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Flexibility in applying existing knowledge to similar cues is a corner stone of memory 

development in infants. Here, we examine the effect of sleep on the flexibility of memory 

retrieval using a deferred imitation paradigm. Forty-eight 12-month-old infants were randomly 

assigned to either a nap or a no-nap demonstration condition (scheduled around their natural 

daytime sleep schedule) or to a baseline control condition. In the demonstration conditions, 

infants watched an experimenter perform three target actions on a hand puppet. Immediately 

afterwards, infants were allowed to practice the target actions three times. In a test session 4-

hours later, infants were given the opportunity to reproduce the actions with a novel hand puppet 

differing in color from the puppet used during the demonstration session. Only infants in the nap-

condition performed significantly more target actions than infants in the baseline control 

condition. Furthermore, they were faster to carry out the first target action than infants in the no-

nap condition. We conclude that sleep had a facilitative effect on infants’ flexibility of memory 

retrieval.  
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“Sleep on it” is a commonsense suggestion in situations where we try to resolve a 

complex problem or make an important decision. In adults, a large number of studies have shown 

that sleep is indeed beneficial for cognitive functioning, particularly for memory (for reviews, see 

Diekelmann & Born, 2010; Rasch & Born, 2013). Sleep not only facilitates the retention of 

recently learned information (Gais & Born, 2004) but can also produce qualitative changes in 

memory representations (Stickgold & Walker, 2013). For example, sleep helps adults to gain new 

insight into a hidden abstract rule of a previously encountered mathematical problem (Wagner, 

Gais, Haider, Verleger, & Born, 2004) and to connect recently encoded memories with existing 

stores of knowledge (Dumay & Gaskell, 2007; Ellenbogen, Hu, Payne, Titone, & Walker, 2007). 

Sleep can thus help adults to use their memories in a more flexible way.  

Although sparsely studied, there is some evidence that sleep might also affect the speed of 

memory retrieval. In Wagner et al.’s (2004) study, while there was an overall effect of sleep on 

insight, not all participants responded this way. These “non-responders” profited from sleep in a 

different way: they were faster in solving the mathematical tasks with the rote procedure 

compared to participants who stayed awake. Thus, while sleep improved the probability of 

gaining insight, it did not deterministically help all participants to discover the hidden rule. 

Furthermore, in a study using a navigation task in a virtual maze, adults who took a brief nap 

after learning found their way through the maze faster and with fewer steps than adults who 

stayed awake for an equivalent amount of time (Wamsley, Tucker, Payne, & Stickgold, 2010).  

In comparison to the adult literature, our understanding of sleep’s role for facilitating 

memory processing early in life is less complete. In a seminal study on memory reactivation in 3-

month-olds, Fagen and Rovee-Collier (1983) determined that retention ratios on the mobile 

conjugate reinforcement paradigm increased as a function of time since reactivation, but also as a 

function of sleep duration during their 8 hour retention interval. In discussing their results, the 
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authors raised important questions about the nature of the retrieval process and the overall quality 

(richness) of the memory representation across time. Despite broad interest over the intervening 

decades in the relationship between infant sleep and early memory abilities, only three studies 

have considered the potential benefits of sleep on early memory flexibility. These studies, all in 

the domain of language processing, suggest that sleep can change the quality of infant memories 

(Friedrich, Wilhelm, Born, & Friederici, 2015; Gomez, Bootzin, & Nadel, 2006; Hupbach, 

Gomez, Bootzin, & Nadel, 2009). In the studies by Gomez et al. (2006) and Hupbach et al. 

(2009), 15-month-old infants were familiarized to auditory word-strings of an artificial language 

that all followed the same grammatical rule in which the first word predicted the third one (e.g., 

‘pel’ predicted ‘jic’). Infants’ reaction to the word-string dependencies they were familiarized 

with and to word-strings they were not familiar with (now ‘pel’ predicted ‘rud’) was tested in a 

head-turn preference paradigm after a retention interval. Infants who took an extended nap within 

4 hours after familiarization showed a consistent preference for the type of word-strings that they 

heard during the very first trial of the test phase (familiar or unfamiliar word-strings): If the first 

word string they heard was familiar, they preferred the familiar dependencies in the following 

trials. If the first word string they heard was unfamiliar, they preferred the unfamiliar 

dependencies in the following trials. This behavior was observed both 4 and 24 hours later and 

was interpreted as the application of an abstract rule to the first word-string during the test phase 

(i.e., the dependency of the first and third word). Infants who did not nap within 4 hours of 

learning attended for significantly longer to the exact word-strings they had been familiarized 

with after a 4-hr delay, indicating retention (Gomez et al., 2006). They did not show retention 

after a 24-hour interval (Hupbach et al., 2009). At no time did infants in the no-nap condition 

appear to extract the grammatical rule of the artificial language. The authors concluded that a nap 

after learning facilitated abstraction in infants’ language learning.  
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Recently, Friedrich et al. (2015) showed that sleep also serves semantic generalization in 

9- to 16-month-old infants. In that study, event-related potentials revealed that only those infants 

who took a nap during a 1- to 2-hour retention interval were able to apply recently learned words 

for objects to new members of the same object category. Thus, sleep seems to facilitate the 

abstraction and generalization of infants’ existing memories, at least in the domain of language 

processing. Whether similar effects of sleep are observable in infants’ overt behavior is currently 

unknown.  

In the present study we examined the effect of sleep on the flexibility of memory retrieval 

by 12-month-olds using the deferred imitation paradigm. This paradigm also provided us with the 

opportunity to assess whether sleep increases the speed of retrieval during infancy. 

During the first years of life, there are marked developmental changes at all stages of 

memory processing: encoding, storage, and retrieval (for a review, see Hayne, 2004). In terms of 

encoding, studies with different methods such as visual recognition memory (VRM) (Hunter & 

Ames, 1988), mobile conjugate reinforcement paradigm (Davis & Rovee-Collier, 1983; Greco, 

Rovee-Collier, Hayne, Griesler, & Earley, 1986; Hill, Borovsky, & Rovee-Collier, 1988), and 

deferred imitation tasks (Barr, Dowden, & Hayne, 1996; Hayne, Boniface, & Barr, 2000) have 

consistently shown that infants encode new information faster with increasing age. In terms of 

storage, the duration of infants’ memories gradually increases during the first years of life, a 

pattern which is again found across different paradigms (Hartshorn et al., 1998; Herbert & 

Hayne, 2000; Morgan & Hayne, 2011). In terms of retrieval, VRM, mobile conjugate 

reinforcement, and deferred imitation studies consistently find that with age, infants become 

increasingly more flexible at applying previously acquired knowledge to novel situations (for 

review, see Hayne, 2004). Being able to retrieve memories in the presence of cues that are 

slightly different from those encountered at encoding helps avoid unnecessary re-learning when 
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potentially useful knowledge is already stored in memory (Jones & Herbert, 2006). At a young 

age, infants’ memories are characterized by a high degree of specificity. For example, at 6 

months of age even small changes in the learning context between encoding and retrieval (e.g., 

change of the room or immediate surroundings) can disrupt memory retrieval (Hayne, Boniface, 

& Barr, 2000; Learmonth, Lamberth, & Rovee-Collier, 2004; Robinson & Pascalis, 2004). With 

increasing age, changes in the context are better tolerated, but changes in aspects more closely 

associated with a learning task, such as changes in the stimuli (e.g., changes in color and form) or 

in the identity of a teacher (Learmonth, Lamberth, & Rovee-Collier, 2005) can still disrupt 

memory retrieval during the second year of life (Hayne et al., 2000; Hayne, Greco, Earley, 

Griesler, & Rovee-Collier, 1986; Hayne, MacDonald, & Barr, 1997; Herbert & Hayne, 2000). In 

sum, with increasing age infants encode information faster, remember for longer, and are able to 

cope with increasing dissimilarities between the learning and the retrieval context/stimuli. 

Here, we use a deferred imitation procedure to test the effect of naps on the flexibility of 

memory retrieval. In a typical deferred imitation procedure, a model demonstrates novel actions 

to an infant during a demonstration session and the infant’s ability to reproduce these target 

actions is assessed after a delay (e.g., Barr et al., 1996; Meltzoff, 1985). Memory for the target 

actions is inferred if infants in the demonstration condition(s) perform significantly more target 

actions at test than infants in a baseline control condition who have not seen any demonstrations 

of the target actions. Infants’ ability to flexibly retrieve their memories is typically assessed by 

changing some attributes of the context and/or the stimuli between the demonstration and test 

session (e.g., using stimuli that are different in color or shape at test).  

In addition to age, several factors occurring within and outside the testing situation have 

been shown to facilitate memory flexibility in deferred imitation tasks. Within the testing 

situation, providing infants with a distinct demonstration and test context (Jones & Herbert, 
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2008), using verbal cues to describe the event during the demonstration and test session (Herbert, 

2011; Herbert & Hayne, 2000), and allowing infants to practice the target actions after the 

demonstration session (e.g., Hayne, Barr, & Herbert, 2003; Learmonth et al., 2005) enhances 

memory flexibility. Practice, for example, is thought to facilitate the accessibility of the memory 

for the target action by affording an enriched encoding opportunity for the infant (Hayne et al., 

2003). This enriched encoding includes additional information about characteristics of the stimuli 

(e.g., texture, weight) and the target actions. Thus, the representation infants can form during a 

practice session involves more modalities than during a demonstration session where the infant 

only watches the target actions.  

A few studies have also investigated experiences occurring outside of the deferred 

imitation testing situation that facilitate the flexibility of memory retrieval. Although these 

experiences cannot be manipulated within an experimental setting, infants who are growing up in 

a bilingual environment (Brito & Barr, 2012, 2014), or who have started to independently explore 

the world through the onset of crawling (Herbert, Gross, & Hayne, 2007) show enhanced 

memory flexibility. In the present study we consider whether sleep, a variable that can be 

manipulated and that improves adults’ ability to resolve complex problems, might also enhance 

the flexibility of memory retrieval in infants.  

There is initial evidence within the deferred imitation literature of a relationship between 

sleep and two aspects of memory processing, namely, encoding and storage. In terms of 

encoding, Konrad, Herbert, Schneider, and Seehagen (2016) recently found that the sleep quality 

during the prior night was related to 6-month-old, but not 12-month-old, infants’ immediate 

imitation of a sequence of target actions demonstrated on a puppet (remove, shake, and replace 

the puppet’s mitten; Barr et al., 1996). Using the same puppet task, Seehagen, Konrad, Herbert 

and Schneider (2015) found that sleep strengthens the memory for specific target actions in 6- 
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and 12-month-old infants. In that study, only those infants who took an extended nap within 4 

hours after the demonstration exhibited retention of the target actions after a 4- or 24-hour delay. 

Thus, deferred imitation studies have revealed facilitative effects of overnight sleep and daytime 

naps on the encoding and storage of information during the first year of life. It remains unclear 

whether sleep has a similar facilitative impact on infants’ memory retrieval in the deferred 

imitation task.  

In the puppet imitation task, infants become progressively able to retrieve their memory 

across a change of the stimulus’ color between encoding and retrieval when they are aged 

between 12- and 18-months (Hayne et al., 1997). Therefore, in the present study we examined the 

effect of daytime sleep on the flexible retrieval of memory across a stimulus change at 12-months 

of age. We hypothesized that only those infants who napped after the demonstration would 

exhibit flexible memory retrieval when tested with a puppet different in color, while infants who 

did not nap would not flexibly retrieve their memory. Our second question was whether 

facilitated accessibility would become evident in the speed of memory retrieval as well. In 

deferred imitation task this can be measured by the latency to perform the first target action 

during the test session. We predicted that, on average, infants who napped after the demonstration 

would retrieve their memories faster than infants who did not nap (Wagner et al., 2004).  

 

Method 

Participants 

The final sample consisted of forty-eight 12-month-old (M age = 365 days, SD = 8 days) 

healthy, full-term infants (50 % female) who were recruited from local birth registers. Eight 

additional infants were tested but not included in the final sample due to: sleep during the 

retention interval in the no-nap condition (n = 2), no sleep during the retention interval in the nap 
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condition (n = 2), technical failure (n = 1), experimenter error (n = 1), failure to touch the puppet 

during practice trials (n = 1), and developmental delay (n = 1). Since previous studies showed 

that advances in locomotor abilities and being bilingual can facilitate flexible memory retrieval 

(Brito & Barr, 2012, 2014; Herbert et al., 2007), we assessed whether infants were already able to 

walk and whether they were growing up in a bilingual environment. Five infants in each 

experimental condition (nap and no-nap) were able to walk alone at the time of test (at least 1 

meter without using hands for support). Two infants in the no-nap condition were bilingual. 

Apparatus 

Stimuli. Four different hand puppets were used in the present study, two resembling a 

mouse and two resembling a rabbit, one of each being gray and one pink (counterbalanced within 

and across conditions). The puppets were made out of soft fur and were about 30 cm high. They 

were specifically made for research purposes and not commercially available. A removable felt 

mitten matching the color of the puppet was placed over each puppet’s right hand. A jingle bell 

was secured to the inside of the mitten. The puppet stimuli have been widely used in deferred 

imitation studies with 12-month-old infants (e.g., Barr et al., 1996; Hayne et al., 1997; Jones & 

Herbert, 2008; Konrad et al., 2016; Seehagen et al., 2015).  

Sleep records. Infants’ sleep/wake behavior was assessed using Mircro Motionlogger® 

Actiwatches (Ambulatory Monitoring inc.) which are similar in appearance to a wristwatch and 

record the frequency of movement. The validated Sadeh actigraph scoring algorithm (Sadeh, 

Sharkey, & Carskadon, 1994) was used to estimate for each minute whether the infant was awake 

or asleep. Actigraphy is a valid and accurate method for assessing sleep-wake patterns in infants 

(e.g., Müller, Hemmi, Wilhelm, Barr, & Schneider, 2011; Sadeh, Acebo, Seifer, Aytur, & 

Carskadon, 1995). Parents were additionally asked to keep a log of their infant’s sleep for the 

duration of the retention interval and to indicate the sleep times before learning. Parents noted 
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periods during which they removed the actiwatch (e.g., while changing diapers) and periods 

during which the infant was moved externally (e.g., being pushed in a pram or stroller) as such 

instances can lead to artifacts in the actigraph data. For periods that parents reported their infant 

to have experienced externally produced motion or to have removed the actiwatch, the sleep log 

entries were used to calculate sleep duration. The sleep log was also used to calculate the duration 

over which the infant had been awake before learning. Otherwise we used the actigraphy data to 

calculate sleep duration in the nap condition and to confirm the absence of sleep in the no-nap 

condition.  

Design and Procedure 

Infants were randomly assigned to one of the experimental conditions (nap or no-nap) or a 

baseline control condition (each n = 16, 50 % females per condition) as they became available. 

Infants in the experimental conditions were visited in their home twice, with a 4-hour delay 

between visits. The delay was chosen in accordance with previous studies investigating sleep-

dependent memory processing in infants (Gomez et al., 2006; Hupbach et al., 2009; Seehagen et 

al., 2015). During the first visit (demonstration and practice session), a female experimenter 

demonstrated the three target actions with one puppet to the infant and then allowed the infant to 

practice the target actions. During the second visit (test session), the infants were presented with a 

novel puppet that had the same form but differed in color from the puppet they had seen during 

the first visit (e.g., grey mouse at the demonstration and practice session and pink mouse at the 

test session).  

A practice procedure was used during the demonstration session due to the results of pilot 

testing with N = 19 twelve-month-old infants (n = 18 in a nap condition, n = 1 in a no-nap 

condition). The pilot testing was conducted preceding the main study because there is no 

published data available involving infants tested with a color change in the puppet after a 4 hour 
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retention interval. We conducted pilot testing primarily with infants in the nap condition since 

this group were expected to show a higher degree of flexibility of memory retrieval and we 

sought to ensure that the task was not too difficult for this age-group per se. Pilot testing showed 

that all infants failed to exhibit retention of the target action 4 hours later without a practice 

session (all infants had an imitation score of 0). A practice procedure was thus implemented to 

provide infants with a richer encoding opportunity.  

Infants in the nap condition were first visited shortly before they were naturally scheduled 

to have a nap within the following 4 hours. Infants in the no-nap condition were first visited after 

they had had a naturally scheduled nap and were, therefore, not expected to take a nap within the 

following 4 hours. To ensure that infants in the no-nap condition were not sleep deprived at test, 

parents were instructed not to deliberately try to keep their infant awake. If an infant in the no-

nap condition fell asleep, they were excluded from the study. Previous research has shown that 

the timing of prior daytime naps does not influence the initial learning of target actions in the 

puppet task (Seehagen et al., 2015). In the demonstration conditions, the actiwatch was attached 

to each infant’s left ankle at the end of the first visit and removed at the beginning of the second 

visit. 

Infants in the baseline control condition did not participate in a demonstration session. 

They only participated in a test session where they were allowed to interact with one of the 

puppets to assess their spontaneous production of any of the target actions. Their sleeping 

behavior prior to the baseline session was not varied as a previous study showed that sleep versus 

wakefulness in the preceding 4 hours does not affect infants’ baseline performance in the puppet 

task (Seehagen et al., 2015).  

Demonstration and practice session. During the demonstration and practice session, the 

infant sat on their parent’s lap and was held firmly by the hips. The experimenter knelt in front of 
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the infant and demonstrated three target actions with one puppet, out of the infant’s reach: (1) 

removing the mitten from the puppet’s hand, (2) shaking the mitten three times, making the bell 

ring, and (3) replacing the mitten. This sequence of actions was repeated two more times and 

lasted a total of approximately 30 s. The experimenter did not describe or label the puppet or the 

target actions. Immediately after the demonstrations, the puppet was held within reach of the 

infant and he or she had the opportunity to practice the target actions three times. To ensure that 

all infants in the demonstration groups had similar experiences with stimuli, a three-step protocol 

was followed during the practice phase. If the infant did not remove the mitten during a practice 

trial, the experimenter first pointed to the mitten. If the infant then did not remove the mitten, the 

experimenter removed the mitten half way off the puppet’s hand. If the infant still did not remove 

the mitten, the experimenter removed the mitten and gave it to the infant. This procedure was the 

same during all three practice trials and ensured that all infants saw the mitten being removed 

three times during the practice trials and that each infant had a similar physical experience with 

the mitten. The practice session lasted a total of approximately 2 min. The puppet was then 

removed from the infant’s sight. 

Test session. Before the test session, the bell inside the mitten was removed to avoid 

prompting memory retrieval (e.g., Barr, Vieira, & Rovee-Collier, 2001; Hayne et al., 1997). The 

infant sat on their parent’s lap and the experimenter held the novel puppet within reach of the 

infant. Each infant was given 90 s to interact with the puppet from the time they first touched the 

puppet. The experimenter did not verbally or physically prompt the production of the target 

actions. 

Coding 

All sessions were video-recorded from the right hand side of the experimenter. The 

videotaped practice and test sessions were scored for the presence of any target actions using the 
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software INTERACT (Version 9, Mangold International GmbH, Arnstorf, Germany). For the 

practice session, an infant received a practice score between 0 and 9. In each practice trial, infants 

received a score from 0 to 1 for the removal of the mitten (1 point for removal without any help 

of the experimenter; 0.66 points for removal after the experimenter had pointed to the mitten; 

0.33 points for removal after the experimenter had removed the mitten half way; and 0 points for 

no removal, that is if the experimenter gave the mitten to the infant). One point each for shaking 

and replacing the mitten was added to this score per practice trial. For one infant in the nap-

group, there was a technical failure for the video recording of the practice session who thus had 

to be excluded from the practice session analyses.  

For the test session, the latency to first touch the puppet (from when the puppet was 

within reach until the infant first touched it) and to remove the mitten (from the first touch of the 

puppet until the mitten was completely removed from the puppet’s hand) and the number of 

target actions produced were coded. Each infant received an imitation score from 0 to 3: One 

point was given for the removal of the mitten, one point for shaking (a motion retracting itself), 

one point for replacing or attempt to replace the mitten on the right hand of the puppet. The order 

in which the target actions were carried out was not relevant for allocating points. A second 

independent coder who was blind to the hypotheses of the study and the infants’ group 

assignment coded 50% of the test session videos. Inter-rater reliability for the target actions was 

very good, kappa = .94. Inter-rater reliabilities using intraclass correlation coefficients for the 

latency to first touch the puppet and the latency to remove the mitten were very good, r = .97, and 

perfect r = 1.  

 

Results 

Sleep Parameters 
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In the nap condition, infants slept for an average of 86 minutes (SD = 44 min; range = 42 

min to 176 min) in total and took an average of 1.25 (SD = 0.58) naps during the retention 

interval. The first nap lasted for an average of 76 minutes (SD = 41 min). The delay between the 

end of the practice session and the first nap was 73 minutes (SD = 45 min) on average. The 

actigraph data were used to determine sleep duration for all but two naps, which occurred during 

external movement. Due to individual differences in sleeping patterns, the time of day the test 

session was conducted in the experimental conditions ranged from 12:00 to 17:00. Mean test time 

in the nap condition was 14:13, in the no-nap condition 16:11, and in the baseline control 

condition 10:43. Time of test differed significantly between all conditions, F(2, 45) = 25.51, p < 

.001, Șp² = .541. However, mean imitation scores in the experimental conditions were not related 

to test time, r = -.023, p = .901. The average time an infant was awake for before the 

demonstration and practice session was 140 minutes (SD = 84 min) in the nap condition and 57 

minutes (SD = 53 min) in the no-nap-condition. Infants were not woken up from sleep for the 

demonstration/practice session. Infants in the nap condition had been awake for 69 minutes (SD = 

46 min) before the test session, while infants in the no-nap condition had been awake for 276 

minutes (SD = 50 min) before the test session. Duration of wakefulness before the test session 

was not related to imitation scores in the nap (r = .28, p = .295) or in the no-nap condition (r = 

.09, p = .745).  

Mean imitation scores in the nap group did not significantly correlate with sleep duration 

of the first nap (r = -.44, p = .064), total sleep duration (r = -.15, p = .582), or delay between 

demonstration session and onset of the first nap (r = -.25, p = .353). There was a significant 

positive correlation between the number of naps and the mean imitation score, r = .56, p = .025. 

Speed of memory retrieval (i.e., latency to remove the mitten) did not correlate with any of the 

sleep parameters, biggest r = -.31, p = .39. 
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--- Insert Table 1 about here --- 

 

Practice Session  

In each experimental condition, eleven infants did not remove the mitten during the first 

practice trial without help, meaning that the three-step protocol for removal was used. For the 

second trial, seven infants in each condition needed the three-step protocol. In the third practice 

trial, for five infants in the no-nap and eleven infants in the nap condition the protocol was used. 

There was no significant difference in the practice scores (see Table 1) between infants in the nap 

and the no-nap conditions, t(29) = 1.11, p = .277, d = 0.38, indicating that infants in both 

experimental conditions learned the target actions equally well. Furthermore, there were no 

significant correlations between the practice score and the number of target actions performed at 

test session in the nap (r = .39, p = .129) or no-nap condition (r = .15, p = .587). Thus, variations 

in the practice scores did not explain imitation scores at test. There was no difference in latency 

to first touch the puppet during the test session (see Table 1) between conditions, F(2, 45) = 0.18, 

p = .84, Șp² = .008, suggesting that infants in all conditions were equally motivated to interact 

with the puppet.  

Main Analyses 

Flexibility of memory retrieval. Infants in the nap condition had a mean imitation score 

of 1.31 (SD = 1.40), infants in the no-nap condition had a mean imitation score of 0.69 (SD = 

0.87), and infants in the baseline control conditions a mean imitation score of 0.38 (SD = 0.81) 

(see Figure 1). To assess whether there were differences in imitation scores between conditions, a 

one-way ANOVA was conducted. There was a significant main effect of condition, F(2, 45) = 

3.24, p = .048, Șp² = .126. Bonferroni post-hoc tests indicated that there was no significant 
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difference in imitation scores between infants in the nap and no-nap condition, Mdiff = .63, p = 

.308, d = .55. However, in deferred imitation studies, memory is inferred if the imitation score in 

the demonstration conditions exceeds the score of infants in the baseline control condition (see 

Meltzoff, 1985; Hayne, 2004). Bonferroni post-hoc test revealed that only infants in the nap 

condition exhibited memory flexibility, performing significantly more target actions at test than 

infants in the baseline control condition, Mdiff = .94, p = .048, d = .85. In contrast, infants in the 

no-nap condition did not perform a significantly more target actions than infants in the baseline 

control condition, Mdiff = .31, p = 1.0, d = .38. 

To ensure that these results were not merely reflecting some infants failing to encode the 

target actions during the demonstration and practice session, we conducted further analyses with 

only those infants in the nap and no-nap condition who showed some evidence of encoding. For 

this purpose, we next considered only the data from those infants who had a practice score bigger 

than 0. Applying this criterion, infants in the nap condition (n = 13) had a mean imitation score of 

1.54 (SD = 1.45), infants in the no-nap condition (n = 15) had a mean imitation score of 0.73 (SD 

= 0.88). A one-way ANOVA revealed that there was a significant main effect of condition, F(2, 

41) = 4.45, p = .018, Șp² = .178. Bonferroni post-hoc test revealed that only infants in the nap 

condition performed a significantly more target actions at test than infants in the baseline control 

condition, Mdiff = -1.16, p = .016, d = 1.05. In contrast, infants in the no-nap condition did not 

perform significantly more target actions than infants in the baseline control condition, Mdiff = -

.36, p = 1.0, d = .45. There was no significant difference in imitation scores between infants in 

the nap and no-nap condition, Mdiff = .81, p = .154, d = .70.  

Speed of memory retrieval. To examine whether sleep affected the speed of memory 

retrieval in the demonstration conditions, a one-tailed Mann-Whitney-U test was conducted for 

the latency to produce the first target action during the test session. Table 1 displays number of 



18 

 

infants who removed the mitten during the test session and the mean latency of the action. 

Although a similar number of infants in both conditions successfully removed the mitten (n = 9 in 

the nap condition, n = 7 in the no-nap condition), infants in the nap condition (Mdn = 1.96) did so 

faster than infants in the no-nap condition (Mdn = 22.63), U = 13, z = -1.96, p = .025, r = -0.49, 

indicating a facilitative effect of sleep on the speed of memory retrieval. This difference remains 

significant even when only including those infants who had a practice score above 0, U = 8, z = -

2.32, p = .011, r = -0.55.  

 

--- Insert Figure 1 about here --- 

 

Discussion 

 The present study suggests that post-learning naps promote flexibility of memory 

retrieval in infants. Only infants who took a nap during the retention interval performed more 

target actions at test than infants in the baseline control condition, revealing that they were able to 

generalize their knowledge from one stimulus to another that differed in color. In contrast, infants 

who did not nap failed to perform significantly more target actions at test than infants in the 

baseline control condition. These results are in line with the findings of Gomez et al. (2006) and 

Hupbach et al. (2009), and Friedrich et al. (2015) who found an effect of napping on abstraction 

and generalization of word meanings in infants. The effect is unlikely to be due to differences in 

the initial learning of the target actions between the nap and the no-nap condition. Seehagen et al. 

(2015) found that 6- and 12-month-old infants who either had or had not taken a longer nap 

within 4-hours preceding participation in an imitation task learned novel actions equally well. In 

addition, in the present study there were no differences in the amount of practice of the target 

actions after the demonstrations between nap and no-nap condition, and the results were 



19 

 

unchanged even after excluding those infants who had a practice score of 0. The nap and the no-

nap condition did not differ significantly in imitation scores.  

 In deferred imitation procedures, memory is inferred if, at test, infants in the 

experimental condition(s) perform significantly more target actions than infants in the baseline 

control condition (cf. Hayne, 2004). Following this approach, the results of the present study 

suggest that infants in the nap condition successfully retrieved their memory about the puppet and 

its affordances which enabled them to imitate the target actions. In contrast, infants in the no-nap 

condition failed to retrieve the memory for the puppet and its affordances which prevented them 

from imitating the target actions. It seems difficult to account for this pattern of results without 

acknowledging that sleep had an effect on flexibility of memory retrieval in our sample. 

Nevertheless, the results would be even more compelling if there was a statistical difference in 

the mean number of imitated target actions between the nap and no-nap condition. Interestingly, 

in a prior study on sleep-dependent memory consolidation using the same puppet task (Seehagen 

et al., 2015) such a difference was only found when infants were tested after a 24-hr but not after 

a 4-hr delay. After the 4hr delay, there was a very similar pattern of results as in the present 

study. That is, infants in the nap condition exhibited memory for the target actions, as indicated 

by a significant difference between their mean imitation scores and that of infants in the baseline 

control condition. In contrast, infants in the no-nap control condition did not exhibit memory for 

the target actions namely, they did not perform more target actions at test than infants in the 

baseline control condition. Hence we suggest that in the paradigm used in the present study, a 

significant difference in imitation scores between the nap and no-nap condition might also 

emerge after a 24-hr delay. In other words, the magnitude of sleep effects on the flexibility of 

memory retrieval will potentially increase over longer retention intervals. This prediction would 
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be in line with the observations of Fagen and Rovee-Collier (1983) regarding the relationship 

between time and sleep duration on infant memory.  

 There are at least two explanations for how infants’ memory for the target actions could 

have been processed during sleep, which are not mutually exclusive. According to the active 

consolidation hypothesis, memory for the target actions could become integrated into a network 

of related representations through a process of active replay of memories during sleep 

(Diekelmann & Born, 2010). During sleep, the still labile memories that were recently encoded in 

hippocampal and cortical networks are strengthened and formed into more stable representations 

(Feld & Diekelmann, 2015; Frankland & Bontempi, 2005). Specifically, the memories are 

thought to become integrated into cortical networks of existing related knowledge through the 

reactivation in the hippocampal-neocortical network (Frankland & Bontempi, 2005). In the 

present study, after consolidation during sleep, the memories for the target actions could have 

been more easily accessible because infants were now able to use a wider range of retrieval cues 

through the original memory’s new connections with related concepts (e.g., other types of 

puppets, previous memories of shaking objects; Eichenbaum, Otto, & Cohen, 1994). Presumably, 

this facilitated accessibility is also reflected in the speed of memory retrieval in our study. From 

this perspective, sleep might have increased the speed of recall for infants in the nap condition by 

making the memory more easily accessible.  

A second explanation for the present results could be that sleep does not uniformly 

consolidate all recently encoded information, as stated in the selective memory consolidation 

hypothesis (Stickgold & Walker, 2013). From this perspective, only those memories that are 

relevant for the organism should be kept to allow optimal functioning. It is thus important to 

distinguish between relevant and irrelevant memories and to only transfer relevant information 

into long-term memory (Stickgold & Walker, 2013). From this view, infants who napped may 
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have selectively consolidated the memory of the target actions during sleep. To identify and 

retain the relevant memories in the demonstration and practice phase of the present study, the 

infant needed to select the most important information from the various inputs occurring during 

encoding, such as the exact color and features of the hand puppet, the room the task took place in, 

the experimenter conducting the demonstrations, the target actions. Presumably, only the infants 

who napped within the retention interval were able to achieve this differentiation and thus to 

retain the most relevant information, which is how to perform the target actions. The 

representation of the target actions was presumably strengthened during sleep so that retrieval 

could occur at a faster rate in the nap condition. From this perspective, infants who did not nap 

might not have been able to retrieve the relevant memory because it was bound to other 

memories (e.g., color and texture of the puppet) which were irrelevant for this test and could not 

serve as retrieval cues. This explanation is speculative at this point and the mechanisms that are 

involved in selective memory consolidation still remain unclear (Stickgold & Walker, 2013).  

Whether memory storage (as in Seehagen et al., 2015) and flexibility of memory retrieval 

are facilitated by different processes during sleep, and whether one process is more facilitated by 

sleep than the other, remains to be determined. Nonetheless, comparing the mean imitation scores 

of the nap and the no-nap condition of the present study with the mean imitation scores of the 

respective conditions from Seehagen et al. (2015), it seems that the effect of sleep is more 

pronounced for the more challenging generalization task, resulting in numerically larger 

differences between the nap and no-nap conditions.  

It should be noted that the present results could be alternatively explained by (partly) 

attributing them to a negative effect of fatigue instead of positive effect of sleep. It is possible 

that tiredness in infants in the no-nap condition at the time of test contributed to the differences in 

the speed of memory retrieval. In line with that explanation, it is possible that tiredness did not 
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affect the infants’ general motivation to interact with the puppet (as visible in the non-significant 

difference between the latency to touch the puppet), but specifically impaired higher level 

cognitive processes (i.e., to retrieve the memory of the observed target actions and to apply the 

memory to the new puppet). Studies with school-aged children and adults revealed that sleep 

restriction affected particularly complex high-level cognitive tasks, while performance on low-

level cognitive tasks was not impaired (Biggs et al., 2010; Gomez et al., 2011; Randazzo, 

Muehlbach, Schweitzer, & Walsh, 1998). On the other hand, as 12-month-old infants typically 

take a mean of 1.53 naps per day (Sadeh, Mindell, Luedtke, & Wiegand, 2009), it is in their 

normal rhythm to stay awake for 4 hours (Jacklin, Snow, Gahart, & Maccoby, 1980; Weissbluth, 

1995). Thus, the effects found in the present study are rooted in infants’ normal routine and thus 

have relevance for understanding their everyday cognitive functioning. To rule out all possible 

effects of tiredness in the no-nap condition at test and to examine how stable the sleep-dependent 

effect is, further studies could be conducted with a 24-hour delay where all infants have recovery 

sleep between learning and test.  

There was a significant positive relation between the number of naps during the retention 

interval and imitation scores, suggesting that infants rely on frequent napping for memory 

consolidation. Findings from other studies regarding relations between sleep parameters and 

memory performance have been somewhat inconsistent. Seehagen et al. (2015) found negative 

correlations between the length of the first sleep as well as overall sleep duration and imitation 

scores in the nap condition in Experiment 2, while there were no such associations in Experiment 

1. In contrast, the study by Fagen and Rovee-Collier (1983) reported a positive relation between 

the amount of sleep during the retention interval and memory retrieval in 3-month-old infants, 

using the mobile conjugate reinforcement paradigm. Lukowski and Milojevich (2013) also found 

a positive association between the usual nap duration and generalization across cues in 15-month-
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old infants using a correlational design. Together, these findings illustrate that naps are crucial for 

the developing memory in infants, but more research is needed to answer the question which 

frequency and duration of naps is most beneficial for different memory processes in infants. 

Obtaining insights into the factors influencing memory and cognitive development in 

infants is important for understanding later developmental outcomes. Despite relatively detailed 

knowledge about the benefit of sleep for cognitive functioning in adult populations, the origins of 

this relationship remain largely unclear. One reason for this lack of research, especially in the 

emerging field of experimental sleep research with infants, is that investigators are faced with 

several methodological challenges (Lukowski & Bell, 2015). For example, when planning a 

study, the infant’s frequent daytime napping and their rapid development of sleep consolidation 

in the first year of life have to be kept in mind. Taking into consideration the infant’s individual 

sleep-wake rhythm and the large variance in sleep durations and frequencies creates major 

challenges in experimental designs and limits the choice of, for example, the length of retention 

intervals and the maximum time an infant stays awake. Furthermore, sleep deprivation studies are 

difficult with infants for ethical and practical reasons. As Lukowski and Bell (2015, p.186) put it: 

“Creativity and ingenuity are necessary to identify ways in which daytime naps and nighttime 

sleep might be modified so as to examine effects on daytime behavior”. The way in which 

cognition is measured in these studies is also crucial in order to determine the mechanisms 

underlying any difference between sleep and non-sleep conditions. By utilizing the deferred 

imitation procedure, a versatile and ecologically valid method for assessing memory in infants 

and the impact of early experiences on cognition is available (Barr & Hayne, 2003; Rovee-

Collier, Hayne, & Colombo, 2001; Heimann & Meltzoff, 1996; for a review, see Hayne, 2004). 

Capitalizing on infants’ natural tendency to copy other people’s actions, the present study shows 

that a well-timed daytime sleep can promote flexible memory retrieval even during infancy. This 
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effect of sleep was not only reflected in the mean number of actions retrieved compared to the 

baseline control condition, but also in the speed of memory retrieval.  
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Tables 

 

Table 1 

Condition 
 

Practice score 
M (SD) 

Latency to first touch 
during test session in s 

M (SD) 

Latency to remove mitten 
during test session in s 

M (SD) 
Nap 
n 

3.3 (2.4) 
16 

3.1 (2.9) 
16 

8.4 (14.7) 
9 

No-nap 
n 

4.2 (2.3) 
15 

3.9 (4.8) 
16 

31.8 (27.4) 
7 

Baseline 
n - 

3.8 (4.9) 
16 

45.7 (22.6) 
3 
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Figure 1.  
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Captions 

Table 1 

Means and Standard Deviations for Interaction Behavior as a Function of Experimental 

Condition. 

Figure 1. Mean Number of Target Actions for each Condition. Error Bars represent SE of M. 

* P < 0.05 

 


