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 21 

Abstract 22 

The Baltic Sea is a unique environment as the largest body of brackish water in the world. 23 

Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an 24 

additional stressor facing the pelagic community of the already challenging Baltic Sea. To 25 

investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was 26 

performed off Tvärminne Research Station, Finland in summer 2012. During the second half of 27 

the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075 - 28 
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1333 μatm) were 34% lower than at ambient CO2 (350 μatm). However the net production (as 29 

measured by concentration change) of seven halocarbons analysed was not significantly affected 30 

by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane 31 

(CH2I2) showed 15% and 57% increases in mean mesocosm concentration (3.8 ± 0.6 pmol L
-1

 32 

increasing to 4.3 ± 0.4 pmol L
-1

 and 87.4 ± 14.9 pmol L
-1

 increasing to 134.4 ± 24.1 pmol L
-1

 33 

respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded 34 

to 30% lower Chl-ɑ concentrations compared to Phase I.  No other iodocarbons increased or 35 

showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) 36 

pmol L
-1

 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L
-1

.
 
Of the concentrations of bromoform 37 

(CHBr3; mean 88.1 ± 13.2 pmol L
-1

), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L
-1

) and 38 

dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L
-1

), only CH2Br2 showed a decrease of 39 

17% between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in 40 

both Phases.  Outside the mesocosms, an upwelling event was responsible for bringing colder, 41 

high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 42 

system with frequent upwelling events implies the community of the Baltic Sea is acclimated to 43 

regular significant declines in pH caused by up to 800 μatm fCO2. After this upwelling, DMS 44 

concentrations declined, but halocarbon concentrations remained similar or increased compared 45 

to measurements prior to the change in conditions. Based on our findings, with future 46 

acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar 47 

values to today, however emissions of biogenic sulphur could significantly decrease from this 48 

region. 49 

 50 

1 Introduction 51 

Anthropogenic activity has increased the fugacity of atmospheric carbon dioxide (fCO2) from 280 52 

μatm (pre-Industrial Revolution) to over 400 μatm today (Hartmann et al., 2013). The IPCC AR5 53 

long-term projections for atmospheric pCO2 and associated changes to the climate have been 54 

established for a variety of scenarios of anthropogenic activity until the year 2300. As the largest 55 

global sink for atmospheric CO2, the global oceans have absorbed an estimated 30% of excess CO2 56 

produced (Canadell et al., 2007). With atmospheric pCO2 projected to possibly exceed 2000 μatm by 57 

the year 2300 (Collins et al., 2013; Cubasch et al., 2013), the ocean will take up increasing amounts of 58 

CO2, with a potential lowering of surface ocean pH by over 0.8 units (Raven et al., 2005). The overall 59 

effect of acidification on the biogeochemistry of surface ocean ecosystems is unknown and currently 60 
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unquantifiable, with a wide range of potential positive and negative impacts (Doney et al., 2009; 61 

Hofmann et al., 2010; Ross et al., 2011). 62 

A number of volatile organic compounds are produced by marine phytoplankton (Liss et al., 2014), 63 

including the climatically important trace gas dimethylsulphide (DMS, C2H6S) and a number of 64 

halogen-containing organic compounds (halocarbons) including methyl iodide (CH3I) and bromoform 65 

(CHBr3). These trace gases are a source of sulphate particles and halide radicals when oxidised in the 66 

atmosphere, and have important roles as ozone catalysts in the troposphere and stratosphere (O’Dowd 67 

et al., 2002; Solomon et al., 1994) and as cloud condensation nuclei (CCNs; Charlson et al., 1987). 68 

DMS is found globally in surface waters originating from the algal-produced precursor 69 

dimethylsulphoniopropionate (DMSP, C5H10O2S). Both DMS and DMSP are major routes of sulphur 70 

and carbon flux through the marine microbial food web, and can provide up to 100% of the bacterial 71 

(Simó et al., 2009) and phytoplanktonic (Vila-Costa et al., 2006a) sulphur demand. DMS is also a 72 

volatile compound which readily passes through the marine boundary layer to the troposphere, where 73 

oxidation results in a number of sulphur-containing particles important for atmospheric climate 74 

feedbacks (Charlson et al., 1987; Quinn and Bates, 2011); for this reason, any change in the production 75 

of DMS may have significant implications for climate regulation. Several previous acidification 76 

experiments have shown differing responses of both compounds (e.g. Avgoustidi et al., 2012; Hopkins 77 

et al., 2010; Webb et al., 2015), while others have shown delayed or more rapid responses as a direct 78 

effect of CO2 (e.g. Archer et al., 2013; Vogt et al., 2008). Further, some laboratory incubations of 79 

coastal microbial communities showed increased DMS production with increased fCO2 (Hopkins and 80 

Archer, 2014), but lower DMSP production. The combined picture arising from existing studies is that 81 

the response of communities to fCO2 perturbation is not predictable and requires further study. 82 

Previous studies measuring DMS in the Baltic Sea measured concentrations up to 100 nmol L-1 during 83 

the summer bloom, making the Baltic Sea a significant source of DMS (Orlikowska and Schulz-Bull, 84 

2009). 85 

In surface waters, halocarbons such as methyl iodide (CH3I), chloroiodomethane (CH2ClI) and 86 

bromoform (CHBr3) are produced by biological and photochemical processes: many marine microbes 87 

(for example cyanobacteria; Hughes et al., 2011, diatoms; Manley and De La Cuesta, 1997 and 88 

haptophytes; Scarratt and Moore, 1998) and macroalgae (e.g. brown-algal Fucus species; Chance et 89 

al., 2009 and red algae; Leedham et al., 2013) utilise halides from seawater and emit a range of 90 

organic and inorganic halogenated compounds. This production can lead to significant flux to the 91 

marine boundary layer in the order of 10 Tg iodine-containing compounds (‘iodocarbons’; O’Dowd et 92 

al., 2002) and 1 Tg bromine-containing compounds (‘bromocarbons’; Goodwin et al., 1997) into the 93 
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atmosphere. The effect of acidification on halocarbon concentrations has received limited attention, 94 

but two acidification experiments measured lower concentrations of several iodocarbons while 95 

bromocarbons were unaffected by fCO2 up to 3000 μatm  (Hopkins et al., 2010; Webb, 2015), whereas 96 

an additional mesocosm study did not elicit significant differences from any compound up to 1400 97 

μatm fCO2 (Hopkins et al., 2013).  98 

Measurements of the trace gases within the Baltic Sea are limited, with no prior study of DMSP 99 

concentrations in the region. The Baltic Sea is the largest body of brackish water in the world, and 100 

salinity ranges from 1 to 15. Furthermore, seasonal temperature variations of over 20 °C are common. 101 

A permanent halocline at 50-80 m separates CO2-rich, bottom waters from fresher, lower CO2 surface 102 

waters, and a summer thermocline at 20 m separates warmer surface waters from those below 4°C 103 

(Janssen et al., 1999). Upwelling of bottom waters from below the summer thermocline is a common 104 

summer occurrence, replenishing the surface nutrients while simultaneously lowering surface 105 

temperature and pH (Brutemark et al., 2011). Baltic organisms are required to adapt to significant 106 

variations in environmental conditions. The species assemblage in the Baltic Sea is different to those 107 

studied during previous mesocosm experiments in the Arctic, North Sea and Korea (Brussaard et al., 108 

2013; Engel et al., 2008; Kim et al., 2010), and are largely unstudied in terms of their community trace 109 

gas production during the summer bloom. Post-spring bloom (July-August), a low dissolved inorganic 110 

nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio combines with high temperatures and 111 

light intensities to encourage the growth of heterocystous cyanobacteria, (Niemisto et al., 1989; 112 

Raateoja et al., 2011), in preference to nitrate-dependent groups.  113 

Here we report the concentrations of DMS, DMSP and halocarbons from the 2012 summer season 114 

mesocosm experiment aimed to assess the impact of elevated fCO2 on the microbial community and 115 

trace gas production in the Baltic Sea. Our objective was to assess how changes in the microbial 116 

community driven by changes in fCO2 impacted DMS and halocarbon concentrations. It is anticipated 117 

that any effect of CO2 on the growth of different groups within the phytoplankton assemblage will 118 

result in an associated change in trace gas concentrations measured in the mesocosms as fCO2 119 

increases, which can potentially be used to predict future halocarbon and sulphur emissions from the 120 

Baltic Sea region.  121 

 122 
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2 Methods 123 

2.1 Mesocosm design and deployment 124 

Nine mesocosms were deployed on the 10th June 2012 (day t-10; days are numbered negative prior to 125 

CO2 addition and positive afterward) and moored near Tvärminne Zoological Station (59° 51.5’ N, 23° 126 

15.5’ E) in Tvärminne Storfjärden in the Baltic Sea. Each mesocosm comprised a thermoplastic 127 

polyurethane (TPU) enclosure of 17 m depth, containing approximately 54,000 L of seawater, 128 

supported by an 8m tall floating frame capped with a polyvinyl hood. For full technical details of the 129 

mesocosms see Czerny et al. (2013) and Riebesell et al. (2013). The mesocosm bags were filled by 130 

lowering through the stratified water column until fully submerged, with the opening at both ends 131 

covered by 3 mm mesh to exclude organisms larger than 3 mm such as fish. The mesocosms were then 132 

left for 3 days (t-10 to t-7) with the mesh in position to allow exchange with the external water masses 133 

and ensure the mesocosm contents were representative of the phytoplankton community in the 134 

Storfjärden. On t-7 the bottom of the mesocosm was sealed with a sediment trap and the upper opening 135 

was raised to approximately 1.5 m above the water surface. Stratification within the mesocosm bags 136 

was broken up on t-5 by the use of compressed air for three and a half minutes to homogenise the 137 

water column and ensure an even distribution of inorganic nutrients at all depths. Unlike in previous 138 

experiments, there was no addition of inorganic nutrients to the mesocosms at any time during the 139 

experiment; mean inorganic nitrate, inorganic phosphate and ammonium concentrations measured 140 

across all mesocosms at the start of the experiment were 37.2 (± 18.8 s.d.) nmol L-1, 323.9 (± 19.4 s.d.) 141 

nmol L-1 and 413.8 (± 319.5 s.d.) nmol L-1 respectively.  142 

To obtain mesocosms with different fCO2, the carbonate chemistry of the mesocosms was altered by 143 

the addition of different volumes of 50 μm filtered, CO2-enriched Baltic Sea water (sourced from 144 

outside the mesocosms), to each mesocosm over a four day period, with the first day of addition being 145 

defined as day t0. Addition of the enriched CO2 water was by the use of a bespoke dispersal apparatus 146 

(‘Spider’) lowered through the bags to ensure even distribution throughout the water column (further 147 

details are in Riebesell et al. 2013). Measurements of salinity in the mesocosms throughout the 148 

experiment determined that three of the mesocosms were not fully sealed, and had undergone 149 

unquantifiable water exchange with the surrounding waters. These three mesocosms (M2, M4 and M9) 150 

were excluded from the analysis. Two mesocosms were designated as controls (M1 and M5) and 151 

received only filtered seawater via the Spider; four mesocosms received addition of CO2-enriched 152 

waters, with the range of target ƒCO2 levels between 600 and 1650 μatm (M7, 600 μatm; M6, 950 153 

μatm; M3, 1300 μatm; M8 1650 μatm). Mesocosms were randomly allocated a target fCO2; a 154 
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noticeable decrease in fCO2 was identified in the three highest fCO2 mesocosms (M6, M3 and M8) 155 

over the first half of the experiment, which required the addition of more CO2 enriched water on t15 to 156 

bring the fCO2 back up to maximum concentrations (Fig. 1a; Paul et al., 2015). A summary of the 157 

fCO2 in the mesocosms can be seen in Table 1. At the same time as this further CO2 addition on t15, 158 

the walls of the mesocosms were cleaned using a bespoke wiper apparatus (See Riebesell et al., 2013 159 

for more information), followed by weekly cleaning to remove aggregations on the film which would 160 

block incoming light. Light measurements showed that over 95% of the photosynthetically active 161 

radiation (PAR) was transmitted by the clean TPU and PVC materials with 100% absorbance of UV 162 

light (Riebesell et al., 2013). Samples for most parameters were collected from the mesocosms at the 163 

same time every morning from t-3, and analysed daily or every other day.  164 

2.2 Trace gas extraction and analysis 165 

2.2.1 DMS and halocarbons 166 

A depth-integrated water sampler (IWS, HYDRO-BIOS, Kiel, Germany) was used to sample the entire 167 

17 m water column daily or alternative daily. As analysis of Chlorophyll-ɑ (Chl-ɑ) showed it to be 168 

predominantly produced in the first 10 m of the water column; trace gas analysis was conducted on 169 

only integrated samples collected from the surface 10 m, with all corresponding community parameter 170 

analyses with the exception of pigment analysis performed also to this depth. Water samples for trace 171 

gas analysis were taken from the first IWS from each mesocosm to minimise the disturbance and 172 

bubble entrainment from taking multiple samples in the surface waters. As in Hughes et al. (2009), 173 

samples were collected in 250 mL amber glass bottles in a laminar flow with minimal disturbance to 174 

the water sample, using Tygon tubing from the outlet of the IWS. Bottles were rinsed twice before 175 

being carefully filled from the bottom with minimal stirring, and allowed to overflow the volume of 176 

the bottle approximately three times before sealing with a glass stopper to prevent bubble formation 177 

and atmospheric contact. Samples were stored below 10°C in the dark for 2 hours prior to analysis. 178 

Each day, a single sample was taken from each mesocosm, with two additional samples taken from 179 

one randomly selected mesocosm to evaluate the precision of the analysis.  180 

On return to the laboratory, 40 mL of water was injected into a purge and cryotrap system (Chuck et 181 

al., 2005), filtered through a 25 mm Whatman glass fibre filter (GF/F; GE Healthcare Life Sciences, 182 

Little Chalfont, England) and purged with oxygen-free nitrogen (OFN) at 80 mL min-1 for 10 minutes. 183 

Each gas sample passed through a glass wool trap to remove particles and aerosols, before a dual 184 

nafion counterflow drier (180 mL min-1 OFN) removed water vapour from the gas stream. The gas 185 

sample was trapped in a stainless steel loop held at -150 °C in the headspace of a liquid nitrogen-filled 186 
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dewar. The sample was injected by immersion of the sample loop in boiling water into an Agilent 6890 187 

gas chromatograph equipped with a 60 m DB-VRX capillary column (0.32 mm ID, 1.8 µm film 188 

thickness, Agilent J&W Ltd) according to the programme outlined by Hopkins et al. (2010). Analysis 189 

was performed by an Agilent 5973 quadrupole mass spectrometer operated in electron ionisation, 190 

single ion mode. Liquid standards of CH3I, diiodomethane (CH2I2), CH2ClI, iodoethane (C2H5I), 191 

iodopropane (C3H7I), CHBr3, dibromoethane (CH2Br2), dibromochloromethane (CHBr2Cl), 192 

bromoiodomethane (CH2BrI) and DMS (Standards supplied by Sigma Aldrich Ltd, UK) were 193 

gravimetrically prepared by dilution in HPLC-grade methanol (Table 2) and used for calibration. The 194 

relative standard error was expressed as a percentage of the mean for the sample analysis, calculated 195 

for each compound using triplicate analysis each day from a single mesocosm, and was <7% for all 196 

compounds. GC-MS instrument drift was corrected by the use of a surrogate analyte standard in every 197 

sample, comprising deuterated DMS (D6-DMS), deuterated methyl iodide (CD3I) and 13C 198 

dibromoethane (13C2H4Br2) via the method described in Hughes et al. (2006) and Martino et al. (2005). 199 

Five-point calibrations were performed weekly for each compound with the addition of the surrogate 200 

analyte, with a single standard analysed daily to check for instrument drift; linear regression from 201 

calibrations typically produced r2>0.98. All samples measured within the mesocosms were within the 202 

concentration ranges of the calibrations (Table 2).  203 

2.2.2 DMSP 204 

Samples for total DMSP (DMSPT) were collected and stored for later analysis by the acidification 205 

method of Curran et al. (1998). A 7 mL sub-sample was collected from the amber glass bottle into an 8 206 

mL glass sample vial (Labhut, Churcham, UK), into which 0.35 μL of 50% H2SO4 was added, before 207 

storage at ambient temperature. Particulate DMSP (DMSPP) samples were prepared by the gravity 208 

filtration of 20 mL of sample through a 47 mm GF/F in a glass filter unit, before careful removal and 209 

folding of the GF/F into a 7 mL sample vial filled with 7 mL of Milli-Q water and 0.35 μL of H2SO4 210 

before storage at ambient temperature. Samples were stored for approximately 8 weeks prior to 211 

analysis. DMSP samples (total and particulate) were analysed on a PTFE purge and cryotrap system 212 

using 2 mL of the sample purged with 1 mL of 10M NaOH for 5 minutes at 80 mL min-1. The sample 213 

gas stream passed through a glass wool trap and Nafion counterflow (Permapure) drier before being 214 

trapped in a PTFE sample loop kept at -150 °C by suspension in the headspace of a liquid nitrogen-215 

filled dewar and controlled by feedback from a thermocouple. Immersion in boiling water rapidly re-216 

volatilised the sample for injection into a Shimadzu GC2010 gas chromatograph with a Varian 217 

Chrompack CP-Sil-5CB column (30 m, 0.53 mm ID) and flame photometric detector (FPD). The GC 218 

oven was operated isothermally at 60 °C which resulted in DMS eluting at 2.1 minutes. Liquid DMSP 219 

Biogeosciences Discuss., doi:10.5194/bg-2015-573, 2016

Manuscript under review for journal Biogeosciences

Published: 28 January 2016

c© Author(s) 2016. CC-BY 3.0 License.



8 
 

standards were prepared and purged in the same manner as the sample to provide weekly calibrations 220 

of the entire analytical system. Involvement in the 2013 AQA 12-23 international DMS analysis 221 

proficiency test (National Measurement Institute of Australia, 2013) in February 2013 demonstrated 222 

excellent agreement between our method of DMSP analysis and the mean from thirteen laboratories 223 

measuring DMS using different methods, with a measurement error of 5%.  224 

DMSP was not detected in any of the samples (total or particulate) collected and stored during the 225 

experiment, and it was considered likely that this was due to an unresolved issue regarding acidifying 226 

the samples for later DMSP analysis. It was considered unlikely that rates of bacterial DMSP turnover 227 

through demethylation rather than through cleavage to produce DMS (Curson et al., 2011) were 228 

sufficiently high in the Baltic Sea to remove all detectable DMSP, yet still produce measureable DMS 229 

concentrations. Also, rapid turnover of DMSPD in surface waters being the cause of low DMSPT 230 

concentrations does not explain the lack of intracellular particulate-phase DMSP. Although production 231 

of DMS is possible from alternate sources, it is highly unlikely that there was a total absence of 232 

DMSP-producing phytoplankton within the mesocosms or Baltic Sea surface waters around 233 

Tvärminne; DMSP has been measured in surface waters of the Southern Baltic Sea at 22.2 nmol L-1 in 234 

2012, indicating that DMSP-producing species are present within the Baltic Sea (Cathleen Zindler, 235 

GEOMAR, Pers. Comm.).  236 

A previous study by del Valle et al. (2011) highlighted up to 94% loss of DMSP from acidified 237 

samples of colonial Phaeocystis globosa culture, and field samples dominated by colonial Phaeocystis 238 

antarctica. Despite filamentous, colonial cyanobacteria in the samples from Tvärminne mesocosms 239 

potentially undergoing the same process, these species did not dominate the community at only 6.6% 240 

of the total Chl-ɑ, implying that the acidification method for DMSP fixation also failed for unicellular 241 

phytoplankton species. This suggests that the acidification method is unreliable in the Baltic Sea, and 242 

should be considered inadequate as the sole method of DMSP fixation in future experiments in the 243 

region. The question of its applicability in other marine waters also needs further investigation.  244 

 245 

2.3 Measurement of community dynamics 246 

Water samples were collected from the 10m and 17mIWS on a daily basis and analysed for carbonate 247 

chemistry, fluorometric Chl-ɑ, phytoplankton pigments (17m IWS only) and cell abundance to analyse 248 

the community structure and dynamics during the experiment. The carbonate system was analysed 249 

through a suite of measurements (Paul et al., 2015), including potentiometric titration for total 250 

alkalinity (TA), infrared absorption for dissolved inorganic carbon (DIC) and spectrophotometric 251 
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determination for pH. For Chl-ɑ analysis and pigment determination, 500 mL sub-samples were 252 

filtered through a GF/F and stored frozen (-20 °C for two hours for Chl-ɑ and -80 °C for up to 6 253 

months  for pigments), before homogenisation in 90 % acetone with glass beads. After centrifuging 254 

(10 minutes at 800 x g at 4 °C) the Chl-ɑ concentrations were determined using a Turner AU-10 255 

fluorometer  by the methods of Welschmeyer (1994), and the phytoplankton pigment concentrations 256 

by reverse phase high performance liquid chromatography (WATERS HPLC with a Varian Microsorb-257 

MV 100-3 C8 column) as described by Barlow et al. (1997). Phytoplankton community composition 258 

was determined by the use of the CHEMTAX algorithm to convert the concentrations of marker 259 

pigments to Chl-ɑ equivalents (Mackey et al., 1996; Schulz et al., 2013). Microbes were enumerated 260 

using a Becton Dickinson FACSCalibur flow cytometer (FCM) equipped with a 488 nm argon laser 261 

(Crawfurd et al., 2015) and counts of phytoplankton cells >20 µm were made on concentrated (50 mL) 262 

sample water, fixed with acidic Lugol’s iodine solution with an inverted microscope. Filamentous 263 

cyanobacteria were counted in 50 µm length units.  264 

2.4 Statistical Analysis 265 

All statistical analysis was performed using Minitab V16. In analysis of the measurements between 266 

mesocosms, one-way ANOVA was used with Tukey’s post-hoc analysis test to determine the effect of 267 

different ƒCO2 on concentrations measured in the mesocosms and the Baltic Sea. Spearman’s Rank 268 

Correlation Coefficients were calculated to compare the relationships between trace gas 269 

concentrations, fCO2, and a number of biological parameters, and the resulting ρ-values for each 270 

correlation are given in Supplementary table S1 for the mesocosms and S2 for the Baltic Sea data.  271 

 272 

3 Results and Discussion 273 

3.1 Biogeochemical changes within the mesocosms 274 

The mesocosm experiment was split into three phases based on the temporal variation in Chl-ɑ (Fig. 2; 275 

Paul et al., 2015) evaluated after the experiment was completed:  276 

 Phase 0 (days t-5 to t0) – pre-CO2 addition 277 

 Phase I (days t1 to t16) – ‘productive phase’  278 

 Phase II (days t17 to t30) – temperature induced autotrophic decline. 279 
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3.1.1 Physical Parameters 280 

fCO2 decreased over Phase I in the three highest fCO2 mesocosms, mainly through air-sea gas 281 

exchange and carbon fixation by phytoplankton (Fig. 1a). All mesocosms still showed distinct 282 

differences in fCO2 levels throughout the experiment (Table 1), and there was no overlap of mesocosm 283 

fCO2 values on any given day, save for the two controls (M1 and M5).  The control mesocosm fCO2 284 

increased through Phase I of the experiment, likely as a result of undersaturation of the water column 285 

encouraging dissolution of atmospheric CO2 (Paul et al., 2015). Salinity in the mesocosms remained 286 

constant throughout the experiment at 5.70 ± 0.004, and showed no variation with depth. It remained 287 

similar to salinity in the Baltic Sea surrounding the mesocosms, which was 5.74 ± 0.14. Water 288 

temperature varied from a low of 8.6 ± 0.4 °C during Phase 0 to a high of 15.9 ± 2.2 °C measured on 289 

day t16, before decreasing once again (Fig. 1b).  290 

Summertime upwelling events are common and well described (Gidhagen, 1987; Lehmann and 291 

Myrberg, 2008), and induce a significant temperature decrease in surface waters; such an event 292 

appears to have commenced around t16, as indicated by significantly decreasing temperatures inside 293 

and out of the mesocosms (Fig. 1b) and increased salinity in the Baltic Sea from 5.5 to 6.1 over the 294 

following 15 days to the end of the experiment. Due to the enclosed nature of the mesocosms, the 295 

upwelling affected only the temperature and not pH, fCO2 or the microbial community. However, the 296 

temperature decrease after t16 was likely to have had a significant effect on phytoplankton growth, 297 

explaining the lower Chl-ɑ in Phase II.  298 

3.1.2 Community Dynamics 299 

Mixing of the mesocosms after closure prior to t-3 did not trigger a notable increase in Chl-ɑ in Phase 300 

0; in previous mesocosm experiments, mixing redistributed nutrients from the deeper stratified layers 301 

throughout the water column. During Phase I, light availability, combined with increasing water 302 

temperatures favoured the growth of phytoplankton in all mesocosms (Paul et al. 2015), and was 303 

unlikely to be a direct result of the CO2 enrichment. Mean Chl-ɑ during Phase I was 1.98 (± 0.29) μg 304 

L-1 from all mesocosms, decreasing to 1.44 (± 0.46) μg L-1 in Phase II: this decrease was attributed to a 305 

temperature induced decreased in phytoplankton growth rates and higher grazing rates as a result of 306 

higher zooplankton reproduction rates during Phase I (Lischka et al., 2015; Paul et al., 2015). 307 

Mesocosm Chl-ɑ decreased until the end of the experiment on t31.  308 

The largest contributors to Chl-ɑ in the mesocosms during the summer of 2012 were the chlorophytes 309 

and cryptophytes, with up to 40% and 21% contributions to the Chl-ɑ respectively (Table 3; Paul et al., 310 

2015). Significant long-term differences in abundance between mesocosms developed as a result of 311 
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elevated fCO2 in only two groups: picoeukaryotes I showed higher abundance at high fCO2 (F=8.2, 312 

p<0.01; Crawfurd et al., 2016 and Supplementary Fig. S2), as seen in previous mesocosm experiments 313 

(Brussaard et al., 2013; Newbold et al., 2012) and picoeukaryotes III the opposite trend (F=19.6, 314 

p<0.01; Crawfurd et al. this issue). Temporal variation in phytoplankton abundance was similar 315 

between all mesocosms (Supplementary Fig. S1 and S2). 316 

Diazotrophic, filamentous cyanobacterial blooms in the Baltic Sea are an annual event in summer 317 

(Finni et al., 2001), and single-celled cyanobacteria have been found to comprise as much as 80% of 318 

the cyanobacterial biomass and 50% of the total primary production during the summer in the Baltic 319 

Sea (Stal et al., 2003). However, CHEMTAX analysis identified cyanobacteria as contributing less 320 

than 10% of the total Chl-ɑ in the mesocosms (Crawfurd et al., 2015; Paul et al., 2015). These 321 

observations were backed up by satellite observations showing reduced cyanobacterial abundance 322 

throughout the Baltic Sea in 2012 compared to previous and later years (Oberg, 2013). It was proposed 323 

that environmental conditions of limited light availability and lower surface water temperatures during 324 

the summer of 2012 were sub-optimal for triggering a filamentous cyanobacteria bloom (Wasmund, 325 

1997).  326 

 327 

3.2 DMS and DMSP 328 

3.2.1 Mesocosm DMS 329 

A significant 34% reduction in DMS concentrations was detected in the high fCO2 treatments during 330 

Phase II compared to the ambient fCO2 mesocosms (F=31.7, p<0.01). Mean DMS concentrations of 331 

5.0 (± 0.8; range 3.5 – 6.8) nmol L-1 in the ambient treatments compared to 3.3 (± 0.3; range 2.9 – 3.9) 332 

nmol L-1 in the 1333 and 1075 μatm mesocosms (Fig. 3a). The primary differences identified were 333 

apparent from the start of Phase II on t17, after which maximum concentrations were observed in the 334 

ambient mesocosms on t21. The relationship between DMS and increasing fCO2 during Phase II was 335 

found to be linear (Fig. 3b), a finding also identified in previous mesocosm experiments (Archer et al., 336 

2013; Webb et al., 2015). Furthermore, increases in DMS concentrations under high fCO2 were 337 

delayed by three days relative to the ambient and medium fCO2 treatments, a situation which has been 338 

observed in a previous mesocosm experiment. This was attributed to small-scale shifts in community 339 

composition and succession which could not be identified with only a once-daily measurement regime 340 

(Vogt et al., 2008). DMS measured in all mesocosms fell within the range 2.7 to 6.8 nmol L-1 across 341 

the course of the experiment. During Phase I, no difference was identified in DMS concentrations 342 
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between fCO2 treatments with the mean of all mesocosms 3.1 (± 0.2) nmol L-1. Concentrations in all 343 

mesocosms gradually declined from t21 until the end of DMS measurements on t31. DMS 344 

concentrations measured in the mesocosms and Baltic Sea were comparable to those measured in 345 

temperate coastal conditions in the North Sea (Turner et al., 1988), the Mauritanian upwelling 346 

(Franklin et al., 2009; Zindler et al., 2012) and South Pacific (Lee et al., 2010).  347 

Although the majority of DMS production is presumed to be from DMSP, an alternative production 348 

route for DMS is available through the methylation of methanethiol (Drotar et al., 1987; Kiene and 349 

Hines, 1995; Stets et al., 2004) predominantly identified in anaerobic environments such as freshwater 350 

lake sediments (Lomans et al., 1997), saltmarsh sediments (Kiene and Visscher, 1987) and microbial 351 

mats (Visscher et al., 2003; Zinder et al., 1977). However, recent studies have identified this pathway 352 

of DMS production from Pseudomonas deceptionensis in an aerobic environment (Carrión et al., 353 

2015), where P. deceptionensis was unable to synthesis or catabolise DMSP, but was able to 354 

enzymatically mediate DMS production from methanethiol (MeSH). The same enzyme has also been 355 

identified in a wide range of other bacterial taxa, including the cyanobacterial Pseudanabaena, which 356 

was identified in the Baltic Sea during this and previous investigations (Stuhr, pers. comm.; Kangro et 357 

al., 2007; Nausch et al., 2009). Correlations between DMS and the cyanobacterial equivalent Chl-ɑ 358 

(ρ=0.42, p<0.01) indicate that the methylation pathway may be a potential source of DMS within the 359 

Baltic Sea community. In addition to the methylation pathway, DMS production has been identified 360 

from S-methylmethionine (Bentley and Chasteen, 2004), as well as from the reduction of 361 

dimethylsulphoxide (DMSO) in both surface and deep waters by bacterial metabolism (Hatton et al., 362 

2004). As these compounds were not measured in the mesocosms, it is impossible to determine if they 363 

were significant sources of DMS. 364 

3.2.2 DMS and Community Interactions 365 

Throughout Phase I, DMS showed no correlation with any measured variables of biological activity or 366 

cell abundance, and was unaffected by elevated fCO2, indicating DMS net production was not directly 367 

related to the perturbation of the system and associated cellular stress (Sunda et al., 2002). During 368 

Phase II, DMS was negatively correlated with Chl-ɑ in the ambient and medium fCO2 mesocosms (ρ=-369 

0.60, p<0.01). During Phase II, a significant correlation was seen between DMS and single-celled 370 

cyanobacteria identified as Synechococcus (ρ=0.53, p<0.01; Crawfurd et al. 2016 and supplementary 371 

table S1) and picoeukaryotes III (ρ=0.75, p<0.01). The peak in DMS concentrations is unlikely to be a 372 

delayed response to the increased Chl-ɑ on t16. 373 
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In previous mesocosm experiments (Archer et al., 2013; Hopkins et al., 2010; Webb et al., 2015), 374 

DMS has shown poor correlations with many of the indicators of primary production and 375 

phytoplankton abundance, as well as showing the same trend of decreased concentrations in high fCO2 376 

mesocosms compared to ambient. DMS production is often uncoupled from measurements of primary 377 

production in open waters (Lana et al., 2012), and also often from production of its precursor DMSP 378 

(Archer et al., 2009).. DMS and DMSP are important sources of sulphur and carbon in the microbial 379 

food web for both bacteria and algae (Simó et al., 2002, 2009), and since microbial turnover of DMSP 380 

and DMS play a significant role in net DMS production, it is unsurprising that DMS concentrations 381 

have shown poor correlation with DMSP-producing phytoplankton groups in past experiments and 382 

open waters.  383 

DMS concentrations have been reported lower under conditions of elevated fCO2 compared to ambient 384 

controls, in both mesocosm experiments (Table 4) and phytoplankton monocultures (Arnold et al., 385 

2013; Avgoustidi et al., 2012). However, these experiments limit our ability to generalise the response 386 

of algal production of DMS and DMSP in all situations due to the characteristic community dynamics 387 

of each experiment in specific geographical areas and temporal periods. Previous experiments in the 388 

temperate Raunefjord of Bergen, Norway, showed lower abundance of DMSP-producing algal species, 389 

and subsequently DMSP-dependent DMS concentrations (Avgoustidi et al., 2012; Hopkins et al., 390 

2010; Vogt et al., 2008; Webb et al., 2015). In contrast mesocosm experiments in the Arctic and Korea 391 

have shown increased abundance of DMSP producers (Archer et al., 2013; Kim et al., 2010) but lower 392 

DMS concentrations, while incubation experiments by Hopkins and Archer (2014) showed lower 393 

DMSP production but higher DMS concentrations at high fCO2. However, in all previous experiments 394 

with DMSP as the primary precursor of DMS, elevated fCO2 had a less marked effect on measured 395 

DMSP concentrations than on measured DMS concentrations. Hopkins et al. (2010) suggested that 396 

‘the perturbation of the system has a greater effect on the processes that control the conversion of 397 

DMSP to DMS rather than the initial production of DMSP itself’. This is relevant even for the current 398 

experiment, where DMSP was not identified, since processes controlling DMS concentrations were 399 

likely more affected by the change in fCO2 than the production of precursors.  400 

Previous mesocosm experiments have suggested significant links between increased bacterial 401 

production through greater availability of organic substrates at high fCO2 (Engel et al., 2013; Piontek 402 

et al., 2013). Further, Endres et al. (2014) identified significant enhanced enzymatic hydrolysis of 403 

organic matter with increasing fCO2, with higher bacterial abundance. Higher bacterial abundance will 404 

likely result in greater bacterial demand for sulphur, and therefore greater consumption of DMS and 405 

conversion to DMSO. This was suggested as a significant sink for DMS in a previous experiment 406 
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(Webb et al., 2015), but during the present experiment, both bacterial abundance and bacterial 407 

production were lower at high fCO2 (Hornick et al., 2015). However, as it has been proposed that only 408 

specialist bacterial groups are DMS consumers (Vila-Costa et al., 2006b), and there is no 409 

determination of the DMS consumption characteristics of the bacterial community in the Baltic Sea, 410 

this is still a potential stimulated DMS loss pathway at high fCO2. Synechococcus has been identified 411 

as a DMS consumer in the open ocean, but abundance of this group was negatively correlated with 412 

fCO2, implying that DMS consumption by this group would have been lower as fCO2 increased.  413 

3.3 Iodocarbons in the mesocosms and relationships with community composition 414 

Elevated fCO2 did not affect the concentration of iodocarbons in the mesocosms significantly at any 415 

time during the experiment, which is in agreement with the findings of Hopkins et al. (2013) in the 416 

Arctic, but in contrast to Hopkins et al. (2010) and Webb (2015), where iodocarbons were measured 417 

significantly lower under elevated fCO2 (Table 4). Concentrations of all iodocarbons measured in the 418 

mesocosms and the Baltic Sea fall within the range of those measured previously in the region (Table 419 

5). Mesocosm concentrations of CH3I (Fig. 4a) and C2H5I (Fig. 4b) showed concentration ranges of 420 

2.91 to 6.25 and 0.23 to 0.76 pmol L-1 respectively. CH3I showed a slight increase in all mesocosms 421 

during Phase I, peaking on t16 which corresponded with higher Chl-ɑ concentrations, and correlated 422 

throughout the entire experiment with picoeukaryote groups II (ρ=0.59, p<0.01) and III (ρ=0.23, 423 

p<0.01; Crawfurd et al. this issue) and nanoeukaryotes I (ρ=0.37, p<0.01). Significant differences 424 

identified between mesocosms for CH3I were unrelated to elevated fCO2 (F=3.1, p<0.05), but 425 

concentrations were on average 15% higher in Phase II than Phase I. C2H5I decreased slightly during 426 

Phases I and II, although concentrations of this halocarbon were close to its detection limit (0.2 pmol 427 

L-1), remaining below 1 pmol L-1 at all times. As this compound showed no significant effect of 428 

elevated fCO2, and was identified by Orlikowska and Schulz-Bull (2009) as having extremely low 429 

concentrations in the Baltic Sea (Table 5), it will not be discussed further. 430 

No correlation was found between CH3I and Chl-ɑ at any phase, and the only correlation of any 431 

phytoplankton grouping was with nanoeukaryotes II (ρ=0.88, p<0.01; Crawfurd et al., 2015). These 432 

CH3I concentrations compare well to the 7.5 pmol L-1 measured by Karlsson et al. (2008) during a 433 

cyanobacterial bloom in the Baltic Sea (Table 5), and the summer maximum of 16 pmol L-1 identified 434 

by Orlikowska and Schulz-Bull (2009).  435 

Karlsson et al. (2008) showed Baltic Sea halocarbon production occurring predominately during 436 

daylight hours, with concentrations at night decreasing by 70% compared to late afternoon. Light 437 

dependent production of CH3I has been shown to take place through abiotic processes, including 438 
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radical recombination of CH3 and I (Moore and Zafiriou, 1994). However since samples were 439 

integrated over the surface 10m of the water column, it was impossible to determine if photochemistry 440 

was affecting iodocarbon concentrations near the surface where some UV light was able to pass 441 

between the top of the mesocosm film material and the cover. For the same reason, photodegradation 442 

of halocarbons (Zika et al., 1984) within the mesocosms was also likely to have been significantly 443 

restricted. Thus, as photochemical production was expected to be minimal, biogenic production was 444 

likely to have been the dominant source of these compounds. Karlsson et al. (2008) identified 445 

Pseudanabaena as a key producer of CH3I in the Baltic Sea. However the abundance of 446 

Pseudanabaena was highest during Phase I of the experiment (A. Stuhr, Pers. Comm.) when CH3I 447 

concentrations were lower, and as discussed previously, the abundance of these species constituted 448 

only a very small proportion of the community. Previous investigations in the laboratory have 449 

identified diatoms as significant producers of CH3I (Hughes et al., 2013; Manley and De La Cuesta, 450 

1997), and the low, steady-state abundance of the diatom populations in the mesocosms could have 451 

produced the same relatively steady-state trends in the iodocarbon concentrations.  452 

Measured in the range 57.2 – 202.2 pmol L-1 in the mesocosms, CH2I2 (Fig. 4c) showed the clearest 453 

increase in concentration during Phase II, when it peaked on t21 in all mesocosms, with a maximum of 454 

202.2 pmol L-1 in M5 (348 μatm). During Phase II, concentrations of CH2I2 were 57% higher than 455 

Phase I, and were therefore negatively correlated with Chl-ɑ.  The peak on t21 corresponds with the 456 

peak identified in DMS on t21, and concentrations through all three phases correlate with 457 

picoeukaryotes II (ρ=0.62, p<0.01) and III (ρ=0.47, p<0.01) and nanoeukaryotes I (ρ=0.88, p<0.01; 458 

Crawfurd et al., 2015). CH2ClI (Fig. 4d) showed no peaks during either Phase I or Phase II, remaining 459 

within the range 3.81 to 8.03 pmol L-1, and again correlated with picoeukaryotes groups II (ρ=0.34, 460 

p<0.01) and III (ρ=0.38, p<0.01). These results may suggest that these groups possessed halo-461 

peroxidase enzymes able to oxidise I-, most likely as an anti-oxidant mechanism within the cell to 462 

remove H2O2 (Butler and Carter-Franklin, 2004; Pedersen et al., 1996; Theiler et al., 1978). However, 463 

given the lack of response of these compounds to elevated fCO2 (F=1.7, p<0.01), it is unlikely that 464 

production was increased in relation to elevated fCO2. Production of all iodocarbons increased during 465 

Phase II when total Chl-ɑ decreased, particularly after the walls of the mesocosms were cleaned for the 466 

first time, releasing significant volumes of organic aggregates into the water column. Aggregates have 467 

been suggested as a source of CH3I and C2H5I (Hughes et al., 2008), likely through the alkylation of 468 

inorganic iodide (Urhahn and Ballschmiter, 1998) or through the breakdown of organic matter by 469 

microbial activity to supply the precursors required for iodocarbon production (Smith et al., 1992). 470 

Hughes et al. (2008) did not identify this route as a pathway for CH2I2 or CH2ClI production, but 471 
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Carpenter et al. (2005) suggested a production pathway for these compounds through the reaction of 472 

HOI with aggregated organic materials.  473 

3.4 Bromocarbons in the mesocosms and the relationships with community 474 

composition 475 

No effect of elevated fCO2 was identified for any of the three bromocarbons, which compared with the 476 

findings from previous mesocosms where bromocarbons were studied (Hopkins et al., 2010, 2013; 477 

Webb, 2015; Table 4). Measured concentrations were comparable to those of Orlikowska and Schulz-478 

Bull (2009) and Karlsson et al. (2008) measured in the Southern part of the Baltic Sea (Table 3). The 479 

concentrations of CHBr3, CH2Br2 and CHBr2Cl showed no major peaks of production in the 480 

mesocosms. CHBr3 (Fig. 5a) decreased rapidly in all mesocosms over Phase 0 from a maximum 481 

measured concentration of 147.5 pmol L-1 in M1 (mean of 138.3 pmol L-1 in all mesocosms) to a mean 482 

of 85.7 (±8.2 s.d.) pmol L-1 in all mesocosms for the period t0 to t31 (Phases I and II). The steady-state 483 

CHBr3 concentrations indicated a production source, however there was no clear correlation with any 484 

measured algal groups.  CH2Br2 concentrations (Fig. 5b) decreased steadily in all mesocosms from t-3 485 

through to t31, over the range 4.0 to 7.7 pmol L-1, and CHBr2Cl followed a similar trend in the range 486 

1.7 to 4.7 pmol L-1 (Fig. 5c). Of the three bromocarbons, only CH2Br2 showed correlation with total 487 

Chl-ɑ (ρ=0.52, p<0.01), and with cryptophyte (ρ=0.86, p<0.01) and dinoflagellate (ρ=0.65, p<0.01) 488 

derived Chl-ɑ. Concentrations of CH2BrI were below detection limit for the entire experiment.  489 

CH2Br2 showed positive correlation with Chl-ɑ (ρ=0.52, p<0.01), nanoeukaryotes II (ρ=0.34, p<0.01) 490 

and cryptophytes (ρ=0.86, p<0.01; see supplementary material), whereas CHBr3 and CHBr2Cl showed 491 

very weak or no correlation with any indicators of primary production. Schall et al. (1997) have 492 

proposed that CHBr2Cl is produced in seawater by the nucleophilic substitution of bromide by chloride 493 

in CHBr3, which given the steady-state concentrations of CHBr3 would explain the similar distribution 494 

of CHBr2Cl concentrations.  Production of all three bromocarbons was identified from large-size 495 

cyanobacteria such as Aphanizomenon flos-aquae by Karlsson et al. (2008), and in addition, significant 496 

correlations were found in the Arabian Sea between the abundance of the cyanobacterium 497 

Trichodesmium and several bromocarbons (Roy et al., 2011), and the low abundance of such bacteria 498 

in the mesocosms would explain the low variation in bromocarbon concentrations through the 499 

experiment.  500 

Halocarbon loss processes such as nucleophilic substitution (Moore, 2006), hydrolysis (Elliott and 501 

Rowland, 1995), sea-air exchange and microbial degradation are suggested as of greater importance 502 

than production of these compounds by specific algal groups, particularly given the relatively low 503 
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growth rates and total Chl-ɑ. Hughes et al. (2013) identified bacterial inhibition of CHBr3 production 504 

in laboratory cultures of Thalassiosira diatoms, but that it was not subject to bacterial breakdown; 505 

which could explain the relative steady state of CHBr3 concentrations in the mesocosms. In contrast, 506 

significant bacterial degradation of CH2Br2 in the same experiments could explain the steady decrease 507 

in CH2Br2 concentrations seen in the mesocosms. Bacterial oxidation was also identified by Goodwin 508 

et al. (1998) as a significant sink for CH2Br2. As discussed for the iodocarbons, photolysis was 509 

unlikely due to the UV absorption of the mesocosm film, and limited UV exposure of the surface 510 

waters within the mesocosm due to the mesocosm cover. The ratio of CH2Br2 to CHBr3 was also 511 

unaffected by increased fCO2, staying within the range 0.04 to 0.08. This range in ratios is consistent 512 

with that calculated by Hughes et al. (2009) in the surface waters of an Antarctic depth profile, and 513 

attributed to higher sea-air flux of CHBr3 than CH2Br2 due to a greater concentrations gradient, despite 514 

the similar transfer velocities of the two compounds (Quack et al., 2007). Using cluster analysis in a 515 

time-series in the Baltic Sea, Orlikowska and Schulz-Bull (2009) identified both these compounds as 516 

originating from different sources and different pathways of production.  517 

Macroalgal production would not have influenced the mesocosm concentrations due to the isolation 518 

from the coastal environment, however the higher bromocarbon concentrations identified in the 519 

mesocosms during Phase 0 may have originated from macroalgal sources (Klick, 1992; Leedham et 520 

al., 2013; Moore and Tokarczyk, 1993) prior to mesocosm closure, with concentrations decreasing 521 

through turnover and transfer to the atmosphere. 522 

 523 

3.5 Natural variations in Baltic Sea fCO2 and the effect on biogenic trace gases 524 

3.5.1 Physical variation and community dynamics 525 

Baltic Sea deep waters have high fCO2 and subsequently lower pH (Schneider et al., 2002), and the 526 

influx to the surface waters surrounding the mesocosms resulted in fCO2 increasing to 725 μatm on 527 

t31, close to the average fCO2 of the third highest mesocosm (M6: 868 μatm). These conditions imply 528 

that pelagic communities in the Baltic Sea are regularly exposed to rapid changes in fCO2 and the 529 

associated pH, as well as having communities associated with the elevated fCO2 conditions.  530 

Chl-ɑ followed the pattern of the mesocosms until t4, after which concentrations were significantly 531 

higher than any mesocosm, peaking at 6.48 μg L-1 on t16, corresponding to the maximum Chl-ɑ peak 532 

in the mesocosms and the maximum peak of temperature. As upwelled water intruded into the surface 533 

waters, the surface Chl-ɑ was diluted with low Chl-ɑ deep water: Chl-ɑ in the surface 10m decreased 534 
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from around t16 at the start of the upwelling until t31 when concentrations were once again equivalent 535 

to those found in the mesocosms at 1.30 μg L-1. In addition there was potential introduction of different 536 

algal groups to the surface, but chlorophytes and crytophytes were the major contributors to the Chl-a 537 

in the Baltic Sea, as in the mesocosms. Cyanobacteria contributed less than 2% of the total Chl-a in the 538 

Baltic Sea (Crawfurd et al., 2015; Paul et al., 2015).  539 

Temporal community dynamics in the Baltic Sea were very different to that in the mesocosms across 540 

the experiment, with euglenophytes, chlorophytes, diatoms and prasinophytes all showing distinct 541 

peaks at the start of Phase II, with these same peaks identified in the nanoeukaryotes I and II, and 542 

picoeukaryotes II (Crawfurd et al., 2016; Paul et al., 2015; Supplementary Figs. S1 and S2). The 543 

decrease in abundance of many groups during Phase II was attributed to the decrease in temperature 544 

and dilution with low-abundance deep waters.  545 

3.5.2 DMS in the Baltic Sea 546 

The input of upwelled water into the region mid-way through the experiment significantly altered the 547 

biogeochemical properties of the waters surrounding the mesocosms, and as a result it is inappropriate 548 

to directly compare the community structure and trace gas production of the Baltic Sea and the 549 

mesocosms. The Baltic Sea samples gave a mean DMS concentration of 4.6 ± 2.6 nmol L-1.but peaked 550 

at 11.2 nmol L-1 on t16, and were within the range of previous measurements for the region (Table 5). 551 

Strong correlations were seen between DMS and Chl-ɑ (ρ=0.84, p<0.01), with the ratio of DMS: Chl-ɑ 552 

at 1.6 (± 0.3) nmol μg-1. Other strong correlations were seen with euglenophytes (ρ=0.89, p<0.01), 553 

dinoflagellates (ρ=0.61, p<0.05) and nanoeukaryotes II (ρ=0.88, p<0.01), but no correlation was found 554 

between DMS and cyanobacterial abundance, or with picoeukaryotes III which was identified in the 555 

mesocosms, suggesting that DMS had a different origin in the Baltic Sea community than in the 556 

mesocosms. Once again, there was no DMSP detected in the samples.  557 

As CO2 levels increased during Phase II, the DMS concentration measured in the Baltic Sea decreased, 558 

from the peak on t16 to the lowest recorded sample of the entire experiment at 1.85 nmol L-1. As with 559 

Chl-ɑ, DMS concentrations in the surface of the Baltic Sea may have been diluted with low-DMS deep 560 

water, however, the inverse relationship of DMS with CO2 shown in the mesocosms may suggest that 561 

this decrease in DMS is attributed to the increase in CO2 levels. Bacterial abundance was similar in the 562 

Baltic Sea as in the mesocosms (Hornick et al., 2015), however the injection of high CO2 water may 563 

have stimulated bacterial consumption of DMS during the upwelling, which combined with the 564 

dilution of DMS-rich surface water could have resulted in the rapid decrease in DMS concentrations. 565 

As no discernible decrease in total bacterial abundance was identified during the upwelling, it is also 566 

Biogeosciences Discuss., doi:10.5194/bg-2015-573, 2016

Manuscript under review for journal Biogeosciences

Published: 28 January 2016

c© Author(s) 2016. CC-BY 3.0 License.



19 
 

possible that the upwelled water contained a different microbial community, and may potentially have 567 

introduced a higher abundance of DMS-consuming microbes. No breakdown of bacterial distributions 568 

was available with which to test this hypothesis.  569 

3.5.3 Halocarbon concentrations in the Baltic Sea 570 

Outside the mesocosms in the Baltic Sea, CH3I was measured at a maximum concentration of 8.65 571 

pmol L-1, during Phase II, and showed limited effect of the upwelling event. Both CH2I2 and CH2ClI 572 

showed higher concentrations in the Baltic Sea samples than the mesocosms (CH2I2: 373.9 pmol L-1 573 

and CH2ClI: 18.1 pmol L-1), and were correlated with the euglenophytes (CH2I2; ρ=0.63, p<0.05 and 574 

CH2ClI; ρ=0.68, p<0.01) and nanoeukaryotes II (CH2I2; ρ=0.53, p<0.01 and CH2ClI; ρ=0.58, p<0.01), 575 

but no correlation with Chl-ɑ. Both polyiodinated compounds showed correlation with picoeukaryote 576 

groups II and III, indicating that production was not limited to a single source. These concentrations of 577 

CH2I2 and CH2ClI compared well to those measured over a macroalgal bed in the higher saline waters 578 

of the Kattegat by Klick and Abrahamsson (1992), suggesting that macroalgae were a significant 579 

iodocarbon source in the Baltic Sea.  580 

As with the iodocarbons, the Baltic Sea showed significantly higher concentrations of CHBr3 (F=28.1, 581 

p<0.01), CH2Br2 (F=208.8, p<0.01) and CHBr2Cl (F=23.5, p<0.01) than the mesocosms, with 582 

maximum concentrations 191.6 pmol L-1
, 10.0 pmol L-1 and 5.0 pmol L-1 respectively. In the Baltic 583 

Sea, only CHBr3 was correlated with Chl-ɑ (ρ=0.65, p<0.05), cyanobacteria (ρ=0.61, p<0.01; Paul et 584 

al., 2015) and nanoeukaryotes II (ρ=0.56, p<0.01; Crawfurd et al., 2015), with the other two 585 

bromocarbons showing little to no correlations with any parameter of community activity. Production 586 

of bromocarbons from macroalgal sources (Laturnus et al., 2000; Leedham et al., 2013; Manley et al., 587 

1992) was likely a significant contributor to the concentrations detected in the Baltic Sea; over the 588 

macroalgal beds in the Kattegat, Klick (1992) measured concentrations an order of magnitude higher 589 

than seen in this experiment for CH2Br2 and CHBr2Cl. 590 

 591 

4 The Baltic Sea as a natural analogue to future ocean acidification? 592 

Mesocosm experiments are a highly valuable tool in assessing the potential impacts of elevated CO2 593 

on complex marine communities, however they are limited in that the rapid change in fCO2 594 

experienced by the community may not be representative of changes in the future ocean (Passow and 595 

Riebesell, 2005). This inherent problem with mesocosm experiments can be overcome through using 596 

naturally low pH/ high CO2 areas such as upwelling regions or vent sites (Hall-Spencer et al., 2008), 597 

which can give an insight into populations already living and adapted to high CO2 regimes by exposure 598 
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over timescales measured in years. This mesocosm experiment was performed at such a location with a 599 

relatively low fCO2 excursion compared to some sites (800 μatm compared to >2000 μatm; Hall-600 

Spencer et al., 2008), and it was clear through the minimal variation in Chl-ɑ between all mesocosms 601 

that the community was relatively unaffected by elevated fCO2, although variation could be identified 602 

in some phytoplankton groups and some shifts in community composition. The upwelling event 603 

occurring mid-way through our experiment allowed comparison of the mesocosm findings with a 604 

natural analogue of the system, as well as showing the extent to which the system perturbation can 605 

occur (up to 800 μatm). However, it is very difficult to determine where and when an upwelling will 606 

occur, and therefore hard to utilise these events as natural high CO2 analogues.  607 

In this paper, we described the temporal changes in concentrations of DMS and halocarbons in natural 608 

Baltic phytoplankton communities exposed to elevated fCO2 treatments. In contrast to the halocarbons, 609 

concentrations of DMS were significantly lower in the highest fCO2 treatments compared to the 610 

control. Despite very different physicochemical and biological characteristics of the Baltic Sea (e.g. 611 

salinity, community composition and nutrient concentrations), this is a very similar outcome to that 612 

seen in several other high fCO2 experiments. The Baltic Sea trace gas samples give a good record of 613 

trace gas production during the injection of high fCO2 deep water into the surface community during 614 

upwelling events. For the concentrations of halocarbons, no response was shown to the upwelling 615 

event in the Baltic Sea, which may indicate that emissions of organic iodine and bromine are unlikely 616 

to change with future acidification of the Baltic Sea. However, production of organic sulphur within 617 

the Baltic Sea region is likely to decrease with an acidified future ocean scenario, despite the possible 618 

acclimation of the microbial community to elevated fCO2. This will potentially impact the flux of 619 

DMS to the atmosphere over Northern Europe, and could have significant impacts on the local climate 620 

through the reduction of atmospheric sulphur aerosols. Data from a previous mesocosm experiment 621 

has been used to estimate future global changes in DMS production, and predicted that global warming 622 

would be amplified (Six et al., 2013); utilising the data from this experiment combined with those of 623 

other mesocosm, field and laboratory experiments and associated modelling provide the basis for a 624 

better understanding of the future changes in global DMS production and their climatic impacts. 625 

 626 

  627 
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Table 1. Summary of fCO2 and pHT (total scale) during phases 0, 1 and 2 of the mesocosm experiment. 931 

Mesocosma 

Target 

fCO2 / 

µatm 

Whole Experiment 

/ t-3 to t31 Phase 0 / t-3 to t0 Phase I / t1 –t16 Phase II / t16 – t31 

Mean 

fCO2 / 

µatm 

Mean pH 

/ pHT 

Mean 

fCO2 / 

µatm 

Mean pH 

/ pHT 

Mean 

fCO2 / 

µatm 

Mean pH 

/ pHT 

Mean 

fCO2 / 

µatm 

Mean 

pH 

/ pHT 

M1 Control 331 7.91 231 8.00 328 7.95 399 7.86 

M5 Control 334 7.91 244 7.98 329 7.94 399 7.52 

M7 390 458 7.80 239 7.99 494 7.81 532 7.76 

M6 840 773 7.63 236 7.99 932 7.59 855 7.59 

M3 1120 950 7.56 243 7.98 1176 7.51 1027 7.52 

M8 1400 1166 7.49 232 8.00 1481 7.43 1243 7.45 

Baltic Sea 380 350 7.91 298 7.91 277 7.98 436 7.86 

a listed in order of increasing fCO2 932 
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Table 2. Calibration ranges and calculated percentage mean relative standard error for the trace gases 934 

measured in the mesocosms.  935 

Compound Calibration range 

/ pmol L-1 

% Mean relative 

standard error 

DMS 600 – 29300* 6.33 

DMSP 2030 – 405900*  

CH3I 0.11 – 11.2 4.62 

CH2I2 5.61 – 561.0 4.98 

C2H5I 0.10 – 4.91 5.61 

CH2ClI 1.98 – 99.0 3.64 

CHBr3 8.61 – 816.0 4.03 

CH2Br2 0.21 – 20.9 5.30 

CHBr2Cl 0.07 – 7.00 7.20 

* throughout the rest of this paper, these measurements are given in nmol L-1. 936 
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Table 3. Abundance and contributions of different phytoplankton groups to the total phytoplankton 938 

community assemblage, showing the range of measurements from total Chl-ɑ (Paul et al., 2015), 939 

CHEMTAX analysis of derived Chl-ɑ (Paul et al., 2015) and phytoplankton abundance (Crawfurd et 940 

al., 2015). Data are split into the range of all the mesocosm measurements and those from the Baltic 941 

Sea.  942 

 Mesocosm Baltic Sea 

 Range 

Integrated 10 m 

Range 

Integrated 17 m  

% 

Contribution 

to Chl-ɑ 

Range 

Integrated 10 m 

Range 

Integrated 17 m  

% 

Contribution 

to Chl-ɑ 

Chl-ɑ  0.9 – 2.9 0.9 – 2.6 100 1.3 – 6.5 1.12 – 5.5 100 

Phytoplankton Taxonomy / Equivalent Chlorophyll µg L-1 

Cyanobacteria  0.01 – 0.4 8  0.0 – 0.1 1 

Prasinophytes  0.04 – 0.3 7  0.01 – 0.3 4 

Euglenophytes  0.0 – 1.6 15  0.0 – 2.6 21 

Dinoflagellates  0.0 – 0.3 3  0.04 – 0.6 9 

Diatoms  0.1 – 0.3 7  0.04 – 0.9 9 

Chlorophytes  0.3 – 2.0 40  0.28 – 3.1 41 

Cryptophytes  0.1 – 1.4 21  0.1 – 1.0 15 

Small Phytoplankton (<10 µm) abundance / cells mL-1 

Cyanobacteria 55000 – 380000 65000 – 470000  30000 – 180000 30000 – 250000  

Picoeukaryotes I 15000 – 100000 17000 – 111000  5000 – 70000 6100 – 78000  

Picoeukaryotes II 700 – 4000 600 – 4000  400 – 3000 460 – 3700  

Picoeukaryotes III 1000 - 9000 1100 – 8500  1000 – 6000 950 – 7500  

Nanoeukaryotes I 400 – 1400 270 – 1500  200 – 4000 210 – 4100  

Nanoeukaryotes II 0 – 400 4 – 400  100 – 1100 60 – 1300  

  943 

Biogeosciences Discuss., doi:10.5194/bg-2015-573, 2016

Manuscript under review for journal Biogeosciences

Published: 28 January 2016

c© Author(s) 2016. CC-BY 3.0 License.



32 
 

Table 4. Concentration ranges of trace gases measured in the mesocosms compared to other open 944 

water ocean acidification experiments, showing the range of concentrations for each gas and the 945 

percentage change between the control and the highest fCO2 treatment.  946 

 Range fCO2   DMS CH3I CH2I2 CH2ClI CHBr3 CH2Br2 CH2Br2Cl 

 / μatm  / nmol L-1 / pmol L-1 

SOPRAN Tvärminne 

Mesocosm 

(this study) 

 

346 – 1333 Range 2.7-6.8 2.9-6.4 57-202 3.8-8.0 69-148 4.0-7.7 1.7-3.1 

% change  -34 -0.3 1.3 -11 -9 -3 -4 

SOPRAN Bergen 2011 

(Webb et al., 2015) 

 

280 – 3000 Range 0.1-4.9 4.9-32 5.8-321 9.0-123 64-306 6.3-30.8 3.9-14 

% change  -60 -37 -48 -27 -2 -4 -6 

NERC  Microbial 

Metagenomics 

Experiment, Bergen 2006 

(Hopkins et al., 2010) 

 

300 - 750 Range ND-50 2.0-25 ND-750 ND-700 5.0-80 ND-5.5 0.2-1.2 

% change  -57 -41 -33 -28 13 8 22 

EPOCA Svalbard 2010 

(Archer et al., 2013; 

Hopkins et al., 2013) 

 

180 - 1420 Range ND-14 0.04-10 0.01-2.5 0.3-1.6 35-151 6.3-33.3 1.6-4.7 

% change -60 NS  NS NS NS NS 

UKOA European Shelf 

2011 

(Hopkins and Archer, 

2014) 

 

340 - 1000 Range 0.5-12       

% change  225       

Korean Mesocosm 

Experiment 2012 

(Park et al., 2014) 

160 - 830 Range 1.0-100       

% change  -82       

 947 
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Table 5. Concentration ranges of trace gases measured in the Baltic Sea compared to concentrations 949 

measured in the literature. ND – Not Detected. 950 

Study DMS 

concentration 

range / nmol L-1 

Halocarbon concentration range / pmol L-1 

CH3I CH2I2 C2H5I CH3ClI CHBr3 CH2Br2 CH2Br2Cl 

SOPRAN Tvärminne Baltic Sea 

(This Study) 

1.9-11 4.3-8.6 66.9-374 0.6 – 1.0 7.0-18 93-192 7.1-10 3.3-5.0 

Orlikowska and Schulz-

Bull5(2009) 

0.3-120 1-16 0-85 0.4 – 1.2 5-50 5.0-40 2.0-10 0.8-2.5 

Karlsson et al. (2008)  3.0-7.5    35-60 4.0-7.0 2.0-6.5 

Klick and Abrahamsson (1992)   15-709  11-74 14-585   

Klick (1992)   ND-243  ND-57 40-790 ND-86 ND-29 

Leck and Rodhe (1991) 0.4-2.8        

Leck et al. (1990) ND-3.2        

 951 
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 953 

 954 

 955 

Figure 1. Daily measurements of (a) fCO2, (b) mean temperature and (c) total Chlorophyll-a in the 956 

mesocosms and surrounding Baltic Sea waters. Dashed lines represent the three Phases of the 957 

experiment, based on the Chl-ɑ data.  958 
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 959 

  960 

 961 

Figure 3. (a) Integrated DMS concentrations measured daily in the mesocosms and Baltic Sea from the 962 

surface 10 m and (b) mean DMS concentrations from each mesocosm during Phase I (crosses) and 963 

Phase II (diamonds), for ambient (blue), medium (grey) and high fCO2 (red), with error bars showing 964 

the range of both the DMS and fCO2. Dashed lines show the Phases of the experiment as given in Fig. 965 

2, fCO2 shown in the legend are mean fCO2 across the duration of the experiment. 966 
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  967 

 968 

Figure 4. Concentrations (pmol L-1) of (a) CH3I, (b) C2H5I, (c) CH2I2 and (d) CH2ClI. Dashed lines 969 

indicate the Phases of the experiment, as given in Fig. 2. fCO2 shown in the legend are mean fCO2 970 

across the duration of the experiment. 971 
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 973 

 974 

Figure 5. Concentrations (pmol L-1) of (a) CHBr3, (b) CH2Br2 and (c) CHBr2Cl. Dashed lines indicate 975 

the phases of the experiment as defined in Fig. 2, fCO2 shown in the legend are mean fCO2 across the 976 

duration of the experiment. 977 

 978 

0

50

100

150

200

250

-5 0 5 10 15 20 25 30 35

C
H

B
r 3

/ 
p

m
o

l 
L-1

t / Day

M1 (346 μatm) M7 (494 μatm) M3 (1075 μatm)

M5 (348 μatm) M6 (868 μatm) M8 (1333 μatm)

Baltic Sea (343 μatm)

0

2

4

6

8

10

12

-5 0 5 10 15 20 25 30 35

C
H

2
B

r 2
/ 

p
m

o
l 

L-1

t / Day 

0

1

2

3

4

5

6

-5 0 5 10 15 20 25 30 35

C
H

B
r 2C

l /
 p

m
o

l L
-1

t / Day 

a b 

c 

Biogeosciences Discuss., doi:10.5194/bg-2015-573, 2016

Manuscript under review for journal Biogeosciences

Published: 28 January 2016

c© Author(s) 2016. CC-BY 3.0 License.


