1 — #)"el/lK2 M. Note that if
h is a regular function, then ||h'||o < Kp||h|ls, and if it is superregular, then also
11" loc < Kpl[h]loo- The bounds on [[f'[sc, [[¢llccs /" [lse, [lg"[loc follow. O

Corollary 4.8. There is a constant Ks such that if h € C*(I) fori=1 or 2, and h has

mean zero, then
|l

o < K5(1=0)" Al

Ci-
Proof. We can represent h = (h + ¢) — ¢, where ¢ = ||h]|c:(1 + max(K; ', Kp')). Then

e
o —lhllei +¢  max(K;', Kp')

= min(KL, Kp),

h/
Hh—kc

and so h + ¢ is regular. If ¢ = 2, then the same identity with h” in place of A’ also holds
true, so also h + c is superregular.
By Lemma [4.7] applied to f = h+ ¢ and g = ¢,

Pgh = fn — 9n,
where
i . <max(1, K, Kp)(1 — ) elllKLe
fn Ciy [|Gnl|Ci > y LMLy LA P )
= (1—6)"[max(1, Ky, Kp)e™e (1 4+ max(K;*, Kp D] lAlle:
K

= (1= 0y e

Thus ||Pgh| Ci < (]_ — 0)”K5”h| Oy where

K5 = Qmax(l, KL, KP)(]- + maX(K517 K];1>) €‘I|KL.

10



Corollary 4.9. For any h € C*(I) with [ hdm =1

ha:nlggoPah:thzoPa(Pah—h).

The series converges exponentially fast in C?. The C? norm of hy is bounded by K, =
1+ 207 'ell&e max(1, K7, Kp).

Proof. Let

f=1+4) Pl(P1-1).
n=0

Since 1 is a superregular function, so is P,1, and by Lemma [£.7 applied to f = P,1 and
g =1, we have that ||P*(P,1 — 1)||c2 < 2(1 — 0)" e/%r max (1, K1, Kp). Thus the series
above converges exponentially fast in C?(I) and [|h||c2 < K;.

Since 1+ 22720 P(P,1—1) = PY¥*'1, we have f = lim,,_,o, P"1. Thus f is invariant
under P,. It is clear that [ fdm = 1. Thus h, = f.

By Corollary the C? norm of P"(h — h,) = (P"h) — h, decreases exponentially
with n, thus by = lim, o PYh =h+ Y~  P(P,h — h). O

Corollary 4.10. The map a + h,, from [a_, o] to C*(I) is continuous.

Proof. Using Corollary [4.9 write for N € N:

N—-1 o]
ho=1+> PHP,1—1)+ Y PHP,1—1).
n=0 n=N

The C? norm of the second sum is exponentially small in N, uniformly in «. By
Lemma [L.1 a map a — P2(P,h — h) from [a_,ay] to C*(I) is continuous for every
n. Thus the first sum depends on « continuously. Since the choice of N is arbitrary, the
result follows. O

5 Proofs of Theorems 3.1 and [1.2

In this section we prove technical statements about the family of maps T, defined by
equation . We use notations introduced in Section

In Subsection [5.1] we introduce necessary notations and prove a number of technical
lemmas, in Subsections and we use the accumulated knowledge to prove Theo-
rems [3.1] and [.2

5.1 Technical Lemmas

We use notation C for various nonnegative constants, which only depend on a_ and a,
and may change from line to line, and within one expression if used twice. Recall the
definition of y, from the beginning of Section [3|

It is clear that T, (x), as a function of a and x, has continuous partial derivatives of all
orders in a,z € [a_, ay] % (0,1/2], and so do F,,(x) and F }(x) on [o_, ay] X [Yrs1, Yr]
and o, ay] x [1/2, 1] respectively.
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Let E,: [0,1/2] — [0,1], Enz = T,x be the left branch of the map T,. Note that
E, is invertible. Let z € [0, 1] and write, for notational convenience, z, = E_"(z). Then
Fo.(2) = E.(Tu(2)) = EL(22 — 1) for z € [yy41,¥,], and for z € [1/2,1]

To(F ) (2) =2F}(2) — 1 = 2. (5.1)

a,r

By (-)" we denote the derivative with respect to z. Let G, be defined as in Theorem [2.1]
Then for z € [1/2,1]

Gor(2) = (F,;)'(2) = /2. (5.2)
We do all the analysis in terms of z., and the relation to G,, and F_ L is given by

equations (5.1)) and ( .

Remark 5.1. By construction, zy = z, 25 = 1 and 2] = 0. Note that z, < 1/2 for r > 1.
Also

2 = 21 (142927 ), (5.3)

Z =14 (a4 1)2%% ]2 4, (5.4)

2 = H[l + (a+ 1)20‘,2]‘-“]71. (5.5)
j=1

Our analysis is built around the following estimate:

Lemma 5.2. Forr >1

1 1
S S - .
20+ ra2e T 2o+ ra(l—a)2et

In particular,

Czy C
% <z < — and —log 2z, < Cllogg r — log z].
r r

Proof. Transform equation (/5.3)) into

1= (14250,
Zr1 ‘

Then
1_|_2a a) o

Y=z +Z

For all t € (0,1) and all « € (0, 1)

ala+1)

2.
2

l—at<(1+4t)°<1—at+

Since z; € (0,1/2] for j > 1, using the above inequality with ¢ = 2%2%, we obtain

1— (14 2020)0

“j

a(l — )22t < < a2”.

12



By equation (5.6)),
a(l —a)2* !t <27 — 20 < ra2”

for r > 1. Write

P 20 1 1 1
-0 < 2 = <
rl4+a2e 7 rortl42fa2e g%+ ra2e T

2o+ ra(l— )20t

The result follows. O

Lemma 5.3. z) =1 and
0<z <C(1+rz5a2%)” (a+D)/a o @ p=(a+D)/a 0—(a+1)
forr >1.

Proof. By Remark 2y = 1. Let r > 1. Using the inequality

1
1+t

on equation ({5.5) we obtain

<exp(—t+t*) for t>0

T

: 1
OSZ;:Hl—F(Oé—Fl)Qaa— Xp( Za—l—l 2”20‘—1—2 a+1)2% a)) (5.7)
Jj=1 7=1 j=1

By Lemma |5 . 2 < C/j42, thus the second sum under the exponent is bounded by
C. Also by Lemma 5.2

[0}

" 2
> — 2 qdt—C
Zz Z +]0¢2a - /1 14tz 02>

« ay |t=T
= @log(l + tZOOéQ ) =1 C

-C

S log(1 + rzga2%)
- 2%

Thus

J a+1
—(a+1)205 20 < - log(1 4 r2802%) + C,
(v +1) Zz] < o og(l +rzfa2®) +

J=1

and by equation (5.7)),

Z;, <C (1 + r28a2a>—(a+1)/a <C (ng&Qa)_(a+1)/a <C Tﬁ(a+1)/a207(a+1),

Lemma 5.4. 0 < —2"/z/ < Cz;%/ max(r, 1).

13



Proof. Differentiating both sides of the equation (5.4)), we obtain
o= oo+ 127205 (240)° + (14 (a + 1)2°27 1) 2. (5.8)

Dividing the above by 2. = [1 4+ (o + 1)2%22,,]2,, | we get

" ao—1 1 "
z _ala+1)2%0 2, 2,

Z 1+ (+1)2 Zr 21,~+1.

Recall that z)/2{ = 0 and 2. > 0, thus 2/ <0 for all . By Lemmas [5.2] and |5.3| we have

o\
0<z27'2l <C (—0> LR O P
r

for r > 1. Thus

Z” Z” 0
0T -2 < C(r+1)2 %7
2 Z?"—i—l

The result follows. O

Lemma 5.5. |2/ | < C 2, "/ max(r?,1).
Proof. Differentiate the equation ((5.8). This results in

2 = (a = Dala+1)2%7 7 (2151)° + 3ala + 1)2°270 20 21
+(1+ (a+1)2%7)z ;/;1-

Dividing the above by 2, = [1 + (a 4 1)2%22, ]2, we get

r

z B (a = a(a+1)2%! Zpiq ( 1/ﬂ+1)2 3afa +1)2¢ g+1121,~+1 Z7l~l+1 Z;«”H

2 1+ (a+ 1)2927, T+ (a+ 12022 2 2

Using Lemmas 5.2} [5.3] and [5.4] we bound the first two terms in the right hand side above
by C(r+1)73 2, % and C (r + 1)73 2;* respectively. Thus

n "

z
ZL,— TS C(r+ 1) P
Zro Al

Since z{)'/z{, = 0, the result follows. O

Lemma 5.6. 0,20 = 0 and forr > 1

0< 6’22,« < C logg(rzf) [logg r — log 2] and
1
0 < 0qzr < C%/)[loggr — log z].

Proof. Since zy = z does not depend on «, 0,z9 = 0.
Differentiating the identity z,,1(1+2%22,,) = 2, by a we obtain a recursive relationz

a2y + 29271 (= log(22r11))

aa r =
e 1+ (o +1)2020,,

14



Since 2,1 < 1/2 for all r, it follows that d,z. > 0 for all r. It is convenient to rewrite
the above, dividing by 241 and using 2,41 (1 4+ 2%2, ;) = 2

OoZri1 (1+ 2azg+1)8§_? + 29271 (— log(2241))
Zr41 L+ (a+1)2%22,

I

which implies

O 2y On 2y o o
=< + 2%z (= log(22,41)).

Zr41 Zr
By Lemma [5.2]
logg r — log zg
2%z (—log(2z,)) < C )
27 (= log(227)) < 2o+ ra(l —a)20-t
Hence
On2r logg t — log z

< 2%2%(—log(22;)) < C dt
2 _Z 7 (—log(22)) < /120_"‘—1-1504(1—04)20‘—1

j=1

(5.9)

< C logg(rzg)[logg(rzg) — log zo).

The first part of the lemma follows. To prove the second part, observe that by Lemmal5.2]
2. < Cr1/e, O

Lemma 5.7. |(9.2.)/7.| < C [logg(rz3))” [logg r — log z].

Proof. Note that 0,2y = 0, because 2y = z does not depend on a.
Differentiate equation (5.4) by a. This results in

Ouzp = (2720, + (a+ 1)2°22, 1 10g(22,11) + o + 1)2°20 1 Ouzri1) 2y
+(1+ (@ +1)2%2%, )0z 4
Dividing the above by 2, = [1 + (a 4+ 1)2%2% ]2, we get

Oazp _ 2%274, + (a+ 12927, 1og(22011) + oo + )220 Qa2 n Oa?y 1
2! I+ (o +1)2922,, LA

r

For 7 > 1 Lemmas [5.2 and [5.6] give |28 < C/ (25 + ra(l — a)2°71),

logg r — log zg
2o ¢+ ra(l —a)20-!

|z log z,| < C and

2510, | = |20 Onzy <C logg_(;“zg‘) (logg r — log zo).
, 25"+ ra(l —a)20!
Therefore
Oazy OaZp iy C logg((r +1)z) (logg(r + 1) — log 2o)
A Zepr | T 7%+ (r+Da(l —a)2et
Thus
Da?, " logg(tzy) (logg t — log 29) >
2l < C dt < C]l 7 (1 -1 .
Z; ‘ — /1 Zaa + tOé(l . a)Qafl — [ Ogg(rzo )] ( oggr 0og Zo)
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Lemma 5.8. |(0,2")/2.] < Cz? (1 — log z).
Proof. Differentiate both sides of the equation (5.8)) by a. This gives

a2y =[200+ 1+ a(a + 1) log(22,41)]2727 (#711)°
+ (@ = Da(a + 12252 (2)41)*Oazr + 20+ 1)2°207 2141002y
+ (14 (a + 1) log(2241))2%27 1241 + ala + 127275 241 0a 2
+ (14 (@ + 1)2%%7, 1) 0azy 1.
Dividing the above by 2, = [1 + (o +1)2°2%,,]%,,, and using Lemma [5.2) to bound 2,41,

Lemma to bound 2/, Lemma [5.4] to bound 2/z/, Lemma [5.6 to bound 9.z, and
Lemma to bound 6az /7., we obtain for r > 0:

2072 log z,| < Cr? 2(10gg7‘—10g20),
20722002 | < Cr72 25% logg(rzg) (loggr — log 20),
27 0az| < Cr 72z ;2 o [logg(rzg))? (logg r — log 2),
|2%2" log 2, /2] < Cr? 2(loggr—logzo),
27712 (002 ) /2] < C172 25 logg(rzy) (logg 1 — log 2).

Hence for r > 1

7 "
Oazy Onzr_4
/

/
ZT 1

< Cr? 2 ” [logg(rz5))* (logg r — log 2o).

Recall that 0,2 = 0. Then

8

<z’ Zﬁ logg(j25)]* [logg j — log 2] < C 2, *(1 — log ).

5.2 Proof of Theorem [3.1]

The verification of assumptions of Theorem is as follows. Since G,, and F, o L are
defined on [1/2, 1], we use that z = zp > 1/2 in the bounds below. Now,

[ATl By equation (5.5), 2, <1, thus [|Ga, [l < 1/2.
By Lemma , 12/ /2] <C, thus |G}, ,/Garlle < C.
[A3l By Lemma , 12/ 2| < C, thus |G, . /Garllee < C.
[A4 By Lemma , 1002,| < Cr~1 (loggr)?, and by equation (5.1)) we have
100 Fotllse < Cr7 (loggr)* < C (loggr)®.
[A5 By Lemmal5.7, [(0a2))/2.| < C (loggr)?, thus [[(0aGay)/Garlle < C (loggr)?.
By Lemma , [(0az)))/ 2| < C, thus [[(0.G, )/ Garllee < C.
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By Remark , 2y, = 1, and by Lemma , 21| < Cr=(@tb/e for r > 1, s0

- 1 — 1 = (loggr)?
3 _ /
; HGa,THoo(lOgg T) - 5 ;Sgp |2r| (10gg7” 5 g Pltlja =

To verify the assumptions of the Corollary — we have to show in addition that

o > 2 ,(r+1)(loggr)?||Garll,, < C. By Lemma 5.3 and equation (5.2)),

|Gar(2)] = |21]/2 < Crmletble,

thus
> (loggr)® r+1
+ 1)(1 Gorll, <C <C.
;_o( )(logg 7)* [|Garll,, E Py

o [10a][®a 0 F llo < Cllgller (r+1) and [[@4 0 F Moo < Cllgller (r +1). This is
true because

(@0 £ = () + S ot = o (1) £ Yt

and |9az,| < C by Lemma [5.6]

Hence we have verified assumptions of Theorem [2.1] and Corollary [2.4] as required.

5.3 Proof of Theorem [1.2]

Recall that the invariant measure of T}, is denoted by v,, and its density by p,, while the
invariant measure of the induced map F|, is denoted by pu,, and its density by h,.

Lemma 5.9. p,(2) = ga(z /fo ga(x) dz for all z € (0, 1], where
1 & 2+ 1\
:§Zha( : )zk.
k=0

Proof. Let ¢ be a nonnegative observable on [0,1], and &, = ;“:614,0 o T* be the
corresponding induced observable. In the beginning of Section [3| we partitioned the
interval [1/2,1] into intervals [y,41, y,|, 7 > 0, where F,, has full branches and 7, = r + 1.
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Yj

Compute
J
> o(Thy) ha(y) dy

1 Ta(y)—1 o)
[tadia= [ S et bty =
1 =0 Y¥Yi+1 k=0

33 [ e =Y [ o) ha)dy

k=0 j=k Y Yi+1 k=0 Y 1/2
1 1 o0 T B .’L'—i‘l
[ ety 3 Y [ ezt h( )dx
1/2 2o 2
! 1 o= [T+ r+1
~ [ ey + 3> [ i) ha( )dx
1/2 2 o 70 2
! 1o [1/2 2+ 1
=/ 2 (y) ha(y) dy+—Z/ p(2) ha | — ) 24 dz
1/2 2 0 2
/ k=0
1o ! 2+ 1
:52/0 go(z)ha( k;2 )zédz.
k=0

First we made a substitution z = T,y = 2y — 1, and then a substitution z = Tz, i.e.
x = zg. In the last step we used the fact that for z > 1/2

ha(2) = (Puha)(2) = g; he (z’“; 1) Zz—k

Since fgodua = f P, d,ua/ fTa dfie, the result follows. O

Lemma 5.10. g,(z) and 0,9.(2) are jointly continuous in «, z on [a—, ay] x (0,1]. Also,
0< gu(2) C27 and |0aga(z)] < Cz7%(1 —log 2)?.

Proof. By Theorem[2.1] [|ha||c2 < C and ||0ahallcr < C, and both ha(2) and daha(z) are
jointly continuous in « and z. By Lemma , 0<z2. <C(1+ rzaaQO‘)*(aH)/a, hence

0<> 2 < C/ (1 + tz%a2%) "t/ gt < Cz72, (5.10)
r=1 1

Now,

1 1
Oggo‘(z):5 E ha(zk; >z,’€§Cza.
k=0

Terms of the series are jointly continuous in « and z, and convergence is uniform away
from z = 0, thus g,(2) is also jointly continuous in « and z.
Denote uq k() = ha((zi +1)/2) 2,/2, so that ga(2) = Y pey Uak(2) and compute

a+1 zp + 1 Oazi | 2 26+ 1\ Oz
Outea(s) = [ @) (257 0 (5 B2 e (257 55

By Lemma [5.6]
0 < Oazr < Cr Y logg(r2?) [logg r — log 2].
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By Lemma
|0021] < C 21 [logg(rz")]* [logg r — log z].

Thus [Oatak(2)] < C 2, [logg(rz)]? [loggr — log z]. Thus by Lemmalp.3]

D Nattan(2)] < C ) 7 [logg(k="))* [logg k — log 2]
k=0 k=0
<C / (1 + tz%a2%) " T/ [log(t2))? [log t — log 2] dt
1

=Cz ¢ / (14 sa2)~ @/ (Jog )2 [log - log z] ds
z Za

@

< Cz™*(1—logz).

Therefore we can write

(0aga)(2) = Z Oallak(2).

Away from z = 0, the terms of the series are jointly continuous in a and z, and se-
ries converges uniformly, so (0aga)(2) is jointly continuous in « and z, and [0aga(2)| <
Cz7%(1 — log 2).

U

Corollary 5.11. p,(z) and Onpa(z) are jointly continuous in « and z. Also, 0 < go(2) <
C 2z and |0aga(2)] < C2z7*(1 —log 2).

Proof. Note that fol 9o(2)dz = [ 7o dpe > 1, and

% i ga(z)dz:/o (0aga)(2) dz.

By Lemma [5.10} fol Ja(2) dz is continuously differentiable in «, its derivative is bounded
by C. The result follows from Lemma [5.10] and relation, established in Lemma [5.9

palz) = ga(Z)/ /01 go(x) dz.

]

Corollary 5.12. Assume that o € L%0,1], where ¢ > (1 — ay)~'. Then the map
a = [ o(x)palx)dx is continuously differentiable on [a_, o).

Proof. Let p=1/(1—1/q). Then p < 1/a, and by Corollary |0apallLe is bounded
uniformly in . Since p,(x) and (Oapa)(z) are jointly continuous in o and x, we can write

o [e@paa s

1
/0 (@) (Dape) (@) dz| < Il 2 |19apall o

It is clear that the above is bounded on [a_,a.]|. Continuity of fol o(2) (Oapa)(x) dx
follows from continuity of (Jnpa)(z) in o and the dominated convergence theorem. [
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