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Universality in Uncertainty Relations

for a Quantum Particle

Spiros Kechrimparis∗and Stefan Weigert†

Department of Mathematics, University of York
York, YO10 5DD, United Kingdom

22 June 2016

Abstract

A general theory of preparational uncertainty relations for a quantum particle in
one spatial dimension is developed. We derive conditions which determine whether
a given smooth function of the particle’s variances and its covariance is bounded
from below. Whenever a global minimum exists, an uncertainty relation has been
obtained. The squeezed number states of a harmonic oscillator are found to be univer-
sal: no other pure or mixed states will saturate any such relation. Geometrically, we
identify a convex uncertainty region in the space of second moments which is bounded
by the inequality derived by Robertson and Schrödinger. Our approach provides a
unified perspective on existing uncertainty relations for a single continuous variable,
and it leads to new inequalities for second moments which can be checked experi-
mentally.

1 Introduction and main result

Inspired by Heisenberg’s analysis [1] of Compton scattering, Kennard [2] proved the
preparational uncertainty relation

∆p ∆q ≥ h̄

2
, (1)

for the standard deviations ∆p and ∆q of momentum and position of a quantum particle
with a single spatial degree of freedom. Experimentally, they are determined by mea-
surements performed on an ensemble of systems prepared in a specific state |ψ〉. The
only states which saturate the bound (1) are squeezed states with a real squeezing parame-
ter [3, 4, 5] (we follow the review [6] regarding the naming of squeezed states). Squeezed
states are conceptually important since they achieve the best possible localization of a
quantum particle in phase-space, and they are easily visualized by “ellipses of uncer-
tainty”. Each squeezed state may be displaced rigidly in phase space without affecting
the value of the variances, resulting in a three-parameter family of states saturating the
lower bound (1).

Not many other uncertainty relations are known. The sum of the position and mo-
mentum variances is bounded [7, 8] according to the relation
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∆2 p + ∆2q ≥ h̄ , (2)

which holds in a system of units where the physical dimensions of both position and

momentum equal
√

h̄. Only the ground state of a harmonic oscillator with unit mass and
frequency saturates this inequality (ignoring rigid displacements in phase-space). The
Robertson-Schrödinger (RS) inequality [9, 10],

∆2 p ∆2q − C2
pq ≥

h̄2

4
, (3)

sharpens Heisenberg’s inequality (1) by including the covariance Cpq defined in Eq. (8).
Eq. (3) is saturated by the two-parameter family of squeezed states with a complex squeez-
ing parameter [6], again ignoring phase-space displacements. The additional free pa-
rameter describes the phase-space orientation of the uncertainty ellipse which, in the
previous case, was aligned with the position and momentum axes.

By introducing the observable r̂ = − p̂ − q̂, which satisfies the commutation relations
[q̂, r̂] = [r̂, p̂] = h̄/i, one obtains a bound on the product of the variances of three pairwise
canonical observables,

∆2 p ∆2q ∆2r ≥
(

τ
h̄

2

)3

, τ = csc

(

2π

3

)

≡
√

4

3
. (4)

This triple product uncertainty relation has been found only recently [13]. Ignoring phase-
space translations, only one state exists which achieves the minimum. Since the variance
of r̂ is given by

∆2r = ∆2 p + ∆2q + 2Cpq , (5)

the left-hand-side of (4) can also be considered as a function of the three second moments.
The inequalities (1) to (4) and the search for their minima arise from one single math-

ematical problem:

Does a given smooth function of the second moments have a lower bound?
If so, which states will saturate the inequality if a minimum exists?

In this paper, we answer these questions for a quantum particle with a single spatial
degree of freedom by presenting a systematic approach to studying uncertainty relations
derived from smooth functions f (∆2 p, ∆2q, Cpq). Proceeding in three steps we

1. identify a universal set of states E which can possibly minimize a given functional
f (∆2 p, ∆2q, Cpq);

2. spell out conditions which determine the extrema of the functional f as a subset of
the universal set, E ( f ) ⊆ E ; if no admissible extrema exist, the functional has no
lower bound;

3. determine the set of states M ( f ) ⊆ E ( f ) which minimize the functional f , leading
to an uncertainty relation in terms of the second moments.

The inequalities studied here will be preparational in spirit: they apply to scenarios in
which the quantum state of the particle |ψ〉 is fixed during the three separate runs of the
measurements required to determine the numerical values of the second moments. These
inequalities do not describe the limitations of measuring non-commuting observables
simultaneously.
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The paper is divided into two major sections. In Sec. 2 we introduce uncertainty func-
tionals and explain how to determine their extrema and minima. The impatient reader
may jump directly to Sec. 3 where we derive new families of uncertainty relations and de-
termine the states minimizing them. We conclude the paper with a summary and discuss
further applications.

2 Minimising uncertainty

To begin, we introduce the uncertainty functional [11]

J[ψ] = f
(

∆2 p, ∆2q, Cpq

)

− λ (〈ψ|ψ〉 − 1) , (6)

which sends each element |ψ〉 of the one-particle Hilbert space H to a real number de-
termined by the real differentiable function f (x1, x2, x3) of three variables. The Lagrange
multiplier λ ensures the normalization of the states. The variances of position and mo-
mentum are defined by

∆2 p = 〈ψ| p̂2|ψ〉 − 〈ψ| p̂|ψ〉2 , (7)

etc., and the covariance of position and momentum reads

Cpq =
1

2
〈ψ| ( p̂q̂ + q̂ p̂) |ψ〉 − 〈ψ| p̂|ψ〉〈ψ|q̂|ψ〉 . (8)

The second moments form the real, symmetric covariance matrix

C =

(

∆2 p Cpq

Cpq ∆2q

)

≡
(

x w
w y

)

, (9)

with state-dependent matrix elements x ≡ x(ψ) etc. The covariance may take any finite
real value, w ∈ R, while the variances of position and momentum take (finite) positive
values only, x, y > 0. States of a quantum particle with vanishing position (or momentum)
variance and diverging momentum (or position) variance are not taken into account since
they only arise for non-normalizable states which cannot be prepared experimentally.
Nevertheless, position (or momentum) eigenstates can be approximated arbitrarily well
by states within the set we consider.

It will be convenient to work with states in which the expectation values of both
momentum and position vanish, 〈ψ|q̂|ψ〉 = 〈ψ| p̂|ψ〉 = 0. This can be achieved by rigidly
displacing the observables using the unitary operator

T̂α = exp [i (p0q̂ − q0 p̂) /h̄] , α =
1√
2h̄

(q0 + ip0) , (10)

where p0 = 〈ψ| p̂|ψ〉, etc. This transformation leaves invariant the values of the second
moments (7) and (8) and has thus no impact on the minimization of the functional J[ψ].

A lower bound of a functional J[ψ] of the form (6) will result in an uncertainty relation
associated with the function f (x1, x2, x3). To determine such a bound, we apply a method
used in [11, 12, 13] (see also [14, 15, 16]). First, we derive an eigenvalue equation for the
extrema of the functional J[ψ] which also need to satisfy a set of consistency conditions
given in Sec. 2.3. Then, we introduce a “space of moments” to visualize these results
(Sec. 2.4) and, finally, we determine the minimizing states whenever the functional is
guaranteed to be bounded from below (see Sec. 2.5 and Sec. 3).
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2.1 Extrema of uncertainty functionals

When comparing the values of the functional J at the points |ψ〉 and |ψ + ε〉 ≡ |ψ〉+ ε|e〉,
for any unit vector |e〉 and a small parameter ε, we find to first order that

J[ψ + ε]− J[ψ] = εDε J[ψ] + O
(

ε2
)

, (11)

where the expression

Dε = 〈e| δ

δ〈ψ| +
δ

δ|ψ〉 |e〉, (12)

denotes a Gâteaux derivative. If the functional J[ψ] does not change under this variation,

Dε J[ψ] = 〈e|
(

δ

δ〈ψ| f (x, y, w)− λ|ψ〉
)

+ c.c. = 0, (13)

it has an extremum at the state |ψ〉. More explicitly, this condition reads

〈e|
(

∂ f

∂x

δx

δ〈ψ| +
∂ f

∂y

δy

δ〈ψ| +
∂ f

∂w

δw

δ〈ψ| − λ|ψ〉
)

+ c.c. = 0 , (14)

which should hold for arbitrary variations. Since the vectors |e〉 and 〈e| can be varied in-
dependently (just consider their position representations e∗(x) and e(x)), the expression
in round brackets must vanish identically which implies that the complex conjugate term
will also vanish. Using

δx

δ〈ψ| ≡
δ∆2 p

δ〈ψ| =
δ〈ψ| p̂2|ψ〉

δ〈ψ| = p̂2|ψ〉 , (15)

a similar relation for δy/δ〈ψ|, and the identity

δw

δ〈ψ| ≡
1

2
(q̂ p̂ + p̂q̂) |ψ〉 , (16)

we arrive at an Euler-Lagrange-type equation,

(

∂ f

∂x
p̂2 +

∂ f

∂y
q̂2 +

1

2

∂ f

∂w
(q̂ p̂ + p̂q̂)− λ

)

|ψ〉 = 0. (17)

The parameter λ can be eliminated by multiplying this equation with the bra 〈ψ| from
the left and solving for λ; substituting the value obtained back into Eq. (17), one finds a
nonlinear eigenvector-eigenvalue equation,

(

fx p̂2 + fyq̂2 +
fw

2
(q̂ p̂ + p̂q̂)

)

|ψ〉 =
(

fxx + fyy + fww
)

|ψ〉 , (18)

using the standard shorthand for partial derivatives.
Eq. (18) is our first result following from the approach conceived in [11]: the extrema

of arbitrary smooth functions of the second moments are encoded in an eigenvalue equa-
tion for a Hermitean operator quadratic in position and momentum. However, the equa-
tion is not linear in the state |ψ〉 because the quantities x, y, . . . , fw are functions of expec-
tation values taken in the yet unknown state. Previously, similar results had only been
found for specific uncertainty functionals such as the product of the standard deviations
or position and momentum.
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Let us briefly illustrate the crucial features of Eq. (18) in a simple case before systemat-
ically investigating its solutions. For a function linear in x, y, and w, the derivatives fx, fy,
and fw will be fixed constant numbers. In this case, the operator on the left-hand-side
of (18) represents a quadratic form in the position and momentum operators, falling into
one of three possible categories [17]. Up to a multiplicative constant, the operator will be
unitarily equivalent to the Hamiltonian of (i) a harmonic oscillator with unit mass and
frequency, p̂2 + q̂2, (ii) a free particle, p̂2, or (iii) an inverted harmonic oscillator, p̂2 − q̂2.
In the first case, the spectrum of the operator will be discrete and bounded from below
(or above); the spectra of the operators in the other two cases are continuous which is
tantamount to the absence of normalizable eigenstates. Thus, a linear function f (x, y, w)
possesses a non-trivial bound only if it gives rise to an operator in (18) which is unitarily
equivalent to the Hamiltonian of a harmonic oscillator. Generally, our method will signal
the absence of lower bounds corresponding to the cases (ii) and (iii).

2.2 Universality

To find a lower bound of the functional J[ψ], we will determine all its extrema and then
pick those where J[ψ] assumes its smallest value. However, Eq. (18) is not a standard
eigenvalue equation: even for a linear function f , the right-hand-side of (18) depends
non-linearly on the as yet unknown state |ψ〉, and if the function f is non-linear, the
operators on the left-hand-side of the equation acquire state-dependent coefficients given
by its partial derivatives.

Nevertheless, the eigenvalue problem can be solved systematically, in a self-consistent
way. Initially, we treat the expectations x, y, w, and fx, fy, fw in (18) as parameters with
given values, i.e. we ignore their dependence on the state |ψ〉. The solutions |ψ(x, y, w)〉
will depend on these parameters which means that the solutions must be checked for
consistency since the relations (7) now require that x = 〈ψ(x, y, w)| p̂2|ψ(x, y, w)〉, etc. It
may or may not be possible to satisfy these restrictions on the parameters.

To begin, we write the operator on the left-hand side of (18) in matrix form,

( p̂ , q̂)

(

fx fw/2
fw/2 fy

)(

p̂
q̂

)

≡ ẑ⊤ · F · ẑ . (19)

Williamson’s theorem [18] ensures that any positive or negative definite matrix can be
mapped to a diagonal matrix by conjugation with a symplectic matrix Σ. We will assume
from now on that the matrix F is positive definite. The negative definite case is easily
dealt with by considering − f (x, y, w) instead of f (x, y, w). Applied to the 2 × 2 matrix F,
Williamson’s result states that we can write

Σ
⊤ · F · Σ = c I , Σ ∈ Sp(2, R) , c > 0 , (20)

where I is the identity matrix, whenever F > 0 holds. This requires both

det F ≡ fx fy − f 2
w/4 > 0 and fx > 0 , (21)

implying that fy > 0 will hold, too. These requirements clearly agree with the observa-
tions made for linear uncertainty functionals f (x, y, w): since the operators p̂2 and p̂2 − q̂2

result in matrices F with zero or negative determinant, the left-hand-side of (18) cannot
be mapped to an oscillator Hamiltonian by means of a symplectic transformation.

A direct calculation shows that the matrix F is diagonalized by the symplectic matrix

Σ = (SγGb)
−1, where
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Gb =

(

1 0
b 1

)

, and Sγ =

(

e−γ 0
0 eγ

)

, (22)

with real parameters

b =
fw

2 fy
∈ R and γ =

1

2
ln

(

fy√
det F

)

∈ R, (23)

leading to c =
√

det F in Eq. (20). The symplectic matrices Sγ and Gb give rise to the
Iwasawa (or K A N ) decomposition of the matrix Σ

−1 ∈ Sp(2, R) (cf. [19], for example)
if they are written in opposite order and the parameter b is replaced by beγ; the third
factor happens to be the identity.

Next, we observe that the linear action of the matrices G and S on the canonical pair
of operators ( p̂, q̂)⊤ can be implemented by conjugation with suitable unitary operators,
known as metaplectic operators [19]. We have, for example,

(

1 0
b 1

) (

p̂
q̂

)

= eibp̂2/2h̄

(

p̂
q̂

)

e−ibp̂2/2h̄ , (24)

or, in matrix notation,

Gb · ẑ = Ĝb ẑ Ĝ†
b (25)

where the unitary operator

Ĝb = eibp̂2/2h̄ (26)

describes a momentum gauge transformation. Similarly, the squeeze operator

Ŝγ = eiγ(q̂ p̂+ p̂q̂)/2h̄ , (27)

symplectically scales position and momentum according to

Sγ · ẑ = Ŝγ ẑ Ŝ†
γ . (28)

With Σ
−1 = SγGb in (20), we rewrite (19) as

ẑ⊤ · F · ẑ =
√

det F (Sγ · Gb · ẑ)⊤ · (Sγ · Gb · ẑ) . (29)

Finally, using the identities (25) and (28) and multiplying Eq. (18) with the unitary Ŝ†
γĜ†

b
from the left, the condition for the existence of extrema of the functional J[ψ] takes on the
desired form,

1

2

(

p̂2 + q̂2
)

|ψ(b, γ)〉 =
(

x fx + y fy + w fw

2
√

det F

)

|ψ(b, γ)〉 . (30)

Thus, the solutions
|ψ(b, γ)〉 ≡ Ŝ†

γĜ†
b |ψ〉 (31)

must be proportional to the eigenstates |n〉, n ∈ N0, of a unit oscillator, i.e. a quantum
mechanical oscillator with unit mass and unit frequency. Equivalently, the candidates for
states extremizing the functional J[ψ] are given by the family of states,

|n(b, γ)〉 = ĜbŜγ|n〉 , b, γ ∈ R , n ∈ N0 . (32)
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Upon rewriting the operator Ŝ†
γĜ†

b these states are seen to coincide with the squeezed num-

ber states [6]. As shown in in Appendix A, the product of a squeeze transformation Ŝγ

(with real parameter γ) and a momentum gauge transformation Ĝb equals

ĜbŜγ = Ŝ(ξ)R̂(χ) , (33)

i.e. the product of a rotation in phase space,

R̂(χ) = eiχâ† â χ ∈ [0, 2π) , (34)

and a squeeze transformation (with complex ξ) along a line with inclination θ,

Ŝ(ξ) = e
1
2 (ξ â†2−ξ â2) , ξ = reiθ ∈ C . (35)

Summarizing our findings, we draw two conclusions:

1. The complete set of solutions of Eq. (30) coincides with the squeezed number states,

E =
∞
⋃

n=0

En ≡
∞
⋃

n=0

{

|n(α, ξ)〉 = T̂αŜ(ξ)|n〉 , α, ξ ∈ C
}

, (36)

where non-zero expectation values of position and momentum have been reintro-
duced via the translation operator T̂α (see Eq. (10)) and irrelevant constant phases
have been suppressed.

2. The value of the right-hand-side of Eq. (30) can take only specific values,

x fx + y fy + w fw

2
√

det F
=

(

n +
1

2

)

h̄ , n ∈ N0 , (37)

given by the eigenvalues of the unit oscillator. This relation constrains the state-
dependent quantities of the left-hand-side which needs to be checked for consis-
tency, just as Eq. (21) does.

We have thus obtained our second main result. The extrema E of an arbitrary functional
J[ψ] characterized by a function f (x, y, w) are necessarily squeezed number states, a set
which is independent of the function at hand. In other words, the set E containing all
the states which may arise as minima of an uncertainty functional J[ψ], is universal. The
minima of any functional must be a subset E ( f ) ⊆ E which will depend explicitly on the
function f (x, y, w), determined by the consistency conditions to be studied next.

2.3 Consistency conditions

We now spell out the conditions which must be satisfied by the states |n(b, γ)〉 in (32) –
or, equivalently, the states |n(α, ξ)〉 in (36) – to qualify as extrema for a specific functional
J[ψ]:

1. Recalling that x ≡ ∆2 p, etc., the relations

x = 〈n(b, γ)| p̂2|n(b, γ)〉 , y = 〈n(b, γ)|q̂2|n(b, γ)〉 , (38)

and

w =
1

2
〈n(b, γ)| ( p̂q̂ + q̂ p̂) |n(b, γ)〉 , (39)

represent three, generally nonlinear consistency equations between the second mo-
ments since the parameters b and γ are functions of x, y and w (cf. Eq. (23)).
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2. The values of the moments x, y and w must satisfy Eq. (37).

3. The matrix F of the first derivatives must be positive definite.

Using (32), (25) and (28), the first consistency condition in (38) leads to

x = 〈n(b, γ)| p̂2|n(b, γ)〉 = e2γ〈n| p̂2|n〉 = e2γ

(

n +
1

2

)

h̄ , n ∈ N0 , (40)

or, recalling the definition of γ in (23),

x
√

det F =

(

n +
1

2

)

h̄ fy , n ∈ N0 . (41)

Similar calculations result in

y
√

det F =

(

n +
1

2

)

h̄ fx , n ∈ N0 , (42)

and

−2w
√

det F =

(

n +
1

2

)

h̄ fw , n ∈ N0 , (43)

respectively. These conditions may be expressed in matrix form,

F · C√
det F

=

(

n +
1

2

)

h̄ I, n ∈ N0 , (44)

involving both the covariance matrix C and F.
Taking the trace of the last relation shows that Eq. (37) is satisfied automatically. With-

out specifying a function f (x, y, w), no conclusions can be drawn about the validity of
Eqs. (41-43) or the positive definiteness of the matrix F.

2.4 Geometry of extremal states

We visualize the interplay of the consistency conditions by expressing them in the form

x fx = y fy , x fw = −2w fy , (45)

and

xy − w2 =

(

n +
1

2

)2

h̄2 , n ∈ N0 , (46)

following easily from either (41-43) or (44). The third constraint is universal since it does
not depend on the function f (x, y, w). Using the variables

u =
1

2
(x + y) > 0 , v =

1

2
(x − y) ∈ R ,

we define the three-dimensional space of (second) moments, with coordinates (u, v, w). For
each non-negative integer, the third condition

u2 − v2 − w2 = e2
n , en =

(

n +
1

2

)

h̄ , n ∈ N0 , (47)

determines one sheet of a two-sheeted hyperboloid, located in the “upper” half of the
space of moments, i.e. u > 0 and v, w ∈ R (cf. Fig. 1). The points on the n-th sheet, which
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En

E0

u

wv

Figure 1: Space of (second) moments, with points (u, v, w): the extremal states of smooth
functionals J[ψ] are located on a discrete set of nested hyperboloids E =

⋃∞
n=0 En the first

three of which are shown, using light (n = 0), medium (n = 1) and dark shading (n = 2),
respectively. The accessible uncertainty region for a quantum particle is given by the points
on and inside of the convex surface E0 : u2 − v2 − w2 = h̄2/4 which coincides with the
minima M ( f RS) of the RS inequality, i.e. squeezed states with minimal uncertainty.

intersects the u-axis at u = +en, are in one-to-one correspondence with the squeezed
states originating from the number state |n〉, forming the set En in (36).

The consistency conditions (45) clearly depend on the function f (x, y, w) at hand. The
constraints will only be satisfied for specific subsets En( f ) of points on the hyperboloids
En, resulting in the f -dependent set of states

E ( f ) =
∞
⋃

n=0

En( f )

which contains all the candidates possibly minimizing the functional J[ψ]. The candidate
sets E ( f ) may depend on one or two parameters, or contain isolated points only. If the
consistency conditions cannot be satisfied, then the functional J[ψ] has no lower bound.
Furthermore, if the matrix F is not positive definite for any of the states in E ( f ), the
method makes no predictions about the minima of the functional J[ψ]. We have, however,
not found any non-trivial cases of this behaviour.

Finally, we need to evaluate the functional J[ψ] for all candidate states E ( f ) and pick
the smallest possible value. The states achieving this minimum value constitute the so-
lutions M ( f ) ⊆ E ( f ) of the minimization problem. In their entirety, the minima M ( f )
may consist of isolated states or of sets depending on one or two parameters. Usually,
the states saturating the bound are located on the sheet E0.

Let us briefly introduce the concept of a space of moments, defined by the triples of
numbers (u, v, w)⊤ ∈ R3. For n = 0, Eq. (47) is equivalent to (3) which implies that not all
points of this set can arise as moment triples. The accessible part of the space, bounded
by the extremal hyperboloid E0 defined in Eq. (47), is called the uncertainty region (cf.
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Fig. 1). The boundary of an analogously defined uncertainty region for a quantum spin
s [20] is not convex. The relation between moment triples and the underlying pure or
mixed states of quantum particles is discussed elsewhere [21].

2.5 Known uncertainty relations

To illustrate our approach we re-derive three of the four bounds mentioned in the intro-
duction: the uncertainty relations by Robertson-Schrödinger, by Heisenberg-Kennard, and
the triple-product inequality.

Robertson-Schrödinger uncertainty relation. Defining

f RS(x, y, w) = xy − w2 , (48)

the matrix of first-order derivatives associated with the quadratic form (19) is given by

F =

(

y −w
−w x

)

, (49)

and, interestingly, its determinant

det F = xy − w2 ≡ f RS(x, y, w) (50)

coincides with the original functional. At this point of the derivation, it is not yet known
whether the matrix F is strictly positive.

The relations Eq. (45) do not constraint the parameters x, y, and w, since they are satis-
fied automatically, leaving Eq. (46) as the only restriction. Since the left-hand-side of (46)
coincides with the function f RS(x, y, w), all squeezed states are candidates to minimize
the RS functional,

E ( f RS) = E . (51)

Therefore, the function f RS comes with the largest possible set of candidates to minimize
it, given by the union of the sets En in Fig. 1. The lower bound on f RS now follows directly
from combining (46) with (48),

f RS(x, y, w) =

(

n +
1

2

)2

h̄2 ≥ h̄2

4
, (52)

reproducing the RS inequality. Eqs. (50) and (52) imply that the determinant of F is
positive everywhere in the uncertainty region.

The hyperboloid closest to the origin of the (u, v, w)-space provides the states mini-
mizing the function f RS,

M ( f RS) = E0 , (53)

i.e. the set of squeezed states based on the ground state |0〉 of a unit oscillator. This is, of
course, a two-parameter family since the relations (23) take the form

b = − z

x
, and γ =

1

2
ln (2x) , (54)

meaning that, with x > 0 and z ∈ R, both b and γ take indeed arbitrary real values.
Thus, each squeezed state can be reached and, when adding phase-space translations,
we obtain the four-parameter family of all squeezed states as minima of f RS:

Mα( f RS) = T̂αM ( f RS) . (55)
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This property singles out the RS functional among all uncertainty functionals.
If an uncertainty functional associated to a function f , is different from the RS func-

tional, the first two consistency relations will, in general, not be satisfied automatically
but impose non-trivial constraints on the second moments. Therefore, the extrema of the
functional must be a proper subset of those of the RS functional, i.e. E ( f ) ⊂ E , as the
following example shows.

Heisenberg’s uncertainty relation. Let us determine the minimum of the product of the
standard deviations ∆p and ∆q by considering the function

f H(x, y, w) =
√

xy . (56)

Its partial derivatives satisfy

2 f H
x =

√

y

x
, 2 f H

y =

√

x

y
, f H

w = 0 , (57)

resulting in a positive definite diagonal matrix F, namely,

F =
1

2

(√

y/x 0

0
√

x/y

)

, det F =
1

4
> 0 . (58)

Eqs. (41) and (42) collapse into the conditions

√
xy =

(

n +
1

2

)

h̄ ≡ en , n ∈ N0 , (59)

which determine the value of the product of the standard deviations at the extrema of
f H(x, y, w), labeled by the positive integers. In the (u, v, w)-space, the intersections of
the surfaces defined by (59) and the hyperboloids (47) consist of hyperbolas in the (u, v)-
plane containing the points (en, 0), n ∈ N0. The union of these hyperbolas define the set
E ( f H), corresponding to the potential minima of the function f H(x, y) (cf. Fig. 2). The
third condition, Eq. (43), implies that w = 0. Combining (59) with (56), we obtain the
bound

f H(x, y, w) =

(

n +
1

2

)

h̄ ≥ h̄

2
, (60)

reproducing Heisenberg’s uncertainty relation (1).
The family of states minimizing Heisenberg’s uncertainty relation is found by using

the identity (59) for n = 0 in the definition of the parameter γ in (23), leading to fy = x/h̄.
Since the consistency conditions do not impose any other condition on the variance x, it
may take any positive value implying that γ ∈ R. Since fw = 0 leads to b = 0, the set of
states minimizing the Heisenberg’s uncertainty relation is given by squeezed states with
real squeezing parameter,

Mα( f H) = T̂αE ( f H) ≡
{

T̂αŜγ|0〉 , α ∈ C, γ ∈ R
}

, (61)

where we have re-introduced arbitrary phase-space displacements.
Triple product inequality. Using Eq. (5), we see that we need to find the minimum of

the expression

f T(x, y, w) = xy (x + y + 2w) (62)
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v

u

E1

(

f H
)

E3

(

f H
)

E2

(

f H
)

M
(

f H
)

= E0

(

f H
)

Figure 2: Hyperbolas in the (u, v)-plane through the points (en, 0), n ∈ N0, stemming
from intersections of the hyperboloids (47) and the surfaces defined by (59). The union
of the hyperbolas defines the set E ( f H) which represents the location of all possible min-
ima of the function f H(x, y); the points on the “lowest” (darkest) hyperbola E0( f H) cor-
respond to the set of states M ( f H) which saturate Heisenberg’s uncertainty relation.

in order to reproduce the triple product uncertainty relation (4). The first consistency
condition in Eq. (45) implies that x = y; using this identity in the second condition, one
finds

x(w + x)(w +
x

2
) = 0 . (63)

Recalling that variances are always non-zero for normalizable states, x > 0, the corre-
lation w must equal either −x or −x/2. According to (5), the first case would imply
∆2r ≡ 0, which is impossible since the operator r̂ has no normalizable eigenstates. There-
fore, using the solution w = −x/2 of (63) and x = y in the third consistency condition,
one finds that

x2 =
4

3

(

n +
1

2

)2

h̄2 , n ∈ N0 , (64)

must hold. It is now straightforward to evaluate f T(x, y, w) at its extrema to find its
global minimum,

f T(x, y, w) = x3 =

(
√

4

3

(

n +
1

2

)

h̄

)3

≥
(

τ
h̄

2

)3

,

which reproduces (4). It is easy to confirm that the matrix F is positive definite with
determinant det F = h̄4/3. Since the minimum occurs for n = 0, the values of the second
moments are given by

x = y = −2w =
h̄√
3
≡ τ

h̄

2
. (65)

These relations fix the values of the parameters in (23),

b =
1

2
and γ =

1

4
ln τ . (66)
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M T = E T
0

u

w

Figure 3: Candidate states E ( f T) ≡ E T possibly minimizing the product of three vari-
ances f T(u, v, w), represented by dots located on the intersections of the hyperboloids
(47) and the planes defined by the consistency conditions (69); the point closest to the
origin, M ( f T) ≡ M T, represents the state |Ξ0〉 achieving the minimum of the triple
product uncertainty relation (4) (and of any other S3-invariant inequality associated with

a functional f
(3)
N in (93)).

Using (32) or (36) we obtain one single state which saturates the triple uncertainty, namely

|Ξ0〉 ≡ Ĝ 1
2
Ŝ 1

2 ln τ|0〉 = Ŝ i
2 ln 3|0〉 . (67)

If one includes rigid phase-space translations, the set of states minimizing the triple un-
certainty is finally given by the two-parameter family

Mα( f T) =
{

T̂α|Ξ0〉 , α ∈ C
}

, (68)

in agreement with [13].
Geometrically, the state |Ξ0〉 arises from the intersection of the sequence of hyper-

boloids with the surfaces defined by

u = τen , v = 0 , w = −1

2
τen , n ∈ N0 . (69)

The planes defined by constant values of u have concentric circles in common with the
hyperboloids, and the vertical uw-plane (given by v = 0) intersects with each of the
circles in two points only. Finally, the condition on the variable w selects a single one of
the points with the same value of u. According to (69), the candidate states in (u, v, w)-
space are located on a straight line,

E ( f T) =







τen





1
0

−1/2



 , n ∈ N0







, (70)

and the state |Ξ0〉 corresponds to the point closest to the origin (see Fig. (3)).
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3 New uncertainty relations

3.1 Generalizing known relations

The linear combination of second moments

f L(x, y, w) = µx + νy + 2λw , µ, ν, λ,∈ R , (71)

leads to the uncertainty relation

µ∆2 p + ν∆2q + 2λCpq ≥ h̄
√

µν − λ2, µ, ν > 0 , µν > λ2 . (72)

The constraints on the parameters follow from the matrix F in (19) being strictly positive
definite. The consistency conditions (45) associated with f L relate both y and w to x
according to

y =
µ

ν
x , w = −λ

ν
x . (73)

Then, Eq. (46) simplifies to

(

µν − λ2
)

ν2
x2 =

(

n +
1

2

)2

h̄2 = e2
nh̄2 , (74)

which is consistent due to det F = µν − λ2 > 0. Expressing the functional f L(x, y, w) in
terms of x only, we obtain the bound given in (72),

f L(x, y, w) =
2
(

µν − λ2
)

ν
x = 2enh̄

√

µν − λ2 ≥ h̄
√

µν − λ2 . (75)

Up to phase-space translations T̂α, a single squeezed state saturates the bound, namely

M ( f L) =

{

|µ, ν, λ〉 = Ĝ λ
ν
Ŝ

1
2 ln

(

ν√
µν−λ2

)|0〉
}

. (76)

When expressing the correlation term Cpq in terms of the variance ∆2r according to
Eq. (5), we obtain, for µ = ν = 2λ = 1 in (72), the triple sum uncertainty relation

∆2 p + ∆2q + ∆2r ≥
√

3h̄ , (77)

derived in [13], and the minimum is achieved for the state |1, 1, 1/2〉 ≡ |Ξ0〉 which also
minimizes the triple product uncertainty (cf. Eq. (67) and Fig. 3).

Sums of powers of position and momentum variances are bounded from below accord-
ing to the inequality

µ
(

∆2 p
)m

+ ν
(

∆2q
)m′

≥
(

h̄

2

) 2mn
m+m′

(

µ

(

ν

µ

m′

m

)
m

m+m′
+ ν

(µ

ν

m

n

)
n

m+m′
)

, m, m′ ∈ N ,

(78)
reducing to the pair sum uncertainty relation (2) in the simplest case (µ = ν = m = m′ =
1).

Next, we study a generalized RS-uncertainty functional (48),

f RS
m,m′(x, y, w) = (xy)m − µwm′

, µ > 0 , m, m′ ∈ N . (79)
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For arbitrary integers m and n, the consistency conditions cannot be solved in closed
form. Setting m′ = 2m and assuming that both m > 1 and µ > 1 hold, we obtain the
explicit bound

(

∆2 p · ∆2q
)m − µ

(

Cqp

)2m ≥
(

h̄

2

)2m µ
(

µ
1

m−1 − 1
)m . (80)

An interesting special case of f RS
m,2m occurs for m = 1/2 and 0 < µ < 1,

∆p∆q − µ
∣

∣Cpq

∣

∣ ≥ h̄

2

√

1 − µ2 , (81)

which can be treated in spite of the presence of the non-differentiable term. The extremal
states depend on one free parameter,

Eα( f RS
1,1/2

) =

{

|α, n〉 = T̂αĜ± µen h̄

2x
√

1−µ2

Ŝ 1
2 ln( x

en h̄ )
|n〉
}

, x > 0 ; (82)

in the absence of the covariance term, µ = 0, they reduce to the squeezed number states
with a real parameter known to extremize Heisenberg’s inequality.

Rational functions of the variances lead to another class of uncertainty relations. For
example, defining

f r
µ,ν(x, y) =

xmym

µxm′ + νym′ , µ, ν > 0 , (83)

we find, if the numerator dominates, the inequality

∆2m p∆2mq

µ∆2m′ p + ν∆2m′q
≥
(

h

2

)2m−m′
1

2
√

µν
, 2m > m′

> 0 . (84)

Using m = m′ = 1/2 in (83), this relation reduces to a simple uncertainty relation involv-
ing the standard deviations only,

∆p∆q

µ∆p + ν∆q
≥ 1

2

√

h̄

2µν
, (85)

with minimal states given by the set

Mα( f r
1/2,1/2

) =

{

|α, 0〉 = T̂αŜ 1
2 ln
(

ν
µ

)|0〉
}

. (86)

If m′ > 2m, the expression f r
µ,ν(x, y) has an upper bound since the denominator is

bounded from below and grows faster than the numerator for increasing variances. In
general, functions of the second moments with upper bounds are easily constructed from
inverting inequalities such as (1) which implies 1/∆p∆q ≤ 2/h̄, for example. If 2m = m′,
the functional f r

µ,ν(x, y) is neither bounded from below nor from above: the fact that its
determinant is negative, det F = fx fy < 0, signals that no solutions of the consistency
equations will exist.

Next, we present an example of an uncertainty relation which seems to be entirely out
of reach of traditional derivations. Defining the functional

f e(x, y) = x + µey/ν , µ, ν > 0 , (87)
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we obtain the inequality

∆2 p + µe∆2q/ν ≥ (1 + 2W(h̄/4
√

µν)) e2W(h̄/4
√

µν)) , (88)

using the fact that Lambert’s W-function W(s), defined as the inverse of s(W) = W exp W,
is a strictly increasing function. In the limit of µ → ∞ and assuming µ = ν, the left-hand-
side of (88) turns into (µ + ∆2 p + ∆2q + O(1/µ)) while the expansion of its right-hand-
side produces the correct bound (µ + h̄ +O(1/µ)), since W(s) = s +O(s2).

The position and momentum variances at the extremum with label n ∈ N0 are given
by

x = 2µW

(

enh̄

2
√

µν

)

e
W
(

en h̄
2
√

µν

)

(89)

and

y = 2νW

(

enh̄

2
√

µν

)

, (90)

respectively. Using Eqs. (23) with det F = (µ/ν)ey/ν, one finds

b = 0 , γ =
1

4
ln
(µ

ν

)

+
1

2
W

(

enh̄

2
√

µν

)

, (91)

which means that only a single state (and its rigid displacements) will saturate the in-
equality (88). If µ = ν, we recover x = y = h̄2/4 as well as b = γ = 0, i.e. the ground
state of a unit oscillator since W(0) = 0.

Finally, we point out that some general statements can be made about functionals of
the form f = f (xy, w) and f = f (µxm + νym′

, w), i.e. generalizations of the expressions
in (78) and (79), respectively. By examining the consistency conditions one can show that
the extrema of the first expression come as a one-parameter set, while they are isolated or
a one-parameter family in the second case. However, without knowing the explicit form
of the functions no further conclusions can be drawn.

3.2 Uncertainty functionals with permutation symmetries

The triple product uncertainty relation and the one derived by Heisenberg possess dis-
crete symmetries. Here we investigate more general uncertainty functionals which are
invariant under the exchange of three and two variances.

S3-invariant functionals

Consider a function of three variables which is invariant under the exchange of any pair,

f (3)(x, y, z) = f (3)(y, x, z) = f (3)(x, z, y) . (92)

We now derive the lower bound of a large class of S3-invariant uncertainty functionals
J[ψ] and show that their minima coincide with the state |Ξ0〉 minimizing the triple prod-
uct inequality. The variables x, y and z will denote the variances of the operators p̂, q̂ and
r̂, respectively.
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More specifically, we study the minima of sums of completely homogeneous polyno-
mials of degree n, with arbitrary non-negative coefficients,

f
(3)
N (x, y, z) =

N

∑
n=1

∑
j+k+ℓ=n

ajkℓx
jykzℓ , ajkℓ ≥ 0 , (93)

dropping the unimportant constant term a000. The determinant of the associated F-
matrix,

det F ≡ fx fy + fy fz + fz fx , (94)

is positive definite since x, y, z > 0 and the partial derivatives are just positive polynomi-
als.

The symmetry under S3-permutations (92) implies that the coefficients must satisfy
the conditions

ajkℓ = akjℓ = ajℓk , 0 ≤ j, k, ℓ ≤ n , (95)

so that the first terms of the polynomials are given by

f
(3)
N (x, y, z) = a100(x + y + z)

+a200

(

x2 + y2 + z2
)

+ a110 (xy + yz + zx)

+a300

(

x3 + y3 + z3
)

+ a210

(

x2(y + z) + y2(z + x) + z2(x + y)
)

+a111xyz + . . . (96)

If the only nonzero coefficients are a100 = 1 or a111 = 1, we recover the functionals associ-
ated with the triple sum (77) or the triple product inequality (4), respectively. In general,
a completely homogeneous S3-symmetric polynomial in three variables of degree n ≥ 1

consists of κn =
⌊

(n+3)2+6
12

⌋

terms where the floor function ⌊s⌋ denotes the integer part of

the number s: each term arises from one way to partition j + k + ℓ = n objects into three
sets with j, k and ℓ elements, respectively [23]. Thus, a symmetric polynomial of degree

up to N depends on
(

∑
N
n=1 κn

)

independent coefficients if one ignores the constant term.

The main result of this section follows from rewriting the consistency conditions (45)
and (46) in terms of the variables x, y and z,

x fx − y fy + (x − y) fz = 0 , (97)

z fz − x fx + (z − x) fy = 0 , (98)

2 (xy + yz + zx)− x2 − y2 − z2 = (2n + 1)2 h̄2 , (99)

where we have used the identity z = x + y + 2w given in (5). The conditions (97) and

(98) imply that the extrema of any symmetric polynomial f
(3)
N (x, y, z) occur whenever the

three variances take the same value,

x = y = z . (100)

To show that x = y holds we pick any nonzero term ajkℓx
jykzℓ in the expansion (93)

and assume that the powers of x and y are different, i.e. j 6= k; the case j = k will be
considered later. Due to the symmetry under the exchange x ↔ y, the sum also must
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contain the term akjℓx
kyjzℓ, with akjℓ ≡ ajkℓ. Defining t(x, y, z) = ajkℓ

(

xjyk + xkyj
)

zℓ, the
first two terms of (98) take the form

xtx − yty = (j − k)ajkl

(

xjyk − xkyj
)

zℓ . (101)

Assuming that j = k + δ, with δ > 0, we find

xtx − yty = ak+δ klδ (xµ − yµ) xkykzℓ (102)

= (x − y)δak+δ kℓ

(

xδ−1 + xδ−2y + . . . + xyδ−2 + yδ−1
)

zℓ (103)

≡ (x − y)g+(x, y, z) , (104)

where g+(x, y, z) > 0. Using this expression in (98), the consistency condition takes the
form

(x − y) (g+(x, y, z) + tz) = 0 , (105)

with another positive function tz(x, y, z). If δ < 0 we write k = j − δ ≡ j + |δ| and
eliminate k instead of j from (101), only to find that its left-hand-side again turns into
(x − y) multiplied with a positive function. If the powers of x and y of the term akjℓx

kyjzℓ

are equal, j = k, one immediately finds that (x∂x − y∂y)ajklx
jyjzℓ = 0, also reducing Eq. 97

to (x − y)∂zajklx
jyjzℓ = 0.

The argument just given covers all terms in the sum (93), and the positivity of the
coefficients ajkℓ implies that the first consistency condition can only be satisfied for x = y.

Using the symmetry of f
(3)
N (x, y, z) under the exchange y ↔ z, an identical argument

leads to the identity y = z.
Using (100) to evaluate the left-hand-side of Eq. (99) results in

x = y = z = τenh̄ , n ∈ N0 , (106)

where τ =
√

4/3, so that we obtain an uncertainty relation for any S3-invariant function

f
(3)
N (x, y, z) ≥ f

(3)
N (x, y, z)

∣

∣

∣

x=y=z=h̄/
√

3
. (107)

This result correctly reproduces the special cases of Eqs. (4) and (77), and there is only
one state which saturates the inequality, namely |Ξ0〉 given in Eq. (67). Letting N → ∞

in Eq. (93), we conclude that the main result of this section, Eq. (107), also applies to any

S3-symmetric function f
(3)
∞ (x, y, z) with a Taylor expansion with positive coefficients and

infinite radius of convergence, as long as its first partial derivatives exist.

S2-invariant functionals

Assume now that, in analogy to Eq. (92), we have a functional depending on just two
variances in a symmetric way,

f (2)(x, y) = f (2)(y, x) . (108)

An argument similar to the one given for the function f (3)(x, y, z) results in the uncer-
tainty relation

f
(2)
N (x, y) ≥ f

(2)
N (x, y)

∣

∣

∣

x=y=h̄/2
, (109)

which covers the cases of Heisenberg’s relation (1) and the pair sum inequality (2). Thus,

the actual form of the function at hand determines whether the set of minima M ( f
(2)
N )
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will depend on a continuous parameter or not. If the functional is invariant under scal-
ing transformation x → λx, y → y/λ, in addition to the permutation symmetry, there
is a one-parameter family of solutions and the right-hand-side of Eq. (109) achieves its
minimum on the set of points with xy = (h̄/2)2, not just those with x = y = h̄/2.

To derive (109), we suppose that the function f
(2)
N (x, y) has an expansion in analogy

to f
(3)
N (x, y, z) in Eq. (93) but without the variable z. Adapting the reasoning applied to

f
(3)
N (x, y, z), the consistency equations (45) are found to imply x = y and w = 0. Using

this result in (46), the bound x ≥ h̄2/4 follows immediately, so that the inequality (109)
must hold for S2-invariant functionals.

Interestingly, the inequality (84) also reproduces the case of µ = ν = 1 in Eq. (84)
although the functional f (r)(x, y) has an expansion which contains negative coefficients,
too. We thus suspect that the inequalities (109) and (107) should hold for S2- and S3-
invariant functions more general than those considered here.

4 Summary and discussion

This paper responds to the fact that, without exception, the states minimizing the known
preparational uncertainty relations for a quantum particle in one dimension are given by
(sets of) squeezed states. To explain this fact we systematically study lower bounds for
smooth functions f (∆2 p, ∆2q, Cpq) of second moments. The resulting theory explains the
universal role of squeezed states for preparational uncertainty relations depending on
second moments only, and it completely charts the landscape of inequalities of this type.

The chain of inclusions
E ⊇ E ( f ) ⊇ M( f ) (110)

concisely summarizes the general structure of our findings. First, we have shown that
only squeezed number states of a quantum mechanical harmonic oscillator with unit
frequency and mass occur as extrema of an uncertainty functional J[ψ] depending on
second moments. We denote this universal set of states by E . Second, the extrema of a
specific functional J f [ψ], associated with a function f (∆2 p, ∆2q, Cpq), form the subset E ( f )
of the universal set E . Third, the functional will assume its minimum for one or more of
the extrema E ( f ), a subset which we denote by M ( f ). The set of minima may be empty,
M ( f ) = Ø. If it is not empty, a lower bound on the functional J f [ψ] has been found, and
it represents a preparational uncertainty relation in terms of the second moments.

Strictly speaking, we obtained the relations Eα ⊇ Eα( f ) ⊇ Mα( f ) instead of Eq. (110)
as it is possible to move quantum states in phase space without affecting the values of the
second moments. The four-parameter set Eα ≡ T̂αE , for example, consists of the squeezed
states E plus those obtained from them by means of the translation operator T̂α defined
in Eq. (10). Thus, each state saturating a specific inequality with vanishing expectation
values gives rise to a two-parameter family of minima.

Our results have a useful geometric representation in the real three-dimensional space
of moments. The uncertainty region, consisting of all triples of moments which can arise
from (pure or mixed) states of a quantum particle, turns out to be a convex set bounded
by a one-sheeted hyperboloid. The boundary is invariant under the elliptic rotations,
hyperbolic boosts and parabolic transformations which generate the group SO(1, 2). This
observation squares with the importance of the group SO(1, 2) in quantum optics where
coherent and squeezed states are ubiquitous.

The invariance of the bounding hyperboloid can, in turn, also be understood as an
invariance of the functional J[ψ] defining the surface. Each point on this hyperboloid is
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Figure 4: States on the boundary of the uncertainty region minimizing known and new
uncertainty relations parameterized by the real numbers (b, γ), with h̄ = 1; each point of
the plane corresponds to a squeezed state saturating the RS-inequality (3); points on the
vertical dashed line represent minima of Heisenberg’s uncertainty relation (1); the two
curved dashed lines indicate the minima of the modified RS-inequality (81) with m = 1/2
and values µ = 1/2 (bottom) and µ = 1/10 (top); the full dots correspond to minima of
S2-invariant functionals (109) such as the pair sum (2) and S3-invariant functionals (107)
such as the triple product (4).

associated with a unique Gaussian state saturating the Robertson-Schrödinger inequality.
Changing from an active view of transformations (i.e. mapping one state with minimal
uncertainty to another one) to a passive view, we see that the RS-functional (or a suitable
smooth function thereof) is invariant under the elements of the group Sp(2, R) applied
to the canonical pair ( p̂, q̂). The allowed symplectic transformations include rotations,
scalings and linear gauge transformations, or shears.

Repeatedly, we have encountered subsets of the maximal possible symmetry group
Sp(2, R) (cf. [7]). The Heisenberg functional f H(x, y, z) in Eq. 56, for example, is in-
variant under a scaling transformation p̂ → λ p̂, q̂ → q̂/λ, with λ > 0, resulting in a one-
parameter set of states with minimal uncertainty depicted in Fig. 2. Similarly, uncertainty
functionals invariant under permutations of order two or three are minimized by states
with corresponding symmetry properties. Examples are the triple product uncertainty
relation (4) and, more generally, the functionals with discrete symmetries discussed in
Sec. 3.2.

We also derived new and explicit uncertainty relations. Fig. 4 uses the (b, γ)-plane to
illustrate the sets of states which minimize (some of) the uncertainty relations discussed
in this paper. The sets of minima M may depend on two parameters (all squeezed states
minimizing the RS-inequality), on one parameter (such as the real squeezed states satu-
rating Heisenberg’s uncertainty relation) or consist of a single point only (associated with
S3-invariant inequalities such as the triple product inequality, for example). We have not
been able to backward-engineer functionals which would be minimized by prescribed
subsets of the plane such as a circle or a disk. The minimizing states we found were all
pure, located on the boundary of the uncertainty region. In principle, functionals could
also take their minima inside this region although we have found only trivial examples
with this property [21].

We currently investigate three conceptually interesting generalizations of our ap-
proach. First, there is no fundamental reason to restrict oneself to uncertainty functionals
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depending only on second moments in position and momentum [24]. On the contrary,
higher order expectation values would enable us to move away from Gaussian quantum
mechanics which is largely reproducible in terms of a classical model “with an epistemic
restriction” of the allowed probability distributions [25]. Including fourth-order terms
〈ψ|q̂4|ψ〉, for example, will result in an eigenvalue equation (18) which is not related to a
unit oscillator in a simple way. It is known that fourth-order moments for single-particle
expectations can give rise to inequalities which cannot be reproduced by models based on
classical probabilities [26, 27]. Thus, it might become possible to study truly non-classical
behaviour in a systematic manner using suitable uncertainty functionals.

Secondly, our approach can be generalized to the case of two or more continuous
variables. We expect that a systematic study of uncertainty functionals becomes possible,
leading to criteria which would detect pure entangled states. For example, a generaliza-
tion of the triple uncertainty relation (4) to bipartite systems has been shown to detect
entangled states in a quantum optical setting [28]. Other scenarios are known which rely
on intuitive choices of suitable bi-linear observables [29, 30].

Finally, the comprehensive study [20] of uncertainty relations for a single spin s has
been limited to observables transforming covariantly under the group SU(2). The method
proposed here is easily adapted to investigate functionals depending on arbitrary func-
tions of moments.
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A A Baker-Campbell-Hausdorff identity

The relation ĜbŜγ = Ŝ(ξ)R̂(χ) in Eq. (33) can be shown by requiring that both products

map the annihilation operator â = (q̂ + i p̂) /
√

2h̄ to the same operator. We obtain

ĜbŜγ âŜ†
γĜ†

b = â

(

cosh γ − i
b

2
eγ

)

+ â†

(

sinh γ + i
b

2
eγ

)

(111)

and
Ŝ(ξ)R̂(χ)âR̂†(χ)Ŝ†(ξ) = âe−iχ cosh r − â†e−iχeiθ sinh r , (112)

respectively. Equating the coefficients of the operators â and â† leads to two equations

cosh γ − i
b

2
eγ = e−iχ cosh r , (113)

sinh γ + i
b

2
eγ = −ei(θ−χ) sinh r , (114)

which we need to solve for the variables ξ ≡ reiθ and χ. Separating the real and imaginary
parts of the first equation, one finds that

χ = arctan

(

b

1 + e−2γ

)

∈ (−π

2
,

π

2
) . (115)
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In a similar way, the second equation allows one to solve for the function tan(θ − χ)
which, upon using (115), leads to

θ = arctan

(

b

1 − e−2γ

)

+ arctan

(

b

1 + e−2γ

)

∈ (−π , π) . (116)

The case of γ = 0 needs to be treated separately leading to the relation

θ = ±π

2
+ arctan

(

b

2

)

∈ (−π, π). (117)

Finally, the condition cosh r cos χ = cosh γ results in the expression

r = arcosh

(

cosh2 γ +
b2

4
e2γ

)1/2

∈ [0, ∞) , (118)

which establishes the desired identity (33).
The number states |n〉, n ∈ N, are eigenstates of phase-space rotations R̂(χ). There-

fore, the product ĜbŜγ acts on those states according to

ĜbŜγ|n〉 ∼= Ŝ(ξ)|n〉 , (119)

where an irrelevant phase has been suppressed. Thus, the operator Ŝ(ξ) generates all
squeezed states from |0〉 when the parameter ξ runs through the points of the complex
plane.
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