
This is a repository copy of On the Validation of a UAV Collision Avoidance System
Developed by Model-Based Optimization: : Challenges and a Tentative Partial Solution.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/103129/

Version: Accepted Version

Conference or Workshop Item:
Zou, Xueyi, Alexander, Robert David orcid.org/0000-0003-3818-0310 and McDermid, John
Alexander orcid.org/0000-0003-4745-4272 (2016) On the Validation of a UAV Collision
Avoidance System Developed by Model-Based Optimization: : Challenges and a Tentative
Partial Solution. In: UNSPECIFIED.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On the Validation of a UAV Collision Avoidance

System Developed by Model-Based Optimization:

Challenges and a Tentative Partial Solution

Xueyi Zou, Rob Alexander and John McDermid

Department of Computer Science

University of York

England, UK

{xz972, rob.alexander, john.mcdermid}@york.ac.uk

Abstract—The development of the new generation of airborne

collision avoidance system ACAS X adopts a model-based

optimization approach, where the collision avoidance logic is

automatically generated based on a probabilistic model and a set

of preferences. It has the potential for safety benefits and

shortening the development cycle, but it poses new challenges for

safety assurance. In this paper, we introduce the new

development process and explain its key ideas using a simple

collision avoidance example. Based on this explanation, we

analyze the challenges it poses to safety assurance, with a

particular focus on system validation. We then propose a

Genetic-Algorithm-based approach that can efficiently search for

undesired situations to help the development and validation of

the system. We introduce an open-source tool we have developed

to support this approach and demonstrate it on searching for

challenging situations for ACAS XU.

Keywords— ACAS X; Collision Avoidance; Mode-Based

Optimization; Validation; Genetic Algorithm.

I. INTRODUCTION

TCAS (Traffic Alert and Collision Avoidance System)
Version 7.1 is the current version of airborne collision
avoidance systems mandated worldwide on large transport
aircraft to reduce the risk of mid-air collision. TCAS uses on-
board beacon radar surveillance to monitor local air traffic and
can alert pilots to potential collision and recommend vertical
maneuvers to avoid the collision. With the introduction of new
airspace operational concepts, new airspace users (e.g.
Unmanned Aerial Vehicles (UAVs)), and new sensor systems
(e.g. ADS-B 1), upgrading is needed for the system to
accommodate the new requirements. However, due to its long
course of evolutionary development beginning in the 1970s,
TCAS logic has resulted in very complex pseudocode with
many heuristic rules and parameter settings whose justification
has been lost [1]. To upgrade the system, MIT Lincoln
Laboratory chose to re-engineer the system by adopting a
model-based optimization approach. The resultant system is
called ACAS X (Airborne Collision Avoidance System X)
with several versions for different aircraft types, surveillance

1 ADS-B (Automatic Dependent Surveillance-Broadcast) is a cooperative

surveillance technology with which a UAV will send its real time information,

such as position and velocity, to its peers via a radio frequency.

techniques, and operational situations. ACAS XU is the version
for UAVs and is the one addressed in this paper.

Different from the TCAS development approach where the
collision avoidance logic was hand-crafted, the new model-
based optimization approach can automatically generate
optimal collision avoidance logic based on a probabilistic
model and a set of preferences [1-3]. Such an approach allows
developers to focus their effort on building models and
preferences. The difficult task of optimizing the logic can then
be left for computers.

Even though the new approach provides many benefits, it
poses new challenges for safety assurance of the system. This
paper analyzes the challenges brought by the new development
process and provides a tentative partial solution.

 It first provides a high-level overview of the new
development process, and given some of the key techniques
used in the process may be unfamiliar to many readers, we
walk through an example of a simple UAV collision avoidance
system development to show some key ideas. We then analyze
the challenges the new development process poses to safety
assurance, with a particular focus on system validation. Based
on the analysis, a Genetic-Algorithm-based approach is
proposed that can efficiently search a huge space of possible
situations for undesired ones to help the system development
and validation. An open-source tool supporting this approach is
introduced and demonstrated on identifying challenging
situations for ACAS XU. The paper concludes with a
discussion of the advantages and disadvantages of the proposed
approach.

II. ACAS XU DEVELOPMENT PROCESS

The ACAS XU development process is illustrated in Fig. 1.
The first step is to build a model describing the evolvement
(i.e. states transition) of an encounter involving two aircraft.
The evolvement of an encounter is affected by two kinds of
factors: stochastic factors and control factors. There are
stochastic factors because the aircraft are affected by
disturbance, wind etc. and the dynamics of the aircraft is
inherently uncertain. There are control factors because the
aircraft can be controlled by commands given by the collision
avoidance system. Therefore, the evolvement of an encounter

shows both stochastic property and nondeterministic property
and it can be modelled as a Markov Decision Process (MDP)
[4]. “Markov” is an assumption, meaning the probability
distribution of the future states depends only on the current
state and not on the sequence of events that preceded it. This
assumption can generally hold by properly defining the state
representation. Incorporated in the MDP model also is a reward
or punishment mechanism (preferences) that is used to

represent system performance requirements. This mechanism
describes which state or collision avoidance action is good
(/bad) and how good (/bad) it is. Taking the MDP model as
input, an optimization technique called Dynamic Programming
(DP) is used to automatically generate collision avoidance
logic that maximizes (/minimizes) the reward (/punishment)
with respect to the model.

Simulation Evaluation

manual model revision

Statistical
Encounter

Model

Optimization

MDP Model

Encounter
 Evolvement

Model

Reward/
Punishment

Logic
Table

Fig. 1. ACAS XU development process, adapted from [1].

Once the above has been performed, the generated ACAS
XU logic is evaluated against certain performance metrics (e.g.
accident rate and false alarm rate etc.) through simulations
using statistical encounter models (Monte-Carlo simulation). If
the generated logic failed to achieve the required performance,
revisions are made to the MDP model manually.

This model-based optimization approach has several
benefits over the traditional development approach used for the
original TCAS, including:

 Dramatically reducing the error-prone hand coding
work, thus potentially reducing coding errors and
shortening the development cycle;

 Better managing different sources of uncertainty by
using probabilistic models. As a result, if with a good
model the generated logic can outperform TCAS in
term of safety and false alarm rate;

 Easier to maintain and upgrade.

According to the reports [2, 3], an early prototype system
has already demonstrated the second benefit of this new
approach in simulations.

The full model and the detailed process for generating
ACAS XU logic are complex and involve several engineering
techniques, such as state decomposition and representation,
sampling and interpolation, aircraft dynamics modelling,
reward or punishment assignment, etc. To explain how the
model is build and how it is possible to automatically generate
collision avoidance logic, we will walk through a simple two-
dimensional collision avoidance system development example
in section III. This will help readers to appreciate the
challenges this new development approach poses to safety
assurance, especially to system validation. Readers who are
very familiar with MDP models and solvers may choose to
skip section III.

III. DEVELOPING A SIMPLE COLLISION AVOIDANCE SYSTEM

In this section, we will walk through the modelling process
for developing a simple collision avoidance system in two-
dimensional space. The example is fictional but it shows the
key ideas of the new development process. We use a fictional
example because the real models for ACAS XU are too
complex to explain in such a short paper.

Fig. 2 shows a two-dimensional vertical plane where two
UAVs encounter each other. We assume the UAVs move in
discrete steps and so there is no notion of velocity. We denote
the UAV at the origin as own-ship and the other as an intruder.

3

2

1

0 1 2 3 4 5

-1

-2

-3

6 7 8 9

x

Y

Fig. 2. A two-UAV encounter in a 2-D vertical plane.

To model this situation, four variables are used:

 ox : the x coordinate of the own-ship;

 oy : the y coordinate of the own-ship;

 ix : the x coordinate of the intruder;

 iy : the y coordinate of the intruder.

In the horizontal direction, due to relative velocity, we can
assume the own-ship’s horizontal movement is 0 and at each
time step the intruder will move left by one grid. So, the states

can be represented with only three variables },,{ iro yxy , where

rx represents the relative horizontal distance between the two

UAVs and also the x coordinate of the intruder.

We can only control the own-ship in the vertical direction.
It can choose an action from a hypothetical action set {level off
(0), move up (+1), move down (-1)}. The +1/-1 means moving
up/down by one grid.

The dynamics of the own-ship is uncertain. We model this
by building a probabilistic model for the own-ship's actions.
For example, if at the moment the own-ship is in (0, 0) and it
chooses to move up by one grid, after the action it may result
in being in (0, 0), (0, 1) and (0, -1), with a hypothetical
probability distribution {0.2, 0.7, 0.1}. Here we denote this
probability distribution as {(0, 0)0.2, (0, 1)0.7, (0, -
1)0.1}. Similar distribution applies to the “move down” and
“level off” action.

The dynamics of the intruder is also uncertain. However to
simplify the explanation, we assume the intruder’s horizontal
movement is deterministic, i.e. at each time step the intruder
will move left by one grid. We assume the intruder's movement
in the vertical direction is influenced by white noise, i.e. at
each time step it may move up/down by a hypothetic
distribution: {00.5, -10.15, +10.15, -20.1, +20.1}.
Elements before the “” mean the directions and sizes of
movements, and elements after it are the probabilities for the
corresponding movements. So, if the intruder is in (9, 0) at the
moment, after one time step, it may be in {(8, 0) 0.5, (8, -1)
0.15, (8, 1) 0.15, (8, -2) 0.1, (8, 2)0.1}.

Having decided the state representation, action set and state
transition probabilities, we also specify the desirability for
different states and actions (“preferences”). For example, we

punish a collision state (where
io yy and 0rx) with a

cost of 10000, and punish a move up/down action with a costs
of 100, and reward a level off action with a reward of 50 (in
order to make the own-ship level off if there is no collision
risk).

The above paragraphs describe the probabilistic
evolvement (state transitions) of a two-UAV encounter and a
preference system. It can be modelled as a MDP. The
advantage of using a probabilistic model such as MDP is that
different sources of uncertainty can be modelled and better
managed.

The purpose is to devise a strategy for the own-ship to
avoid a collision with the intruder but at the same time not to
send false alerts too frequent. The strategy for the own-ship can
be represented as a look-up table (i.e. logic table) mapping

from a state },,{ iro yxy to an action (level off, move up, or move

down). The best strategy is the one that gets the least average
cost for every state.

Take this MDP model as input, dynamic programming
techniques [4] (e.g. Value Iteration or Policy Iteration) can
automatically figure out the best strategy (an optimal Policy in
MDP parlance). The dynamic programming techniques are
very efficient2 with modern computers.

The resultant logic can be evaluated in simulations, and if it
does not meet certain requirements, we can modify the MDP
model (e.g. by setting more representative state transition
probabilities and with better assignments for preferences) to re-
generate the look-up table.

This simple example shows the key ideas of how ACAS XU
is developed. The actual ACAS XU models are more complex
and in three-dimensional space. Since there is no publicly
available source code for ACAS XU, we implemented one
based on technical reports [2, 3]. The source code includes
MDP models, Value Iteration solvers for MDP, and a graphical
simulation interface for the generated logic. It is written in Java
and can be found from:

 https://github.com/superxueyizou/ACASX_3D.git.

We have tried to make the implementation as faithful as
possible to the reports and most of the parameters were set
according to them, but we cannot guarantee the performance of
the resultant system. It is certainly not ready to be used in any
real aircraft. We are confident, however, that it captures the
properties of the ACAS XU algorithm sufficiently to support
the testing techniques we describe in this paper.

IV. CHALLENGES OF THE NEW PROCESS

Along with the conveniences brought by the model-based
optimization approach for automatic collision avoidance logic
generation are challenges for model construction and model
improvement, which include:

 To construct tractable mathematical, models the state
space needs to be discretized with certain resolution,
and in doing so, interpolation is need, which may cause
inaccuracy problems;

 Because of the discretized state space and the stochastic
nature of the system, sampling techniques are used in
model construction, which again may cause inaccuracy
problems;

 When the performance of the generated logic fails to
meet requirements, it is not easy to figure out how to
improve the model because the link from the logic to
the model is indirect.

Due to its safety-critical nature, a collision avoidance
system must undergo rigorous safety analysis and assurance
process before deployment.

2 For the real ACAS XU model, Value Iteration takes several minutes (less

than 5 minutes) on an ordinary laptop PC.

https://github.com/superxueyizou/ACASX_3D.git

Models are put in a central position in this new
development process. Since the logic is auto-generated by
computer optimization, it can be proved that the generated
policy is optimal with respect to the model. By this, it means
that as long as the model is representative enough of the reality
and the users’ concern, the generated logic is the best logic that
can be derived.

So the possible deficiencies of this approach mainly lie in
the models used. Key question is:

Whether the MDP model can properly represent the reality
and incorporate the users’ concern?

This question can be viewed from the following two
aspects:

 Model structure: Is the chosen modelling technique (i.e.
MDP model) impressive enough to capture the key
features of the reality and to incorporate the users’
concern? Or should another model (e.g. a POMDP [4]
model) be used?

 Model parameters: If a certain mathematical model (say
MDP) is chosen, how to properly assign values to the
model parameters so that it best describe the reality and
users’ concern? For example, what should be the state
transition probabilities and how to assign reward and
penalty (cost) values to different actions and states?

No single solution exists to answering these questions.
Amongst the various safety assurance activities and techniques,
verification and validation are two main activities for ensuring
the correctness and safety of a system.

These questions can perhaps better be answered by
validation rather than verification. In general, verification is to
determine whether the product of a system development stage
(e.g. specification, design, and implementation etc.) accurately
represents the developer's conceptual description and
specifications. In the ACAS XU case, we don’t have a
conventional set of development stages. The specification, in
this case, might be the MDP model and the product might be
the auto-generated logic. But since the logic is synthesized by
computer optimization technique, which has been proved and
used for many years, we can have high confidence that the
optimized logic is correct with respect to the model. Whereas
validation is to determine whether a product can indeed satisfy
the real world requirements. In the ACAS XU case, the key
validation question is whether the generated logic can actually
have a low accident rate and false alarm rate etc.

For the validation of ACAS XU, both flight tests and
simulation studies are required. Flight tests evaluate the system
in actual operation environments, but can only be conducted in
few situations due to time, cost and safety constraints.
Simulation studies, however, can be conducted to test the
system in various situations to find system deficiencies, albeit
subject to limitations in the fidelity of the simulation. In
addition, if the simulated situations are representative of the
actual operations, then probabilities of different events, such as
accident rate, can be estimated by Monte-Carlo techniques.

In [2, 3], Monte-Carlo simulations were used to evaluate
the generated logic and to decide whether the model was good.
If in simulation the performance of the generated logic
outperforms the current TCAS logic, the model is accepted as a
good model.

In [2, 3], the Monte-Carlo simulations were conducted by
using statistical aircraft encounter models [5, 6] that were
derived from real radar data. However, the radar data are
almost entirely of manned aircraft encounters (After all, there
are not many UAVs in the airspace at the moment and UAV
encounters are even rarer). It is unclear how representative the
encounter models are of the UAV encounters.

With respect to validating ACAS XU through simulations,
there are some specific challenges:

 On the one hand, the generated logic has a large number
of states. On the other hand, to model an environment
with moderate fidelity (e.g. to model the wind effects),
many control variables are needed. As a result, a huge
number of possible situations need to be simulated and
evaluated;

 With a collision avoidance system, the happening of a
mid-air collision is very rare. It is also non-deterministic
because of the influence by the modelled random
factors. As a result, a large number of simulation runs
are needed to get a good probability estimation of the
mid-air collision rate.

The development of ACAS XU is an iterative process by
improving the model based on simulation results. The process
terminates when probabilities of certain events (e.g. mid-air
collision and false alarm) meet the quantitative requirements.
Monte-Carlo simulation has the advantage of deriving such
probabilities, but since the state space is very large on the one
hand and some events are very rare on the other hand, it is very
costly in term of computation resource and time. In addition, as
has been said, it requires a good statistical encounter model,
which does not yet exist for UAVs.

As a compliment, rather than deriving probabilities of
certain events, we can search for situations where certain
undesired events for ACAS XU happen and then analyze the
situations to decide whether the undesired events are
unavoidable in such cases. If we decide the undesired events
should not have happened, then improvement of the model is
needed. But if we have searched enough but still cannot find
any undesired events, we can then be more confident that the
undesired event will not happen, or we can further evaluate the
system using Monte-Carlo simulation. Such an approach can
contribute to the fast iteration and validation of the system.

In the next section, we propose an approach to efficiently
searching for situations where certain undesired events happen.

V. AN EFFICIENT APPROACH TO IDENTIFYING

CHALLENGING SITUATIONS

In this paper, we propose an approach to efficiently
identifying challenging situations where certain undesired (or
desired) events happen, for example, identifying situations
where accident rate or false alarm rate is significantly higher. If

found, the challenging situations can be further analyzed and
act as the start point for improving the system. If not found, it
will gain confidence that the system is safe.

The approach is based on Genetic Algorithm (GA) and is
shown schematically in Fig. 3.

Genetic
Algorithm

Simulation

Fitness

Scenario
Generator

Scenario

Scenario configuration

Space of all
possible

scenarios

Fig. 3. A GA-based approach to identifying challenging situations.

In this approach, the space of all possible scenarios is
unknown, but every single scenario of it can be parameterized.
Since some parameters (e.g. UAV speed, heading) can be
assigned a continuous value, the search space is infinite. The
parameterized scenarios can then be encoded as genomes for
the use of GA. The genomes configure scenarios, based on
which encounter scenarios can be generated for simulating by a
scenario generator. The generated scenarios are evaluated by
running simulations and the result as fitness is passed to the
GA. According to the fitness, the GA evolves the encoded
scenarios in order to get a higher fitness in the next iteration.
The process iterates until a scenario with the desired fitness is
found or the allotted time is over.

The proposed approach is quite general and could be used
to search for situations where certain undesired (or desired)
events happen. The requirement is that a proper fitness
function can be defined to quantify the extent to which any
generated scenario agrees with the searched-for situations. A
good fitness function should provide a higher quantitative
value for more agreed situations than less agreed situations.
Use this value as a heuristic, GA can then possibly guide the
search to increasingly promising areas of the search space.

In [7] we present the demonstration and a preliminary
evaluation of a similar approach to find mid-air collision
situations for a simple collision avoidance algorithm named
Selective Velocity Obstacle (SVO) [8]. We showed in [7] that
the proposed approach can find some cases that a random-
search-based approach took a long time to find. Compared with
ACAS XU, SVO algorithm is much simpler and we had only
run two-dimensional simulations for it. In this paper, we will
apply the proposed approach to ACAS XU and run simulations
in three-dimensional space. In section VII we will demonstrate
this approach on identifying challenging situations where

ACAS XU behaves poorly. The fitness function for the task
will also be described in section VII. Before that, we give the
key details of the approach and its tool support in the following
section.

VI. APPROACH DETAILS AND TOOL SUPPORT

A. Encounter Encoding and Generation

We evaluate ACAS XU using 3-D simulations. For the
collision avoidance problem, we only consider two-UAV
encounter situations. Since ACAS XU is only meant to reduce
short-term (20-40s ahead) collision risks, we describe the
encounter with the initial positions and velocities of the two
UAVs, and after the simulation begins, the two UAVs are
assumed to follow their initial velocities, but also be affected
by environment disturbance and be controlled by collision
avoidance maneuvers. To find challenging situations, we only
consider encounters where the two UAVs can actually collide
(or nearly collide) if no collision avoidance actions were taken.

To use GA, encounter situations need to be encoded as
genomes. In the rest of this subsection, we will explain how to
encode the 3-D encounters with a minimum set of parameters
and how to generate encounters based on this parameterized
representation.

In our simulation, the velocity can be represented either by
three velocity components in each dimension as TVzVyVx ,, , or

by ground speed, bearing and vertical speed as TVsGs ,, . This

is illustrated in Fig. 4 (a) and the relationship between these
two representations is as in equation (1).

Fig. 4. (a) Representation of the UAV's velocity. (b) Relative position of

the intruder (i) with respect to the own-ship (o) at the CPA.

)sin(*

)cos(*

Gs

Vs

Gs

Vz

Vy

Vx

Assuming that the initial state of the own-ship has been

decided (say its initial position is Tooo zyx ,, and initial

velocity is Tooo VsGs ,,), an intruder can be described by

specifying the time for the own-ship and the intruder to arrive
at the Closest Point of Approach (CPA), the intruder's relative
position at the CPA with respect to the own-ship, as is shown
in Fig. 4 (b), and the intruder's velocity at the CPA. To specify
the state of the intruder, 7 parameters are used, which are:

 The time (T) left for the intruder to arrive at the CPA;

 The horizontal distance (R) between the two UAVs at
the CPA, the angle (θ) of this approach, and the vertical
distance (Y) at the CPA;

 The velocity Tiii VsGs ,, of the intruder at the CPA.

So, the initial velocity and the initial position of the intruder
can be obtained by the vector equations (2) and (3):

)sin(*

)cos(*

ii

i

ii

i

i

i

Gs

Vs

Gs

Vz

Vy

Vx

T

Vz

Vy

Vx

R

Y

R

T

Gs

Vs

Gs

z

y

x

z

y

x

i

i

i

oo

o

oo

o

o

o

i

i

i

*

)sin(*

)cos(*

*

)sin(*

)cos(*

Due to the fact that the collision avoidance logic only
considers relative state, to reduce the search space and to
simplify the visualization, we can fix the own-ship’s initial
position Tooo zyx ,, and initial bearing

o at some convenient

values. So only 9 parameters are needed to encode an

encounter, and they are: },,,,,,,,{ iiioo VsGsYRTVsGs .

In the supporting tool, we developed a “scenario generator”
to generate all kinds of encounters according to different
assignments to these 9 parameters. A random encounter can be
generated by uniformly selecting the values for the 9
parameters from their ranges.

B. Genetic Algorithms

GAs are population-based evolutionary search methods. By
“population-based”, it means that the algorithm holds a set of
candidate solutions to a specific problem. By “evolutionary”, it
means that these candidate solutions evolve by a mechanism
mimicking natural selection (“survival of the fittest”).

In our use of GAs, the initial population is set up with n
individuals, with each individual’s genome representing the
assignments of the 9 parameters identified above. Then each
individual of the population is evaluated by simulations and the
fitness of that individual can be calculated. According to the
fitness, the selection process will (re-)sample n individuals
from the population, and the selected individuals' genome will
be “crossed-over" and mutated. After these genetic operations,
the individuals will be used to form the next generation of the
population, which will replace the old population. This process
goes on until it runs out of time or the ideal individual(s) has
been found.

We implemented the GA by using ECJ3, which is an open-
source Java-based evolutionary computation system. With
ECJ, we can control the process of GA by a user-provided
parameter file. In the parameter file we can set the size of the
population, the number of generations and the selection
mechanism etc., and we can also designate the class and
function used to evaluate the fitness of the individuals.

3 http://cs.gmu.edu/~eclab/projects/ecj/

C. Simulation

We use MASON4, an open-source agent-based simulation
platform in Java, as our simulation framework. Agent-based
simulation [9] is selected for two main reasons: (1) it naturally
models the multi-body interaction problem; and (2) it is already
widely used in air traffic simulations. We chose MASON
mainly because it is open-source and the user can easily control
the fidelity of the simulation so that it can be run faster than
real-time.

The environment in our simulation is a 3-D infinite flight
area. We assume the UAVs fly high in the air, so no ground
terrain is considered. However if UAVs fly at low attitudes,
terrains may need to be considered, since a vertical collision
avoidance maneuver may result in a collision with a mountain.

With MASON, UAVs are modelled as agents. When
simulation begins, the two UAVs fly following their initial
velocities but also be affected by environment disturbance. The
collision avoidance algorithm is incorporated into the UAVs. If
collision avoidance commands are emitted, UAVs will then
maneuver according to the commands.

We assume that in each simulation step the UAVs
broadcast their state information (position, velocity) via ADS-
B. We explicitly model the sensor noise by adding white noise
to the received information by each UAV. We also model the
coordination mechanism between the two UAVs. For example,
if the own-ship chooses a “climb” maneuver, it will send a
coordination command to the intruder to require it not to
choose maneuvers in the same direction.

To monitor the simulation we define a “Proximity
Measurer” and an “Accident Detector”. The Proximity
Measurer measures the proximities (in horizontal distance and
vertical distance) between the own-ship and the intruder at
each simulation step, and records the minimum proximity
experienced by the own-ship so far in a simulation. The
Accident Detector monitors the simulations and detects any
mid-air collisions.

Fig. 5 shows a head-on encounter, where the big yellow dot
represents the own-ship and the cyan dot represents the
intruder. In this encounter, the own-ship’s ACAS XU chooses
“climb” maneuvers (represented by red dots) and by
coordination, the intruder chooses “descend” maneuvers
(represented by green dots). Due to the execution of the
maneuvers, a mid-air collision is avoided.

The supporting tool integrates the components described
above. It can run either in headless mode or in visualization
mode. When run in headless mode, no rendering is needed so
that the search can be more efficient5. The identified situations
can then be further analyzed with visualizations. In the
visualization mode, users can also configure different
encounters with convenient GUI. The tool is open-source and
written in Java. It is available at
https://github.com/superxueyizou/ACASX_3D_Testing.git.

4 http://cs.gmu.edu/~eclab/projects/mason/
5 Search time varies depending on the problems and the settings for the GA.

For the example described in section VII, it took about 300s on an ordinary

laptop PC.

http://cs.gmu.edu/~eclab/projects/ecj/
https://github.com/superxueyizou/ACASX_3D_Testing.git
http://cs.gmu.edu/~eclab/projects/mason/

Fig. 5. Collision avoidance for a head-on encounter

VII. APPLICATION

We demonstrate the proposed approach on identifying
challenging situations where ACAS XU behaves poorly.
Specifically, we search for situations where accident rates are
significantly higher than in other situations. These challenging
situations are where ACAS XU has difficulty in avoiding mid-
air collisions — once identified, ACAS XU developers may be
able to use this to improve the MDP model and thus improve
ACAS XU’s effectiveness.

To use our proposed approach, the fitness function needs to
be properly defined for specific problems. Here if a mid-air
collision happens in a simulated encounter, a value6 of 10000
will be gained. If no collision happens, the closer the two
UAVs were, the larger the value (up to 10000) will be gained.
Since we have modelled environment disturbance by random
noise, the simulations are not deterministic. We evaluate every
encounter by running 100 simulations and calculating its
average gain, which then is the fitness for this encounter.
Formally, the fitness function is:

100

1 1

10000
*

100

1

k kd
fitness

in which
kd is the minimum distance between the two UAVs

in the kth simulation run. If a mid-air collision happens,
kd

will be 0 and this encounter will get the maximum gain
(10000) for this simulation run. By defining this fitness
function, the worse ACAS XU behaves in an encounter, the
higher fitness the encounter will get.

We set the population size to be 200 and we run 5
generations of evolution. Fig. 6 shows the fitness for each
encounter. From Fig. 6 we can see that in the first generation
(the first 200 encounters) most encounters are with low fitness,
and over generations more and more encounters get higher
fitness. Thus, it shows that the GA was guiding the search to
increasingly challenging situations.

By further scrutinizing the high fitness encounters (two
typical encounters are shown in Fig. 7 and Fig. 8), we found
most of them are tail approach situations, where one UAV was

6 10000 was chosen because in the MDP model 10000 was assigned to mid-

air collision states. In most cases this value will not affect the search process

since the selection procedure only considers the relative value of the fitness.

descending and the other was climbing and approaching the
first one from the tail direction. We found that about 80 to 90
out of 100 simulation runs of such an encounter would result in
mid-air collisions. Whereas in a head-on encounter less than 5
out of 100 simulation runs might result in mid-air collisions.

Reasons for the high accident rate in such tail approach
situations need further investigation. One possibility might be
that since in a tail approach situation the relative speed is very
small, so even when the two UAVs are actually very close the
ACAS XU logic still thinks the collision risk is low and does
not emit collision avoidance commands. But if then there is a
small disturbance, it may cause the two UAVs to collide since
they are already in very close proximity.

Fig. 6. Fitness improvement over generations

Fig. 7. A typical collision situation (1)

Fig. 8. A typical collision situation (2)

VIII. CONCLUSIONS

In this paper, we introduce the model-based optimization
approach that is adopted to develop ACAS XU and analyzed the
challenges the new approach poses to safety assurance,
particularly to system validation. We proposed and
demonstrated a Genetic-Algorithm-based approach that can
efficiently search for challenging situations where certain
undesired events happen to help the development and
validation of the system.

Our proposed approach is probably most valuable in the
early stage of UAV collision avoidance algorithm
development. It can quickly find challenging situations for an
algorithm, such that the algorithm can be improved. One
weakness of our method is that there is no way to assign
statistical confidence to the results — it is effective at fault-
finding, but not at providing confirmatory evidence of fault-
freeness. In contrast, Monte-Carlo approaches can provide such
confidence. In practice, the two techniques may thus prove
complimentary.

The model-based optimization approach used in ACAS XU
development is likely to become increasingly used to develop
logic for UAV sense and avoid systems and other decision
support tools as the air traffic system become more complex
[1]. It is also increasingly used to develop robot systems [10].
In this paper we have:

1. Explained the model-based optimization development
process for ACAS XU, in order to help readers better
appreciate the challenges of this new development
paradigm;

2. Identified the challenges for safety assurance and
system validation of ACAS XU, so that interested
reader can further study it based on the challenges;

3. Provided a tentative solution and an open-source tool,
hoping that it can help the development and validation
of such an important system.

A limitation of our analysis approach is that it only directly
identifies discrete situations (points in the search space) that
show problems. It might be possible to extend the approach to
instead find areas of the search space that show certain
properties (e.g. having high accident rate). Data mining
techniques, such as clustering [11], could potentially be used to
analyze the logged data to find such areas. Also, more work
needs to be done to evaluate the real value of the challenging

situations identified by the proposed approach. However, this
may be case-specific and needs feedbacks from the ACAS XU
developers.

ACKNOWLEDGMENT

Xueyi Zou would like to thank the China Scholarship
Council (CSC) for its partial financial support for his Ph.D.
study.

REFERENCES

[1] M. J. Kochenderfer, J. P. Chryssanthacopoulos, and R. E. Weibel, "A

new approach for designing safer collision avoidance systems," Air

Traffic Control Quarterly, vol. 20, p. 27, 2012.

[2] M. Kochenderfer, J. Chryssanthacopoulos, L. Kaelbling, and T. Lozano-

Perez, "Model-Based Optimization of Airborne Collision Avoidance

Logic," Massachusetts Institute of Technology, Lincoln Laboratory,

Project Report ATC-360, 2010.

[3] M. J. Kochenderfer and J. Chryssanthacopoulos, "Robust airborne

collision avoidance through dynamic programming," Massachusetts

Institute of Technology, Lincoln Laboratory, Project Report ATC-371,

2011.

[4] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach:

Prentice Hall Press, 2009.

[5] M. J. Kochenderfer, M. W. M. Edwards, L. P. Espindle, J. K. Kuchar,

and J. D. Griffith, "Airspace encounter models for estimating collision

risk," Journal of Guidance, Control, and Dynamics, vol. 33, pp. 487-

499, 2010.

[6] M. W. M. Edwards, M. J. Kochenderfer, J. K. Kuchar, and L. P.

Espindle, "Encounter Models for Unconventional Aircraft,"

Massachusetts Institute of Technology, Lincoln Laboratory, Project

Report ATC-348, 2009.

[7] X. Zou, R. Alexander, and J. McDermid, "Safety Validation of Sense

and Avoid Algorithms Using Simulation and Evolutionary Search," in

Computer Safety, Reliability, and Security. vol. 8666, A. Bondavalli and

F. Di Giandomenico, Eds., ed: Springer International Publishing, 2014,

pp. 33-48.

[8] Y. I. Jenie, E.-J. Van Kampen, C. C. de Visser, and Q.-P. Chu,

"Selective velocity obstacle method for cooperative autonomous

collision avoidance system for UAVs," in AIAA Guidance, Navigation,

and Control (GNC) Conference, Boston, MA, 2013.

[9] C. M. Macal and M. J. North, "Tutorial on agent-based modeling and

simulation," in Proceedings of the 37th conference on Winter

simulation, Orlando, Florida, 2005, pp. 2-15.

[10] K. Mombaur, A. Kheddar, K. Harada, T. Buschmann, and C. Atkeson,

"Model-Based Optimization for Robotics," IEEE ROBOTICS &

AUTOMATION MAGAZINE, vol. 21, pp. 24-161, 2014.

[11] R. Carlson, H. Do, and A. Denton, "A clustering approach to improving

test case prioritization: An industrial case study," in 27th IEEE

International Conference on Software Maintenance (ICSM), 2011, pp.

382-391.

