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A multiphase optimal control method for multi-train control 

and scheduling on railway lines 
Hongbo Ye and Ronghui Liu1 

Institute for Transport Studies, University of Leeds, United Kingdom 

 

Abstract 

We consider a combined train control and scheduling problem involving multiple trains in a 

railway line with a predetermined departure/arrival sequence of the trains at stations and 

meeting points along the line. The problem is formulated as a multiphase optimal control 

problem while incorporating complex train running conditions (including undulating track, 

variable speed restrictions, running resistances, speed-dependent maximum tractive/braking 

forces) and practical train operation constraints on departure/arrival/running/dwell times. 

Two case studies are conducted. The first case illustrates the control and scheduling problem 

of two trains in a small artificial network with three nodes, where one train follows and 

overtakes the other. The second case optimizes the control and timetable of a single train in a 

subway line. The case studies demonstrate that the proposed framework can provide an 

effective approach in solving the combined train scheduling and control problem for reducing 

energy consumption in railway operations.  

 

Keywords: Optimal control; Energy; Railway; Moving block; Train trajectory; Timetable 

rescheduling. 

 

1. Introduction 

Energy consumption in the railway industry is not only a concern for railway operators, but 

also attracts attentions from the academia. It is a consensus that a well-designed train control 

strategy could significantly reduce the energy consumption during the train run.  

 

                                                 
1 Corresponding author. Email: R.Liu@its.leeds.ac.uk; Tel: +44 113 343 5338. 
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The train control problem is usually described as minimising the energy consumption of a 

train travelling from one station to the next within a given time period. The optimal control 

theory is a powerful tool for analysing such problem. In the pioneer work of Ichikawa (1968), 

the continuous train control problem under speed restriction was analysed as an optimal 

control problem with bounded state variables. Milroy (1980) suggested that, for short 

journeys, the optimal train control strategy consists of three control stages: maximum 

acceleration, coasting, and maximum braking. Asnis et al. (1985) and Howlett (1990) found 

that, for long journeys, an additional speedholding stage should be included, leading to an 

optimal sequence of acceleration, speedholding, coasting, and deceleration. Later research 

showed that these four distinct modes can be used to create optimal control strategies for very 

complex train operation problems involving variable track gradient (including steep climbs 

and steep descents), variable speed limit , complex train characteristics, and power 

regeneration (Albrecht et al., 2015b, 2015c; Howlett, 2000; Khmelnitsky, 2000; Liu and 

Golovitcher, 2003). 

 

Different to the above-mentioned continuous train control problems, for some diesel 

locomotives, only discrete throttle settings are available. There, the speed may not be 

perfectly held for the speedholding operation. Under the discrete settings, Cheng and Howlett 

(1992, 1993) optimised the switching points of a prescribed number of control phases and 

showed that, in the simplest case of level track without speed limit, the speedholding can be 

approximated to any desired accuracy by a sequence of coast-power pairs. The discussion 

was further extended to the case of undulating tracks (Howlett, 1996; Howlett and Cheng, 

1997), variable speed limits (Pudney and Howlett, 1994) and a combination of both (Cheng et 

al., 1999). The state-of-the-art review on both continuous and discrete train control problems 

can be found in Howlett et al. (2009) and Albrecht et al. (2015b, 2015c). 

 

Efficient algorithms are essential for implementing optimal train control in real-life train 

operations. Numerical methods based on the Pontryagin’s maximum principle has been well 

developed by Albrecht et al. (2015b, 2015c), Howlett et al. (2009), Khmelnitsky (2000) and 

Liu and Golovitcher (2003), and some of them have been implemented in the practical 

real-time driver advisory systems such as the Energymiser2. Genetic algorithms have been 

used to determine the optimal starting points and the lengths of coasting phases (Chang and 

Sim, 1997; Wong and Ho, 2004). Discretisation and approximation are often used to convert 

the original optimal train control formulation to the mathematical programming problems,  

                                                 
2 http://www.ttgtransportationtechnology.com/energymiser/ 
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such as dynamic programming method (Effati and Roohparvar, 2006; Franke et al., 2000; Ko 

et al., 2004; Vasak et al., 2009), linear programming method (Effati and Roohparvar, 2006; 

Wang et al., 2013, 2014) and pseudospectral method (Wang and Goverde, 2016; Wang et al., 

2013, 2014). There are also numerical methods that don’t belong to the above-mentioned 

types. For example, in Gu et al. (2014), the whole section between two stations is first 

divided into several subsections according to gradients and speed limits. The optimal control 

scheme on each of these subsections is derived and then used to obtain the control strategy 

for the complete journey through nonlinear programming. For the classical train control 

problems, the numerical methods based on the Pontryagin’s maximum principle might be 
generally superior to other numerical methods mentioned above; however, for optimal train 

control in a general network, which is our focus in this paper, there is so far no efficient 

algorithms based on the Pontryagin’s maximum principle, and in this case other numerical 

methods may be able to provide satisfying solutions. 

 

In the classical train control problem, a single train is considered to run freely between two 

stations with prescribed journey times. However, this framework can face challenges in a 

complex and busy railway network. As it was argued by Albrecht et al. (2015b),  

“… the most pressing research challenges for the future in this area are to develop 
optimal control policies for trains travelling in the same direction on the same line in such 

a way that safe separation is maintained between trains. On busy rail networks, solution 

of the train separation problem relates to and depends on integrated scheduling and 

control policies to ensure that train movements are both energy-efficient and effectively 

coordinated.” 

The quote above raises two research gaps: the control of multiple trains running simultaneous 

on the same track, and the integration of train scheduling with optimal train control. 

 

It happens in both fixed-block and moving-block systems that two or more trains can run 

sufficiently close to each other on the same track, and thus affect each other’s operation. For 

example, when a train is expected to arrive at its frontal station ahead of schedule at full 

speed, it can slow down to save energy; however, the decision to slow down may affect the 

operation and thus the energy consumption of the train following it. In this case, the 

trajectories of both trains would be better optimised simultaneously. Research on this issue is 

still limited so far, as noted in A̧ıkba̧ and S̈ylemez (2008), Albrecht et al. (2015a), Lu and 

Feng (2011), Miyatake and Ko (2010), Wang et al. (2014), Yan et al. (2016) and Zhao et al. 

(2015). Specifically, Lu and Feng (2011) used genetic algorithm to optimise the control 
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strategies of leading and following trains in a four-aspect fixed-block signalling system. 

Wang et al. (2014) considered two trains traversing a single track following each other, under 

both fixed and moving block systems. They used the mixed integer linear programming 

approach to formulate the problems, and then solved the control strategies sequentially (the 

control of the leading train is solved first and then fixed when solving the control of the 

following train) or simultaneously. Albrecht et al. (2015a) provided theoretical analysis and 

solution algorithm for the train separation problem based on the optimal control theory, in 

which two trains were operated under the fixed-block system with specified starting and 

finishing times on level tracks without speed limit. Yan et al. (2016) developed an online 

distributed cooperative approach for optimising the control of multiple trains based on model 

predictive control and ant colony optimisation, where the trains are assumed to share their 

states and decisions with each other through radio. 

 

Energy consumption is a big concern for the train operators as it directly affects the 

operators’ profit margin. However, when it comes to train scheduling (over a large railway 

network), time efficiency is usually the first priority (Cacchiani and Toth, 2012; Cacchiani et 

al., 2014; Guo et al., 2016). There have been studies where energy consumption is 

incorporated in the scheduling process at an aggregated level. For example, in Medanic and 

Dorfman (2002) and Ghoseiri et al. (2004), the energy cost of a train running on a railway 

section is assumed to be a convex function of the average velocity of that train on that 

section3. If a more precise estimation on the energy consumption is expected, knowing the 

average speed is not enough. Instead, the detailed train running information at each time and 

location of the journey, including traction and braking forces, speed, and resistance, are 

required. However, these details are difficult to incorporate in the currently widely-used 

scheduling methods such as mathematical programming (Carey, 1994; Higgins et al., 1996) 

and discrete event simulation (Dorfman and Medanic, 2004; Li et al., 2008). Regarding this 

issue, attempts have been made in Yang et al. (2012) and Goodwin et al. (2016), where the 

railway is operated under the fixed-block systems, and the solution is obtained by the genetic 

algorithm. Wang and Goverde (2016) considered the control of an individual train to 

minimise energy consumption and delay, while the train trajectory is restricted by the 

time/speed windows at specific locations of the track. A special case of this combined 

scheduling and control problem is to design the energy-efficient timetable in a metro line, as 

in Gupta et al. (2016), Li and Lo (2014a, 2014b), Su et al. (2013), Xu et al. (2016), Yang et al. 

                                                 
3 It was confirmed in Albrecht et al. (2016) that the energy consumption on level track is a strictly decreasing and strictly 

convex function of journey time. A new explicit formula was also provided in their paper for the rate of change of energy 

consumption with respect to journey time. 
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(2015, 2016) and Yin et al. (2016), just to name a few.  

 

In this paper, we intend to optimise the control strategies of multiple trains in a moving-block 

railway line to achieve the minimum energy consumption. A multiphase optimal control 

problem (MOCP) is established to solve the problem. The MOCP doesn’t necessitate a fixed 
train schedule; instead, it requires only a predetermined time order of all trains arriving and 

leaving all stations and meeting points. As a result, we could obtain not only optimal train 

control strategies but also an optimal train schedule satisfying this given sequence of arrivals 

and departures. The proposed MOCP framework is flexible, in that it allows the track 

gradients and speed limits to change with location, and the running resistances and maximum 

tractive/braking forces to change with speed. Besides, it can incorporate the train operation 

constraints with respect to, for example, the safe train separation, the 

arrival/departure/dwelling times at stations, and the inter-station running times. An additional 

notable feature of the proposed method is that, to formulate and solve the MOCP, no prior 

information is required on the structure of the optimal control strategy. The proposed 

methodology will be demonstrated by two case studies. The first example considers a 

scenario where a fast train follows and overtakes a slow train in the moving block system. 

The second example considers the integrated design of schedule and control for a single train 

across multiple stations. 

 

The rest of this paper is organised as follows. Section 2 introduces the traditional single-train 

control problem, based on which the MOCP for multi-train scheduling and control are 

established in Section 3. Two cases are studied in Section 4, and conclusions are drawn in 

Section 5. For reference, Appendix A and Appendix B respectively provide the solution 

algorithm and parameter settings of the software package used in the case studies. 

 

 

2. Optimal control of a single train  

In this section, we introduce the traditional single-train control problem. The train is treated 

as a point of mass M 4. We choose time t  as the independent variable, and the train’s 

location and speed as dependent variables, denoted  x t  and  v t  respectively. For 

                                                 
4 Howlett and Pudney (1995) have pointed out that the formulation for point-mass train is also applicable for the 

distributed-mass train by replacing the original gradient profile with a density-weighted one. 
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simplicity, we omit t  and write  x x t  and  v v t  hereafter. The train movement is 

modelled as follows (Jaekel and Albrecht, 2014; Rochard and Schmid, 2000): 

 vx  (1) 

     1
F B G

M
v R v x     (2) 

where d dtx x  and d dtv v  are the respective time derivatives;  F F t  and 

 B B t  are respectively the instantaneous tractive and braking forces applied to the train; 

 R v  is the sum of mechanical and aerodynamic resistances at speed v ; and  G x  is the 

force caused by the track gradient at location x  (positive for upgrade and negative for 

downgrade).  

 

The maximum speed that a train can achieve at any specific location x  is restricted by the 

local speed restriction on the track, denoted by  v x , i.e.,  

  0 vv x   (3) 

The maximum tractive force and maximum braking force that a train can apply are not 

necessarily constants, but decreasing functions of the train’s instantaneous speed v , written 

as  F v  and  B v , respectively. So the tractive and breaking forces should satisfy 

  0 F F v   (4) 

and 

  0 B B v   (5) 

The resistive force is usually formulated as a quadratic function of speed, known as the Davis 

formula (Jaekel and Albrecht, 2014; Rochard and Schmid, 2000): 

   2 v caR v v b    (6) 

where a , b  and c  are train-specific constants. The track gradient  x  is defined as the 

ratio of the vertical rise to the horizontal distance traversed. When  x  is small, the force 

caused by  x  at location x  is given by 
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       arctasin sinnG x x xMg Mg   5 (7) 

where g  is the gravitational constant.  

 

The single train control problem is then described as minimising its energy consumption 

when traversing a predetermined distance from 0x  to fx  within a predetermined time 

interval from 0t  to ft , i.e.,  

 
   

   
0,

min d
ft

tF t B t
F t v t t  

 s.t.  0 0x t x ,  f fx t x ,    0 0fv t v t  , and Eqs. (1) - (7) 

 

 

3. Multiphase optimal control framework for multi-train control and scheduling in 

moving block systems 

In this section, we will provide the formulation for the multi-train control and scheduling 

problem. Specifically, Section 3.1 will introduce basic settings of the system as well as basic 

definitions, based on which Section 3.2 will discuss the process of formulating the MOCP in 

detail. 

 

3.1. Preliminaries 

Consider a unidirectional railway line6 (Figure 1) which consists of a set  of nodes, 

 1,2, ,S , where each node represents either a meeting point or a station. Denote by 

sX  the location of node s , and naturally we assume that 1 2 SX XX    . N  trains, 

numbered from 1 to N , traverse the line from node 1 to node S . Suppose that the capacities 

of nodes 1 and S  are at leastN , but could be smaller for the intermediate nodes 2 to 1S . 

The railway line is operated under the moving block signalling system7, and overtaking is 

allowed at the intermediate nodes. 

                                                 
5 If  x  is defined by the angle, then one will naturally have    sinG x Mg x  . 

6 Extension from the one-way line to the general train networks with bi-directional traffic would be straightforward.  
7 Theoretically speaking, the modelling technique proposed subsequently can also be adapted to model fixed-block systems, 

which will require additional specifications on the time sequence of trains entering and leaving all blocks. 
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Figure 1. Illustration of the unidirectional single-line railway 

 

Our main goal is to optimise the control strategies of the N  trains. Since the intermediate 

nodes are involved in the train journey, scheduling at these intermediate nodes will be 

considered as well. As a result, we will have a combined train control and scheduling 

problem which involves multiple trains and multiple nodes.  

 

To formulate the problem, we divide the whole time horizon, from the departure of the first 

train from node 1, to the arrival of the last train at node S , into a finite number of time 

intervals by some criteria, and each of these time intervals is called a “phase”. In each phase, 

the train movement can be described according to Section 2, with specific boundary 

constraints and extra train separation constraints. Extra linkage constraints are then used to 

connect the phases and form a multiphase optimal control problem (MOCP). 

 

We define each departure (D) or arrival (A) of each train at each node as an “event”. 
Specially, a train passing a node without stop would be treated as an arrival event followed 

immediately by a departure event. Therefore the total number of events is 2 1N S . By 

placing all the events in a time-ascending order, we call the resultant sequence a 

“D/A-sequence”. Notably, the overtaking plans are specified by the D/A-sequence. To fit our 

problem into a standard MOCP, we assume that the D/A-sequence is predetermined, fixed, 

and conflict-free; however, the exact timings of the events are undetermined and thus will be 

the decision variables. It is worth mentioning that, knowing the D/A-sequence is less 

restrictive than knowing the exact timings of the events, so the latter is a special case of the 

former, and the former is obviously more difficult to solve than the latter.  

 

Define phase p  as the time interval between the p-th and (p+1)-th events8, and thus the 

total number of phases is  2 1 1P N S   . In addition, we assume that all the trains have to 

                                                 
8 Under certain circumstances, some adjacent phases can be combined to reduce the number of phases and thus reduce the 

complexity of the problem. See Section 4.1 for an example. 
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reach zero speed9 (but not necessarily dwell) at each node. Then the status of each train in 

phase p  is categorised in Table 1, based on its locations at the initial time  
0

pt  and 

terminal time  p
ft  of this phase. Such categorisation is for the convenience of specifying 

boundary constraints w.r.t. each individual train in each phase, which will be given in Table 3 

later. Notably, such categorisation is unrelated to node index s  since the latter would not 

affect the form of the boundary constraints. 

 

Table 1. Categorisation of train status for a typical individual train in phase p  

Category Train status at  
0

pt  Train status at  p
ft  

1 Departing from node s  Arriving at node 1s  

2 Departing from node s  Not yet arrived at node 1s  

3 Already departed from node s  Arriving at node 1s  

4 Already departed from node s  Not yet arrived at node 1s  

5 Waiting for departure at the origin (node 1) 

6 Stopping at the intermediate nodes 2 to 1S  

7 Stopping at the destination (node S) 

 

We now use the following example to illustrate the concepts established in this subsection.  

 

Example 1. Consider two trains travelling from node 1 to node 3 through node 2. Their 

trajectories and arrival/departure at each node are illustrated in  

Figure 2. Each train corresponds to four events, which are: departure from node 1, arrival at 

node 2, departure from node 2, and arrival at node 3. As a result, the whole time horizon is 

divided into 7 phases. The category that each train belongs to in each phase is summarised in 

Table 2.    

 

                                                 
9 In Scenario 2 of Section 4.1, the zero-speed assumption will be relaxed, and the boundary constraints will be modified 

accordingly. 
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Figure 2. A two-train three-node example: events, D/A-sequence and phases. 

 

 

 

Table 2. Categorisation of train status in each phase in Example 1 

Phase P1 P2 P3 P4 P5 P6 P7 

Train 1 2 3 6 2 4 3 7 

Train 2 5 2 4 3 6 2 3 

 

3.2. Formulating the MOCP for multi-train control and scheduling 

With the description in Section 3.1, we are now ready to formulate the MOCP for the general 

train control and scheduling problem. Let      p p
n nx x t ,      p p

n nv v t ,      p p
n nF F t  and 

     p p
n nB B t  denote, respectively, the location, speed, tractive force and braking force of 

train n  at time t  within phase p . The objective is to minimise the total energy 

consumption, which is formulated as follows: 

         

 

0

min d
p

f

p

t p

n p
nt

p
nF t v t t

 
 ,  1,2, , N ,  1,2, , P  (8) 

We assume that the train would not apply traction and thus not consume energy when it stops 

at a node (i.e. categories 5-7). Furthermore, we allow the train mass to change when and only 

when it stops at the train stations (due to boarding and alighting of passengers). Then during 

phase p , for a train n  belonging to categories 5-7, its movement equations are given as 
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follows: 

   0p
nx   (9) 

   0p
nv   (10) 

with 

   0p
nv  ,   0p

nF  ,   0p
nB   (11) 

For a train n  belonging to categories 1-4, its movement equations are given as follows: 

    p p
n nx v  (12) 

  
 

          1p p p p p
n n n n n np

n

v F B R v G x
M

     (13) 

subject to constraints (14)-(16): 

     0 p p
n n nF F v   (14) 

     0 p p
n n nB B v   (15) 

     0 p p
n nv v x   (16) 

where  p
nM  is the constant train mass during phase p ;  nR v ,  nF v  and  nB v  are 

respectively the running resistance, maximum tractive force and maximum braking force of 

train n  at speed v .  

 

Remark. For the specific software package we use in the case studies for solving the 

proposed models, if the upper bounds in Eqs. (14)-(16) are not constant, then these 

constraints should be expressed as the combination of the following path constraints 

      0p p
n n nF F v  ,      0p p

n n nB B v  ,      0p p
n nv xv   

and the following boundary constraints 

   0p
nF  ,   0p

nB  ,   0p
nv   

 

For safety reasons, a distance above the safety margin should be maintained between two 

consecutive trains running on the same railway section, where the railway section is defined 

as the railway track between two adjacent nodes. To meet this requirement, for each train pair 

 ,i j  in phase p , where train j  is the immediate follower of train i , we add a path 
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constraint as follows: 

    p p
i j jx x d  , if train j  follows train i  on the same section during phase p (17) 

where jd  is the minimum braking distance of train j . This minimum distance is not 

necessarily constant; it could be a function of the states of both trains (Chen et al., 2016; 

Wang et al., 2014). 

 

Let  p
ns  be the node where train n  departs from (categories 1-4) or dwells at (categories 

5-7) in phase p , i.e.        0max :p p p
n s ns s X x t   . According to the categorisation in 

Table 1, the boundary constraints on each train’s initial and terminal states in each phase, are 

specified and summarised in Table 3. Notably, for a train belonging to categories 2 and 4, 

when the node that it is heading to is fully occupied, the safety margin should be considered. 

Then the boundary constraint on the terminal location of a train in categories 2 and 4 is 

formulated as follows:  

     
   

 

   

1

1

, if node is fully occupied

, otherwi

,

s, e

1p p
n n

p p
n n

s s

s

p
n n

p p
n f

s

X X d s
x t

X X





 
 
 



 

 





 (18) 

 

Table 3. Boundary constraints of train n  in phase p  

Category 
Initial location  

    0
p p

nx t  

Initial speed  

    0
p p

nv t  

Terminal location  

    p p
n fx t  

Terminal speed 

    p p
n fv t  

1  p
ns

X  0    1p
ns

X


  0  

2  p
ns

X  0  Eq. (18) free 

3     1
,p p

n ns s
X X


 
 

 free   1p
ns

X


  0  

4     1
,p p

n ns s
X X


 
 

 free Eq. (18) free 

5-7  p
ns

X  0   p
ns

X  0  

 

Finally, to connect two consecutive phases p  and 1p , we define the linkage constraints 

as follows: 
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   

         
         

1
0

1 1
0

1 1
0

p p
f

p p p p
n f n

p p p p
n f n

t t

x t x t

v t v t



 

 

 
 

 

, n ,  , 11, Pp   (19) 

 

Eqs. (8)-(19) together with Table 1 and Table 3 provide the basic multiphase optimal control 

framework for optimising the train control and schedule and achieving minimum energy 

consumption of the multi-train system. In practical train operations, additional constraints 

may be applied, e.g., the departure/arrival time window at a station, the minimum/maximum 

dwell time at a station, and the maximum running time between any two stations. For 

simplicity, the explicit multiphase optimal control formulations regarding these additional 

constraints are not provided in this section; instead, some of them will be considered and 

formulated in the case studies in Section 4. 

 

To end this subsection, we summarise the procedure of formulating a multi-train multi-node 

control and schedule optimisation problem into a MOCP as follows: 

Step 1: given the D/A-sequence, categorising the status of each train in each phase 

according to Table 1;  

Step 2: based on the train status, formulating the objective function (8) and constraints 

(9)-(16), (19); 

Step 3: referring to the D/A-sequence, listing the leading-following relationship on each 

railway section in each phase; 

Step 4: based on the train status and leading-following relationship, formulating the 

constraints in (17), and the boundary conditions based on Table 3; 

Step 5: if any, formulating the additional constraints with respect to departure time, 

dwell time, running time, etc. 

The MOCP can then be solved by the general-purpose optimal control software packages, 

such as GPOPS (Benson et al., 2006; Garg et al., 2010, 2011a, 2011b; Rao et al., 2010) and 

PSOPT (Becerra, 2010).  

 

 

4. Case studies 

In this section, we demonstrate the potential of the proposed framework in solving two 

practical problems combining train control and scheduling. The Matlab software package 
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GPOPS Version 5.1, which is based on the Radau pseudospectral method (RPM), is used to 

obtain the solutions. A brief introduction to RPM is presented in Appendix A. The key 

parameters used in GPOPS are explained in Appendix B, and their values chosen in the case 

studies are provided in Table B.1. The programs run on Matlab R2015a on a desktop PC with 

8G RAM and a 3.2GHz CPU. 

 

4.1. Case study 1: multi-train multi-node control optimisation in a moving block railway system 

Consider the railway line in Figure 1 with three nodes, where nodes 1 and 3 are stations and 

node 2 is a meeting point. The capacity of each node is two. The locations of nodes 1, 2 and 3 

are 0km, 40km and 80km, respectively. The speed limit on the track is uniform at 

v 180km/h, and the track gradients are given in Table 4. Two trains are scheduled to travel 

from node 1 to node 3. The two trains are identical in characteristics such as mass 

( 5106M   kg), resistance, maximum tractive force and maximum braking force, shown as 

follows, where v  is in km/h, and  F v ,  B v  and  R v  are in kN. The safety distance 

is set at d 2km for both trains. 

    
90

140 0.9 90 , 180

140, 0

90

v
F v

v v

     
 

    
60

200 0.8 60 , 180

200, 0

60

v
B v

v v

     
 

   3 2101.269 0.101 11.4R v v v    

 

Table 4. Track gradient in the form: gradient (‰)/subsection start – end location (m) 

0/0-2284 -4.2/2284-3871 2/3871-6094 16.7/6094-8181 0/8181-10323 1.7/10323-13750 

0/13750-15711 13.3/15711-19314 0/19314-21222 -5.6/21222-23609 -8.3/23609-27504 -3.3/27504-30127 

-8.3/30127-32778 -2.5/32778-36003 0/36003-38091 0.5/38091-40000 0/40000-42284 -4.2/42284-43871 

2/43871-46094 16.7/46094-48181 0/48181-50323 1.7/50323-53750 0/53750-55711 13.3/55711-59314 

0/59314-61222 -5.6/61222-63609 -8.3/63609-67504 -3.3/67504-70127 -8.3/70127-72778 -2.5/72778-76003 

0/76003-78091 0.5/78091-80000     

 

 

We consider two scenarios, named Scenario 1 and Scenario 2, in this case study. In Scenario 

1, the two trains run according to a planned timetable. Later in Scenario 2, the timetable is 
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modified in response to an incident which occurred during the train run, in which the controls 

of both trains are recalculated, resulting in rescheduling at the intermediate node 2.  

 

For Scenario 1, the planned (“original”) timetable is given in Table 5. Since the journey time 

and train characteristics are identical for both trains, and their departure times are far apart, 

we can expect that the train separation constraint is redundant10 and the two trains’ optimal 

control strategies are identical. Thus the problem is simply solved as a single-phase optimal 

control problem according to Section 2. The parameter settings for GPOPS are given in Table 

B.1 (column I). The computation time is 115 seconds.  

 

 

Table 5. Original timetable 

Train Departure time at node 1 Arrival time at node 3 

1 08:00 08:35 

2 08:05 08:40 

 

The optimal speed profile and control strategy of each train under the original timetable is 

illustrated in Figure 3. The optimal control profile (positive for traction and negative for 

braking) starts with maximum traction, and ends with coasting followed by maximum 

braking. The expected speedholding operation is not perfectly realized; instead, it is 

approximated by a mixture of coast-power pairs and speedholding. It might be because that 

the speedholding corresponds to the singular arc of the train control problem given in Section 

2 (Albrecht et al., 2015b; Howlett, 2000; Khmelnitsky, 2000; Liu and Golovitcher, 2003), 

and it has been known that the singular arc may not be perfectly estimated by the so-called 

direct method including RPM for solving the optimal control problems (Betts, 2010; Garg, 

2011; Patterson and Rao, 2014; Rao et al., 2010). To obtain a high-accuracy speedholding 

operation by RPM, one may explicitly provide the singular arc conditions as path constraints 

(Betts, 2010; Patterson and Rao, 2014) in the original optimal control formulation. Regarding 

this, Howlett et al. (2009) and Albrecht et al. (2015b, 2015c) have proposed explicit 

numerical methods that can be used to find the initial and final points of a singular 

speedholding phase; however, it requires and is worth further investigation in the future 

whether their method can be combined with RPM and help identify the speedholding phases 

under the complex settings in this paper with multiple trains and/or multiple nodes.  

 

                                                 
10 It can be easily verified by checking the optimised trajectories of the two trains in Figure 3. 
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Figure 3. Optimal train speed profile and control strategy under the original schedule 

 

For Scenario 2, we suppose that, when both trains are running as planned, a malfunction 

happens on train 1 at time 0T  08:10, when the location and speed of train 1 are 

10X  19144m and 10V 35.4m/s, and that of train 2 are 20X   7611m and 20V  33.1m/s. 

Due to this malfunction, the maximum tractive force of train 1 is altered to be  

    
90

70 0.

70, 0ˆ
9 8009 90 , 1v

v
F v

v

 

  


  
 

where v  is in km/hr and  F̂ v  in kN. As a result, train 1 is not able to reach node 3 as 

scheduled. To reduce the delay on train 2, train 1 is asked to stop at node 2 to let train 2 

overtake, and the arrival times of both trains at node 3 are adjusted to be 1 fT 08:50 and 

2 fT  08:45, respectively. 
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To optimise the control of both trains under this incident, as illustrated in Figure 4, we define 

five events, which are (i) the occurrence of malfunction at time 0T , (ii) the arrival of train 1 

at node 2, (iii) the departure of train 1 from node 2, (iv) the arrival of train 2 at node 3 at time 

2 fT , and (v) the arrival of train 1 at node 3 at time 1 fT . Then the whole time horizon 

0 1, fT T     is divided into four phases, and the MOCP is formulated as follows. 

         

 

0

4 2

1 1

min d
p

f

pt
p n

pt p
n nF t v t t

 
   

subject to the following sets of constraints: 

(a) the train movement dynamic constraints: 

      
 

0 if 1, 2 or 2,

ot wise

4

her

p
n p

n

n p n p
x

v

    


, 1,2n , 1,2,3,4p  

  
   

         
0 if 1, 2 or 2, 4

1
otherwise

p
n p p p p

n n n n

n p n p
v

F B R v G x
M

    
      

, 1,2n , 1,2,3,4p  

(b) the boundary constraints: 

 Phase 1:  1
0 0t T   

    1
1 0 10x t X  ,   1

1 2fx t X ,   1
1 0 10v t V ,   1

1 0fv t    

    1
2 0 20x t X  ,     1

2 20 2,fx t X X d  ,   1
2 0 20v t V ,   1

2 0fv t   

 Phase 2:   2
1 0 2x t X ,   2

1 2fx t X ,   2
1 0 0v t  ,   2

1 0fv t    

      2
2 0 20 2,x t X X d  ,     2

2 2 3,fx t X d X ,   2
2 0 0v t  ,   2

2 0fv t    

 Phase 3:  3
2f ft T  

    3
1 0 2x t X ,     3

1 2 3,fx t X X d  ,   3
1 0 0v t  ,   3

1 0fv t    

      3
2 0 2 3,x t X d X ,   3

2 3fx t X ,   3
2 0 0v t  ,   3

2 0fv t    

 Phase 4:  4
0 2 ft T ,  4

1f ft T  

      4
1 0 2 3,x t X X d  ,   4

1 3fx t X ,   4
1 0 0v t  ,   4

1 0fv t    
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    4
2 0 3x t X ,   4

2 3fx t X ,   4
2 0 0v t  ,   4

2 0fv t    

(c) the event constraints: 

   0 p
n vv  , 1,2n , 1,2,3,4p  

(d) the path constraints: 

     1 1
ˆ0 p pF F v  ,     2 20 p pF F v  , 1,2,3,4p  

     0 p p
n nB B v  , 1,2n , 1,2,3,4p  

    1 1
1 2x x d  ,    3 3

2 1x x d    

and  

(e) the linkage constraints: 

    1
0

p p
ft t  , 1,2,3p   

          1 1
0

p p p p
n f nx t x t  ,          1 1

0
p p p p

n f nv t v t  , 1,2n , 1,2,3p    

 

 

Figure 4. Illustration of phases under the modified schedule 

 

The parameter values of GPOPS for solving the above MOCP are given in Table B.1 (column 

II). The computation time is 140 seconds. The result is shown in Figure 5. Train 1 stops at 

node 2 at 40km for about 1 minute (08:23-08:24), during which train 2 overtakes train 1 at a 

speed of about 150km/h. Both trains arrive at the destination as scheduled (08:45 for train 2 

and 08:50 for train 1). The controls are also provided. It is clear that both trains applied 

coasting and maximum braking to stop at a node (nodes 2 and 3 for train 1, and node 3 for 

train 2). Specially, the control sequence for train 1 from node 2 to node 3 is maximum power 

- coasting - maximum braking, without using speedholding. 
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Figure 5. Optimal train trajectories and control under the rescheduled arrival times 

 

4.2. Case study 2: integrated optimisation of schedules and control for single train 

In this case study, we consider a combined scheduling and control problem for a single train 

traversing multiple stations. This situation can happen in the metro systems and high-speed 

railway systems, where the line is usually unidirectional, and trains running on each line are 

usually homogeneous and operated under an identical schedule. Under this circumstance, the 

trains would not interfere with each other, and we can consider the scheduling and control for 

only one train. 
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We choose the Yizhuang subway line in Beijing, China, as our study object. The entire line is 

22728 meters long with 14 stations. For the parameter settings, we refer to previous literature 

on train scheduling and control with case studies conducted based on the Yizhuang line. The 

practical timetable is given in Table 6 (adopted from Li and Lo, 2014b), with a total running 

time of 2047 seconds. The data on track gradient and speed limit are adopted from Yang et al. 

(2015) and listed in Table 7 and Table 8, respectively. The train mass is 52.78 10M  kg 

(Wang et al. 2014). Functions of resistance (Wang et al., 2014), maximum tractive force (Su 

et al., 2015) and maximum braking force (Su et al., 2015) are given below, where v  is in 

km/h, and  R v ,  F v  and  B v  are in kN. 

   3 2102.2294 3.9476R v v   

    
36

310 5 36

310, 0

36, 80
F

vv

v
v

  

 

  
 

    
60

260 5 60

260, 0

60, 80
B

vv

v
v

  

 

  
 

 

Table 6. Practical timetable of the Yizhuang line (adopted from Li and Lo, 2014b) 

Station s  Station Name Location sX  (m) Arrival (s) Departure (s) Dwell (s) 

1 Songjiazhuang (SJ) 0 - 0 - 

2 Xiaocun (XC) 2631 190 220 30 

3 Xiaohongmen (XH) 3905 328 358 30 

4 Jiugong (JG) 6271 515 545 30 

5 Yizhuangqiao (YZQ) 8254 680 715 35 

6 Wenhuayuan (WH) 9246 805 835 30 

7 Wanyuan (WY) 10785 949 979 30 

8 Rongjing (RJ) 12065 1082 1112 30 

9 Rongchang (RC) 13419 1216 1246 30 

10 Tongjinan (TJ) 15756 1410 1440 30 

11 Jinghai (JH) 18021 1590 1620 30 

12 Ciqunan (CQN) 20107 1760 1795 35 

13 Ciqu (CQ) 21394 1897 1942 45 

14 Yizhuang (YZ) 22728 2047 - - 
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Table 7. Speed limit in the form: speed (km/h)/subsection start – end location (m) (Yang et 

al., 2015) 

50/0-150 85/150-480 65/480-1161 85/1161-2501 60/2501-2631 60/2631-2643 

85/2643-2797 75/2797-3534 85/3534-3780 60/3780-3905 60/3905-3918 85/3918-5808 

75/5808-6141 60/6141-6271 60/6271-6281 85/6281-8122 60/8122-8254 60/8254-8265 

85/8265-9116 60/9116-9246 60/9246-9259 85/9259-10655 60/10655-10785 60/10785-10797 

85/10797-11933 60/11933-12065 60/12065-12077 85/12077-13289 60/13289-13419 60/13419-13431 

85/13431-14649 70/14649-15426 85/15426-15624 60/15624-15756 60/15756-15768 85/15768-17891 

60/17891-18021 60/18021-18033 85/18033-19982 60/19982-20107 60/20107-20120 85/20120-21264 

60/21264-21394 60/21394-21406 85/21406-22569 60/22569-22728   

 

Table 8. Track gradient in the form: gradient (‰)/subsection start – end location (m) (Yang 

et al., 2015) 

-2/0-160 -3/160-470 10.4/470-970 3/970-1370 -8/1370-1880 3/1880-2500 

-2/2500-2631 -2/2631-2770 -3/2770-3170 8.2/3170-3570 2/3570-3905 2/3905-3940 

-20.4/3940-4200 -24/4200-4800 0/4800-5200 -2/5200-5800 -3.2/5800-6050 0/6050-6271 

0/6271-6370 0/6271–6370 3.3/6370-6770 2.8/6770-7150 -15.6/7150-7415 9/7415-7675 

0/7675-8254 0/8254-8376 5/8376-8736 -2/8736-9036 0/9036-9246 0/9246-9366 

-2/9366-9806 5/9806-10126 3/10126-10606 0/10606-10785 0/10785-10866 2/10866-11426 

-3/11426-11826 0/11826-12065 0/12065-12116 3.5/12116-12736 -1.8/12736-13116 0/13116-13419 

0/13419-13526 -0.5/13526-13926 1.5/13926-14546 -1/14546-15176 6/15176-15476 0/15476-15756 

0/15756-16006 -8/16006-16326 -3/16326-16696 5/16696-17136 1.4/17136-17816 0/17816-18021 

0/18021-18136 15.5/18136-18486 24/18486-19186 -3/19186-19426 10.1/19426-19776 2/19776-20107 

2/20107-20121 -3/20121-20796 3/20796-21231 2/21231-21394 2/21394-21481 20/21481-21681 

3/21681-22066 -18.9/22066-22416 2/22416-22728    

 

With the original timetable, we are able to calculate the optimal train control and the 

minimum energy consumption. Since the running time on each section (which is the railway 

track between two consecutive metro stations) is fixed, the problem is solved as 13 

single-phase optimal control problems with the parameter settings given in Table B.1 

(column III). The computation time is 32 seconds. The minimum total energy consumption is 

6.0977×108J. The optimal train speed profile and control strategy on each section are 

illustrated in Figure 6(a). The optimal control on most sections follows the sequence of 

maximum power - coasting - maximum braking. For some sections, the solutions become 

oscillatory, as illustrated in Figure 6(b). The oscillation on the JH-CQH section is 
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corresponding to speedholding; while the oscillation on the CQ-YZ section may correspond 

to maximum traction. 

 

 

(a) The whole Yizhuang line 

 

(b) Sections: SJ-XC, JH-CQN, CQ-YZ 

Figure 6. Optimal speed and control with respect to location 
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We now see if we can further reduce the energy consumption by redistributing running times 

among different sections, while keeping the total running time and all the dwell times 

unchanged. A maximum adjustment of 30 seconds on running time is allowed on each 

section, while their sum should still be 1662 seconds (which is equal to the total running time 

minus the total dwell time). The maximum and minimum running times on each section i  

between stations i  and 1i  , denoted max
it  and min

it , are listed in Table 9.  

 

Table 9. Upper and lower bounds of running time on each section 

Section i  1 2 3 4 5 6 7 8 9 10 11 12 13 

max
it  (s) 220 138 187 165 120 144 133 134 194 180 170 132 135 

min
it  (s) 160 78 127 105 60 84 73 74 134 120 110 72 75 

 

To obtain the optimal running times and the corresponding control scheme, the MOCP with 

13 phases is formulated as follows, where phase p  corresponds to the journey on section 

p . 

         

 

0

min d
p

f

p

t

t

p

p

pF t v t t

 ,  1,2, ,13  (20) 

subject to the dynamic constraints 

    p px v , p  (21) 

            1p p p p pv F B R v G x
M

      , p  (22) 

the boundary constraints 

  1
0 0t  ,  13 1662ft   (23) 

   0
p

px t X ,    1
p

f px t X  ,      0 0p p
fv t v t  , p  (24) 

the event constraints 

    min max
0

p p
p f pt tt t  , p  (25) 

   0pv  ,   0pF  ,   0pB  , p  (26) 

the path constraints 
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      0p pv v x  ,      0p pF F v  ,      0p pB B v  , p  (27) 

and the linkage constraints 

    1
0

p p
ft t  ,  \ 13p  (28) 

Problem (20)-(28) is solved by GPOPS with the parameter settings given in Table B.1 

(column IV), and the computation time is 174 seconds. The optimal running time in each 

section is given in Table 10, where the offset is defined as the optimal running time minus the 

original running time on each section. With this optimised timetable, the train control is 

recalculated as the single-phase problems with parameters given in Table B.1 (column III), 

and the computation time is 32 seconds. The minimum energy consumption under the 

optimal timetable is 6.0811×108J, which is equal to a reduction of 0.27% compared to that 

under the original timetable in Table 6. Interpretation of this result can be twofold: either the 

original timetable is already quite energy efficient, or the optimised timetable is only a 

sub-optimal solution. To uncover the exact reason requires further development on the 

solution algorithms in the future. 

 

Table 10. Optimal running times and the offsets to the original ones 

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 

Optimal (s) 173 105 147 138 91 118 106 109 157 152 148 105 113 

Offset (s) -17 -3 -10 3 1 4 3 5 -7 2 8 3 8 

 

 

5. Conclusions 

In this paper, we formulated the multi-train scheduling and control problem as a MOCP to 

achieve minimum energy consumption in a moving-block system with multiple nodes, by 

assuming a predetermined departure/arrival sequence of all trains at all nodes. The practical 

track conditions, train dynamics and operation constraints are considered. Two case studies 

are conducted to demonstrate the feasibility of this framework in solving practical problems.  

 

As it was revealed in the case studies, the optimal control obtained from the pseudospectral 

method may behave unexpected fluctuation. For future research, we are interested in 

designing algorithms tailored for the proposed MOCP to provide better solutions. For 

example, pre-analysis on the optimal strategy, such as what have been done in Albrecht et al. 

(2015b, 2015c), Gu et al. (2014), Howlett et al. (2009), Khmelnitsky (2000), and Liu and 
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Golovitcher (2003), can be used in conjunction with mathematical programming methods. On 

the other hand, although the proposed MOCP framework is suitable for modelling very 

complex train networks, the case studies we provided were still based on simple scenarios 

with a small number of trains and/or nodes. Increasing the number of trains and/or nodes 

would significantly increase the number of phases, which further requires algorithms of 

greater efficiency and pre-analysis on the MOCP itself. A possible strategy may be to divide 

the original MOCP into sub-MOCPs by analysing the relations of the trains over different 

phases. 

 

Further, the requirement of a prescribed D/A-sequence for the proposed framework means 

that it cannot be directly deployed for the energy-based scheduling in a complex railway 

network. Instead, it can be embedded in a bi-level scheduling process, where the upper level 

generates the D/A-sequence, and the lower level uses the method proposed in this paper to 

evaluate the energy efficiency of the generated D/A-sequence.  

 

It is also worth pointing out that, the modelling technique established in this paper can be 

useful to not only the railway operation but a wider transportation area. For example, He et al. 

(2015) used multiphase optimal control to optimise the individual vehicular trajectories along 

a signalised urban road corridor, and the MOCP they established is similar to that we have 

formulated in the second case study. 
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Appendix A. Introduction to the Radau pseudospectral method 

The Radau pseudospectral method (RPM) is a pseudospectral method (Rao, 2009) whose 

collocation points are the Legendre-Gauss-Radau (LGR) points. We refer to Garg et al. (2010, 

2011a, 2011b) and Patterson and Rao (2012, 2014) for the main idea of RPM. For the sake of 

presentation, we restate the MOCP as follows with a new, and more general, set of notations.  
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Consider a MOCP of P  phases, and denote by  
0

pt ,  p
ft ,  px  and  pu  the start time, 

end time, state and control of phase 1,2 ,,p P . The objective is 

                             
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J x t t x t t x t u t t t
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     
   (A.1) 

subject to the dynamic constraints 

             , ,p p p pf x t ux t t , , ,1p P  (A.2) 

the inequality path constraints 

               
min max, ,p p p p pC C x t u t t C  , , ,1p P  (A.3) 

the boundary constraints 

                     
min 0 0 max, , ,p p p p p p p p p

f fx t t x t t     , , ,1p P  (A.4) 

and the linkage constraints11 

    1
0

p p
ft t  ,          1 1
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fx t x t  , , 11, Pp   (A.5) 

 

Let  1,1    be a new independent variable. Variable t  can then be defined in terms of 

  as  
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and the MOCP (A.1)-(A.5) is defined in terms of   as  

 

              
   

              0
0 0

1

1
1

;min 1 , , 1 , , , , d
2

p p
p p p p p p p p pfp

f f

P

p

t
t

t
J x t x t x u t




    
 

    
  

  (A.6) 

subject to the dynamic constraints 

  
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the inequality path constraints 

                   
min 0 max, , ; ,p p p p p p p

ftC C x u t C     , , ,1p P  (A.8) 

the boundary constraints 

                                                 
11 For a more general form of the linkage constraints, please see Betts (2010) and Rao et al. (2010). 
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                   
min 0 max1 , , 1 ,p p p p p p p

fx t x t     , , ,1p P  (A.9) 

and the linkage constraints 

    1
0

p p
ft t  ,        11 1p px x   ,  , 11, Pp   (A.10) 

Problem (A.6)-(A.10) will then be discretised by RPM and solved as a nonlinear 

programming problem. The remainder of this appendix will focus on the discretisation of a 

specific phase p , and the superscript p  as the phase identifier will be omitted unless it is 

needed to distinguish among phases.  

 

Denote  pN  as the number of LGR collocation points for phase p . Then the LGR points, 

denoted 1 11 N      , would be the roots of    1N NQ Q     where 
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 (A.11) 

The LGR collocation points, together with the noncollocated point 1 1N  , are used for 

RPM. Associated with each LGR point i  is the LGR weight i  computed as (Garg, 

2011) 
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Denote by iX  and iU  the approximation of state and control at i , respectively, then 

 x   is approximated by 
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where  iL  , , 11, Ni   , is defined as 
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By substituting Eqs. (A.13) and (A.14) into Eq. (A.7), the dynamic constraints are 

approximated at the LGR points as 
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where  i kL   is the derivative of  iL   evaluated at k   . The cost function in Eq. (A.6) 

is approximated by 
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Furthermore, the path constraints in Eq. (A.3) are approximated at the LGR points as 
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the boundary constraints in Eq. (A.4) are approximated as 
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and the linkage constraints in Eq. (A.5) now read 
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By now, the MOCP (A.6)-(A.10) is converted to the following nonlinear programming (NLP) 

problem, 

 min Eq. (A.16) s.t. Eqs. (A.11)-(A.12), (A.14)-(A.19) (A.20) 

and the decision variables are  
0
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Techniques of solving this NLP problem is not further introduced in this paper but can be 

found in Patterson and Rao (2012, 2014) and references therein.  

 

 

Appendix B. Parameter settings for the case studies 

Referring to Table B.1, the key parameters of GPOPS Version 5.1 are explained as follows: 

(i) setup.autoscale indicates whether the MOCP is scaled automatically before it is solved. 

limits(p).nodesPerInterval specifies the number of collocation points in each phase p . 

(ii)  limits(p).meshPoints and setup.mesh.iteration are paramerters for the hp-adaptive mesh 

refinement (Darby et al., 2011; Patterson et al., 2015). The former specifies the mesh 

points of each phase p  for the initial run of GPOPS, and the latter gives the number of 

iterations for performing the mesh refinement. Considering the computational effort as 

well as the operability of the solutions, the hp-adaptive mesh refinement is excluded in 

the case studies by appropriate parameter settings. 
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(iii)  setup.derivatives and setup.tolerances are parameters for solving the NLP problem. The 

former indicates the approach to computing the derivatives of the objective function and 

the constraints of the NLP problem. The latter is a row vector of two elements which 

respectively specify the optimality and feasibility tolerances of the NLP solver: for 

SNOPT used by GPOPS Version 5.1, they should be the Major optimality tolerance and 

the Major feasibility tolerance (Gill et al., 2005).  

 

When solving the case study problems, the performance of GPOPS, in terms of computation 

time as well as the accuracy and operability of the solution, is sensitive to the parameters of 

GPOPS and the settings of the problem itself. As a result, choosing the appropriate 

parameters for GPOPS is a tedious trial-and-error process. We choose the optimality and 

feasibility tolerances as small as possible while assuring that they can be satisfied when the 

NLP solver terminated. As we can see, for columns I/II/IV, the feasibility tolerance is 

reasonably small to assure a feasible solution; while the not-so-small optimality tolerance 

may indicate a sub-optimal solution. 

 

Table B.1. Parameter settings for GPOPS Version 5.1 in the case studies 

Parameter I II  III IV  

setup.autoscale ‘off’ ‘off’ ‘off’ ‘off’ 

limits(p).nodesPerInterval 440 (p=1) 

110 (p=1,2) 

230 (p=3) 

100 (p=4) 

60/80/100/140/150/190* 

(p=1) 
100 (p=1,2,13,ڮ) 

setup.mesh.iteration 0 0 0 0 

limits(p).meshPoints [-1,1] (p=1) [-1,1] (p=1,2,3,4) [-1,1] (p=1) [-1,1] (p=1,2,13,ڮ) 

setup.derivatives ‘complex’ ‘complex’ ‘complex’ ‘complex’ 

setup.tolerances [4.2e-3, 2.5e-4] [6.3e-3, 1.2e-4] [2e-6, 5e-12] [4.7e-4, 3.1e-5] 

* 60 for section 9; 80 for section 13; 100 for section 5; 140 for sections 2/3/6/7/8/11/12; 150 for section 1; 190 for 

sections 4/10. 
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