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14 July 2016 

Failures in transport infrastructure embankments 

Abstract 

To ensure that road and rail transport networks remain operational, both highway and railway 

embankments require continual maintenance and renewal to mitigate against ongoing 

deterioration and repair any sections damaged by realised failures. This paper provides a 

review of recent developments in the understanding of highway and railway embankment 

degradation and failure. Failures due to pore water pressure increase, seasonal shrink-swell 

deformation and progressive failure are considered. The material composition and 

construction of highway and railway embankments differ, which influences the dominant 

type and timing of embankment failure. There is evidence for highway embankment failures 

induced by pore water pressure increase, but not seasonal deformation and progressive 

failure. Some railway embankments are susceptible to pore water pressure increase, seasonal 

shrink-swell deformation and progressive failure due to the age and nature of the dumped 

clay fill used in their construction. The approaches used to measure and explore embankment 

failure mechanisms are compared and discussed. Field observations have been used to 

understand pore water pressure increase and seasonal shrink-swell deformation in 

embankments, while the investigation of progressive embankment failure has mainly utilised 

physical and numerical modelling approaches. Further field and laboratory investigation is 

required before the rigorous analysis of embankment failure can be routinely undertaken. 

However, progress is being made to empirically identify and evaluate the various risk factors 

affecting transport infrastructure embankment failure. 
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Introduction 

Transport infrastructure embankments consist of fill material placed to maintain the vertical 

alignment of road, rail and canal routes by raising their level above that of the surrounding 

natural ground.  They are distinct from cuttings, which reduce the ground level by excavating 

in situ soil and rock. There are approximately 9,660 km of embankments in the UK owned by 

the four main infrastructure owners Network Rail (5,000km), Highways England (Formerly 

Highways Agency; 3,500 km), British Waterways (1,100 km) and London Underground Ltd 

(60 km) (Perry et al., 2003).  

Embankment failures occurred both during and shortly after embankment construction during 

the expansion of the railway in the 1800s (Skempton, 1996). Highway embankment slope 

failures were reported to affect about 7 per cent of the highway network in the 1960s (Symons, 

1970), following their first construction in 1958 (Perry et al., 2003). The failure of both 

highway and railway embankments requires continual maintenance and repair to be undertaken 

by infrastructure owners. For example, the maintenance of railway earthworks (embankments 

and cuttings) including refurbishment, renewal and vegetation clearance cost £90 million per 

annum in the UK between 2006 and 2012 (Arup, 2013). The repair of highway embankment 

and cutting slopes cost approximately £20 million per annum in the UK in 2010 (Arup, 2010). 

Embankments form half of all earthworks (cuttings and embankments) by asset length (Perry 

et al., 2003) and represent a significant proportion of the maintenance cost incurred by 

infrastructure owners. However, embankments have not received the same attention in the 

literature as cut slopes (e.g. Chandler & Skempton, 1974; Potts et al., 1997; Cooper et al., 1998; 

Leroueil, 2001; Vaughan et al., 2004). 

This paper provides a review of recent developments in the understanding of highway and 

railway embankment degradation and failure. The differing construction methods and 
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performance requirements of these embankments are described. The approaches used to 

measure and explore embankment failure mechanisms are compared and discussed, including 

field observations, centrifuge modelling, finite element modelling. 

Scope of the review 

This review describes slope failures in highway and railway infrastructure embankments, with 

an emphasis on failure of the embankment fill. The review does not include the failure of cut 

slopes (Leroueil, 2001), embankments on extensive soft ground (Chai et al., 2002; Lehtonen 

et al., 2015) or water retaining embankments such as canal embankments (Perry et al., 2003) 

and embankment dams (Vaughan et al., 2004; Charles & Bromhead, 2008; Lees et al., 2013), 

which have received attention elsewhere in the literature. The review considers embankment 

failures due to the influence of weather and long term deterioration but does not consider 

failures where transport embankments intentionally or accidently act as coastal or fluvial flood 

defences (e.g. Sharp et al., 2013). 

The design and construction of highway and railway embankments 

A timeline of embankment construction in the UK is shown in Table 1 (adapted from Perry et 

al., 2003). The differing construction methods and material composition of highway and 

railway embankments (Figure 1) reflect the contemporary availability of construction 

materials, material specification and construction plant, as well as the experience and 

geotechnical understanding of the designers.  

Early railway embankments were built empirically and were not designed in the context of 

modern soil mechanics (e.g. Harrison, 1881). The large scale construction of railway 

embankments began in 1827 with the construction of the Liverpool and Manchester Railway. 

Between 1834 and 1841 nine main lines of railway were built in England covering over 660 
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miles (Skempton, 1996). This required the excavation of 54 million m3 of material, most of 

which was used to construct embankments. Skempton (1996) described how clay was 

excavated and transported from nearby cuttings and then tipped onto the natural ground surface 

(Figure 2) to form an embankment of heterogeneous, poorly compacted, ‘dumped’ clay fill 

(Vaughan et al., 2004). The foundation was not prepared prior to embankment construction, 

with topsoil and any soft superficial deposits usually being left in place.  The extensive 

excavation and investigation of fills carried out as part of remediation works have revealed that 

dumped clay fills have a clod-matrix structure which differs from compacted, engineered fill 

or natural clay (Figure 3; O’Brien, 2007). Intact clods of clay influence the compressibility and 

shear modulus of the dumped clay fill while a matrix of remoulded clay and foreign matter 

(silt, sand, gravel) influences the shear strength and the permeability (O’Brien, 2004; O’Brien, 

2007).  

By the mid 1830s, embankments were rapidly constructed by end-tipping fill from the 

advancing head of an embankment to its full height, rather than constructed in shallow layers 

to allow consolidation of the embankment and foundation (Skempton, 1996). Early main line 

railway embankments were often constructed at a slope gradient of 1:2 (vertical: horizontal) to 

between 2 m and 8 m high (O’Brien, 2013), with slope gradients up to 1:1.5 and embankment 

heights up to 16 m described by Skempton (1996). The shape of these embankments was quite 

variable. Some embankments had a steep, uniform slope while others had a ‘coat-hanger’ 

appearance with an over-steepened upper slope and a shallower lower slope (Figure 1; O’Brien, 

2013). 

In contrast to railway embankments, the design of highway embankments benefitted from 

experience gained during railway construction, from the development of modern soil 

mechanics and from an improved understanding of the soils used in construction. An 

understanding of the properties of fill soils and their placement was developed early in 
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motorway construction, based on research at the Road Research Laboratory (1952). Highway 

embankments were constructed to modern standards (e.g. British Standard 6031 (British 

Standards Institution, 2009)) on a prepared foundation with installed drainage and regular slope 

profiles (Figure 1). The selection, placement and compaction of the fill material was specified 

to produce a largely homogeneous engineered fill with a consistent   density, strength, stiffness 

and permeability (Highways Agency, 2009). 

Highway embankment construction to motorway standard began with the Preston By-Pass, 

which opened in December 1958 (Perry, 2003). This marked the beginning of a rapid growth 

in highway embankment construction between the 1960s and 1990s (Loveridge et al., 2010). 

By 1994, 92% of the current motorway network had been built (Wootton, 2010). Highway 

embankments built to motorway standard were required to maintain a low gradient (4% or 1 in 

25) over long distances for high-speed traffic. They differed from earlier roads which followed 

the natural contours of the ground and differed from road embankment construction on sidelong 

ground early in the industrial revolution (Vaughan et al., 2004). A survey of 570 km of the 

motorway network in England and Wales between 1980 and 1988 (21% coverage of the 

network in 1987) showed that most (>50%) highway embankment slopes were constructed at 

a slope gradient of 1:2 (vertical: horizontal) and that 86% of embankments were less than 5 m 

high (Perry, 1989). Only 6% of the surveyed embankment length was greater than 7.5 m high. 

Highway embankments were designed using limit equilibrium methods assuming classical 

saturated soil mechanics and simple constitutive models. However, this has not eliminated the 

risk of embankment failure as many processes relevant to actual failure mechanisms relate to 

the unsaturated behaviour of soils and rely on the use of complex constitutive models. 

Performance requirements and the observed failure of highway and railway 

embankments 
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Embankments must meet performance requirements when supporting overlying transport (road 

and rail) infrastructure. For example, highway embankments must satisfy ride quality 

requirements which are based on the variance of a profile level relative to a datum derived from 

a moving average (Perry, 2003). Railway embankments must satisfy ride safety and track 

quality requirements for a specified line speed and loading (Perry, 2003). The failure to meet 

performance requirements can range from an ultimate limit state failure, which may halt or 

severely restrict traffic flow, to a serviceability limit state failure which does not disrupt traffic 

flow but prevents the embankment from operating as intended (Perry, 2003). In terms of limit 

state design, failure by any mode is termed reaching or exceeding an ‘ultimate limit state’ when 

soil rupture is caused by shear stresses in the embankment exceeding the shear strength of the 

soil (Burland, 2012). In terms of limit state design, excessive deflection involves breaching a 

‘serviceability limit state’, where excessive soil movement or deformation occurs. In some 

cases, but not in all cases, a serviceability failure may be linked to an ultimate limit failure in 

embankments (e.g. excessive deflection may precede a shear failure).  

Typical failure modes and mechanisms differ between highway and railway embankments due 

to their different construction methods and construction materials. Ultimate limit state failures 

during motorway embankment construction were infrequent. When they did occur they were 

usually deep seated rotational failures which were typically caused by the presence of weak 

foundation soils (Greenwood et al., 1985). However shallow rotational and translational slope 

failures continued to occur on the side slopes of motorway earthworks post-construction 

(Figures 4a & 4b). This affected 17 km of embankment slope over 570 km (3%) of surveyed 

motorway network across England and Wales by 1988 (Perry, 1989). This extensive survey of 

highway embankment slopes aged between 1 year and 25 years old showed that shallow failure 

surfaces rarely exceeded 1.5 m depth below the ground surface (95% of occurrences). 

Individual failure surfaces were often less than 20 m long, but could join together and regress 
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to the top of an embankment slope to produce longer lengths. This was particularly common 

in steep and high embankments constructed from high-plasticity over-consolidated clays (e.g. 

Gault, Kimmeridge, Oxford and London Clays) or in combined foundation geologies such as 

Glacial Gravel overlying Middle Lias Clay. 

Foundation failures in weak or weathered clay soils sometimes occurred during railway 

embankment construction (Cooper, 1899; Vaughan et al., 2004). Failures within the body of 

large embankments (in excess of 6 m to 7 m height) occurred during and soon after construction 

(Squire, 1880; O’Brien, 2007), which Skempton (1996) attributed to weakening and softening 

of the dumped clay fill clods by absorption of rain water. Post-construction settlements and 

failures were corrected by adding granular material (often locomotive ash or ballast) to the top 

of the embankments (O’Brien, 2007). As a result of the construction process, railway 

embankments often contain hidden defects including old shear surfaces from historic 

instability, localised high permeability sand lenses and remnants of topsoil/alluvium at the 

foundation of the embankment (O’Brien, 2013). 

The ultimate limit, ‘delayed failure’ of railway embankments continued long after construction 

(O’Brien, 2007). Delayed failures are often deep seated rotational slips, with a failure surface 

exceeding 2 m depth and a shape which is largely determined by the composition of the 

embankment fill and the underlying ground. These mainly occur where over-consolidated clays 

form the main material constituent of the embankment, rather than in embankments constructed 

of granular material (Perry, 2003). The failure surface may be present at the embankment crest 

(Figure 5a) and extend beyond the slope toe, extend into the foundation material or may be 

entirely contained within the embankment slope (Perry, 2003; O’Brien, 2007). There are 

detailed case studies of deep seated railway embankment failures in the literature (e.g. Gellatley 

et al., 1995; Andrei, 2000; Martin, 2000; Birch & Dewar, 2002; O’Kelly, 2008; Li et al., 2014) 

and reports of ultimate limit embankment failures can be found in news articles, owing in part 
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to the disruption caused to overlying railway traffic (e.g. Ground Engineering, 1995; Ground 

Engineering, 2014a, Ground Engineering, 2014b).  

The movement and deformation of railway embankments can constitute a serviceability failure 

affecting the line and level of the track. Such track deformation may require trains to operate 

at a reduced speed in order to maintain ride quality and ensure passenger safety, but would not 

require closure of the railway line. Typically, differential settlement of the outer rail must be 

limited to 1:500 (+/- 20 mm) along a 10 m interval of track (Perry et al., 1999). Loosely tipped, 

high-plasticity clay fill embankments can undergo significant volume change in excess of 

allowable settlement limits, causing significant disruption and delay to railway traffic 

(Loveridge et al., 2010). Railway embankment deformation and differential railway track 

movement has been closely linked to seasonal weather conditions and the presence of lineside 

vegetation. Instrumentation installed on LUL earthworks have shown up to +/- 50 mm of 

vertical seasonal track movement (Andrei, 2000) and embankment movement (Scott et al., 

2007), with the largest movements in the vicinity of mature trees. Vertical heave movements 

have been reported close to recently felled trees, including 35 mm of heave adjacent to a felled 

Willow tree on a clay fill LUL embankment (Briggs et al., 2013b) and up to 68 mm vertical 

heave and 63 mm of lateral heave on a clay fill Network Rail embankment in Essex (Smethurst 

et al., 2015). 

Failure mechanisms in highway and railway embankments 

Several failure mechanisms have been reported and postulated in the literature for highway and 

railway embankments. These include (i) pore water pressure increase and equilibration (ii) 

seasonal shrink-swell deformation and (iii) progressive embankment failure (Hughes, et al., 

2009; O’Brien, 2013). They are inter-related and may act together in combination or 

sequentially (e.g. shrink-swell deformation may lead to progressive failure of the embankment, 
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with the final rupture triggered by an increase in pore water pressure). The first of these failure 

mechanisms occurs in both highway and railway embankment slopes, often as shallow slope 

failures (Figure 5b) but sometimes as deeper seated failures. The second and last of these failure 

mechanisms are associated with excessive deformation and deep-seated failure surfaces in 

railway embankments, but much less so in highway embankments (Table 2). 

Pore water pressure induced failure of highway and railway embankments 

Pore water pressure increase and equilibration refers to changes in effective stress due to 

surface water infiltration or the loss of soil suction within embankments. The initial pore water 

pressure conditions within highway embankments and railway embankments are likely to have 

differed. Railway embankments constructed from loosely compacted, heterogeneous fill were 

likely to have variable (positive and negative) pore water pressures within the embankment 

core whereas pore water pressures were likely to be lower and more uniform within highway 

embankments constructed from homogeneous engineered fill. In both types of embankment, 

an increase in pore water pressure (and hence effective stress reduction) in excess of historic 

values can reduce the shear strength of the soil within an embankment and trigger a slope 

failure. Rainfall-induced pore water pressure increases within the soil near the slope surface 

can trigger a shallow slope failure. Such a rainfall-induced, shallow failure slope failure 

mechanism is well documented in natural unsaturated slopes around the world, including in 

Italy, USA, Brazil and Hong Kong (Leroueil, 2011; Zhang et al., 2011). Increased pore water 

pressures can also trigger the deep seated failure of embankments that have been weakened by 

progressive failure or old shear surfaces from historic instability.  

Pore water pressure increase is often mitigated in highway embankment design. This includes 

the use of drainage measures to remove water from the road and the use of low permeability 

fill to encourage surface water run-off. However cracks in the road surface and damaged 
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drainage may lead to water concentration and the development of positive pore water pressures 

(Anderson & Kneale, 1980b; Perry et al., 2003). Anderson et al., (1982) showed that the 

formation of shrinkage cracks during the summer months can facilitate rapid water entry during 

subsequent wet weather. This allowed positive pore water pressures to develop at shallow depth 

and trigger a shallow failure immediately adjacent to an instrumented highway slope (Anderson 

& Kneale, 1980a). Rapid pore water pressure increase in response to wet weather was also 

measured at the toe of Otford Trial Embankment prior to failure along the full length of the 

10.6m high, Gault Clay embankment in 1970 (Garrett & Wale, 1985).  

Railway embankments are susceptible to rainfall-induced pore water pressure increase and the 

shear failure of the embankment slope (Figure 5b). For this reason, slope drainage has long 

been recognised as an important slope remediation measure (Birch & Dewar, 2002). Loveridge 

et al., (2010) showed that five times as many major railway delay incidents (>8h duration) due 

to geotechnical causes occurred in the winter months (242 incidents) than in the summer 

months (44 incidents) across all Network Rail territories between 2000 and 2003. The delays 

were attributed to the ultimate failure of earthworks driven by elevated pore water pressures or 

washout. Ultimate limit state failures in Networks Rail’s South East Territory (SET) were also 

correlated with monthly winter rainfall in excess of the 1971-2000 long-term average (LTA). 

Maximum monthly rainfall close to 200% of the LTA in the winters of 2000-2001, 2001-2002 

and 2006-2007 correlated with more than thirty, ten and a further ten failures in the region 

respectively. Supporting hydrological modelling by Loveridge et al., (2010) showed that the 

increased permeability of railway embankments (often greater than 5 × 10-8 ms-1 ) relative to 

highway embankments (often less than 1 × 10-8 ms-1s) made railway embankments more 

susceptible to rainfall infiltration, the development of significant wetting fronts and raised pore 

water pressure during wet winter weather. Surface run-off was more likely in highway 

embankments, which are of lower permeability (except at the very near surface).  
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The influence of age, fill permeability and construction quality on highway and railway 

embankments was compared on a full scale, instrumented embankment model using controlled 

experiments over a four year period (Toll et al., 2013; Glendinning et al., 2014; Gunn et al., 

2015). The model embankment was constructed from glacial till fill on a stiff glacial till 

foundation, with test plots compacted to different densities and with different surface capping 

layers (granular or asphalt). The experiments showed that the permeability and soil water 

retention behaviour of fill materials has a critical influence on the magnitude and distribution 

of pore water pressures in response to changing climate and weather events. Significant 

differences in pore water pressure behaviour were observed between a well-compacted (1.7 

Mg/m3) plot with an asphalt capping layer (i.e. a highway embankment) and a poorly-

compacted (1.6 Mg/m3) test plot with a coarse granular capping layer (i.e. a railway 

embankment). The largest pore water pressure and in situ fill permeability variations occurred 

within the ‘near surface zone’ (up to 1.5 m depth) of both the well-compacted and poorly-

compacted plots. 

In situ piezometer measurements have shown pore water pressure increases during extremely 

wet weather. Ridley et al., (2004) showed raised pore water pressures towards a hydrostatic 

condition in instrumented LUL embankments in March 2001, following the wet winter of 

2000-2001 (from a total of 113 piezometers). At the time (March 2001) this was the wettest 

winter in the UK since records began in 1766 (Birch & Dewar, 2002), during which there were 

approximately 100 slope failures across the railway network and 60 reported highway slope 

failures (embankments and cuttings; Turner, 2001). Further interpretation of the Ridley et al., 

(2004) data by Briggs et al., (2013) showed a correlation between raised pore water pressures 

and the permeability of the embankment foundation soil (Figure 6).  Pore water pressures 

increased towards hydrostatic in clay fill embankments founded on London Clay, while pore 

water pressures did not exceed 10 kPa in clay fill embankments underdrained by a more 
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permeable foundation soil (e.g. chalk or river terrace deposits), despite the extremely wet 

winter weather.  

The seasonal deformation and serviceability failure of highway and railway embankments 

Serviceability failure due to soil deformation is well documented in railway embankments but 

is rarely encountered in highway embankments. Loveridge et al., (2010) showed that the in situ 

permeability of railway clay fill lies close to a critical range (1 × 10-7 ms-1) corresponding to 

likely rainfall rates in the UK (average 5 mm day-1). This makes railway embankments more 

sensitive to rainfall events and significant wetting fronts than highway embankments, which 

are much less permeable and hence subject to greater surface runoff. The related seasonal 

movement and deformation of railway embankments is both more likely to occur and has the 

potential to be more complex than in highway embankments. Recent field observations have 

been used to identify and understand the underlying causes and mechanisms of failure, which 

are described below (O’Brien 2007; Loveridge et al., 2010; Briggs et al., 2013b; Smethurst et 

al., (2015)). 

Analyses of network-level datasets of embankment performance (Loveridge et al., 2010) 

showed that train delay minutes owing to geotechnical causes during the dry summer months 

are primarily located in areas of high-plasticity soil, with almost two orders of magnitude more 

delays being attributed to these soils than areas of lower plasticity soils. This was interpreted 

as being due to the shrink-swell deformation of embankments, leading to track defects and 

hence speed restrictions. An example of seasonal shrink-swell track movement attributed to 

embankment serviceability failure is shown in railway track monitoring data from a LUL 

embankment (Figure 7; Scott et al., 2007).  Scott et al., (2007) showed track settlement during 

the summer months, reaching a minimum by September, and heave movement during the 

winter months, reaching a maximum in April.  
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Instrumented embankment slopes have been used to identify relationships between seasonal 

weather, soil water content and embankment movement (Scott et al., 2007; O’Brien, 2013; 

Glendinning et al., 2014; Smethurst et al., 2015). Scott et al., (2007) showed that the seasonal 

deformation of a high-plasticity clay fill embankment correlated to changes in the surface water 

balance and soil water content, as indicated by a soil moisture deficit (SMD) calculation (e.g. 

Smethurst et al., 2006). Winter heave of the embankment occurred during periods of low (zero) 

SMD while embankment settlement occurred during periods of high (>300 mm) SMD in the 

summer months.  The amplitude of shrink-swell movement adjacent to Oak and Poplar tree 

covered parts of the slope (50-55 mm) was an order of magnitude greater than that adjacent to 

grass covered parts of the slope (5-8 mm) (Figure 7). Piezometer measurements indicated 

higher suctions (up to -90kPa) and a greater range of seasonal pore water pressure variation 

(80 kPa) in the Oak and Poplar tree covered parts of the embankment than in the grass covered 

parts (20 kPa variation). Glendinning et al., (2009) attributed the high effective stress (up to 

500 kPa)  measured in undisturbed samples of Gault clay embankment fill to high suctions 

induced by adjacent Oak and Hawthorn trees. A study of thirteen LUL railway embankments 

(Briggs et al., 2013b) showed that large seasonal track movements (>10 mm ) correlated with 

the presence (and removal) of Oak, Willow, Poplar and Hawthorn tree species located within 

a certain tree distance (Dt) and tree height (Ht)  ratio of the track. However other tree species 

(e.g. Ash, Beech Sycamore) did not show this effect. Tree species were categorised as high, 

medium or low water demand (Table 2) using the Biddle (1998) classification, reflecting their 

zone of influence (Dt) on track movement relative to the tree height (Ht). These empirical 

relationships between climate, vegetation and embankment movement provide useful 

indicators of embankment performance for risk assessment and management. However, 

reliable analytical descriptions of the effects of trees on embankment movement are not yet 

established. 
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Damaging deformations due to seasonal shrinkage and swelling can be reduced by removing 

high water demand tree species (Oak, Willow, Poplar and Hawthorn) from embankment slopes. 

However, this can have long term serviceability implications that need to be considered, as 

well as increase the risk of ultimate limit state failure due to loss of suctions within the soil. 

Detailed observations of tree influence on embankment pore water pressures and deformation 

have been obtained from instrumented embankment sites from where trees have subsequently 

been removed. Smethurst et al., (2015) obtained five years of in situ measurements showing 

pore water pressure changes, moisture content changes and slope displacements within a 

vegetated embankment during the removal of mature trees (Oak and Ash) from the 

embankment slopes. Measurements showed that mature trees on the embankment slope 

established permanent soil suctions throughout the year below 2 m depth. Removal of the trees 

from the embankment slope altered the surface water balance of wetting and drying, causing 

the embankment to rewet and the persistent suctions to be lost. Extensometer measurements of 

vertical embankment displacement showed a reduction in shrink-swell movements at the 

embankment crest following tree removal. However swelling of the clay fill and heave of the 

embankment slope continued over a period of at least four years. Measured displacements 

compared well with displacements calculated from changes in soil volumetric moisture content 

measured using a neutron probe (Smethurst et al., 2015). The extensometer measurements also 

broadly compared with estimates of soil heave using pore water pressure data and a one 

dimensional settlement/heave calculation based on a linear swelling index (Briggs et al., 

2013b). Smethurst et al., (2015) suggest that the balance between reducing seasonal track 

movement and maintaining embankment stability might best be achieved by selectively 

removing high water demand tree species within a defined distance of influence (e.g. Briggs et 

al., 2013b), rather than clearing all trees from an embankment slope. 

Progressive ultimate failure of highway and railway embankments 
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The seasonal, shrink-swell volume change of railway embankments has been shown to reduce 

the strength of the clay fill soil and promote the progressive failure of embankment slopes 

(Potts & Zdravkovic, 1999; Kovacevic et al., 2001; O’Brien, 2007; Rouainia et al., 2009; 

O’Brien, 2013). Highway embankments are not subjected to the same cycles of pore water 

pressure or shrink-swell volume change as railway embankments due to the lower permeability 

of the fill material used in construction. They are also much less aged than railway 

embankments, and possibly as a result, there is limited evidence for the progressive failure of 

highway embankments. Observations of deformed railway embankment profiles indicate a 

progressive failure mechanism (e.g. O’Brien, 2013) but well instrumented, in situ observations 

of real-time progressive railway embankment failure are not available in the literature. 

The process of progressive failure was confirmed by direct observations of an instrumented cut 

slope in Selborne (UK), brought to failure by Cooper et al., (1998). Leroueil (2001) shows field 

evidence for soil weakening and a progressive failure mechanism in natural slopes in 

Maskinongé (Canada), La Baie (Canada) and Chieti (Italy). However the progressive failure of 

railway embankment slopes is not well understood and may differ from that in natural and cut 

slopes due to different initial strain conditions and subsequent strain cycles. For example, 

embankment slopes would not have an initial strain concentration at the toe due to unloading, 

and seasonal pore water pressure cycling is greater in some embankments (e.g. dumped clay 

fill railway embankments) than that in the lower permeability soils of natural and cut slopes. 

However, a progressive failure mechanism has been characterised by numerical and physical 

models of embankment wetting and drying. 

Models of progressive failure in railway embankments include a strain-softening Mohr-

Coulomb failure criterion to simulate the post-peak reduction in clay fill shear strength towards 

post-rupture and then residual strength in response to increasing strain. These have largely 

involved the use of the Imperial College Finite Element Program (ICFEP) (Potts & Zdravkovic, 
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1999; Kovacevic et al., 2001; Nyambayo et al., 2004) or Fast Lagrangian Analysis of Continua 

(FLAC) (Itasca, 1999; Scott et al., 2007; O’Brien, 2007; Rouainia et al., 2009; O’Brien, 2013). 

The simulations showed that the accumulation of plastic strain and hence strength degradation 

occurred in response to changes in effective stress induced by changes in pore water pressure. 

Simulations of railway embankments showed that a failure surface first developed at the slope 

toe and then propagated along a sub horizontal surface towards the embankment core (O’Brien, 

2013). At failure, the clay fill was close to residual strength at the slope toe but close to peak 

strength at the embankment crest. This indicated the non-uniform mobilisation of strength 

along the failure surface, as recognised by Terzaghi and Peck (1947). The simulations are 

supported by field observations of a ratcheting-type deformation mechanism of outward 

horizontal slope displacement during the winter months being only partially recovered during 

the summer months (O’Brien, 2013). O’Brien (2013) attributed this mechanism to the ‘coat 

hanger’ shape of some railway embankment slopes (e.g. Earlswood, Sussex (Birch & Dewar, 

2002)).  

The deep-seated failure mechanism identified in the simulations was also shown in centrifuge 

tests of overconsolidated kaolin clay embankment slopes. Take & Bolton (2011) showed that 

dilatation and regional softening of the soil in a 1/60th scale centrifuge model occurred in 

response to cyclic variations in effective stress induced by wetting and drying at the slope 

surface.  The dilation and softening was observed to accompany creep in the form of downslope 

ratcheting, leading to localised ultimate failure at the toe of the slope (Figure 8). Slope 

displacements in response to cyclic loading were predominately vertical at the slope crest and 

almost entirely in the horizontal direction at the slope toe. The behaviour of the 

overconsolidated kaolin clay embankment model (Take & Bolton, 2011) can be contrasted with 

that of a compacted fill, glacial till (intermediate plasticity) centrifuge embankment model 

(Hudacsek et al., 2009). Hydraulic cycles applied to the glacial till fill 1/60th scale centrifuge 
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embankment model caused decreasing soil movement and progressive failure was not 

observed. More than 19 years of simulated wetting and drying did not generate significant 

shrinkage and swelling movement, with displacement trajectories generally orientated 

downslope (Figure 8). This result was suggested to be more typical of real embankment 

behaviour for fills of low to intermediate plasticity (Hudacsek et al., 2009). 

Numerical and physical models have shown that cyclic loading and strain-softening of the soil 

can lead to progressive embankment failure. The cyclic loading is induced by pore water 

pressure variation within the embankment, driven by wetting and drying of the soil surface. 

Research has focussed on the hydraulic factors controlling and influencing the magnitude and 

extent of pore water pressure variation within embankments, in order to estimate the time 

related to the number of cycles to failure. The number of ‘cycles to failure’ shown by the 

numerical simulations are comparative only, as the result is dependent on factors such as the 

mesh size and the boundary conditions applied during each cycle. 

Kovacevic et al., (2001) used ICFEP (Potts & Zdravkovic, 1999) to simulate swelling and 

consolidation of a diagnostic (i.e. a theoretical but broadly representative) railway embankment 

during construction and then during shrink-swell cycles towards progressive failure. 

Embankment pore water pressures were allowed to reach equilibrium with a surface hydraulic 

boundary condition of 0 kPa during cycles of swelling and between -5 kPa and -20 kPa during 

cycles of shrinkage. The simulation showed that displacement of the embankment was 

primarily due to plastic yield rather than elastic deformation, that the stiffness of the fill had 

little influence on the number of cycles to failure and that the failure always occurred along the 

same rupture surface (Figure 9). This result was explored by O’Brien (2013) for an 

embankment soil profile that was more representative of the heterogeneous nature of clay fill 

in Network Rail embankments. O’Brien (2013) showed that the number of cycles to 

progressive failure in a poorly drained, intermediate plasticity clay fill embankment reduced 
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from 33 cycles to 7 cycles with the inclusion of a thin layer (0.5 m) of more compressible 

alluvium below the clay fill. The inclusion of the alluvium layer (or any other heterogeneity) 

led to the concentration of strain in this layer and prevented shear resistance from mobilising 

elsewhere in the embankment fill. 

While the Kovacevic et al., (2001) simulation did not relate to realistic pore water pressure 

cycles observed within embankments, it showed that the number of cycles to progressive 

failure increased with the magnitude of the suction boundary condition applied during the 

shrinkage cycle (up to -20 kPa). Nyambayo et al., (2004) used a similar ICFEP embankment 

model to simulate embankment failure in response to swelling and shrinkage surface boundary 

conditions of -10 kPa and -25 kPa respectively, applied cyclically for six month intervals. 

Together with appropriate values of permeability this allowed cycles of approximate ‘winter’ 

and ‘summer’ conditions to be simulated. Nyambayo et al., (2004) showed that the 

permeability of the clay fill influenced the extent and magnitude of pore water pressure 

variation within the embankment in response to the boundary condition, and hence the number 

of winter and summer cycles before progressive failure. Embankments with a clay fill 

permeability close to 1 × 10-9 ms-1 were shown to be vulnerable to the accumulation of plastic 

straining at the slope toe during monotonic, post-construction swelling, but not during cycles 

of winter and summer pore water pressure (stable after 180 cycles). In contrast, embankments 

with a permeability in the range 1 × 10-8 ms-1 to 1 × 10-7 ms-1 were shown to be stable in the 

short term (post-construction) but vulnerable to cyclic pore water pressure variation (failure 

after 37 and 11 cycles respectively) (Figure 10). This is in agreement with the critical 

permeability range (1 × 10-7 ms-1) for embankment sensitivity to UK weather conditions 

identified by Loveridge et al., (2010). 

While simplified summer and winter boundary conditions were used to assess progressive 

failure in railway embankments, they did not consider transient surface boundary condition 
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effects which field observations have shown to influence embankment instability.  They did 

not consider the variable duration and intensity of seasonal weather conditions (i.e. the 

‘wetness’ or ‘dryness’ of a summer or winter) nor consider the influence of slope vegetation 

on the surface water balance of wetting and drying. 

Scott et al., (2007) compared the influence of winter and summer hydraulic boundary 

conditions applied to a ‘tree covered’ and ‘grass covered’ LUL embankment slope using a 

simulation in FLAC (Itasca, 1999). The tree covered surface boundary condition included 6 

month summer and winter hydraulic boundary values of -250 kPa and -30 kPa respectively 

while the grass covered boundary condition consisted of summer and winter hydraulic 

boundary values of -100 kPa and 0kPa respectively. These hydraulic boundary conditions were 

informed by pore water pressures measured on a LUL embankment slope which indicated that 

trees were able to generate large summer suctions which persisted as residual suctions during 

the winter months, while the grass vegetation could not. Scott et al., (2007) showed progressive 

failure of the grass covered slope after 35 years of simulated winter and summer cycles, the 

timing of which agreed with records of remedial measures at the instrumented LUL 

embankment. The tree covered slope simulation did not show embankment failure after 50 

cycles despite a much larger cyclic pore water pressure variation than the grass covered slope. 

This showed that, while the presence of trees and large pore water pressure cycles reduced the 

strength of the fill due to ratcheting and strain softening, the residual suction (-30kPa) 

maintained by the tree during the winter condition was sufficient to maintain the stability of 

the slope. 

Numerical modelling of climate-pore water pressure interactions was undertaken using 

Vadose/w (Geo-Slope, 2012) and compared with data from instrumented embankments 

(Briggs, 2010; O’Brien, 2013, Briggs et al., 2014). This used a daily, transient hydraulic 

boundary condition rather than the steady state, winter and summer hydraulic boundary 
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condition applied to simulations of progressive embankment failure (Kovacevic et al., 2001; 

Nyambayo et al., 2004; Scott et al., 2007). A climate boundary condition incorporating daily 

weather data and a root water uptake function allowed the influence of climate and vegetation 

influences on embankment pore water pressures to be explored. The simulations were not 

predictive of the actual magnitude and spatial distribution of pore water pressures within an 

embankment, but do provide useful insights into overall patterns of behaviour and the relative 

importance of different variables (O’Brien, 2013). Vadose/w simulations showed that the pore 

water pressure response to  changing weather conditions was influenced by the type of slope 

vegetation cover (the depth of root water uptake), the permeability of the clay fill and the 

variation of permeability with depth (in the near-surface soil, clay fill and foundation zones). 

For example, shallow rooted vegetation such as grass maintained residual suctions within a 

Gault Clay and a London Clay fill embankment during mild (dry) winters, but not other winters, 

while deep rooted vegetation such as trees maintained residual suctions at depth following 

extremely wet winter periods (Briggs, 2010; Briggs et al., 2014). The role of soil permeability 

with depth was demonstrated with simulations showing that, during the extremely wet winter 

of 2000/2001 (but not during less extreme years), pore water pressures increased in LUL 

embankments underlain by London Clay but not in those underdrained by a more permeable 

soil layer (Briggs, 2013a). 

Rouainua et al., (2009) considered the coupled hydrological and mechanical response of a 

diagnostic railway embankment. Both a historical climate and a future climate change scenario 

were simulated. This showed an increase in the number of cycles to progressive embankment 

failure (increased stability) for a 2080s climate relative to the historical (2003-2006) climate. 

SHETRAN (Ewen et al., 2000) was used to predict pore water pressures within the slope in 

response to daily weather data, together with soil and vegetation inputs. Surface pore water 

pressures generated by the SHETRAN simulation were coupled to a strain-softening finite 
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element model in FLAC (Itasca, 2002), using the same material properties as Kovacevic et al., 

(2001). Weather data for the climate boundary condition were generated using Earwig software 

(Kilsby et al., 2007) for a 5 km2 grid in Newbury, Berkshire. Twenty years of daily weather 

data were generated for a historical scenario (Jan 2003- Dec 2006) and for a UKCIP02 high 

emissions scenario in 2080 (Hulme et al., 2002). The future weather scenario considered higher 

temperatures and shorter, higher intensity rainfall events than the historical condition. This 

caused higher evapotranspiration, lower infiltration and higher run-off within the future-

scenario simulation relative to the historical scenario.  

Using a diagnostic embankment model, Rouainia et al., (2009) showed that climate change 

may not increase the rate of progressive embankment failure due to strain softening. The future-

scenario showed that the embankment remained stable after a 20-year weather cycle due to 

high suctions generated by the climate boundary condition. The historical scenario was less 

stable and showed embankment failure after five annual weather cycles. However, Rouainia et 

al., (2009) note that the diagnostic hydrological model did not account for surface desiccation 

effects induced by drying of the embankment, which can be difficult to measure (Stirling et al., 

2015). The influence of surface desiccation on embankment stability is one of many 

uncertainties relating to changes physical processes and triggering thresholds in natural and 

engineered slopes in response to a changing climate (Dijkstra & Dixon, 2010). Surface 

desiccation allows rapid surface water infiltration during summer rainfall events, effectively 

increasing the permeability of the embankment. This may alter the 2080s simulation result by 

reducing the magnitude of soil suctions generated during the summer months and increasing 

the rate of strain softening over repeated seasonal cycles (e.g. Nyambayo et al., 2004). 

Changing patterns of surface cracking due to a changing climate may increase the depth of 

seasonal wetting and drying fronts below the surface of embankment slopes. This would 
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increase the depth of significant seasonal pore water pressure cycles and changes in effective 

stress, which may increase embankment degradation. 

The research methods used to understand embankment failure 

Research to understand the failure of transport infrastructure embankments has utilised a 

number of different methods, applied at a range of scales (e.g. the soil, the site and the network 

scales). Field observations, centrifuge model testing and numerical models have been used to 

measure or simulate embankment behaviour; all are supported by laboratory testing and an 

understanding of soil behaviour (Glendinning et al., 2015). 

Many embankment failures have been identified and remediated by infrastructure owners, 

without being reported in the literature. However, some case studies of embankment failure 

have been recorded both during embankment construction and their subsequent maintenance 

(e.g. Greenwood et al., 1985; Perry, 1989; Cooper, 1899; Squire, 1880; Garrett & Wale, 1985; 

Gellatley et al., 1995; Andrei, 2000; Martin, 2000 Birch & Dewar, 2002; O’Kelly, 2008).  

Large scale surveys or the exploitation of information within infrastructure owner’s databases 

have allowed embankment failures to be analysed at the network scale. These have identified 

trends in highway slope failure occurrence linked to geology (e.g. Perry, 1989; Perry, 1985; 

Greenwood et al., 1985; Parsons & Perry, 1985); statistical correlations between seasonal 

weather, geology and railway traffic disruption (e.g. Loveridge et al., 2010) and empirical 

relationships between seasonal railway track movement and the presence of lineside vegetation 

(e.g. Briggs et al., 2013b). 

Highway and railway embankment failures triggered by pore water pressure increase have been 

reported for individual instrumented sites (e.g. Anderson et al., 1982; Anderson & Kneale, 

1980a; Garrett & Wale, 1985; Birch & Dewar, 2002; Ridley et al., 2004; Briggs et al., 2013a). 
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These provide field observations to inform simple embankment stability analyses (e.g. a limit 

equilibrium calculation). Full scale embankment model testing has been used to compare the 

spatial and temporal pore water response of highway and railway slopes to changing weather 

conditions (Toll et al., 2013; Glendinning et al., 2014; Gunn et al., 2015). 

Seasonal deformation has been measured at instrumented railway embankment sites (e.g. 

O’Brien, 2007; Scott et al., 2007; Glendinning et al., 2009; Smethurst et al., 2015) but has not 

been reported for highway embankment sites. Observations have been supported by simple 

railway embankment deformation models based on in situ soil moisture content changes 

(Smethurst et al., 2015). However, more predictive models of behaviour (e.g. finite element or 

centrifuge models) to incorporate variables such as tree species or clay type have not been 

developed.  

The progressive failure of embankments has been simulated assuming a strain-softening 

constitutive model for London Clay (Potts & Zdravkovic, 1999; Kovacevic et al., 2001; 

O’Brien, 2007; Rouainia et al., 2009; O’Brien, 2013). Finite element models informed by field 

observations have also been used to simulate the pore water pressure response of embankments 

to climate and vegetation boundary conditions (Kovacevic et al., 2001; Nyambayo et al., 2004; 

Scott et al., 2007; Briggs, 2010; O’Brien, 2013, Briggs et al., 2014). Progressive embankment 

failure in response to wetting and drying cycles has been explored for different soils using 

centrifuge embankment models of overconsolidated kaolin and of till fill (Hudacsek et al., 

2009; Take & Bolton, 2011). However, there are limited data on which to develop a strain-

softening constitutive model for London Clay fill or for fills derived from other soil types 

representative of transport infrastructure embankments (e.g. Gault Clay (Mott MacDonald, 

2009; O’Brien, 2013)), nor are there detailed in situ measurements from instrumented 

embankment sites that show progressive failure.  
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Conclusions 

Observations from individual instrumented earthwork sites and from the analyses of network-

level data show that the differing material composition and construction method of highway 

and railway embankments influences both the dominant failure mechanisms and the triggers to 

failure. Both highway and railway embankment failures may be triggered by changing pore 

water pressure conditions, however railway embankments are also susceptible to excessive 

deformation and/or progressive failure. The progressive failure of highway embankments has 

not been observed, both because highway embankments are relatively young and because they 

are less susceptible to seasonal pore water pressure cycling than railway embankments. 

Field observations, the analysis of train delay data and simple moisture content models show 

that seasonal deformation is most likely to occur in railway embankments constructed from 

high plasticity fill with high water demand trees growing on the embankment slopes. There is 

a lower risk of serviceability failure due to the shrink-swell movement of highway 

embankments, low plasticity fill embankments or grass covered embankments. 

The progressive failure of railway embankments is not well understood for the range of soil 

types representative of the national rail network. Progressive failure of embankment slopes has 

been simulated numerically based on a strain-softening assumption for London Clay. However 

centrifuge testing imposing cyclic wetting and drying showed a downslope ratcheting failure 

mechanism for an overconsolidated kaolin clay embankment slope, but much more limited 

seasonal displacement in a glacial till fill embankment slope.  There is limited field and 

laboratory data to support a strain-softening constitutive model for railway fill at present, 

although the overall failure mechanism of progressive failure is supported by failure records 

and observations of ‘coat-hanger’ shaped embankment profiles. 
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Observations at instrumented embankment sites and finite element models of embankment 

hydrology show that the pore water pressure regime within embankments is dominated by the 

interdependent influence of weather conditions, soil permeability and surface vegetation. Clay 

fill railway embankments with mature tree cover are susceptible to more frequent and a larger 

magnitude of deep pore water pressure cycling than railway embankments with grass 

vegetation cover or highway slopes with compacted, low permeability fill. However, lightly 

vegetated embankments will experience higher pore water pressures overall. 

Models of embankment hydrology informed by field observations have shown the comparative 

influence of weather conditions, soil permeability and surface vegetation on embankment pore 

water pressures and soil moisture content profiles. However, these simulations may not be fully 

representative of future embankment deterioration or the dominant physical processes 

influencing pore water pressures in a changing climate (e.g. surface desiccation). 

Further field and laboratory investigation is required before the routine analysis of embankment 

failure can rigorously accommodate many of the factors described above. However, this review 

shows that progress is being made to empirically identify and evaluate the various risk factors 

affecting transport infrastructure embankment failure. 
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Figures 

Figure 1: Embankment profile for a highway embankment (left) a railway embankment 

(right) (adapted from Perry et al., 2003) 

Figure 2: End tipping of a Great Central Railway embankment in Whetstone around 1897 

(Photo reproduced with permission of The Record Office for Leicestershire, Leicester and 

Rutland, on behalf of S.W.A. Newton) 

Figure 3: The clod and matrix structure of dumped railway embankment fill (From O’Brien, 

2007) 

Figure 4a: Failure of a highway embankment slope. The compacted fill and topsoil are clearly 

shown (photo courtesy of David Patterson, Highways England) 

Figure 4b: Tension crack at the crest of a highway embankment slope (photo courtesy of 

David Patterson, Highways England) 

Figure 5a: Failure of a railway embankment slope at Leighton Buzzard (photo courtesy of 

Tony Butler, Network Rail) 

Figure 5b: Shallow failure of a railway embankment slope at Willow Gap on the Newcastle 

to Carlisle railway line (photo courtesy of David Hutchinson, Network Rail) 

Figure 6: Peak wet winter pore water pressures in London Underground Ltd embankments 

following the wet winter of 2000/2001, categorised by foundation soil type: (a) London Clay 

foundation (b) chalk/river terrace deposits foundation (From Briggs et al., 2013a) 

Figure 7: Seasonal track movement on a grass covered and a tree covered London 

Underground Ltd embankment, compared with the soil moisture deficit (SMD) (redrawn 

from Scott et al., 2007) 

Figure 8: Midslope displacements at field scale based on centrifuge testing of model 

overconsolidated kaolin and glacial till fill embankments subjected to seasonal wetting and 

drying cycles. Solid symbols represent periods of drying and open symbols represent periods 

of wetting. Adapted from Take & Bolton (2011) and Hudacsek et al., (2009). 

Figure 9: Simulated horizontal embankment slope displacement in response to pore water 

pressure cycles for stiff fill and soft fill, with a shrinkage suction surface boundary condition 

(s) between 5kPa and 20kPa (redrawn from Kovacevic et al., 2004) 

Figure 10: Contours of sub-accumulated deviatoric plastic strain simulated for a railway 

embankment slope after thirteen shrink-swell cycles for (a) fill permeability 1 × 10-9 ms-1 and 

1 × 10-8 ms-1 (b) fill permeability 1 × 10-7 ms-1 (redrawn from Nyambayo et al., 2004) 

Tables 

Table 1: A timeline of embankment construction in the UK (adapted from Perry et al., 2003) 



40 

 

Table 2: Failure mechanisms by earthwork type (adapted from Loveridge et al., 2010) 

Table 3: Classification of tree water demand categories (from Briggs et al., 2013b) 
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Table 1: A timeline of embankment construction in the UK (adapted from Perry et al., 

2003) 

Date Embankment type 

circa 1800s Canal construction peak 

1835 Canal construction largely complete 

1827 Construction of the Liverpool & Manchester Railway 

mid 1830s  Railway embankments rapidly constructed by ‘end tipping’ fill 

1841 Great Western Railway construction complete 

1850s Railway construction peak 

circa 1860 London Underground Ltd embankment construction began 

1933 Proctor (1933) publishes a paper on compaction 

circa 1948 London Underground Ltd embankments complete 

1952 Research  into the properties of fills at the Road Research 

Laboratory 

1958 M6 Preston by-pass opened 

1959 M1 Motorway Watford to Crick opened 

1986 M25 Motorway fully opened 

2003 Section 1 of the Channel Tunnel Rail Link (CTRL) opened 

 

Table 2: Failure mechanisms by earthwork type (adapted from Loveridge et al., 2010) 

Infrastructure 

slope 

Failure mechanism Comment 

 Seasonal 

deformation 

Pore 

water 

pressure 

increase 

Progressive 

failure 

 

Highway 

cutting 

×  × (not yet) Instability is rare; typically 

occurring due to other 

geohazards such as landslides 

Highway 

embankment 

×  × (not yet) Highway embankments are 

much less aged than railway 

embankments 

     

Railway 

cutting 

×   Many railway embankments 

and cuttings failed during 

construction (Skempton 1964, 

1996) 

Railway 

embankment 

   Network Rail manages 50 

earthworks failures per year 

across Great Britain 
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Table 3: Classification of tree water demand categories (from Briggs et al., 2013b) 

Water demand1 Broad leaf tree species Coniferous tree species 

High (HWD) Oak  

 Poplar  

 Willow  

 Hawthorn  

Moderate (MWD) Ash Cedar 

 Beech Spruce 

 Cherry Yew 

 Sycamore Douglas Fir 

Low (LWD) Birch  

 Holly  
1Water demand is a category name rather than actual water use (Biddle, 1998) 
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Figure 1: Embankment profile for a highway embankment (left) a railway embankment 

(right) (adapted from Perry et al., 2003) 

 

Figure 2: End tipping of a Great Central Railway embankment in Whetstone around 

1897 (Photo reproduced with permission of The Record Office for Leicestershire, 

Leicester and Rutland, on behalf of S.W.A. Newton)  
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Figure 3: The clod and matrix structure of dumped railway embankment fill (From 

O’Brien, 2007) 
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Figure 4a: Failure of a highway embankment slope. The compacted fill and topsoil are 

clearly shown (photo courtesy of David Patterson, Highways England) 

 

Figure 4b: Tension crack at the crest of a highway embankment slope (photo courtesy 

of David Patterson, Highways England) 
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Figure 5a: Failure of a railway embankment slope at Leighton Buzzard (photo courtesy 

of Tony Butler, Network Rail) 

 

Figure 5b: Shallow failure of a railway embankment slope at Willow Gap on the 

Newcastle to Carlisle railway line (photo courtesy of David Hutchinson, Network Rail)  
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(a) 

 

(b) 

Figure 6: Peak wet winter pore water pressures in London Underground Ltd 

embankments following the wet winter of 2000/2001, categorised by foundation soil 

type: (a) London Clay foundation (b) chalk/river terrace deposits foundation (From 

Briggs et al., 2013a) 
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Figure 7: Seasonal track movement on a grass covered and a tree covered London 

Underground Ltd embankment, compared with the soil moisture deficit (SMD) 

(redrawn from Scott et al., 2007) 
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Figure 8: Midslope displacements at field scale based on centrifuge testing of model 

overconsolidated kaolin and glacial till fill embankments subjected to seasonal wetting 

and drying cycles. Solid symbols represent periods of drying and open symbols 

represent periods of wetting. Adapted from Take & Bolton (2011) and Hudacsek et al., 

(2009). 
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Figure 9: Simulated horizontal embankment slope displacement in response to pore 

water pressure cycles for stiff fill and soft fill, with a shrinkage suction surface 

boundary condition (s) between 5kPa and 20kPa (redrawn from Kovacevic et al., 2004) 
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Figure 10: Contours of sub-accumulated deviatoric plastic strain simulated for a 

railway embankment slope after thirteen shrink-swell cycles for (a) fill permeability 1 × 

10-9 ms-1 and 1 × 10-8 ms-1 (b) fill permeability 1 × 10-7 ms-1 (redrawn from Nyambayo et 

al., 2004) 

 


