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ABSTRACT: Peri-implantitis remains the major impediment
to the long-term use of dental implants. With increasing
concern over the growth in antibiotic resistance, there is
considerable interest in the preparation of antimicrobial dental
implant coatings that also induce osseointegration. One such
potential coating material is fluorapatite (FA). The aim of this
study was to relate the antibacterial effectiveness of FA
coatings against pathogens implicated in peri-implantitis to the
physicochemical properties of the coating. Ordered and
disordered FA coatings were produced on the under and
upper surfaces of stainless steel (SS) discs, respectively, using a
hydrothermal method. Surface charge, surface roughness,
wettability, and fluoride release were measured for each
coating. Surface chemistry was assessed using X-ray photoelectron spectroscopy and FA crystallinity using X-ray diffraction.
Antibacterial activity against periodontopathogens was assessed in vitro using viable counts, confocal microscopy, and scanning
electron microscopy (SEM). SEM showed that the hydrothermal method produced FA coatings that were predominately aligned
perpendicular to the SS substrate or disordered FA coatings consisting of randomly aligned rodlike crystals. Both FA coatings
significantly reduced the growth of all examined bacterial strains in comparison to the control. The FA coatings, especially the
disordered ones, presented significantly lower charge, greater roughness, and higher area when compared to the control,
enhancing bacteria−material interactions and therefore bacterial deactivation by fluoride ions. The ordered FA layer reduced not
only bacterial viability but adhesion too. The ordered FA crystals produced as a potential novel implant coating showed
significant antibacterial activity against bacteria implicated in peri-implantitis, which could be explained by a detailed
understanding of their physicochemical properties.

1. INTRODUCTION

Tooth loss is a significant event that can have a detrimental
impact on an individual’s well-being and social life. Osseointe-
grated dental implants are an increasingly viable and successful
treatment option for restoring edentulous spaces, demonstrat-
ing success rates of up to 96.8%.1−3 Worldwide, it is estimated
that one million endosseous dental implants are placed per year
and around 110 manufacturers produce over 440 implant
brands.4

It should be noted, however, that clinical complications or
failures do occur, and this poses a challenge to both the
clinician, in terms of management, and the patient. Implant
failure refers to the disruption between the mineralized bone
and the implant. The causative factors include chronic bacterial
infection known as peri-implantitis, which is defined as “an
inflammatory reaction in the oral cavity with loss of supporting

bone in the tissues surrounding an implant.”5,6 Recent data
have shown that peri-implantitis affects 20% of patients and
10% of implant sites,7 making it a serious challenge in long-
term implant dentistry. This condition that causes progressive
bone loss could eventually lead to severe disfigurement and
poor aesthetics, which is extremely challenging to manage and
treat.8

Bacterial adhesion and biofilm formation on the implant
surface are the essential initial steps in the pathogenesis of peri-
implant disease and the primary etiological factor of implant
failure.9 Various anaerobic bacteria, including Porphyromonas
gingivalis (P. gingivalis), Fusobacterium nucleatum (F. nucleatum),
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and Aggregatibacter actinomycetemcomitans (A. actinomycetemco-
mitans), have been shown to be implicated in peri-
implantitis.10,11 Because of the growing development of
bacterial resistance to antibiotics, there is a considerable
interest in the preparation of antimicrobial materials.12Ther-
Therefore, there is great interest in developing an antimicrobial
biomimetic implant surface that could prevent bacterial
colonization from the outset.
Bioceramics and metals have been of particular interest to

researchers. Hydroxyapatite (HA) has long been investigated
and, as a result, is the most widely used bioceramic in medicine
and dentistry because of its strong affinity to bone tissue. This
property improves the implant−bone interface and thus favors
early osseointegration.13−15 HA, however, does not possess
antimicrobial properties, and its use has declined after reports
of HA coating delamination from oral implants, resulting in
poor performance and uncertain long-term success.16

As a result of these limitations, fluoride-containing apatite
coatings have become an area of interest. Chen et al. (2006)
successfully synthesized fluorapatite (FA) crystals that
resembled enamel prismlike structures, using the hydrothermal
technique. The advantage of these FA microrods is that their
composition is similar to the apatite crystals found in dental
hard tissues.17

FA demonstrates better biocompatibility and bioactivity
when compared with HA.18−20 This bioceramic also exhibits
lower resorption rates in situ21 and has the potential to release
fluoride ions, which have osteoinductive22 and antibacterial
properties.23 Indeed, FA has been shown to improve the rate of
bone apposition in early osteogenesis.24 These promising
findings suggest that FA implant coatings may be clinically
advantageous and have led to an increased interest in the
application of FA as a dental implant coating. However, current
research regarding this material is not comprehensive.25 For
instance, there are controversies as to whether partially fluorine-
substituted hydroxyapatite (FHA; Ca10(PO4)6(OH)2−2xF2x,
0<x<1) possesses significant antimicrobial activity over HA,
especially when different bacterial species are compared,26−28

whereas the antimicrobial efficacy of FA is largely unreported.
Given the well-documented issues of peri-implantitis, it would
be beneficial to ascertain whether an FA coating exhibits
antimicrobial activity in addition to its osteoinductive proper-
ties. In this direction, the aim of this study was to investigate
the potential antibacterial effects of FA dental implant coatings.
The null hypothesis tested was that there would be no
difference in microbial response between the coated and
control stainless steel (SS) substrates.

2. MATERIALS AND METHODS
2.1. Production of Ordered and Disordered FA

Coatings. Grade 430 SS alloy discs, 14 mm in diameter and
0.5 mm in thickness, with smooth edges and flat surface (Ted
Pella Inc, Redding, CA, USA) were used as substrates to grow
FA crystals using the hydrothermal method17 as reported
previously. Prior to the growth of FA crystals, the SS discs were
acid-etched with piranha solution [1:1 sulphuric acid (98%)/
hydrogen peroxide (30%)] for 24 h and then rinsed copiously
with distilled water.
For the synthesis of FA crystals, 9.36 g of ethylene diamine

tetraacetic acid calcium disodium salt (EDTA-Ca-Na2) and 2.07
g of NaH2PO4·H2O were mixed with 90 mL of distilled water.
The suspension was stirred continuously until the powder
dissolved. The pH was adjusted to 6.0 using NaOH. Finally,

0.21 g of NaF dissolved in 10 mL of water (pH 7.0) was added
under continuous stirring to 90 mL of the EDTA-Ca-Na2 and
NaH2PO4 solution.
FA crystal growth was achieved by placing the SS discs in 100

mL of a newly prepared EDTA-Ca-Na2/NaH2PO4/NaF
mixture and then autoclaving at 121 °C under a pressure of
2.4 × 105 Pa for 10 h. The ordered and disordered FA coatings
were produced individually on the under and upper surfaces of
the SS discs, respectively. The exact mechanism of crystal
formation and self-assembly has been extensively described by
Chen et al.17

2.2. Material Characterization. 2.2.1. Scanning Electron
Microscopy (SEM) and Energy Dispersive Spectroscopy. SEM
was used to examine the surface topography of the bare SS
discs and the discs coated with ordered and disordered FA
crystals. The samples were prepared by attaching them to
aluminum stubs using carbon tabs; they were then examined
using a Hitachi S-3400N variable pressure scanning electron
microscope under low vacuum at 20 kV, and images were
generated using a back-scattered electron detector. An X-ray
energy dispersive spectrometer (Bruker 4030 Quantax SDD-
EDS System) equipped with the scanning electron microscope
was used for the elemental analysis of the FA coatings. The 20
kV accelerating voltage that was used allowed for the elemental
analysis of the first micron of the surface and the evaluation of
the surface fluorine content of each of the FA coatings.
Moreover, a map was produced using specific elements, for
example, calcium and fluorine for the coatings and chromium
for the SS substrate, and overlaid on the corresponding SEM
image. In parallel, a line scan was produced across a scratch
made on the surface of the coatings, using a scalpel. These
allowed for the observation of the elemental distribution over
an area and over the coating depth.

2.2.2. X-ray Photoelectron Spectroscopy. The surface
chemical composition of bare and FA-coated SS discs was
determined using X-ray photoelectron spectroscopy (XPS) at
the National EPSRC XPS Users Service (NEXUS) at
Newcastle University, an EPSRC mid-range facility. XPS data
were obtained with an AXIS Nova spectrometer (Kratos
Analytical) using a high-power monochromated Al Kα X-ray
source. The survey spectra were acquired, and CasaXPS (Casa
Software Ltd) data analysis software was used to calculate the
elemental compositions.

2.2.3. Fluoride Release Measurements. The concentration
of the fluoride ions released into the culture media along with
the media pH was determined by collecting the supernatant of
each cultured sample, as detailed in section 2.3, after 48 h of
incubation and analyzing it using an Orion 920A fluoride
electron (Orion Research Inc.), following the manufacturer’s
instructions. Briefly, fluoride standards of 0.1, 1, 10, and 100
mg/L (ppm F) were measured in triplicate and used to
construct a calibration curve. The supernatant of three
independently prepared substrates was treated with an equal
volume of total ionic strength adjustment buffer (TISAB) and
measured in triplicate. The fluoride concentrations in the
unknown samples were evaluated using the calibration curve.

2.2.4. 3D Optical Profiler. The surface morphology,
roughness, area, and thickness of the ordered and disordered
FA coatings on the SS discs were evaluated using a white light
interferometric three-dimensional (3D) optical profilometer
(Bruker, NPFLEX) operating in the vertical scanning
interferometry (VSI) mode. The instrument calculates (1)
the average surface roughness (Sa), which is the arithmetic
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mean of peaks and valleys or departures from the centerline
over the sampling length; (2) the root mean square roughness
(Sq), which is the root mean square measurement of the peaks
and valleys or departures from the centerline; and (3) the
maximum distance between the highest peak and the lowest
groove (Sz). The analysis of the variation of the coating
thickness enabled the estimation of an average thickness value
over the scanned surface, at an instrumental resolution of
approximately 5 nm. For the roughness and surface area
measurements, an ×50 objective was used, and for thickness
measurements, an ×2.5 objective was used. For the statistical
evaluation of the morphology parameters, three independently
prepared substrates were examined and each measurement was
repeated three times on each substrate.
2.2.5. Streaming and Zeta Potential Measurements. The

surface charge of bare and ordered or disordered FA-coated SS
discs was evaluated in 0.01 M phosphate buffer saline (PBS)
using a SurPASS electrokinetic analyser (Antor Paar). In
parallel, the zeta potential of the FA crystals after grinding, and
of the bacterial strains used, as detailed in section 2.3, was
evaluated in both 0.01 M PBS and brain heart infusion (BHI)
bacterial culture medium broth (Oxoid), using a laser zeta
meter (Malvern).

2.2.6. Water Contact Angle (WCA) Measurements. The
surface wettability of the ordered and disordered FA coatings as
well as of the SS discs was examined by measuring the WCA
using a MicroDrop analyzer (First Ten Angstroms), using the
sessile drop technique at room temperature.

2.2.7. X-ray Diffraction (XRD) Analysis. XRD was used to
identify the composition of the crystal phases within the FA
coatings. The XRD data were obtained using a Philips analytical
PW3050 system with a copper Kα X-ray source (λ = 1.5418 Å),
40 kV tension, and 35 mA current. The scans were taken
between 20 and 60°, with a step size of 0.05° and dwell of 1 s.
The data collected were analyzed using PC-APD diffraction
software.

2.3. Antibacterial Tests. The antibacterial properties of the
ordered and disordered FA coatings on the SS discs were
examined using single species cultures of Porphyromonas
gingivalis W50 (P. gingivalis), Fusobacterium nucleatum ATCC
10953 (F. nucleatum), and Aggregatibacter actinomycetemcomi-
tans NCTC 9710 (A. actinomycetemcomitans).

2.3.1. Viable Count. Before testing, the discs (ordered FA,
disordered FA, or acid-etched SS) were sterilized in an
ultraviolet chamber (Bio-Rad GS Gene Linker UV chamber)
at 250 mJ for three consecutive cycles. Starting with an

Figure 1. (a) EDS map of the ordered FA coating on the SS discs, (b) EDS map of the disordered FA coating on the SS discs, and (c) line scan
profile of a cut made with a scalpel blade in a disordered FA coating on the SS discs.
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inoculum of 2.5 × 108 bacteria per sample, biofilms were grown
on the surface of each disc by incubating them in BHI broth at
37 °C in an anaerobic incubator (Ruskinn concept 1000
Invivo2, Ruskinn Technology Ltd) under anaerobic conditions
(80% N2, 10% CO2, and 10% H2 atmosphere) for 48 h. The
reduced BHI broth (1 mL) was carefully added to each disc
sample every 24 h without disturbing the biofilm surface and to
maintain biofilm growth. The growth experiments were carried
out in triplicate. Each disc was then carefully transferred into 2
mL sterile reduced transport fluid (RTF)29 and vigorously
vortexed for 1 min to disrupt the adhered biofilm and
homogeneously suspend the bacteria. Serial dilutions were
carried out up to 10−6 in the sterile RTF solution, and then 0.1
mL of the highest dilution (10−4, 10−5, and 10−6) was spread
onto blood agar plates (Columbia blood agar base, Oxoid). The
plates were incubated at 37 °C for 48 h in an anaerobic
incubator, the number of colonies on each agar plate was
visually counted using a colony counter (Stuart SC6), and the
colony-forming units (CFUs) per milliliter were calculated.
2.3.2. Scanning Electron Microscopy. The biofilm growth

experiments were repeated, and each disc was fixed overnight
with 2.5% glutaraldehyde in PBS. Afterward, the samples were
dehydrated by several passages in ethanol, using increasing
concentrations of ethanol up to 100%, sputter coated with gold,
and investigated using the Hitachi S-3400N SEM, under low
vacuum at 20 kV. Images were generated using a back-scattered
electron detector and analyzed in terms of surface coverage
using ImageJ software.
2.3.3. Confocal Laser Scanning Microscopy (CLSM). A

spectral confocal laser scanning microscope (TCS SPE, Leica,
GmbH) and a Live/Dead BacLight bacterial viability kit L7012
(Molecular Probes) were used for the determination of the
live/dead ratio of the bacteria attached to the various substrates,
48 h post adhesion. The attached bacteria were stained with a
1:1 SYTO 9 dye, 3.34 mM/propidium iodide 20 mM in 0.85%
NaCl. The SYTO 9 stain generally labels all bacteria in a
population whereas propidium iodide penetrates bacteria with
damaged membrane, thereby staining only the dead bacteria
and reducing the SYTO 9 fluorescence when both dyes are
present. After staining, the samples were incubated at room
temperature in the dark for 15 min and subsequently examined
using CLSM. The live/dead ratios were calculated using CLSM
software.
2.4. Statistical Analysis. Statistical analysis of the results

was performed with Statistical Package for Social Sciences
(SPSS); all data were expressed as mean ± standard deviation
of the mean. One-way analysis of variance (ANOVA) followed
by the Student’s t test was used to detect the significant
differences (p < 0.05 was chosen to denote the significance
level).

3. RESULTS

3.1. Material Characterization. 3.1.1. SEM and Energy
Dispersive Spectroscopy. SEM images showed that the length
of the FA crystals that were prepared using the hydrothermal
method was 6 ± 2 μm. In the case of the ordered coatings, the

crystals were well-aligned, with the c-axis of the crystals
arranged perpendicular to the SS substrate, whereas in the case
of the disordered coatings, the crystals were randomly oriented.
Shown below are representative energy dispersive spectros-

copy (EDS) maps of the ordered FA coating (Figure 1a) and
the disordered ones (Figure 1b). The EDS maps are
composites of three images: (1) the secondary electron image
generated by SEM and (2 and 3) elemental maps of colored
pixels corresponding to different elementscalcium repre-
sented by green pixels and fluoride represented by red pixels
overlaid on the original SEM image. A line scan of calcium,
fluoride, and chromium also confirms that fluorine was
apparently present on the cut surface of the substrate for a
disordered coating (Figure 1c).
The relative fluoride content of each of the three surfaces, SS,

ordered and disordered FA coatings, measured using EDS, is
shown in Table 1. The highest fluoride content was measured
on the disordered coating, and the results were statistically
different (p < 0.05). Apart from fluoride (F), calcium (Ca),
phosphorous (P), and sodium (Na) were detected on the
ordered and disordered FA coatings but not on the noncoated
SS substrate. Only chromium (Cr) and iron (Fe) were detected
on the SS substrate. The presence of carbon (C) and oxygen
(O) was confirmed on all three substrates. The Ca/P, Ca/F,
Fe/Cr ratios along with the F (wt %) obtained for all substrates
using EDS are presented in Table 1.

3.1.2. X-ray Photoelectron Spectroscopy. The chemical
compositions of each of the three surfaces (SS, ordered, and
disordered FA coatings) were also compared using XPS analysis
(Figure 2). Fluoride (F 1s), calcium (Ca 2p), phosphorous (P
2p), and sodium (Na 1s) were detected on the ordered and
disordered FA coatings whereas none of these were observed
on the noncoated SS substrate. In contrast, chromium (Cr 2p),
iron (Fe 2p), and silicon (Si 2p) were detected only on the bare
SS surface. Concentrations of other elements, including carbon
(C 1s), oxygen (O 1s), and nitrogen (N 1s), were similar on
the three surfaces (Table 1). The XPS elemental analysis
showed higher atomic concentrations of F 1s, Ca 2p, P 2p, and
Na 1s on the disordered FA coating, in comparison to the
ordered coating, whereas the Ca/F ratio was lower, as
presented in Table 1.

3.1.3. Fluoride Release Measurements. The measurement
of the concentration of the fluoride ions that were released into
the supernatant of each cultured sample in BHI showed that
more fluoride was released in the case of the disordered coating
than in the case of the ordered coating (Table 1). The
concentration of the fluoride ions that were released was not
affected by the presence of the bacterial strains tested in this
study [P. gingivalis (P. ging), F. nucleatum (F. nunc), and A.
actinomycetemcomitans (A. A.)] and the pH of the suspension
when compared with BHI (Table 2).

3.1.4. 3D Optical ProfilerRoughness, Thickness, and
Surface Area Measurements. Table 3 illustrates the average
surface roughness (Sa), the root mean square roughness (Sq),
and the maximum distance between the highest peak and the
lowest groove (Sz) of the three surfaces (SS, ordered, and

Table 1. EDS and XPS Analyses of the Various Substrates

sample Ca/P (EDS) Ca/F (EDS) F (wt %) (EDS) Fe/Cr (EDS) Ca/F (XPS) F (at %) (XPS) F release (ppm in BHI)

SS N/A N/A N/A 5.82 ± 0.05 N/A N/A N/A
FA ordered 1.75 ± 0.13 5.36 ± 0.88 2.7 ± 0.3 N/A 7.45 ± 0.38 1.21 ± 0.23 5.1 ± 1.5
FA disordered 1.75 ± 0.10 3.72 ± 0.70 3.4.± 0.4 N/A 5.84 ± 0.29 1.82 ± 0.29 17.8 ± 1.2
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disordered FA coatings). The results (Figure 3 and Table 3)
indicate that the roughness values of the disordered FA coating
were significantly higher than those of both the ordered FA
coating and the SS discs. Nevertheless, the ordered FA coating
presented significantly higher roughness values than did the SS
discs.
When compared with the ordered coating, the disordered

coating was significantly thicker and had a much higher
measured surface area, as presented in Table 3. The ordered
coating had significantly higher measured surface area in
comparison to the bare SS discs.
3.1.5. Streaming and Zeta Potential Measurements. The

SPMs illustrated in Table 3 show that the SS surface exhibited a
significantly more negative surface charge than those of both
FA coatings whereas the disordered FA coating appeared to be
neutral. The zeta potential measurements of ground FA powder
in 0.01 M PBS and BHI showed that FA appears neutral under
these conditions whereas the three tested bacterial strains (P.

gingivalis, F. nucleatum, and A. actinomycetemcomitans) appeared
highly negatively charged in 0.01 M PBS, with F. nucleatum and
P. gingivalis being more negatively charged than A. actino-
mycetemcomitans (Table 4). The presence of BHI decreased the
bacterial charges, but still F. nucleatum and P. gingivalis appeared
more negatively charged than A. actinomycetemcomitans (Table
4).

3.1.6. WCA Measurements. The WCA measurements on
the three surfaces showed that SS is moderately hydrophobic,
with an average WCA of 45 ± 2°, whereas the WCA could not
be measured on the FA coatings as the droplets started to
spread (Table 3).

3.1.7. X-ray Diffraction. The diffraction patterns of the
surfaces are shown in Figure 4. The disordered FA crystals
show a diffraction pattern that corresponds to that of the
reference diffraction file (top and bottom traces). The
diffraction pattern of the ordered FA crystals shows the same
peak positions as that of the disordered crystals, confirming it is
the same material but with different peak heights, suggesting
preferential orientation of the crystals, which was also observed
using SEM. This pattern also shows the diffraction peaks
associated with the underlying SS substrate, supporting the
visual observation that this coating is very thin.
The reference file used for the FA standard was FA reference

(04-009-4021) (chemical formula, Ca5(PO4)3F; crystal system,
hexagonal).

3.2. Antibacterial Tests. The efficacy of the two coatings
against bacteria was assessed using the CFUs counting method,
SEM, and confocal microscopy.

3.2.1. Viable Count. The results presented in Figure 5, using
the viable count method, show that the FA coated substrates
(both ordered and disordered) significantly reduced the
viability of the adherent bacteria, for all three bacterial strains
tested (P. gingivalis, F. nucleatum and A. actinomycetemcomitans),
in comparison to the bare SS substrate. In the case of P.
gingivalis, the disordered FA coating reduced the bacterial
viability more than the ordered coating by 89 ± 2% and 68 ±
4%, respectively, whereas for the other two bacterial strains, F.
nucleatum and A. actinomycetemcomitans, the two FA coatings
(ordered and disordered) appeared equally potent in reducing
the bacterial viability, 48 h post adhesion. In the case of F.
nucleatum, the reduction in growth was 84 ± 12% for the
ordered coating and 82 ± 15% for the disordered coating. In
the case of A. actinomycetemcomitans, the reduction in growth
was 96 ± 10% for the ordered coating and 90 ± 12% for the
disordered coating.

3.2.2. Scanning Electron Microscopy. The SEM results
presented in Figure 6 show, in Column A, that the surface of
the bare SS substrate was fully covered by a P. gingivalis biofilm
48 h post adhesion whereas the ordered FA coating was
partially covered by bacteria, with a 32 ± 3% coverage. In
contrast to the ordered FA coating, the disordered coating was
fully covered by a biofilm that was penetrating the porous
structure of the disordered coating. This shows a significant
difference between the two substrates, ordered and disordered,

Figure 2. XPS spectra of (a) acid-etched SS, (b) ordered FA coating
on SS, and (c) disordered FA coating on SS.

Table 2. Culture Media pH and Fluoride Release from the Substrates in BHI and in the Presence of Various Bacterial Strains

sample BHI pH A. A. pH P. ging pH F. nunc pH
BHI F release

(ppm)
A. A. F release

(ppm)
P. ging F release

(ppm)
F. nunc F release

(ppm)

SS 6.6 ± 0.1 5.3 ± 0.1 7.4 ± 0.1 6.8 ± 0.1 N/A N/A N/A N/A
FA ordered 6.6 ± 0.1 5.3 ± 0.1 7.4 ± 0.1 6.8 ± 0.1 5.1 ± 1.5 5.7 ± 1.2 5.2 ± 1.2 5.9 ± 1.6
FA disordered 6.6 ± 0.2 5.4 ± 0.2 7.3 ± 0.1 6.7 ± 0.1 17.8 ± 1.2 18.6 ± 1.4 16.8 ± 1.1 19.2 ± 1.4
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with the ordered presenting better nonfouling properties than
the disordered and the bare SS substrate. Similar results were
obtained with the other two bacterial strains (F. nucleatum and
A. actinomycetemcomitans): the ordered FA coating presented
better nonfouling properties against these two bacterial strains
than did the disordered and the bare SS substrate. In the case of
F. nucleatum (Figure 6, column B), the surface coverage of the
ordered FA substrate was 65 ± 4% whereas in the case of A.
actinomycetemcomitans (Figure 6, column C), the coverage was
41 ± 2%, compared with the fully covered FA disordered and
the SS substrates.
3.2.3. Confocal Laser Scanning Microscopy. Figure 7

presents some of the images obtained using the confocal laser
scanning microscope. The green fluorescent stain represents
the live bacteria whereas the red fluorescent stain represents the
dead bacteria. As in the case of P. gingivalis examined using
SEM (Figure 6), CLSM showed that the disordered FA coating
was more populated by the F. nucleatum biofilm, 48 h post
adhesion, than the ordered coating; however, most of the
adherent bacteria appeared dead. Comparing the ordered FA
coating against the bare SS, CLSM showed that the ordered
coating was more potent as antibacterial against F. nucleatum, in
comparison to the bare SS substrate.
Similar data were obtained for the other two bacteria strains

P. gingivalis and A. actinomycetemcomitans, showing that the
disordered FA coating was more effective against the various
bacterial strains, but at the same time it was retaining more
bacteria in total, in comparison to the ordered one. Quantitative
analysis of these data is shown in Figure 8.

4. DISCUSSION

To date, there has been limited research on the antimicrobial
properties of viable laboratory-produced FA implant materials.
The aim of the present study was to investigate the antibacterial
activity of ordered and disordered FA coatings manufactured
using the hydrothermal method. The effect that these coatings
had on the growth of three putative bacterial strains that are
commonly implicated in peri-implant disease was identified.10

Physicochemical analysis of the FA crystals produced in the
current study was carried out to achieve a comprehensive
material appraisal.
4.1. Formation of FA Coatings on SS Discs. The

hydrothermal method is widely used in nanotechnology to
produce long nanorods, nanofibers, and other one-dimensional
nanostructures. Chen et al. (2006) and Czajka-jakubowska et al.
(2009)30,31 showed that this process produces FA crystals that
are well-aligned and self-assemble into an ordered enamel
prismlike structure. Another way of creating these enamel
prismlike analogues involves modifying the surface of a
synthetic HA nanorod, using sodium bis(2-ethylhexyl)
sulfosuccinate (AOT). However, this method results in prisms
that are too small: approximately 400 nm in length and 100 nm
in cross section.30 The hydrothermal method can create prisms
that are more comparable with enamel nanorod dimensions:
1−3 μm in cross section and 50 μm in length.30 The

hydrothermal method exhibits greater potential as a manu-
facturing process because it allows control of the nanorod
composition and size. Therefore, the present study would
further explore this more viable method.
The data gathered in section 3.1 show that, in the case of the

ordered FA coating, the FA crystals produced by the
hydrothermal method were well-aligned with the c-axis and
assembled into an ordered enamel prismlike structure
perpendicular to the SS substrate. They were 6−8 μm in
length and densely packed, giving a 7.28 ± 0.46 μm thick
coating. The disordered FA coating comprised of FA crystals
arranged in random orientations, giving a 49.07 ± 6.58 μm
thick coating.
The XRD characterization of the SS discs, ordered FA

coatings and disordered FA coatings can been seen in Figure 3.
The graph confirms the apatitic structure of the crystals in the
coatings as compared with the FA reference peaks. This
confirms that the disordered and ordered FA is crystalline in
nature, which is in agreement with the findings of Czajka-
jakubowska et al. (2009). It is well known that HA coatings
deposited by plasma-spraying contain a mixture of crystalline
and amorphous crystalline phases; in contrast, this method
produces a phase pure coating. Crystalline structures are more
resistant to dissolution,32 which could be clinically advanta-
geous.
Including the present study, a number of authors now cite

success in growing FA crystals on SS using the hydrothermal
method.31,33 Czajka-jakubowska et al. used the same method to
deposit FA on titanium, which is the most commonly used
material in implant dentistry.31 The FA crystals deposited on
both titanium and SS have been found to exhibit the same
composition, alignment, size, shape, and structure31 (Figures S1
and S2, respectively). Therefore, using SS as the substrate
throughout this investigation serves a cost-effective, yet still
relevant, purpose because it is the coating that is examined
rather than the substrate. The ability to grow FA crystal
coatings on these metals shows promising signs for commercial
use in implant dentistry.
Various forms of fluoride-containing apatites have been

found to exhibit osteoinductive properties.34,35 This is partly
due to the presence of fluoride ions, which increases the
proliferation and differentiation of osteoprogenitor cells.22

Improved osteoblast numbers form bone at a faster rate, thus
promoting earlier implant osseointegration. An in vivo study
performed by Dhert et al. in goats showed that FA implant
coatings are superior to HA in favoring osteoinduction.24 FA
has also been reported to suppress the maturation of osteoclasts
and inhibit phagocyte activity, which may be contributing
factors to the biocompatibility these coatings present.36

Liu et al. observed a favorable cellular response in osteoblast-
like cells on both ordered and disordered FA coatings in vitro.
The same group also demonstrated accelerated and enhanced
mineralized tissue formation integrated within ordered FA
coatings in vivo. In particular, after 5 weeks, over 80% of the
ordered FA coating was integrated with the mineralized tissue

Table 3. Roughness Values, Thickness, Measured Surface Area, Streaming Potential Measurement (SPM), and Contact Angle
Measurement of Various Substrates

sample Sa (μm) Sz (μm) thickness (μm) measured surface area (mm2) SPM (mV) in 0.01 M PBS CAM (deg)

SS 0.33 ± 0.06 4.23 ± 0.46 N/A 0.079 ± 0.1 −31.52 ± 3.31 45 ± 2
FA ordered 4.78 ± 1.02 83.35 ± 5.73 7.28 ± 0.46 0.61 ± 0.24 −10.51 ± 3.23 <5
FA disordered 9.63 ± 1.04 106.47 ± 7.72 49.07 ± 6.58 1.51 ± 0.26 0.32 ± 0.52 <5
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layer covering the titanium implants in comparison to 40%
integration in the case of the disordered FA coating.37

Therefore, ordered FA coatings similar to those in the present
study exhibit good hard tissue compatibility in vivo. Although
they promote osseoinduction, HA implant coatings have
demonstrated dubious longevity because of high dissolution

rates in situ.38 With FA, replacement of hydroxide ions with

fluoride creates a more-stable and less-soluble structure. Several

authors have reported significantly less dissolution and

degradation rates in FA implant coatings compared with

HA.19,21,24,39

Figure 3. Optical profiler images of (a) ordered FA coating and (b) disordered FA coating on SS discs.
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In addition to the current research on the osteointegration
capabilities of a surface-coated implant, there has been a
growing interest in the long-term maintenance of the marginal
alveolar bone and soft tissue health. It has been well established
that the bone and the soft tissue interface around the dental
implants are strongly associated with each other.40,41 There
remains a strong consensus among dental implant clinicians
that hard and soft tissues must remain healthy to ensure the
longevity of the implant. The soft tissues that seal around the
transmucosal element of the dental implant is considered to be
a vital barrier to preventing the onset of peri-mucositis. In a
recent paper by De Wilde et al., nano HA coatings applied in
the transmucosal element of the dental implants have

demonstrated no increase in inflammation, when compared
with noncoated trasmucosal abutments.42

The growth of human gingival fibroblast (HGF) on FA
surfaces showed that FA supports the growth and proliferation
of HGFs. In particular, there was no significant difference
between the number of HGF grown on the control (SS) and
FA surfaces at day 1, 3, and 14, supporting the biocompatibility
of FA coatings around the oral soft tissues.43

4.2. Antibacterial Efficacy. The CFU data shows that all
three bacteria had significantly less growth (p ≤ 0.05) on the
disordered and ordered FA coatings when compared with the
acid-etched SS discs. In addition, the CLSM images illustrate
fewer dead bacteria found on the SS discs, suggesting increased
bactericidal activity in the FA coatings. It can thus be inferred
that the FA coatings produced by the hydrothermal method
significantly reduce the viability of these particular periodontal
pathogens. There are several possible explanations for the
results.

4.2.1. Fluoride Ions. Fluoride is known to affect the
metabolism and growth of oral bacteria through a variety of
complex indirect mechanisms. The weak-acid character of
fluoride alters the membrane permeability to protons and
compromises F-ATPase molecules, which would normally
regulate a proton gradient.23,44 Acidification of the cytoplasm
follows, which results in glycolytic enzyme inhibition, reduced
cellular uptake and secretion, and a lowered aciduricity.44 For
these reasons, many authors consider the weak-acid character of
fluoride to be its dominating antibacterial property.23

Fluoride also exhibits direct antimicrobial action, binding and
inhibiting a number of metabolic enzymes. These include
enolase, ATP-synthase, and a number of oxidative and metallo-
enzymes.44−46 The production of intracellular and extracellular
polysaccharides, such as glucan, is reduced as a consequence.47

Deactivating enolase blocks both the Embden−Meyerhof−
Parnas (EMP) pathway and phosphor-transferase system, by
halting phosphoenolpyruvate (PEP) production.44 By prevent-
ing these particular metabolic pathways, fluoride reduces the
plaque acid synthesis as well.
Collectively, the indirect and direct actions of fluoride on

bacteria lead to restricted metabolism and inhibited growth and
may even cause cell death.23 Looking at the data in Table 1, the
EDS and fluoride electrode analyses (as expected) identified a
significantly higher fluoride content and release in both FA
coatings than in the SS discs. It is therefore reasonable to
assume that the presence of fluoride in the FA coatings played a
role in reducing the growth of all three bacteria tested,
compared with the etched SS where there were only trace
amounts. This is corroborated by Ge et al. (2010), who
observed less growth of P. gingivalis on fluoridated HA
compared with titanium and HA alone.27 However, in a recent
study by Zhao et al. (2016), the antibacterial activity of
fluorinated HA against Staphylococcus aureus was found to be
very limited.26 The difference in the antibacterial potential of
fluoride against various bacterial species indicates that FA
coatings would have greater efficacy against pathogens
implicated in peri-implantitis rather than against bone
infections where Staphylococcal species are more prominent
and where silver-containing apatites are reported to be more
effective.26,48

4.2.2. Surface Properties. It is generally believed that the
physicochemical properties of an implant coating may have a
contributory effect on the bacterial adhesion and growth.49,50

Table 4. Zeta Potential Measurements of FA Powder and the
Various Bacterial Strains in 0.01 M PBS and in the Presence
of BHI

sample ζ (mV) in 0.01 M PBS Ζ (mV) BHI

FA powder −1.55 ± 1.31 −0.03 ± 0.02
P. gingivalis −27.89 ± 0.76 −9.60 ± 0.62
F. nucleatum −37.20 ± 1.82 −15.83 ± 0.68
A. actinomycetemcomitans −12.68 ± 1.82 −2.92 ± 0.53

Figure 4. XRD patterns of the substrate and coatings compared with a
reference FA standard.

Figure 5. Effect of substrate on the retention and viability of P.
gingivalis, F. nucleatum, and A. actinomycetemcomitans, as quantified by
the CFUs counting method 48 h post adhesion (the FA coatings
significantly reduced the bacterial growth in comparison to the control
p < 0.05).
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Table 3 illustrates that the surface roughness values (Sa/Sz)
of the disordered FA discs are significantly higher than those of
the other discs. This is due to the disordered FA coating having
a thicker and uneven thickness of FA crystals on the substrate.
Supragingival biofilm accumulation is generally more on a
rougher surface, but no difference has been observed
subgingivally51 and on varied implant surfaces.52,53 Further-
more, Jeyachandran et al. (2007) concluded that surface
roughness was a less important factor in influencing bacterial
adhesion to a coating, when compared with its chemical
composition.28

The surface charge of biomaterials has been proven to affect
the level of bacterial adhesion because of the inherent net
negative surface charge of most microbes54 and as confirmed
for the pathogens examined in this study (Table 4). A number

of authors have observed lower bacterial adhesion on negatively
charged surfaces because of a degree of electrostatic
repulsion.55,56 The zeta potential measurements illustrated in
Table 3 show that the SS discs exhibit a significantly more
negative surface charge than do both FA coatings whereas the
disordered FA coating appears almost neutral. Despite this, by
the end of the study, significantly more CFUs of all three
bacteria samples were found on the SS discs. Gottenbos et al.
had similar results, reporting a subset of negatively charged
bacilli to adhere less yet exhibit increased growth on negatively
charged surfaces.55 Therefore, it is plausible that the electro-
static interactions had a lesser influence on the eventual
colonization of the disc surfaces, compared with other reported
variables such as the fluoride content and the surface roughness.

Figure 6. Column A shows the SEM images of P. gingivalis on (a) SS, (b) ordered, and (c) disordered FA coatings, 48 h post adhesion. Column B
shows the SEM images of F. nucleatum on (a) SS, (b) ordered, and (c) disordered FA coatings, 48 h post adhesion. Column C shows the SEM
images of A. actinomycetemcomitans on (a) SS, (b) ordered, and (c) disordered FA coatings, 48 h post adhesion.

Figure 7. CLSM images of P. gingivalis on (a) SS, (b) ordered, and (c) disordered FA coatings, 48 h post adhesion (green: live bacteria, red: dead
bacteria).
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The process of bacterial adhesion to the underlying surface is
multifactorial. Various surface characteristics such as fluoride
content, surface roughness, surface wettability, and surface
charge cumulatively play a role in bacterial adhesion and
cellular death. The CFUs count of both F. nucleatum and A.
actinomycetemcomitans were lower on the ordered FA coatings
compared with the disordered FA, despite the latter exhibiting a
significantly higher fluoride release (Table 1). This could be
attributed to the greater negative surface charge of the ordered
FA, leading to electrostatic repulsion and reduced adhesion of
these two species. The CFUs count of P. gingivalis has been
found to be lower on the disordered FA-coated discs even
though this surface appeared neutral. The increased material
surface wettability has been suggested as one way to reduce
bacterial adhesion to material surfaces.49 The decrease in
bacterial adhesion to ordered FA could therefore be partially
attributed to its higher wettability in comparison to the bare SS.
The porosity of the disordered FA contributed to the increase
in surface wettability, complicating the possible correlation
between bacterial adhesion and surface wettability. Microbial
species have been found to vary in sensitivity to the
antibacterial actions of fluoride, which could explain this
result.57 Indeed, the CLSM images illustrate that more dead
bacteria were found on the disordered FA; combined with the
CFUs counting results, it is reasonable to assume that P.
gingivalis makes up a significant proportion of the dead bacteria
imaged. However, this could partly be due to the neutral surface
charge and increased surface roughness of the disordered FA
attracting more bacteria to be killed from the outset. Therefore,
it cannot be concluded that the disordered FA exhibits greater
inherent bactericidal properties than the ordered FA. In
addition, a great number of bacteria remained attached to the
disordered FA coating as observed by the SEM, and most of
these appeared to be dead as confirmed by the CFUs and
confocal imaging and analysis. The presence of bacteria, even if
these are dead, can inhibit osseointegration,58 showing that the
ordered FA coating is a more promising dental coating than the
disordered one, even though they both show similar reduction

in bacterial growth, more than 80%, when compared with the
SS.
The novel FA coatings produced in the present study show

resounding antimicrobial properties against all three pathogens
involved, which are strongly implicated in peri-implantitis.
Several alternative implant materials and coatings have been
developed in the past to prevent the surface colonization and
onset of peri-implantitis. However, their success has been
limited.
Various titanium surface modifications have been trialed.

Incorporating surface micro-/nanofeatures could downregulate
inflammatory events,59 but no effect on bacterial colonization
has been observed.60 Anodization, ion implantation, and ion
plating have only been shown to modify, and not reduce, the
biofilm formation.61,62

HA coatings have produced conflicting results. Some
antimicrobial activity has been found,13 particularly when
imbued with metal ions like silver.63−67 Other authors dispute
this, citing no reduction in plaque maturation68,69 or disease
progression.70 Indeed, increased bone loss has been observed
around HA-coated implants in the presence of infection.71−73

Incorporating antimicrobial agents into HA may provide
temporary benefit, but its long-term use is not proved and
uncertain.12,74

Overall, the fluoride content, rather than its release, is likely
to be the most influential variable in reducing the count and
viability of the bacteria tested. However, as seen with the
ordered FA, surface characteristics may also have some impact
on the results. It would be useful to identify the ideal fluoride
concentration, in relation to surface charge, that confers
superior antibacterial activity against a broader range of
periodontopathogens such as Prevotella intermedia and
Bacteroides forsythus.75 Incorporating titanium as the substrate
in these further investigations would enhance the clinical
relevance to implant usage. Investigating the degradation and
dissolution rates of these novel FA coatings is vital, despite
other fluoride-containing apatites exhibiting good stability.76

Kim et al. (2003) showed that the FA composites did not show
any signs of host cytotoxicity whereas the fluoride actually had a
stimulating effect on cell proliferation and alkaline phosphatase
(ALP) activities.77

5. CONCLUSION

These promising results indicate that FA produced using a
hydrothermal process may be used as a dental implant coating
that shows significant antibacterial activity against bacteria
implicated in peri-implantitis.
However, the results also reflect the need to optimize the

level of fluoride in the FA coating to have optimum
antibacterial efficacy without compromising the stability and
resistance to the dissolution of the coating.
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