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Mitochondrial genomes represent a valuable source of data for evolutionary

research, but studies of their short-term evolution have typically been limited

to invertebrates, humans and laboratory organisms. Here we present a

detailed study of 12 mitochondrial genomes that span a total of 385 trans-

missions in a well-documented 50-generation pedigree in which two

lineages of chickens were selected for low and high juvenile body weight.

These data allowed us to test the hypothesis of time-dependent evolutionary

rates and the assumption of strict maternal mitochondrial transmission, and

to investigate the role of mitochondrial mutations in determining phenotype.

The identification of a non-synonymousmutation inND4L and a synonymous

mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a

molecular rate of 3.13 � 1027 mutations/site/year (95% confidence interval

3.75 � 1028–1.12 � 1026). This is substantially higher than avian rate esti-

mates based upon fossil calibrations. Ascertaining which of the two novel

mutations was present in an additional 49 individuals also revealed an

instance of paternal inheritance of mtDNA. Lastly, an association analysis

demonstrated that neither of the point mutations was strongly associated

with the phenotypic differences between the two selection lines. Together,

these observations reveal the highly dynamic nature of mitochondrial

evolution over short time periods.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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1. Introduction
Mitochondrial genomes have been widely used in biological

research, especially when studying evolutionary and demo-

graphic processes that occur over short timeframes [1]. In

vertebrates, mitochondrial evolution is characterized by

strictly maternal inheritance and lack of recombination.

Although various studies have suggested a constant rate of

mitochondrial evolution among lineages and through time

[2], there is now considerable evidence of a disparity between

short- and long-term estimates of mitochondrial substitution

rates [3–5]. Among the possible explanations for this pattern

is that mitochondrial DNA (mtDNA) evolves non-neutrally,

such that purifying selection removes negative mutations

over time [6]. This naturally produces a pattern in which tran-

sient, deleterious mutations cause a short-term elevation

in rates.

There have been few studies of short-term mitochondrial

evolution, including both mutation rates and paternal leak-

age, particularly in non-human vertebrates [7,8]. Estimates

of mitogenomic mutation rates have been obtained in studies

of Adélie penguins [6,9] and humans [10] and these rates

greatly exceed those inferred from longer phylogenetic time-

scales. Evidence for paternal inheritance of mtDNA (and

other ‘rare’ evolutionary phenomena) is accumulating in mul-

tiple species, including humans [11] and sheep [12], but it is

usually only visible in laboratory or controlled conditions

[13–15]. As a result, its frequency may be underappreciated.

This is compounded by the assumption that in natural popu-

lations, without direct knowledge of genetic relatedness and

transmission, all mtDNA is maternally inherited. Combined

with the low power associated with standard detection meth-

odologies, it has been difficult to assess rates of paternal

leakage in natural populations [13].

Domesticated animals present ideal systems for studying

mitochondrial evolution in vertebrates, particularly if they

have documented pedigrees. One such pedigree has been

recorded for the Virginia chicken lines, an experimental

White Plymouth Rock population spanning more than 50 gen-

erations. This pedigree, initiated in a founder population of

seven partially inbred lines, was subjected to annual divergent

selection for high and low body-weights at 56 days of age. This

approach established high (HWS) and low (LWS) weight

selected lines that now possess a greater than 10-fold difference

in body weight at selection age [16–18].

Here, we used this well-documented chicken pedigree to

perform a detailed investigation of short-term mitochondrial

evolution in a vertebrate system. More specifically, we esti-

mated the mitochondrial mutation rate, tested for instances

of non-maternal inheritance, and examined the degree to

which mitochondrial mutations were responsible for the

divergent phenotypes of the two selected lines.
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Figure 1. Chicken pedigree from which mitochondrial genomes were sequenced. (a) Overview of the maternal lineages of the chicken pedigree, comprising high weight

selected (HWS) and low weight selected (LWS) lines. Pink circles indicate individuals from which we sequenced complete mitochondrial genomes and grey circles represent

those that were typed for the mutations in CYTB and ND4L. Black circles indicate individuals that were either not sampled or not successfully sampled. Codes on the left-hand side

refer to generations before (P) and after (S) the selection experiment began, and following the initiation of the inter-cross experiments (F). The numerals 1 and 2 level with the

chicken figures refer to the two maternal lines present in the HWS and LWS, respectively. (b) Subset of the pedigree from S13 to F8 and additional detail of the LWS line. Blue

and yellow shading indicates the timing and lineage on which the ND4L and CYTB mutations occurred on the pedigree, respectively. Genotyped individuals that possessed the

ND4Lmutation are shown in blue and those that were heteroplasmic for ND4L are shown in white and blue. Those that possessed both mutations but were heteroplasmic for the

CYTB mutation are shown in green and blue, the individual that was homoplasmic for both mutations is shown in green. Those that were tested but possessed neither mutation

are shown in white. The blue arrow represents the instance of paternal leakage. It starts on the lineage from which the male involved in the paternal leakage was derived, and

points to the female whose offspring inherited the male’s mitochondrial genome. Further details are in the electronic supplementary material.
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2. Material and methods
We identified and sequenced the mitogenomes of the 12 most
distantly related individuals on the maternal pedigree, represent-
ing 385 mitochondrial transmissions. This sampling scheme
provided an efficient means of capturing a large number of mito-
chondrial transmissions with a limited sample of mitogenomes
(figure 1a). We used multiple overlapping PCR and Sanger
sequencing primer pairs (electronic supplementary material,
table S2) and aligned the resulting genomes using CodonCode
(http://www.codoncode.com. CodonCode Corporation).

The single-nucleotide polymorphisms (SNPs) detected in the
ND4L and CYTB genes were genotyped using DNA isolated
from blood (electronic supplementary material). In order to
establish potential heteroplasmy, we carried out pyrosequencing
of the 12 original individuals and of an additional 66 chickens
from generation S41, the most recent generation of the pedigree
and the F8 generation of a deep inter-crossed population of the
two selection lines (figure 1a; electronic supplementary material,
table S4). The base for the inter-cross line was reciprocal parent
line and F1 crosses (electronic supplementary material). An
association analysis was carried out using birds from the F8 gen-
eration to explore the possible link between these mitochondrial
mutations in the LWS and the marked phenotypic differences
between HWS and LWS chickens.

The rate of evolutionwas calculated by taking into account the
number of observed mutations in the approximately 16 000 bp
mitochondrial genome over 47 years and 385 transmissions.
Uncertainty in the estimate was calculated using the binomial
confidence interval.

3. Results and discussion
The reconstruction of the maternal pedigree based on themito-

genome sequences allowed us to identify two separate point

mutations and an instance of paternal leakage, all of which

occurred in the LWS line (figure 1b). The first mutation, a

non-synonymous G–A transition in ND4L, occurred between

generations S15 and S29 on branch 1. The most likely expla-

nation for the presence of this mutation in LWS branch 2

(figure 1b) is an instance of paternal leakage that took place

in generation S39 (electronic supplementary material). A

second mutation, a synonymous A–G transition in the CYTB

gene, occurred between generations S30 and S40 in an individ-

ual that already possessed the ND4L mutation. We found

evidence for mtDNA heteroplasmy with subsequent fixation

in these lines (figure 1b; electronic supplementary material),

a common observation in maternal lineages after a new

mtDNA mutation has occurred [19].

Thepresence of these twonovelmutations allowedus to esti-

mate a mutation rate of 3.13 � 1027 mutations/site/year (95%

confidence interval 3.75 � 1028–1.12 � 1026). Our estimate is

consistent with an expectation of a higher rate estimate over

shorter timescales, as demonstrated by the trendline resulting

from a correlation between previously published avian rate

estimates and the timescale over which they were estimated

(figure 2). We observe this strong relationship despite evidence

of substantial rate heterogeneity in birds,with synonymous sub-

stitution rates inmitochondriavarying among taxabymore than

a factor of 30 [20]. Our pedigree-based estimate of the mutation

rate is consistent with the short-term elevation of rate estimates

caused by the presence of transient mutations, a phenomenon

that has been observed in pedigree studies of humans and

other mammals [21]. Combined with previous evidence of a

time-dependent pattern in rate estimates [5], this has important

consequences for estimating the timescales of recent evolution-

ary events using molecular clocks [4].

Mapping the mutations onto the pedigree not only allowed

us to establish when the mutations occurred, but also to

identify a clear instance of paternal leakage in the LWS line

(figure 1b). A subsequent investigation of the combined

maternal and paternal records allowed us to identify the specific

individuals in which the paternal leakage occurred (electronic

supplementary material). This phenomenon is likely to be

generally underappreciated given the difficulty in confidently

recognizing the phenomenon in wild populations and the lack

of sensitivity in detection methods. Our observation of an

instance of paternal leakage in this pedigree suggests that this

phenomenon might not be as rare as is commonly assumed.

The non-synonymous mutation at a first codon position in

ND4L has, to our knowledge, not been previously reported in

chickens, but another galliform, Polyplectron germaini, possesses

the same nucleotide and amino acid (electronic supplementary

material, figure S1). The second mutation (a synonymous

change in CYTB) has been previously identified in other

vertebrates (electronic supplementary material, figure S2).

Because the observed mutations occurred solely in the

LWS line, they may have been partially responsible for the

divergent phenotypes of the two selected lines. To investigate

this, an association analysis was carried out to assess whether

the two mitochondrial mutations had a major effect on body

weight at hatch—and at 2, 4, 6, 8 and 10 weeks of age—that

differentiated the two lines. A previous quantitative trail loci

(QTL) analysis of the F2 generation suggested that phenoty-

pic differences between reciprocal matings may have been

caused by genetic variation in mtDNA [22]. Here, however,

we found no significant effect between the presence of

these mutations and growth traits in the F8 generation for

either CYTB or ND4L (electronic supplementary material,
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Figure 2. Relationship between published estimates of substitution rates and

calibration age from 65 bird datasets (empty circles) using only coding

mtDNA (adapted from [5]). The filled circle on the top left-hand side of

the plot represents the pedigree estimate from this study and was not

used to derive the regression line. Our calculation may be an underestimate

given the potential for back mutations between the founding line and the

sampled birds in generation S41, though this is unlikely. The dashed line

is a regression trendline estimated solely from the 65 published rate esti-

mates. Grey shading represents the 95% confidence interval of the trendline.
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table S5). As a result, these data suggest that neither of these

mutations is significantly correlated with the extreme differ-

ence in early growth between the two lines.

Overall, our analysis of a long-term chicken pedigree has

revealed the complex nature and dynamism of mitochondrial

evolution when observed over evolutionarily short time

periods. The observations of a rapid rate of evolution and

an incidence of paternal leakage have several ramifications.

First, molecular clock analyses often uncritically import evol-

utionary rates calculated using fossil calibrations. Our study

provides further evidence that short-term rates can be much

higher and that a failure to take this into account will lead

to overestimation of the timeframe of recent evolutionary

events. In addition, understanding the frequency of paternal

inheritance of mtDNA is key to determining how and why

different taxa maintain uniparental inheritance of mitochon-

dria. Finally, our study provides a demonstration of the

evolutionary insights that can be gleaned from detailed

studies of well-documented animal pedigrees.
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