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Abstract. Fluid extraction from producing hydrocarbon reservoirs can cause anthropogenic land subsidence. In

this work, a 3-D finite-element (FE) geomechanical model is used to predict the land surface displacements above

a gas field where displacement observations are available. An ensemble-based data assimilation (DA) algorithm

is implemented that incorporates these observations into the response of the FE geomechanical model, thus re-

ducing the uncertainty on the geomechanical parameters of the sedimentary basin embedding the reservoir. The

calibration focuses on the uniaxial vertical compressibility cM, which is often the geomechanical parameter to

which the model response is most sensitive. The partition of the reservoir into blocks delimited by faults moti-

vates the assumption of a heterogeneous spatial distribution of cM within the reservoir. A preliminary synthetic

test case is here used to evaluate the effectiveness of the DA algorithm in reducing the parameter uncertainty

associated with a heterogeneous cM distribution. A significant improvement in matching the observed data is

obtained with respect to the case in which a homogeneous cM is hypothesized. These preliminary results are

quite encouraging and call for the application of the procedure to real gas fields.

1 Introduction

Fluid extraction from aquifer systems and hydrocarbon reser-

voirs are among the most frequent causes of anthropogenic

land subsidence. In the framework of a sustainable develop-

ment of energy resources, the availability of numerical mod-

els able to reproduce the monitoring data and to predict the

future development of the land settlement is nowadays of

paramount importance. In this study, an ensemble-based DA

method is used to infer the geomechanical parameters char-

acterizing the rock formation of a deep gas reservoir, thus

reducing the prior uncertainties of the geomechanical model

response. The DA framework essentially requires three main

ingredients: (i) a model to simulate the physical process of

interest, (ii) a set of observation data and (iii) a suitable al-

gorithm to incorporate these data into the model response. In

this work, a 3-D finite-element (FE) geomechanical model is

used to predict the land surface displacements above a gas

field where displacement observations are available. The cal-

ibration focuses on the uniaxial vertical compressibility cM,

which mostly influences the occurrence of land subsidence.

Partitioning the reservoir into blocks by faults provides a ba-

sis for assuming a homogeneous cM within each block, and a

heterogeneous cM from one block to another. The effective-

ness of the DA algorithm to reduce the parameter uncertainty

associated with the block-to-block cM heterogeneity is eval-

uated for a synthetic test case. Significant improvements are

obtained with respect to the assumption of a homogeneous

cM field throughout the model domain. In this work, an En-

semble Smoother (ES) is the DA algorithm used to estimate

the compressibility by inversion of land surface displacement

data. The ES is deemed adequate for this purpose because its

implementation (i) avoids the simulation restart necessary to

apply other more common data assimilation techniques, such

as the Ensemble Kalman Filter (EnKF); (ii) significantly re-

duces the overall computational cost required by geomechan-

ical model and the inversion procedure. In this paper, the de-

scription of the geomechanical model and its implementation
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are presented is Sect. 2, whereas Sect. 3 reviews the basic

concepts of the ES approach. In Sects. 4 and 5, the genera-

tion of the prior uncertain parameters and the synthetic case

results are presented and discussed with both a homogeneous

and a heterogeneous cM.

2 Geomechanical model

2.1 Model description

The subsurface deformation results from the pore pressure

change in space and time due to fluid injection into, or

extraction from, deep reservoirs. In order to simulate the

deformation up to the ground surface, we need to solve

both the governing flow and the structural partial differen-

tial equations (PDEs). Geomechanical simulations are per-

formed using a finite-element (FE) poro-elasto-plastic nu-

merical model (e.g. Gambolati et al., 2001). In this study, an

isotropic stress-strain constitutive law is used with the ver-

tical uniaxial compressibility cM that depends on the stress

state according to the hypo-plastic hysteretic model devel-

oped by Baù et al. (2002) and Ferronato et al. (2013). The un-

certain compressibility cM is calibrated by introducing a spa-

tially variable multiplicative factor fCM, which allows scal-

ing cM values in the regions where fluid pressure changes

occur. Poisson’s coefficient ν is assumed to be known and

equal to 0.3.

2.2 Model setup

A one-way coupling approach is followed with the flow

model first run and the outcome subsequently used as input

data for the geomechanical model. The geomechanical FE

grid comprises 320 901 nodes and 1 824 768 tetrahedral ele-

ments. The model domain covers an area of 52 km× 49 km

and extends to about 5 km depth. Zero-displacements con-

ditions are prescribed on the lateral and bottom boundaries.

The top of the domain is a traction-free boundary. The simu-

lations span one year, during which the reservoir experiences

a fluid extraction. The pressure data are synthetic. Figure 1

shows the reservoir domain and the grid used for the geome-

chanical simulations.

3 Ensemble smoother

The ES algorithm consists of Monte Carlo stochastic simu-

lations based extension to nonlinear problems of the classic

Kalman Filter (KF) (Kalman, 1960). The ES algorithm fol-

lows a two-step forecast-update process. The forecast step

involves simulating an ensemble of model states X based

upon the solution of the geomechanical FE model 8, which

depends upon uncertain parameters P and forcing terms q

(e.g. pore-pressure):

X=8(P,q). (1)

Figure 1. Axonometric view of the 3-D FE grid of the geomechan-

ical model. The reservoir is embedded within the grid with different

colors distinguishing the producing layers. The vertical exaggera-

tion is 5.

In these simulations, each model state X is represented by

land surface displacements from a subsidence distribution

map. Each realization of the ensemble is run forward in time

using random sets of the uncertain geomechanical parame-

ters P, thus creating an ensemble Xf of model states X. The

model results at any given location in the simulated domain

are spread over a range of values, representing the uncer-

tainty in the surface displacement prediction. In the update

step, the set of measurements z collected to-date, i.e. point

measurements of land displacement at a number of locations,

is perturbed to account for measurement errors and assimi-

lated into the forecast system state Xf to produce the updated

state ensemble:

Xu
= Xf
+K · (d−H ·Xf). (2)

Matrix d includes the perturbed measurements, and the ma-

trix H contains binary constants (0 or 1) that map model re-

sults at measurement locations. The matrix d−H ·Xf incor-

porates the residual at these locations between the measured

and the predicted data. The matrix K is called the “Kalman

Gain” matrix (Kalman, 1960), and has the following struc-

ture:

K= CfHT
·

(
HCfHT

+R
)−1

(3)

where Cf is the forecast error covariance matrix associated

with the model forecast Xf, and R is the measurement er-

ror covariance matrix associated with the perturbed measure-

ments d. The matrix K plays the dual role of: (a) spreading

information from measurement locations to adjacent areas,
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Figure 2. 2-D view of the geomechanical FE grid of Fig. 1. The enlargement view within the red rectangle refers to the area affected by the

pore pressure change.

allowing for the measurements to correct the predicted val-

ues throughout the model domain; and (b) acting as a weight

that scales the correction terms according to model and mea-

surement errors. As R approaches zero, which means low-

error measurements, the influence of K increases and the

residual is weighted more heavily, so that the model forecast

approaches the measurements. In contrast, as Cf approaches

zero, which indicates a relative agreement among model re-

alizations, the influence of K decreases, and the residual is

weighted less heavily, so that the model forecast receives lit-

tle or no correction from measurements.

Within the ES algorithm, any variable incorporated into

the system state matrix Xf can be corrected by assimilating

measurement data if a spatial correlation exists between these

variables and the data (van Leeuwen, 2001). In Eq. (1), since

the geomechanical parameters P dictate the behavior of the

model response 8, all uncertain parameters used in the fore-

cast step can be included into the system state matrix Xf,

and conditioned by land surface movements in Eq. (3). This

conditioning may provide updates for the geomechanical pa-

rameters P that should approach those of the rock formation.

Compared to other techniques for characterizing subsurface

systems, the ES algorithm is quite attractive because of its

low computational burden and the ability to run entirely inde-

pendent of the simulation model (Bailey and Baù, 2010a, b).

4 Prior distribution of uncertain parameters

In the present study, cM is assumed to be the only uncer-

tain geomechanical parameter. Because the ES relies on a

Monte Carlo approach, a prior probability distribution func-

tion (PDF) is needed to sample the prior ensemble of the mul-

tiplicative calibration factor fCM. In this section, the genera-

tion of the prior PDFs in two test cases is described: (1) fCM

is uniform within the reservoir, and (2) fCM is spatially dis-

tributed. In the latter, the heterogeneity on fCM occurs only

in the area shown in the enlargement of Fig. 2 where the pres-

sure has changed due to fluid extraction.

4.1 Homogeneous compressibility (test case 1)

The calibration factor fCM is assumed to be spatially uniform

within the area of Fig. 2. The values of the prior fCM ensem-

ble are randomly sampled between 1 and 10 from a uniform

PDF:

fCM ∈ U [1,10]. (4)

The selected range is based on the outcome of a sensitivity

analysis (not shown here) carried out to investigate the pos-

sible interval of the fCM variation. Figure 3 shows the spa-

tial distribution of the mean and the standard deviation (σz)

of the vertical displacements (uz) from the forecast ensem-

ble obtained by performing 100 Monte Carlo geomechanical

simulations using the prior fCM ensemble.

4.2 Heterogeneous compressibility (test case 2)

In test case 2, the fCM is spatially distributed within the same

area used in test case 1. This area is (14× 10) km2 wide and

subdivided into 140 square cells. Each cell is characterized

by a different fCM. A categorical indicator algorithm, that

creates random realizations of a heterogeneous fCM field ac-

cording to a given covariance model, is used. The fCM val-

ues are drawn from a discrete uniform distribution with the

prescribed ten categories ranging from 1 to 10. Each cate-

gory has an equal unconditional probability (1/10). To ac-

count instead for the spatial statistical dependence between

fCM values on different cells, a stationary correlation model

is introduced. According to this model, the probability of ob-

serving a fCM category in the discrete domain [1, 10] at any

given cell is conditional to the presence of the same category

at surrounding cells. The correlation between two grid cells

is based on an exponential isotropic function law depending
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Figure 3. Test case 1: (a) mean and (b) standard deviation (σz) from the forecast ensemble of the vertical displacement (uz).

on the distance between these cells and a prescribed corre-

lation length, λ. The λ value has a direct influence on the

degree of heterogeneity assigned to the spatial distribution

of fCM. Preliminary simulations have suggested the choice

of λ= 4000 m. Figure 4 shows one of the 100 realizations

of the generated prior ensemble of the fCM field. Obviously,

the mean over the ensemble in each grid block is equal to 5.

As for test 1, the mean and the standard deviation of the uz
forecast ensemble are shown in Fig. 5.

5 Synthetic land subsidence data

Ground-surface displacements data are used to infer the

model state and the geomechanical parameters. The obser-

vations are collected from the land subsidence map shown

in Fig. 6, obtained from a geomechanical reference simula-

tion with a prescribed and “known” compressibility distribu-

tion. The fCM field is assigned on the basis of a plausible

reservoir partition derived from the presence of faults and

thrusts (Fig. 6). The synthetic data locations are uniformly

distributed over the reservoir (Fig. 6) in the area with σz
greater than 0.001 (see Figs. 3b and 5b). This is to account for

the reservoir behavior where pressure variation occurs caus-

ing land surface deformation.

6 Results and discussion

6.1 Update of fCM

In test case 1, a significant reduction of the uncertainty as-

sociated with the prior fCM distribution is evident by com-

paring the prior and the posterior cumulative distribution

functions (CDFs) plotted in Fig. 7. Defining the ensemble

spread as the average absolute difference between the ensem-

ble members and the ensemble mean, the Average Ensemble

Spread (AES) for nMC Monte Carlo realizations is calculated

as:

Figure 4. Test case 2: one realization out of the 2-D fCM field

ensemble. The compressibility varies in the area corresponding to

the enlargement of Fig. 2.

AES=
1

nMC

nMC∑
i=1

|xi − x| (5)

where xi and x are the fCM value of the ith ensemble member

and the ensemble mean, respectively. The prior AES, i.e. be-

fore the assimilation of data, equals 2.41 and reduces by

about 93 % after assimilation. Therefore, the posterior CDF

is highly constrained compared to the prior CDF with the

most probable estimate value for fCM equal to 1.89, corre-

sponding to the mean, or expected value, of the updated en-

semble.

In test case 2, the ES performance is evaluated by calculat-

ing the AES index over each grid block of Fig. 2. The prior

AES index ranges between 2.0 and 2.9 over the domain. Af-

ter assimilation, the spread of the updated ensemble signifi-

cantly reduces over the area where data points are collected,

while higher AES values are found in the surrounding area

(see Fig. 8b). Although data are collected only over a lim-

ited portion of the domain, a sensitivity analysis (not shown

here) reveals that collecting data over the entire domain does

not improve the assimilation outcome. Indeed, these observa-
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Figure 5. Test case 2: (a) mean and (b) standard deviation (σz) from the forecast ensemble of the vertical displacement (uz).

Figure 6. Spatial distribution of the synthetic land subsidence data

(uz). Assimilation data are collected at the 60 measurement loca-

tions displayed in the map. The red lines represent the trace of the

faults subdividing the reservoir into blocks with the prescribed ref-

erence fCM values.

tions cannot yield enough information to infer the model pa-

rameters because the deep reservoir experiences small pres-

sure variation with a negligible influence on the land surface

deformation of outer regions. The average AES over all grid

blocks reduces by about 33 % after assimilation. Despite a

lower relative reduction of AES compared to test 1, the in-

verse problem outcome is much better verified in terms of

ground surface displacements (Sect. 6.2). Figure 8a depicts

the spatial distribution of the mean from the updated fCM

field.

6.2 Forecast of ground surface displacement

The quality of the parameter estimation is validated by exe-

cuting the posterior geomechanical simulations for both uni-

form and spatially variable cM. The fCM model input is the

mean of the updated fCM ensemble from the outcome of test

cases 1 and 2. The results of this simulation are compared

with the synthetic land surface data of Fig. 6 using the Nor-

Figure 7. Test case 1: prior and Posterior CDFs from the updated

fCM ensemble.

malized Root Mean Square Error (NRMSE), which repre-

sents the standard deviation of the differences between the

simulated values and the observations, calculated as

NRMSE=

√
N∑
i=1

(
uzi,sim− uzi,obs

)2
(
uzobs,max− uzobs,min

) (6)

where uzi , sim and uzi , obs are the simulated and observed

land ground displacement at the ith assimilation location, re-

spectively; uzobs,max and uzobs, min are the maximum and

minimum observation values, respectively, and N is the to-

tal number of assimilation locations, i.e. 60 data points. Test

case 1 and 2 gives NRMSE values equal to 15 and 3 %, re-

spectively. Hence, the predicted vertical displacements pro-

vides lower data mismatch in test case 2 and the assumption

of a heterogeneous compressibility field allows for a better fit

of the synthetic observations (Fig. 9). The fitting of the model

predictions to the reference data is very accurate with the het-

erogeneous cM, while a relevant underestimation is found in

the homogeneous test case for the largest subsidence values,

i.e. uz greater than 1 mm.
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Figure 8. Test case 2: spatial distribution of (a) the mean and (b) the performance index AES from the updated fCM ensemble after data

assimilation.

Figure 9. Simulated vs. observed values of uz in test case 1 (homo-

geneous cM) and test case 2 (heterogeneous cM).

7 Conclusions

In this study, an ensemble-based DA approach, i.e. the ES,

is used to infer the compressibility of the geomechanical

model of a producing hydrocarbon reservoir by assimilating

ground surface displacements. The methodology is applied

herein to investigate two different conceptual models assum-

ing (i) a homogeneous cM within the reservoir and (ii) a het-

erogeneous reservoir compressibility. The latter assumption

is made to account for the reservoir compartmentalization

due to the presence of a complex fault system. Thus, cM spa-

tially varies within the reservoir and calls for the calibration

of a heterogeneous cM field. A test case is used to assess

the validity of the proposed methodology on a reservoir with

a synthetic pressure variation. The assimilation of synthetic

ground-surface displacements, i.e. simulated data obtained

with a priori known cM distribution, provides satisfactory re-

sults. In particular, the heterogeneous cM field gives a much

better fitting than the homogeneous cM. Hence, a more sat-

isfactory application to a real case is expected by a DA ap-

proach with a spatially variable cM.
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