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2 
Summary 

The encoding of information in the primate inferior temporal visual cortex, hippocampus, orbitofrontal cortex, and 

insula, is described. All these areas investigated have sparse distributed graded firing rate representations. The 

firing rate probability distribution is close to exponential. The information increases approximately linearly with 

the number of neurons. Consistent with this relative independence, there is little extra information that is available 

because of stimulus-dependent synchrony, and little redundancy. The code can be read very fast, in 20-50 ms, by 

dot-product, biologically plausible decoding. The advantages of this code include high capacity, generalization, 

graceful degradation, and rapid read-out of the information by biologically plausible dot-product decoding. None 

of these are properties of local or ‘grandmother-cell’ representations. Consistent evidence is becoming available 

for humans. Thus the evidence indicates that information is encoded in many cortical areas by sparse distributed 

graded firing rate representations, and this type of representation has major computational advantages for the brain 

including for language that are not met by local or ‘grandmother-cell’ representations.  
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In this paper, I describe the cortical neuronal encoding of information in primates including humans. The 

analysis is based on datasets of neurons in many different cortical areas of primates during the normal operation 

of the brain during behaviour, allowing a unique comparison of neuronal encoding in the inferior temporal visual 

cortex, the primary taste cortex in the insula, the orbitofrontal cortex, and the hippocampus and parahippocampal 

gyrus. The coding was analysed with rigorous information theoretic methods that we developed for application to 

single and multiple single neuron data and which are described by Rolls and Treves (2011), Rolls (2016), and in 

the original papers (Franco, Rolls, Aggelopoulos, & Treves, 2004; Rolls, Aggelopoulos, Franco, & Treves, 2004; 

Rolls, Franco, Aggelopoulos, & Perez, 2006; Rolls, Franco, Aggelopoulos, & Reece, 2003a; Rolls, Treves, & 

Tovee, 1997a; Rolls, Treves, Tovee, & Panzeri, 1997b). 

I start with some definitions, then summarize some evidence that shows the type of encoding used in some 

cortical regions, and then show how the representation found is advantageous 

Definitions of types of representation 

A local representation is one in which all the information that a particular stimulus or event occurred is provided 

by the activity of one of the neurons. In a famous example, a single neuron might be active only if one's 

grandmother was being seen, and this is sometimes called grandmother cell encoding. (The term was coined by 

Jerry Lettvin in about 1969 — see Charles Gross (2002).) An implication is that most neurons in the brain regions 

where objects or events are represented would fire only very rarely (Barlow, 1972; Barlow, 1995). A problem with 

this type of encoding is that a new neuron would be needed for every object or event that has to be represented. 

Another disadvantage is that this type of coding does not generalize easily to similar inputs, so that similarities 

between perceptions or memories would not be apparent. Another disadvantage is that the system is rather sensitive 

to brain damage: if a single neuron is lost, the representation may be lost. Another disadvantage of local encoding 

is that the storage capacity in a memory system in the brain (the number of stimuli that can be stored and recalled) 

may not be especially high (in the order of the number of synapses onto each neuron) (Rolls, 2016). 

A fully distributed representation is one in which all the information that a particular stimulus or event occurred 

is provided by the activity of the full set of neurons. If the neurons are binary (e.g. either active or not), the most 

distributed encoding is when half the neurons are active (i.e. firing fast) for any one stimulus or event, and half are 

inactive. Different stimuli are represented by different subsets of the neurons being active. 

A sparse distributed representation is a distributed representation in which a small proportion of the neurons is 

active at any one time. In a sparse representation with binary neurons (i.e. neurons with firing rates that are either 

high or low), less than half of the neurons are active for any one stimulus or event. For binary neurons, we can use 

as a measure of the sparseness the proportion of neurons in the active state. For neurons with real, continuously 

variable, values of firing rates, the sparseness a of the representation is defined below. A low value of the 

sparseness a indicates that few neurons are firing for any one stimulus, and its maximum value is 1.0. 

Sparse distributed graded firing rate encoding of face and object identity in the inferior temporal visual 

cortex; of taste and related stimuli in the insula and orbitofrontal cortex; and of space in the hippocampus 

Sparseness of the representation, and an approximately exponential firing rate probability distribution 

Barlow (1972) speculated that a particular object (or face) is represented in the brain by the firing of one 

or a few gnostic (or "grandmother") cells. We showed that this is not the case, and that although a face-selective 

cell may respond only to faces, its firing rate is graded to a set of faces with some faces producing large responses, 

and more and more producing lower and lower responses, with each neuron having a different profile of responses 

to each of the different faces with an approximately exponential firing rate probability distribution (Baddeley et 

al., 1997; Baylis, Rolls, & Leonard, 1985; Franco, Rolls, Aggelopoulos, & Jerez, 2007; Rolls & Tovee, 1995; 

Treves, Panzeri, Rolls, Booth, & Wakeman, 1999) (see Fig. 1; and also Figs. 3 and 4).  

The sparseness of the representation provided by a single neuron as can be defined as 
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as = (∑s=1,S   rs/S)2 / ∑s=1,S  (rs

2/S) 

where rs is the mean firing rate of the neuron to stimulus s in the set of S stimuli. The average sparseness of the 

representation provided by this type of neuron was 0.65 in the study of inferior temporal cortex neurons by Rolls 

and Tovee (1995). This is the sparseness calculated from a single neuron across its responses to a large set of 68 

stimuli, 23 of which were faces and 45 of which were non-face stimuli (see Fig. 2a). The values for the sparseness 

of each neuron are of interest, and the distribution shown in Fig. 2a shows that none of the neurons had very sparse 

grandmother cell types of representation (for which the sparseness would be in this study 1/68=0.015) in this or 

any other of our many studies (Rolls & Treves, 2011).  

Of course it is not possible to exclude the possibility that some of the neurons in the inferior temporal 

cortex might be grandmother cells, for there are neurons that are rather unresponsive in the inferior temporal cortex 

as well as the primary taste cortex and orbitofrontal cortex (Kadohisa, Rolls, & Verhagen, 2005a; Rolls, Critchley, 

Verhagen, & Kadohisa, 2010) that might respond to just one stimulus if it could ever be found, but neurons with 

anything like this selectivity have never been found in our studies, and if present would be not part of the rather 

continuous distribution of sparseness values found in our studies (see e.g. Fig. 2). Moreover, the information 

encoding and transmission by the neurons that we have discovered and analysed are highly efficient with many 

useful properties as described below. Further, cortical neurons tend to have low spontaneous firing rates, so can 

usually be detected, and then tested for responses to a wide range of visual stimuli including junk objects, to 

investigate whether they might show any indication of being responsive to one or a few of a large number of 

stimuli. (The reason for the low spontaneous firing rate is that neurons are held close to threshold, so that when an 

input is received, some of the neurons are ready to respond very quickly without having to charge up the membrane 

from a resting potential. This enables the cortex to respond quickly, but at the same time means that neurons 

occasionally emit spikes that are referred to as spontaneous activity, because of the stochastic dynamics as 

described elsewhere (Rolls, 2008, 2016; Rolls & Deco, 2010).) Further, in longitudinal single neuron recordings 

over many days, there is so far no indication that a highly sparse “grandmother cell”-like representation is found 

in the inferior temporal visual cortex (McMahon, Bondar, Afuwape, Ide, & Leopold, 2014).  

 The same value for the sparseness is obtained when one calculates it as the responses of a large set of 

neurons to a single stimulus, which is termed the population sparseness ap, and this indicates that the representation 

is weakly ergodic, that is that the response profiles of the different neurons are uncorrelated (Franco et al., 2007). 

These values for a do not seem very sparse. But these values are calculated using the raw firing rates of 

the neurons, on the basis that these would be what a receiving neuron would receive as its input representation. 

However, neocortical neurons have a spontaneous firing rate of several spikes/s (with a lower value of 0.75 spikes/s 

for hippocampal pyramidal cells), and if this spontaneous value is subtracted from the firing rates to yield a 

‘response sparseness’ ar, this value is considerably lower. For example, if the spontaneous firing rate was 

subtracted from the firing rate of the neuron to each stimulus, so that the changes of firing rate, i.e., the responses 

of the neurons, were used in the sparseness calculation, then the ‘response sparseness’ for the set of neurons in had 

a lower value, with a mean of ar=0.33 for the population of neurons as shown in Fig. 2b (Rolls & Tovee, 1995). 

Further, the true sparseness of the representation is probably less than this, for this is calculated only over the 

neurons that had responses to some of these stimuli. There were many more neurons that had no response to the 

stimuli. At least 10 times the number of inferior temporal cortex neurons had no responses to this set of 68 stimuli. 

So the true sparseness would be much lower that this value of 0.33. Further, it is important to remember the relative 

nature of sparseness measures, which (like the information measures to be discussed below) depend strongly on 

the stimulus set used (Rolls, 2016; Rolls & Treves, 2011).  

 Another way to analyse this is to examine the firing rate probability distribution of neurons. A grandmother 

cell would have one peak in this distribution at a firing rate of zero, and a second peak with a high firing rate with 

a very low probability. Franco, Rolls, Aggelopoulos and Jerez (2007) showed that while the firing rates of some 

single inferior temporal cortex neurons (tested in a visual fixation task to a set of 20 face and non-face stimuli) fit 
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an exponential distribution, and others with higher spontaneous firing rates have a gamma distribution with the 

mode shifted above zero rate if they have a higher than typical spontaneous firing rate, it turns out that there is a 

very close fit to an exponential distribution of firing rates if all spikes from all the neurons are considered together. 

This interesting result is shown in Fig. 3. Consistent with this (and the concept of weak ergodicity (Franco et al., 

2007)), if the activity of a single inferior temporal cortex neuron is measured to a very large number of visual 

stimuli (while the monkey is watching a video), then the firing rate distribution is again frequently close to 

exponential, as illustrated in Fig. 4 (Baddeley et al., 1997). 

It is helpful to note that the sparseness of the representation provided by a neuron with an exponential 

probability distribution of firing rates is 0.5, which is close to the values measured for the sparseness in different 

cortical areas. The possible utility of such a representation in terms of metabolic efficiency by having relatively 

few high firing rates is considered elsewhere (Rolls, 2016; Rolls & Treves, 2011; Treves et al., 1999). 

Comparisons of sparseness between areas: the inferior temporal visual cortex, hippocampus, insula, orbitofrontal 

cortex, and amygdala 

In the study of Franco, Rolls et al (2007) on inferior temporal visual cortex neurons, the selectivity of 

individual cells for the set of stimuli, or single cell sparseness a, had a mean value of 0.77. This is close to a 

previously measured estimate, 0.65, which was obtained with a larger stimulus set of 68 stimuli (Rolls & Tovee, 

1995). 

In contrast, the representation in some memory systems may be more sparse. For example, in the 

hippocampus in which spatial view cells are found in macaques, further analysis of data from macaque spatial 

view cells analyzed by Rolls et al (1998) shows that for the representation of 64 locations around the walls of the 

room, the mean single cell sparseness as was 0.34 ± 0.13 (sd), and the mean population sparseness ap  was 0.33 ± 

0.11. The more sparse representation is consistent with the view that the hippocampus is involved in storing 

memories, and that for this, more sparse representations than in perceptual areas are relevant (Kesner & Rolls, 

2015; Rolls, 2016). Nevertheless, sparse distributed graded encoding is still used (Rolls et al., 1998). 

Evidence is now available on sparseness, ergodicity and information encoding in three further brain areas, 

the macaque insular primary taste cortex, the orbitofrontal cortex, and the amygdala (Kadohisa et al., 2005a; Rolls, 

2016; Rolls et al., 2010). In all these brain areas sets of neurons were tested with an identical set of 24 oral taste, 

temperature, and texture stimuli. (The stimuli were: Taste - 0.1 M NaCl (salt), 1 M glucose (sweet), 0.01 M HCl 

(sour), 0.001 M quinine HCl (bitter), 0.1 M monosodium glutamate (umami), and water;  Temperature – 10ºC, 

37ºC and 42ºC; flavour - blackcurrant juice; viscosity - carboxymethyl-cellulose 10 cPoise, 100 cPoise, 1000 

cPoise and 10000 cPoise; fatty / oily – single cream, vegetable oil, mineral oil, silicone oil (100 cPoise), coconut 

oil, and safflower oil; fatty acids - linoleic acid and lauric acid; capsaicin; and gritty texture.) Further analysis of 

data (Verhagen, Kadohisa, & Rolls, 2004) for the primary taste cortex showed that the mean value of as across 58 

neurons was 0.745 and of ap  was 0.708. Further analysis of data for the orbitofrontal cortex (Kadohisa, Rolls, & 

Verhagen, 2004; Kadohisa et al., 2005a; Rolls, Verhagen, & Kadohisa, 2003b; Verhagen, Rolls, & Kadohisa, 

2003) showed that the mean value of as across 30 neurons was 0.625 and of ap  was 0.611.  Further analysis of 

data for the amygdala (Kadohisa, Rolls, & Verhagen, 2005b) showed that the mean value of as across 38 neurons 

was 0.811 and of ap was 0.813. The values of a are relatively high, implying the importance of representing large 

amounts of information in these brain areas about this set of stimuli by using a very distributed code, and also 

perhaps about the stimulus set, some members of which may be rather similar to each other. Further, in all these 

cases, the mean value of as is close to that of ap, and weak ergodicity is implied, providing further evidence on an 

important aspect of cortical encoding, that at least up to reasonable numbers of neurons, the coding by different 

neurons is relatively independent, that is, the response profiles of the neurons to the set of stimuli are relatively 

uncorrelated (Rolls, 2016). 

Overall, we have seen that in many primate cortical areas and in the amygdala (which receives from the 
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cortex), a sparse distributed graded representation is found, with no evidence for grandmother cells (Rolls, 2016; 

Rolls & Treves, 2011).  

Single cell information 

Complementary evidence comes from applying information theory to analyse how information is 

represented by neurons in the cortex. The information required to identify which of S equiprobable events occurred 

(or stimuli were shown) is log2S bits. (Thus 1 bit is required to specify which of two stimuli was shown, 2 bits to 

specify which of 4 stimuli was shown, 3 bits to specify which of 8 stimuli was shown, etc.)  

We are interested in measuring the information that we gain from the neuronal response r to a stimulus s 

in a set of S stimuli. The (Shannon) mutual information is the average information across all stimuli from the set 

S and all responses from the set R, as follows (Shannon, 1948,Rolls, 2016 #6387)  

𝐼(𝑆, 𝑅) =  ∑ 𝑃(𝑠, 𝑟)𝑙𝑜𝑔2  
𝑃(𝑠, 𝑟)

𝑃(𝑠)𝑃(𝑟)
𝑠,𝑟

 

where P(s,r) is the joint probability of the pair of results s and r.  

We are also interested in the information specifically conveyed about each stimulus 

 

𝐼(𝑠, 𝑅) =  ∑ 𝑃(𝑟|𝑠)𝑙𝑜𝑔2  
𝑃(𝑟|𝑠)

𝑃(𝑟)
𝑟

 

which is a direct quantification of the variability in the responses elicited by that stimulus, compared to the overall 

variability across all stimuli S. We term this the stimulus-specific information (Rolls, 2016). For a grandmother 

cell, a neuron would convey a large amount of information about only one of the stimuli. Thus this measure is 

useful in analysing encoding. A feature of the single cell information theoretic analyses that we have performed is 

that rigorous corrections have been made for the finite sampling effect, that is, that the number of trials of data is 

limited (Rolls, Critchley, & Treves, 1996; Rolls et al., 1997b; Tovee, Rolls, Treves, & Bellis, 1993). 

Figure 5 shows the stimulus-specific information I(s,R) available in the neuronal response about each of 

20 face stimuli calculated for the neuron (am242) whose firing rate response profile to the set of 68 stimuli is 

shown in Fig. 1. This is the information obtained on a single trial by the number of spikes in a 500 ms period. It is 

shown in Fig. 5 that 2.2, 2.0, and 1.5 bits of information were present about the three face stimuli to which the 

neuron had the highest firing rate responses. The neuron conveyed some but smaller amounts of information about 

the remaining face stimuli. The average information I(S,R) about this set (S) of 20 faces for this neuron was 0.55 

bits. The average firing rate of this neuron to these 20 face stimuli was 54 spikes/s. It is clear from Fig. 5 that little 

information was available from the responses of the neuron to a particular face stimulus if that response was close 

to the average response of the neuron across all stimuli. At the same time, it is clear from Fig. 5 that information 

was present depending on how far the firing rate to a particular stimulus was from the average response of the 

neuron to the stimuli. Of particular interest, it is evident that information is present from the neuronal response 

about which face was shown if that neuronal response was below the average response, as well as when the 

response was greater than the average response. 

One intuitive way to understand the data shown in Fig. 5 is to appreciate that low probability firing rate 

responses, whether they are greater than or less than the mean response rate, convey much information about which 

stimulus was seen. This is of course close to the definition of information. Given that the firing rates of neurons 

are always positive, and follow an asymmetric distribution about their mean, it is clear that deviations above the 

mean have a different probability to occur than deviations by the same amount below the mean. One may attempt 

to capture the relative likelihood of different firing rates above and below the mean by computing a z score obtained 
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by dividing the difference between the mean response to each stimulus and the overall mean response by the 

standard deviation of the response to that stimulus. The greater the number of standard deviations (i.e. the greater 

the z score) from the mean response value, the greater the information might be expected to be. I therefore show 

in Fig. 6 the relation between the z score and I(s,R). This results in a C-shaped curve in Figs. 5 and 6, with more 

information being provided by the neuron the further its response to a stimulus is in spikes per second or in z scores 

either above or below the mean response to all stimuli (which was 54 spikes/s for this neuron). 

 The very clear conclusion from this single cell information theoretic analysis is that neurons have a sparse 

distributed representation, in which considerable information is conveyed about a small proportion of the stimuli 

(in cortex those producing the highest firing rates), with some information about many other stimuli (depending 

on how far the response of a neuron is from its average response across all stimuli), and very little information 

about very many stimuli. (Of course if a neuron has no response to a stimulus, with this type of encoding one 

learns a small amount, for a response below the average response to all stimuli does convey a little information, 

as is made clear in Figs. 5 and 6.)  

 Similar results, providing clear evidence for a sparse distributed graded representation, were obtained from 

all neurons that we analysed in several datasets for neurons in the inferior temporal visual cortex responding to 

objects or faces (Franco et al., 2007; Rolls et al., 1997b). The same type of information representation was found 

for neurons responding to taste and odour in the orbitofrontal cortex (Rolls et al., 1996; Rolls et al., 2010), and to 

spatial view in the hippocampus (Rolls et al., 1998). 

The information available from multiple cells 

The analysis of the encoding of information by multiple single cells, for which we have developed methods 

(Franco et al., 2004; Rolls et al., 2004; Rolls et al., 2003a; Rolls et al., 1997a), also has implications for 

understanding how local or distributed the encoding is by cortical neurons. The important point for the present 

purposes is that if the encoding was local (or grandmother cell-like), the number of stimuli encoded by a population 

of neurons would be expected to rise approximately linearly with the number of neurons in the population. In 

contrast, with distributed encoding, provided that the neuronal responses are sufficiently independent, the 

information might be expected to rise linearly with the number of neurons, and the number of stimuli encodable 

by the population of neurons might be expected to rise exponentially as the number of neurons in the sample was 

increased (as information is a log measure) (Rolls, 2016).  

The information available about which of 20 equiprobable faces had been shown that was available from 

the responses of different numbers of inferior temporal cortex neurons is shown in Fig. 7 (Rolls et al., 1997a). 

First, it is clear that some information is available from the responses of just one neuron - on average approximately 

0.34 bits. Thus knowing the activity of just one neuron in the population does provide some evidence about which 

stimulus was present. This evidence that information is available in the responses of individual neurons in this 

way, without having to know the state of all the other neurons in the population, indicates that information is made 

explicit in the firing of individual neurons in a way that will allow neurally plausible decoding, involving 

computing a sum of input activities each weighted by synaptic strength, a dot product, to work (see below). Second, 

it is clear (Fig. 7) that the information rises approximately linearly, and the number of stimuli encoded thus rises 

approximately exponentially (Fig. 8), as the number of cells in the sample increases (Abbott, Rolls, & Tovee, 

1996; Rolls & Treves, 1998; Rolls et al., 1997a), confirmed with simultaneous recordings from different neurons 

(Panzeri, Schultz, Treves, & Rolls, 1999a; Rolls et al., 2004; Rolls et al., 2006). Consistently, Gawne and 

Richmond (1993) showed that even adjacent pairs of neurons recorded simultaneously from the same electrode 

carried information that was approximately 80% independent. The same type of approximately linear increase in 

the information with the number of neurons in the sample is also found in the orbitofrontal cortex for olfactory 

and taste stimuli (Rolls et al., 2010), and in the hippocampus for spatial view neurons (Rolls et al., 1998). (These 

effects can only be seen with large stimulus sets, as only then are more than one or a very few neurons needed to 

encode the information, and even then the curves of the type illustrated in Fig. 7 tend to asymptote as the total 
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information required to represent the set of stimuli is approached as analysed by Rolls et al (1997a).) 

The conclusion from the multiple cell information analyses then is that the signature of a sparse distributed 

representation is found, with information encoded relatively independently by different neurons. 

Some have postulated that there might be information available if neurons became temporally 

synchronised to some but not other stimuli in a set (Engel, Konig, Kreiter, Schillen, & Singer, 1992; Singer, 1999). 

With rigorous information theoretic techniques (Rolls, 2008), we showed that for static faces and objects most of 

the information is available in the firing rates of the neurons (the number of spikes in a short time period), and that 

there is little additional information (<5% of the total) in the relative time of firing of simultaneously recorded 

neurons (Franco et al., 2004; Panzeri et al., 1999a; Rolls et al., 2004; Rolls et al., 2003a). This has been shown to 

apply to natural vision in natural scenes in which two test images had to be segmented from a complex background, 

the features of each object had to be bound together, and the monkey had to use top-down attention to search for 

one of two images in a complex scene (Aggelopoulos, Franco, & Rolls, 2005). 

The Speed of Information Processing in the Temporal Cortical Visual Areas 

Given that there is a whole sequence of visual cortical processing stages including V1, V2, V4, and the 

posterior inferior temporal cortex to reach the anterior temporal cortical areas, and that the response latencies of 

neurons in V1 are about 40-50 ms, and in the anterior inferior temporal cortical areas approximately 80-100 ms, 

each stage may need to perform processing for only 15-30 ms before it has performed sufficient processing to start 

influencing the next stage (Rolls, 2012; Rolls, 2016). Consistent with this, response latencies between V1 and the 

inferior temporal cortex increase from stage to stage (Thorpe & Imbert, 1989).   

In a first approach to this issue, we measured the information available in short temporal epochs of the 

responses of temporal cortical face-selective neurons about which face of a set of faces had been seen. We found 

that if a period of the firing rate of 50 ms was taken, then this contained 84.4% of the information available in a 

much longer period of 400 ms about which of four faces had been seen. If the epoch was as little as 20 ms, the 

information was 65% of that available from the firing rate in the 400 ms period (Tovee et al., 1993). We were able 

to extend this finding to the case when a much larger stimulus set, of 20 faces, was used. Again, we found that the 

information available in short (e.g. 50 ms) epochs was a considerable proportion (e.g. 65%) of that available in a 

400 ms long firing rate analysis period (Tovee & Rolls, 1995). We extended these results by showing that although 

there is considerable information in the first spike of each neuron that arrives after a stimulus has been shown, 

there is more information if the number of spikes in a short window of for example 20 ms is used, and that the 

order of arrival of the spikes from different neurons is not an important factor, whereas the number of spikes in a 

short window is an important factor (Rolls et al., 2006).  

The next approach has been to use a visual backward masking paradigm. In this paradigm there is a brief 

presentation of a test stimulus which is rapidly followed (within 1-100 ms) by the presentation of a second stimulus 

(the mask), which impairs or masks the perception of the test stimulus. It has been shown (Rolls & Tovee, 1994) 

that when there is no mask, inferior temporal cortex neurons respond to a 16 ms presentation of the test stimulus 

for 200-300 ms, far longer than the presentation time. It is suggested that this reflects the operation of a short term 

memory system implemented in cortical circuitry, which we propose is important in learning invariant 

representations (Rolls, 2008). If the pattern mask followed the onset of the test face stimulus by 20 ms (a stimulus 

onset asynchrony of 20 ms), face-selective neurons in the inferior temporal cortex of macaques responded for a 

period of 20-30 ms before their firing was interrupted by the mask (Rolls & Tovee, 1994; Rolls, Tovee, & Panzeri, 

1999). We went on to show that under these conditions (a test-mask stimulus onset asynchrony of 20 ms), human 

observers looking at the same displays could just identify which of 6 faces was shown (Rolls, Tovee, Purcell, 

Stewart, & Azzopardi, 1994). 

These results provide evidence that a cortical area can perform the computation necessary for the 

recognition of a visual stimulus in 20-30 ms (although it is true that for conscious perception, the firing needs to 
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occur for 40-50 ms, see Rolls, 2003). This provides a fundamental constraint which must be accounted for in any 

theory of cortical information representation, encoding, transmission, and computation. The results emphasise just 

how rapidly cortical circuitry can operate, a topic that is treated elsewhere (Panzeri, Rolls, Battaglia, & Lavis, 

2001; Rolls, 2008, 2016; Rolls & Treves, 1998; Treves, 1993; Treves, Rolls, & Tovee, 1996). 

 

These results from the primate cortex provide a clear answer to whether cortical neurons are grandmother 

cells: they are not, in the sense that each neuron has a graded set of responses to the different members of a set of 

stimuli, with the prototypical distribution similar to that of the neuron illustrated in Fig. 1. On the other hand, each 

neuron does respond very much more to some stimuli than to many others, and in this sense is tuned to some 

stimuli. This type of representation is not found in some models of invariant object representation in the visual 

cortical areas such as HMAX, but is approximated in VisNet (Robinson & Rolls, 2015). (HMAX C layer neurons 

are extremely broadly tuned (Robinson & Rolls, 2015). When interpreted by a machine learning tool such as 

support vector machine learning, the representation that is required by the machine learning is just that specified 

by the experimenter, which might be for one object, or typically for any example of a single class of object such 

as hats or bears  (Robinson & Rolls, 2015).) 

Advantages of the sparse distributed graded representation of objects for brain processing 

The advantages of the distributed encoding found include the following explained in more detail elsewhere 

(Rolls, 2007, 2008, 2014, 2016; Rolls & Treves, 1998, 2011), with a full analysis of how information theory has 

helped in the understanding of neural representations in the brain provided by Rolls (2016): 

1. Exponentially high coding capacity 

This property arises from a combination of the encoding being sufficiently close to independent by the 

different neurons (i.e. factorial), and sufficiently distributed, and is illustrated by the evidence shown in Figs. 7 

and 8.  

2. Ease with which the code can be read by receiving neurons 

For brain plausibility, it is also a requirement that neurons should be able to read the code. This is why 

when we have estimated the information from populations of neurons, we have used in addition to a probability 

estimating measure (optimal, in the Bayesian sense), also a dot product measure, which is a way of specifying that 

all that is required of decoding neurons would be the property of adding up postsynaptic potentials produced 

through each synapse as a result of the activity of each incoming axon (Abbott et al., 1996; Rolls et al., 1997a). It 

was found that with such a neurally plausible algorithm (the Dot Product, DP, algorithm), which calculates which 

average response vector the neuronal response vector on a single test trial was closest to by performing a 

normalised dot product (equivalent to measuring the angle between the test and the average vector), the same 

generic results were obtained, with only a 40% reduction of information compared to the more efficient (Bayesian) 

algorithm. This is an indication that the brain could utilise the exponentially increasing capacity for encoding 

stimuli as the number of neurons in the population increases.  

3. Higher Resistance to Noise 

 Because the information is decoded from a large population of neurons by inner product multiplication 

with the synaptic weight vector, there is less dependence on the random (almost Poisson) firing times for a given 

mean rate of single neurons, and thus there is resistance to noise inherent in the activity of single neurons (Rolls 

& Deco, 2010).     

4. Generalization  

Generalization to similar stimuli is again a property that arises in neuronal networks if distributed but not 

if local encoding is used. The generalization arises as a result of the fact that a neuron can be thought of as 
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computing the inner or dot product of the stimulus representation expressed as the firing rate on the set of input 

neurons with its synaptic weight vector (see further Rolls, 2008, 2016; Rolls & Deco, 2002; Rolls & Treves, 1998). 

With distributed representations, a neuron can generalize because the dot product of a related input will produce a 

similar (related) output (Rolls, 2008, 2016). With localist encoding, where a single neuron represents an object, 

there is no generalization of that neuron to related inputs. An input either fires the neuron if the object is present, 

or does not fire it if the object is not present. (Of course, those who advocate “grandmother cell” or “localist” 

encoding in the cortex might relax their definition of what they mean: and if so, it will be interesting see how close 

they reach to the sparse distributed encoding described in this paper, which is based on experimental evidence 

from thousands of single neuron recordings.)  

5. Completion 

Completion occurs in associative memory networks by a similar process. Completion is the property of 

recall of the whole of a pattern in response to any part of the pattern (Rolls, 2016). 

6. Graceful degradation or fault tolerance 

Again, because the information is decoded from a large population of neurons by inner product 

multiplication with the synaptic weight vector, there is less dependence on the firing of any one neuron or on any 

particular subset of neurons, so that if some neurons are damaged, the performance of the system only gradually 

degrades, and is in this sense fault tolerant (Rolls, 2016). 

7. Speed of readout of the information 

The information available in a distributed representation can be decoded by an analyzer more quickly than 

can the information from a local representation, given comparable firing rates. Within a fraction of an interspike 

interval, with a distributed representation, much information can be extracted (Panzeri, Treves, Schultz, & Rolls, 

1999b; Rolls et al., 2006; Rolls et al., 1997a; Treves, 1993; Treves, Rolls, & Simmen, 1997; Treves et al., 1996).  

In effect, spikes from many different neurons can contribute to calculating the angle between a neuronal population 

and a synaptic weight vector within an interspike interval (Franco et al., 2004; Rolls, 2008, 2016). With local 

encoding, the speed of information readout depends on the exact model considered, but if the rate of firing needs 

to be taken into account, this will necessarily take time, because of the time needed for several spikes to accumulate 

in order to estimate the firing rate. 

8. Distributed representations support attractor representations in the brain 

Another advantage of distributed representations is that attractor states are very likely to be used to hold 

information on-line for short-term memory, attention, long-term memory, decision-making etc, and attractors can 

only be supported in the brain by neuronal systems with distributed not local representations because positive 

feedback from many neurons (not from a single neuron) is required to keep an attractor state active in the brain 

(Rolls, 2016; Rolls & Deco, 2010). (A single neuron providing input to itself would be insufficient to maintain its 

activity in a typical cortical pyramidal cell with 10,000 recurrent collateral synapses.)  

 

My view is that even in systems such as those involved in language, the same sparse distributed graded 

encoding will be used, though the coding may be more sparse. My reasoning is that the identity of a person or 

object is encoded by a sparse distributed representation of neurons that reflect the main attributes. The more those 

attributes match, the more likely I am to decode the input as, for example, my grandmother. This type of 

representation can be built by competitive learning (Rolls, 2016). If on one occasion my grandmother is wearing 

glasses, that is then an attribute represented by some members of the neurons in the sparse distributed 

representation. If the glasses are absent (but are usually present), the input may look a little less like my 

grandmother, because the dot product decoding used by the receiving neurons is a little lower. This type of 

decoding, which is neuronally plausible, is described in more detail by Rolls (2016). A local or grandmother cell 



 

 

11 
representation does not cope at all with this scenario, for I might need a separate grandmother cell for every 

possible appearance of my grandmother, and there would be no useful generalization between the different 

grandmother cells all for my same grandmother but with different hats, glasses, etc. 

Another advantage of sparse distributed representations for language is that attractor states are very likely 

to be used to hold on-line the parts of a sentence for syntactical operations (Rolls & Deco, 2015), and attractors 

can only be supported in the brain by neuronal systems with distributed not local representations as noted above 

(Rolls, 2016; Rolls & Deco, 2010). 

What happens in this situation if I need to remember that at a particular occasion, say her 70th birthday, 

my grandmother was wearing a red hat? My view is that this case where particular attributes have to be 

remembered is then the role for the hippocampus, which is involved in episodic memory, and which can associate 

together the sparse representation received from the inferior temporal visual cortex that it is my grandmother, with 

other neurons that sparsely encode the red hat (and with other neurons that encode the time and place) (Kesner & 

Rolls, 2015; Rolls, 2016). 

Evidence from humans 

Interesting findings are now becoming available about how neurons respond in medial temporal lobe 

regions (Fried, Rutishauser, Cerf, & Kreiman, 2014; Rolls, 2015). Mormann, Ison, Quiroga, Koch, Fried and 

Kreiman describe some neurons with responses that appear quite selective, with one neuron responding for 

example to Jennifer Aniston but much less to other individuals, and responding multimodally, for example not just 

to the sight of Jennifer Aniston, but also to the sound of her voice (Fried et al., 2014; Rey et al., 2015). At first, 

the tuning of single neurons might on the basis of a few striking examples in humans be thought to be more 

selective than those in the macaque temporal lobe, but on the basis of many such recordings, those who have 

recorded these neurons argue that the code is sparsely distributed (Quiroga, 2012, 2013; Quiroga, Kreiman, Koch, 

& Fried, 2008; Rey et al., 2015), and therefore somewhat similar to that of neurons in macaques (Rolls & Treves, 

2011).  

Some neurons recorded in the human medial temporal lobe areas such as the hippocampus are described 

as being ‘concept neurons’, for not only are they multimodal, but they can also respond to imagery of for example 

Jennifer Aniston, as in one famous case (Fried et al., 2014; Rey et al., 2015). How does this fit in with concepts of 

hippocampal function? The hippocampus is thought to be involved in episodic or event memory, for example the 

memory of a particular person in a particular place (Kesner & Rolls, 2015; Rolls, 1989, 2008). Each memory must 

be as separate as possible from other memories, and the evidence is that single neurons in the macaque CA3 

respond to combinations of for example a particular place being viewed, or a particular object, or a combination 

of these (Rolls, Xiang, & Franco, 2005). Indeed the theory is that the CA3 region with its recurrent collateral 

associatively modifiable synaptic connections enables any object or person to be associated with any place by this 

associativity, to form a unique episodic memory (Kesner & Rolls, 2015; Rolls, 1989, 2016). Human neurons in 

the hippocampus that respond to ‘concepts’, for example with quite selective tuning for a person, appear to be 

consistent with this theory. Of course, the nature of the sparsely distributed encoding is that no single neuron does 

need to be selective for just one person or object, for it is across a population of such neurons with sparsely 

distributed encoding that a particular individual is represented (Rolls & Treves, 2011) and becomes part of the 

autoassociation or attractor memory of a particular object or person in a particular place (Kesner & Rolls, 2015; 

Rolls, 1989, 2016). 

A possible difference of single neurons in the human medial temporal lobe is that many seem to have 

rather low firing rate responses compared to those in macaques. However, the firing rates of neurons in different 

cortical areas are very different. In the inferior temporal visual cortex neurons with peak firing rates of 100 spikes/s 

to the most effective stimulus are common, whereas in the hippocampus neuronal responses have much lower 

firing rates, typically reaching a peak of 10-15 spikes/s to the most effective stimulus, from a spontaneous rate of 
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less than 1 spike/s (Rolls & Xiang, 2006). Thus when interpreting temporal lobe recordings in humans, it is 

important to take into account as much as possible the recording site, for what neurons respond to, and how much 

they respond, differs greatly between cortical areas. In this context, any information such as MNI coordinates of 

recorded single neurons in humans is important information to provide, and moreover will help the single neuron 

studies to be related to the activations found in human imaging studies, which of course reflect the average activity 

of hundreds of thousands of neurons, so provide little evidence about how the information is encoded by the 

neurons. 

What are unique to humans are the findings on neuronal responses related to human language, described 

by Ojemann (Fried et al., 2014) (Chapter 14). Many of these recordings were made in lateral temporal cortex, and 

not from areas that are essential for language. One interesting finding has been of single neurons that change their 

activity when naming objects in one language, but not in another language. This suggests that the neuronal 

networks for different languages may be at least partly separate in terms of how they operate. Another interesting 

finding is that some temporal lobe neurons are involved in perception, and others in production, and indeed neurons 

with mirror-like properties are described as being rare in the superior temporal lobe cortical areas. In a more recent 

study, Halgren, Cash and colleagues described in the left anterior superior temporal gyrus of a right-handed man 

that 45% of units robustly fired to some spoken words with little or no response to pure tones, noise-vocoded 

speech, or environmental sounds (Chan et al., 2014). The tuning to words might be described as sparsely 

distributed. Many units were tuned to complex but specific sets of phonemes, which were influenced by local 

context but invariant to speaker, and suppressed during self-produced speech. The firing of several units to specific 

visual letters was correlated with their response to the corresponding auditory phonemes, providing direct neural 

evidence for phonological recoding during reading. A fundamental issue is how syntax is encoded in the cortex. 

A recent hypothesis is that place coding might be used, with for example a neuron responding to the word “cat” 

when it is the subject of a sentence, and not when it is the object (Rolls & Deco, 2015). If this hypothesis was 

found to be the case in single neuron recordings in future, this would greatly simplify concepts about how language 

and in particular syntax are implemented in the cortex (Rolls, 2016; Rolls & Deco, 2015). 
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FIGURE LEGENDS 

Figure 1. Firing rate distribution of a single neuron in the temporal visual cortex to a set of 23 face (F) and 45 non-

face images of natural scenes. The firing rate response (± the standard error) to each of the 68 stimuli is shown, 

i.e. the spontaneous firing rate has been subtracted so that the 0 baseline is the spontaneous firing rate. P indicates 

a face profile stimulus, a B a body part stimulus such as a hand. Rather few stimuli produce high firing rates (e.g. 

above 60 spikes/s), and increasingly large numbers of stimuli produce lower and lower firing rates. The 

spontaneous firing rate of this neuron, the rate when no stimuli were being shown, was 20 spikes/s (Rolls and 

Tovee 1995). The histogram bars indicate the change of firing rate from the spontaneous value produced by each 

stimulus. The neuron responded best to three of the faces (profile views), had some response to some of the other 

faces, and had little or no response, and sometimes had a small decrease of firing rate below the spontaneous firing 

rate, to the non-face stimuli. (After Rolls and Tovee, 1995.) (fratedist.eps) 

Figure 2. a. Distribution of sparseness value for the population of 14 inferior temporal cortex neurons for which 

firing rates were measured to a set of 23 face and 45 non-face images by Rolls and Tovee (1995). The mean 

sparseness value was 0.65 ± 0.16 (mean ± SD). b. The same data as (a), but now shown as response sparseness ar, 

by subtracting the spontaneous firing rate. The mean of the response sparseness was 0.33 ± 0.22 (mean ± SD). 

(After Rolls and Tovee, 1995.) (sparseness95.eps)  

Fig. 3. An exponential firing rate probability distribution obtained by pooling the firing rates of a population of 41 

inferior temporal cortex neurons tested to a set of 20 face and non-face stimuli. The firing rate probability 

distribution for the 100-300 ms interval following stimulus onset was formed by adding the spike counts from all 

41 neurons, and across all stimuli. The fit to the exponential distribution (dashed line) was high. (After Franco, 

Rolls, Aggelopoulos and Jerez 2007.) (Fig4-41_2.eps) 

Fig. 4. The probability of different firing rates measured in short (e.g. 100 ms or 500 ms) time windows of a 

temporal cortex neuron calculated over a 5 min period in which the macaque watched a video showing natural 

scenes, including faces. An exponential fit (+) to the data (diamonds) is shown. (After Baddeley, Abbott, Booth, 

Sengpiel, Freeman, Wakeman and Rolls 1997.) (ratenatscenes.eps) 

 

Fig. 5. The stimulus-specific information I(s,R) available in the response of the same single neuron as in Fig. 1 

about each of the stimuli in the set of 20 face stimuli (abscissa), with the firing rate of the neuron to the 

corresponding stimulus plotted as a function of this on the ordinate. The horizontal line shows the mean firing rate 

across all stimuli. (After Rolls, Treves, Tovee and Panzeri 1997.) (scellinfo20f.eps) 

 

Fig. 6. The relation for a single cell between the number of standard deviations the response to a stimulus was 

from the average response to all stimuli (see text, z score) plotted as a function of I(s,R), the information available 

about the corresponding stimulus, s. (After Rolls, Treves, Tovee and Panzeri 1997) (zvsinfo.eps) 

 

Figure 7a. The values for the average information available in the responses of different numbers of inferior 

temporal cortex neurons on each trial, about which of a set of 20 face stimuli has been shown. The decoding 

method was Dot Product (DP, x) or Bayesian Probability Estimation (PE, +), and the effects obtained with cross 

validation procedures utilising 50% of the trials as test trials are shown. The remainder of the trials in the cross-

validation procedure were used as training trials. Probability estimation refers to estimating the probability from 

the neuronal responses for a single trial that each of the 20 faces was shown, thus utilizing the neuronal evidence 

available about how likely it was that each stimulus was shown, see Rolls et al 1997. The full line indicates the 

amount of information expected from populations of increasing size, when assuming random correlations within 

the constraint given by the ceiling (the information in the stimulus set, I=4.32 bits). b. The percent correct for the 

corresponding data to those shown in Fig. 7a. (After Rolls, Treves and Tovee, 1997.) (multicellinfo20f_2.eps) 

Fig. 8. The number of stimuli (in this case from a set of 20 faces) that are encoded in the responses of different 
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numbers of neurons in the temporal lobe visual cortex, based on results shown in Fig. 7. The solid circles are 

the result of the raw calculation, and the open circles correspond to the cross-validated case. (After Abbott, Rolls 

and Tovee 1996.) (multicellexprot.eps) 
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