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Abstract 

Tissue engineering is increasingly being recognized as a new approach that could alleviate the 

burden of tissue damage currently managed with transplants or synthetic devices. Making this 

novel approach available in the future for patients who would potentially benefit is largely 

dependent on understanding and addressing all those factors that impede the translation of this 

technology to the clinic. Cell-associated factors in particular raise many challenges, including 

those related to cell sources, up- and downstream techniques, preservation, and the creation of in 

vitro microenvironments that enable cells to grow and function as far as possible as they would 

in vivo. This paper highlights the main confounding issues associated with cells in tissue 

engineering and how these issues may hinder the advancement of therapeutic tissue engineering. 

Keywords: tissue engineering, cell manufacturing, tissue culture, clinical applications, stem 

cells. 
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1. Introduction 

Tissue engineering (TE) is based on the premise that by exploiting cellular biology, it should be 

possible to create a functional substitute analogous to the natural tissue or organ that can be used 

for replacement therapy. Thus, TE may hold the potential to address the transplantation crisis 

caused by the increasing demand for tissues that far outweighs the available supply (Fig. 1).
1
 

Since the advent of TE, remarkable progress has been achieved. However, many serious 

challenges still need to be addressed before this field can be exploited for widespread clinical 

applications. At the forefront of all challenges are those related to cells. As cells constitute the 

main pillar of TE strategies, whether the strategy is cell injection, cell induction, or cell-seeded 

scaffolds,
2
 tackling cell-associated problems is inescapable. 

To be effective for clinical purposes, cells should be easily procurable, scalable in vitro, and 

robust in culture and implantation. They should be obtained ethically and morally, be able to 

integrate functionally with the recipient tissue, and be non-immunogenic and safe; i.e., neither 

tumorigenic nor contaminated by any pathogen.
3
 In addition, cells should be capable of being 

processed for availability off the shelf, and stem cells should have the capability to differentiate 

to the desired lineage.
4
 

From the clinical perspective, obtaining cells that meet all these requirements for a particular 

therapeutic purpose presents a challenge. Consequently, only a handful of cytotherapeutic 

products are commercially available, in contrast to the considerable number of companies that 

are pursuing cell-based therapies.
5
 This paper will discuss the cell-linked problems that may arise 

at different stages of cell processing, from sourcing to implantation into the living body, and how 

these problems might deter the utilization of TE in clinical therapy. 
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2. Cell Source 

Cell acquisition represents a major hurdle that is linked with TE of every part of the body 

regardless of the tissue type or the strategy applied.
6
 For clinical applications, cell origins could 

be autogenic or allogenic – from the same patient or a different human donor, respectively. Each 

type can be further described in term of maturity: differentiated or stem cells.
7
 Every delineated 

type has potential drawbacks that could compromise its reliability (Fig. 2). 

Allogenic cells are donor-dependent and are associated with genetic mismatch and possible 

immune rejection, which would necessitate immunosuppressive therapy. Conversely, autogenic 

cells eliminate the need for potential donor matching and remove the immunological risk.
4
 

However, many hurdles offset the therapeutic benefits. Firstly, the harvesting biopsy may yield 

limited quantities of viable cells; in particular, this may be the case where the source is a 

diseased organ, such as when harvesting cells for TE of the liver from a patient with liver 

failure.
8
 Secondly, the target tissue may be inaccessible for direct biopsy, as in the case of the 

heart valve, or it may not be practical to biopsy at all, as with the spinal cord.
9
 Thirdly, timing 

limitations that involve weeks to months of in vitro culture to obtain an adequate number of cells 

may not always be practical, particularly in urgent or life-threatening conditions.
10

 Finally, the 

high production cost associated with patient-specific TE therapy compared with other treatments 

(even if they are less efficacious) can be a confounding factor when healthcare resources are 

limited.
11

 

In terms of maturity, all mature differentiated cells have a finite life span. Cell viability gradually 

declines until the growth is irreversibly arrested as the cells progress to senescence. This can 

provide a limited number of population doublings that may be insufficient to create a clinically 

relevant tissue.
12

 In contrast, stem cells – including adult stem cells (ASCs), embryonic stem 
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cells (ESCs) and induced pluripotent stem cells (iPSCs) – have a unique capacity for self-

renewal, potency and differentiation into various specialized cell types. However, this usefulness 

brings with it other problems.
13

 

ASCs are multipotent and have a finite potential for expansion. They are capable of generating 

the cell types of the pertinent tissue, but not all cell lineages.
14

 For instance, the proliferation and 

differentiation of mesenchymal stem cells (MSCs) to an osteogenic lineage are passage-

dependent. After the fourth passage, the alkaline phosphatase expression and calcium deposition 

are abrogated, the cell growth is impaired, and the doubling time is increased.
15

 In addition, the 

availability of MSCs is extremely limited; for example, the proportion of MSCs in the bone 

marrow is 1:100,000 nucleated cells.
16

 Furthermore, increased donor age has a negative impact 

on cell viability, proliferation and differentiation, with concomitant display of senescent features, 

when compared with cells isolated from a young donor.
17,18

 Moreover, spontaneous 

transformation of ASCs has been reported with 4–5 months’ cultivation, which raises a biosafety 

concern regarding cancer formation.
19,20

 

In contrast to ASCs, ESCs are indefinitely proliferative and pluripotent, i.e., they are able to 

differentiate to all tissue types.
21

 Therefore ESCs offer an unparalleled opportunity to circumvent 

the cell paucity that impedes tissue fabrication. However, the benefit of ESCs in TE could be 

seriously undermined by several complications. Firstly, the ethical and moral controversy 

surrounding the sacrifice of viable embryos to isolate ESCs.
22,23

 Secondly, the immunogenicity 

and potential rejection that can be triggered by immune-mismatched ESC-derived tissue. 

Grinnemo et al.
24

 state that ESCs are unlikely to be immune-compatible and postulate that this 

problem might be counteracted by altering the isolation method from immune to mechanical, and 

elimination of any ‘xeno’ products, including the feeder layers. However, it can be argued that 
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this immune incompatibility may not result merely from prolonged cell propagation in culture 

containing animal or synthetic constituents but, rather, from immune immaturity. The accelerated 

in vitro differentiation mechanism that recapitulates the long period of normal development 

within a short time span will cause a lack of immune inhibition ligands and retention of residual 

antigens within the differentiated cells that are eventually recognized as foreign antigens.
25

 The 

third hurdle relates to the identification of a cocktail of factors that drive the differentiation 

pathway to the desired lineage and optimize the differentiation efficiency, which with current 

isolation protocols does not yield a 100%-pure population. This incomplete differentiation poses 

a problem regarding culture heterogeneity, requiring an effective technique to purify the 

differentiated cells and prevent them from being contaminated by residual undifferentiated cells.
4
 

Failure in this regard will give rise to a further serious issue – i.e., the potential risk of 

tumorigenicity, namely benign teratoma or malignant teratocarcinoma.
26,27

 The reason for such 

propensity appears to be that stem and cancer cells share many cellular and signaling pathways.
28

 

In addition, aberrancy in the cultural environment adds another risk factor for triggering 

oncogenesis.
29

 According to Vacanti,
3
 cancer cells are originally derived from natural stem cells 

that, under severe disruption of their environmental cues, deviate from the normal repair process 

and shift to malignancy, resulting in uncontrolled multiplication without maturation. 

In an attempt to overcome problems associated with ESCs, iPSCs have been derived through cell 

reprogramming by delivering four transcription factors – Oct4, Sox2, Klf4 and c-Myc – that 

dedifferentiate the somatic cells and turn them back to the ESC-like state.
30,31

 iPSCs have been 

assumed to be as pluripotent as ESCs and are readily accessible and patient-specific. The ethical 

and immune issues associated with allogenic ESCs should therefore be eliminated.
32

 However, 
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the accumulative evidence has revealed that iPSCs may share many of the ESCs’ problems and, 

indeed, these may be greater.  

Compared with ESCs, iPSCs are more prone to tumorigenicity.
27

 This can be attributed to the 

multiple mutations with subsequent genetic and epigenetic instability,
33

 the imperfect induction 

process,
34

 and the reprogramming genes themselves that clearly demonstrate oncogenicity and 

overexpression in progressive and poorly prognostic tumours.
35

 Another challenging issue, 

contrary to what was expected, is that the autogenic iPSCs may provoke an immune response 

due to epigenetic modifications that can cause inappropriate gene and antigen expression.
36

 

Although the immunogenicity of iPSCs is not as intense as that of ESCs, this immune evasion 

may be problematic rather than advantageous because it might be exploited by engrafted aberrant 

cells and eventually result in tumor development.
34

 

Putting aside the obstacles stated above, the critical question that is still under debate is whether 

the iPSCs are truly equivalent to ESCs at a molecular and functional level.
32

 To date, there is no 

conclusive evidence proving that iPSCs are identical to ESCs. In fact, many studies have pointed 

out substantial differences between the two cell types and have shown that iPSCs retain the 

epigenetic memory of their source, an issue that may restrict the differentiation only into cell 

types of their original lineage.
37,38

 

3. Cell Manufacturing 

Once the cell source is secured, the next challenge to be considered relates to the processing 

stages of current Good Manufacturing Practice (cGMP), namely upstream processing 

(production of the desired cell quantity), downstream processing (harvesting and purification), 

and preservation.
39
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3.1. Upstream processing 

Whether the target application is for patient-specific (autologous) or for off-the-shelf (allogenic) 

therapy, scaling up of cells to approximately 10
7
–10

10
 is necessary.

5
 Expansion of limited 

harvested cells to a clinically relevant quantity while preserving the fundamental quality 

parameters such as identity, genetic stability, purity, potency, and functionality is imperative for 

clinical therapy.
39

 Achieving this requires manufacturing technologies that are robust, scalable, 

predictable, economical, and compliant with cGMP.
40

 

A 2D static culture employing T-flasks or well plates is inconvenient when scaling up large 

quantities of monolayer cells due to the limited surface area/volume ratio. The use of a large 

number of culture vessels leads to real issues concerning high incubator occupancy, time, labor 

and media costs, as well as the contamination risk associated with the open culture system. In 

addition, the static environment permits gas exchange only at the liquid/gas interface (diffusion) 

and lacks the tight control of oxygen and nutrients.
41

 Furthermore, the production of large cell 

numbers requires frequent enzymatic passages that may lead to dedifferentiation of cells and 

elimination of the supportive extracellular matrix (ECM).
42

 

Roller bottles provide a greater surface area, and mechanical agitation prevents sedimentation of 

ingredients, however there is a lack of online monitoring and difficulty in handling large bottles 

manually.
43

 Automation and robotics may alleviate some of these issues by housing up to 90 x T-

175 culture flasks that produce approximately 2.5 x 10
9
 cells, eliminating the manual effort and 

variability as well as minimizing the contamination risk. However, the high cost, static condition, 

and use of animal-derived products remain.
44

 

Bioreactor-based culture systems, by contrast, have evolved not only to mitigate the biological 

constraints in terms of providing a dynamic, sealed, automated, reproducible, tightly controlled 
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and strictly monitored environment, but also to apply mechanical and electrical stimulation.
45

 3D 

cell culture strategies such as self-aggregated spheroids, microcarriers and microencapsulated 

cells suspended in stirred or spinner vessels provide a potential strategy for stem cells expansion, 

although this can be at the expense of mass transfer and downstream processing. Central necrosis 

or unpredictable differentiation may arise due to a progressive decrease in oxygen and nutrients 

as the cell aggregates or microcarrier clumps increase in size. In addition, cell damage may be 

caused by the detrimental effects of hydrodynamic physical forces e.g. shear and perfusion. 

Moreover, it is difficult to maintain cell viability during cell cluster dissociation or cell-bead 

separation of aggregates and microcarriers, respectively. Microencapsulation may counteract 

agglomeration and excessive shear stress, however it shares similar mass transfer and 

decapsulation step limitations, as well as difficulties in visualization and issues of 

material/equipment cost.
40,46

 

3.2. Downstream processing 

The ability to undertake cell detachment from the culture surface without compromising the cell 

quality is as equally important as cell attachment and proliferation, particularly if the cells are 

intended for a clinical purpose. Cell harvesting requires development of large-scale enzymatic or 

mechanical dissociation technologies that gently decontaminate cells from any unwanted 

materials (e.g. carrier) with minimum hydrodynamic shear force.
39

 

Enzymatic digestion with trypsin is one of the most commonly used methods for cell recovery in 

2D culture and 3D microcarrier-based expansion systems.
47,48

 However, trypsin causes 

downregulation of growth- and metabolism-related proteins and upregulation of apoptosis-

related proteins.
49

 In addition, higher trypsin concentrations and longer incubation times are 

associated with damage to the structural integrity of cell surface integrins (adhesion proteins), 
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which subsequently reduces the cell’s adhesive ability.
50

 Furthermore, the vitality of cells 

cultured in scaffolds is also negatively affected by prolonged incubation in trypsin, which is 

necessary for ECM degradation. An increased trypsin incubation time not only releases more 

cells from the matrix, but also causes progressive cell destruction, which may be as high as 

35%.
51

 

Non-enzymatic harvesting has been suggested as a preferred alternative to avoid cell damage. 

Yang et al.
52

 demonstrated the possibility of using microcarriers coated with a thermo-responsive 

polymer to harvest MSCs and eliminate the need for enzymes. Following cell expansion on the 

microcarriers, the culture temperature was decreased to 32 °C and the cells were able to detach. 

However, this method involved the additional step of carrier coating with a polymer, which in 

turn may affect the original cell surface properties. In addition, it is particularly difficult to obtain 

an even polymer coating on scale-up.
48

 Cell conditioning with enzyme-free buffer is another 

method that has been utilized in place of trypsinization. However, it results in a significant 

reduction in cell viability and reattachment of dissociated cells.
53

 Mechanical dissociation of cell 

colonies by manual scraping has also been investigated and shown to be detrimental to cell 

viability and freeze-thaw survival rate when compared with trypsinization with gentle 

pipetting.
54

 

Recently, a novel microfluidic device has been designed by Qiu et al.
55

 to improve mechanical 

detachment and recovery of cells. This device works by shortening exposure of cells to enzymes 

and enables the use of non-enzymatic treatment such as the calcium chelator 

ethylenediaminetetraacetic acid (EDTA). Microfluidic dissociation augments cell separation with 

trypsin, resulting in a higher yield cell number (up to 93%) when compared with vortexing and 

pipetting. In addition, it can eliminate the enzymatic treatment when used with small cell clusters 
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or monolayer sheets. For more complex models, however, the combination of brief EDTA 

exposure followed by device processing is particularly useful as a non-enzymatic method. 

Nevertheless, optimization of this device to improve channel dimensions, flow rate, processing 

speed, prevent sample clogging, and facilitate milder enzymes remains to be reported. 

cGMP guidelines, particularly in terms of safety, make the above problems even more 

challenging to solve. The regulations imply that the bioprocessing should be automated, 

chemically-defined, economic, xeno-free, and pathogen-free. Any exposure to animal products 

such as a serum or feeder cell layer renders the cells irrelevant to clinical therapy.
42

 A further 

problem in the downstream stage is that the raw material itself is the final product i.e. cells, and 

thus cannot be terminally sterilized.
56

 

3.3. Cell preservation 

The difficulties in cell sourcing and expansion impose challenges in generating a robust 

preservation method to ensure a steady supply of high quality and well-characterized cell lines of 

various types. Bio-banking systems aim to cope with such demand, yet certain critical issues 

should be addressed, particularly cryopreservation and storage, in addition to the distribution, 

recording, tracking and database management. There are also issues in using a standardized 

protocol for cells that are different in source and require tailored culture conditions, passage 

number, and cryopreservation.
57

 

Cryopreservation normally utilizes controlled slow freezing (1–2 °C/min) and then rapid thawing 

with a cryoprotective agent, often 10% dimethyl sulfoxide (DMSO), to minimize the detrimental 

effects of ice recrystallization and cell shrinkage. However, it is still questionable whether this 

technique is convenient for banking and therapeutic applications. DMSO has a toxic effect that 

varies from cell type to cell type and is time-, temperature- and concentration-dependent.
58

 Its 
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clinical adverse effects, particularly with regard to the cardiovascular and respiratory systems, 

have been well documented.
59

 In addition, a systematic review of toxicity events linked to 

DMSO over the last two decades identified 779 adverse reactions, ranging from transient mild 

nausea or vomiting to more serious effects such as cardiac arrest, encephalopathy, respiratory 

stress, anaphylaxis or even death.
60

 Moreover, current washing protocols may not ensure 

complete elimination of DMSO, which can then result in different cell responses under similar 

conditions.
61

 Furthermore, the slow freezing protocols are not reliable for all cell types; e.g., the 

viability, functionality and potency of cryopreserved ESCs are significantly reduced in slow 

freezing, pushing the cells towards senescence and apoptosis.
62-64

 

Compared with conventional freeze–thawing, vitrification (ultra-rapid cooling without 

crystallization) demonstrates a higher cell recovery rate. The main drawbacks of this technique 

are again increased toxicity due to the high DMSO concentration required, increased 

contamination risk due to direct exposure of cells to liquid nitrogen, labor intensiveness, and 

inefficiency in large-scale cell production.
63

 One attempt to counter these problems is to use a 3D 

integrated expansion and cryopreservation strategy by microencapsulation of immobilized cells 

on microcarriers cultured in a stirred tank. In comparison with the non-encapsulated method, 

microencapsulation demonstrated cell recovery that was greater than 70% following 

cryopreservation.
65

 High expansion ratios up to twenty-fold were evident and post-thawing cell 

survival improved up to three-fold; more importantly, cellular characteristics were not 

compromised. Although this strategy successfully preserved the ESCs and eliminated the need 

for feeder cells, it involved the extra steps of encapsulation, decapsulation, and cell separation 

from the microcarriers. 
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Cell storage requires stringent methodology and quality control testing to ensure that the cells 

remain viable, contamination-free, and maintain their original phenotype.
57

 Storage problems 

related to misidentified and cross-contaminated cell lines have been reported in 18–36% of 

repositories.
66

 Contamination with environmental and microbial organisms can happen despite 

the strict sterilization techniques. Mycoplasma infection, for instance, has a high incidence rate, 

affecting approximately 5–30% of cell lines worldwide: it is particularly problematic, being 

resistant to antibiotics and visually undetectable.
67

 

Finally, cell shipping and delivery requires a strict time frame as cellular products have a limited 

shelf life, usually less than a few days. Therefore, it is essential to develop an efficient delivery 

system as well as simple qualitative assays to detect expiration of the cells.
68

 

4. Functional characteristics of cells 

In vivo, cells are integrated into a highly sophisticated matrix environment in which their 

function and response is not discrete from their surroundings.
4,69

 Therefore, functional 

characterization of cells in vitro to achieve the desired behavior poses a significant challenge 

(Fig. 3). 

The inter-relationship between structure and function means that cells will not function as 

efficiently in vitro as they function in vivo, unless a 3D architectural microenvironment 

analogous to that of the natural state is appropriately designed. In vivo, the local 

microenvironment is made up of an orchestrated and synergistic symphony of signals including 

cell–cell contact and cell–ECM interaction, as well as biomechanical and physical forces. These 

interrelated factors determine cell behavior interdependently rather than individually.
70

 This 
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issue is particularly significant for stem cells because any interruption in cells’ contact with their 

specific niche cues will not only affect the cells’ function but also their commitment and fate.
71

 

Another question to answer is to what extent the imitation of such intricate biological system is 

attainable in vitro. Cell–cell contact, for instance, is mediated in vivo by different extracellular 

molecules, namely endocrine signals (via the systemic vasculature), autocrine signals 

(generated and bound to the secretory cell), and paracrine signals (diffused from the adjacent 

cells). The latter is either homocrine (the signaling and responding cells are of the same type) or 

heterocrine (the signaling and responding cells are of different types). In vitro by contrast, only 

autocrine and homocrine signaling usually occur (Fig. 4).
12

 

In the natural environment, the ECM composition and architecture affect the reciprocal cell–

matrix interactions that elucidate a cascade of intracellular events influencing cell survival, 

proliferation, and protein synthesis. Failure to recapitulate the ECM function which exceeds the 

mechanical support will result in a passive cell–matrix interface fails to trigger such events and 

deprives cells of the substantial benefits of ECM that may alter cell phenotype.
4
 Unlike the 

ECM, the synthetic scaffold (which represents the artificial analogue to the authentic ECM) may 

lack this informative role and be unable to transmit growth cues due to the lack of functional 

binding ligands (domains) that cells can recognize and with which they can interact.  

In addition to the biological effect, the chemical, mechanical, electrical, topographical and mass 

transport properties need to be well adjusted to maintain a homeostatic balance. For example, 

increased porosity is essential for mass transport and elimination of central cell necrosis; 

however, this should not be at the expense of sacrificing mechanical integrity.
72

 

Equally important is increasing the surface area and cell concentration without compromising 

cell viability by mass transfer limitations. Oxygen transport is linked to its concentration, which 
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is ~220 µM in fully-oxygenated culture medium, compared with 8699 µM in oxyhemoglobin. 

The low oxygen concentration in media limits diffusion to the outer cell rim and deprives the 

core cells of oxygen and nutritional supply.
73

 As the cells dependent on oxygen diffusion cannot 

survive at a distance greater than 100–200 µm, considerable cell death in the scaffold’s deep 

areas will occur.
74

 In addition, once the cells start to secrete their ECM, another diffusion barrier 

is formed by the matrix components such as proteins and proteoglycans, which are relatively 

larger molecules with low diffusion coefficients; this may further hinder nutrient diffusion.
75,76

 

Cell death due to hypoxia will arise in vivo following implantation because the available oxygen 

is consumed by implanted cells within hours, while the angiogenesis process takes several days 

to form new capillary plexuses.
7
 

5. Conclusion 

Despite the significant advances witnessed by TE in the past few years, many challenges still lie 

ahead. At the heart of all obstacles are those related to the cells themselves, which constitute a 

major hurdle for the clinical application of engineered tissue equivalents. Cell sourcing, 

bioprocessing, shipping, marketing, delivery, and reconstruction of the cell microenvironment 

are sensitive procedures that have a significant impact on cells. Creating an optimal 

microenvironment for the cells appears to be the most challenging step in tissue engineering for 

clinical applications. Potential solutions rely partly on a better understanding of the cellular and 

molecular mechanisms that govern tissue regeneration in vivo, and partly on the ability to 

identify reliable strategies to enable us to mimic the in vivo environment and translate the in vitro 

system into clinical application. 
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Figure Captions 

Fig. 1 Increasing number of people on the organ transplant waiting list, compared with the 

stagnant donation and transplantation rates in the US. 

Fig. 2 The different categories of cells used in TE and their limitations. 

Fig. 3 The influencing factors on cells and their impact in determining the cell behavior. Cells 

perceive, read, interpret and respond to diverse external stimuli; in many cases the 

output determines the prospective inputs. 

Fig. 4 The four different biomolecule signals affecting cell behavior in vivo. 
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