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Abstract—The development of the new generation of airborne 

collision avoidance system ACAS X adopts a model-based 

optimization approach, where the collision avoidance logic is 

automatically generated based on a probabilistic model and a set 

of preferences. It has the potential for safety benefits and 

shortening the development cycle, but it poses new challenges for 

safety assurance. In this paper, we introduce the new 

development process and explain its key ideas using a simple 

collision avoidance example. Based on this explanation, we 

analyze the challenges it poses to safety assurance, with a 

particular focus on system validation. We then propose a 

Genetic-Algorithm-based approach that can efficiently search for 

undesired situations to help the development and validation of 

the system. We introduce an open-source tool we have developed 

to support this approach and demonstrate it on searching for 

challenging situations for ACAS XU.  

Keywords— ACAS X; Collision Avoidance; Mode-Based 

Optimization; Validation; Genetic Algorithm. 

I. INTRODUCTION  

TCAS (Traffic Alert and Collision Avoidance System) 
Version 7.1 is the current version of airborne collision 
avoidance systems mandated worldwide on large transport 
aircraft to reduce the risk of mid-air collision. TCAS uses on-
board beacon radar surveillance to monitor local air traffic and 
can alert pilots to potential collision and recommend vertical 
maneuvers to avoid the collision. With the introduction of new 
airspace operational concepts, new airspace users (e.g. 
Unmanned Aerial Vehicles (UAVs)), and new sensor systems 
(e.g. ADS-B 1 ), upgrading is needed for the system to 
accommodate the new requirements. However, due to its long 
course of evolutionary development beginning in the 1970s, 
TCAS logic has resulted in very complex pseudocode with 
many heuristic rules and parameter settings whose justification 
has been lost [1]. To upgrade the system, MIT Lincoln 
Laboratory chose to re-engineer the system by adopting a 
model-based optimization approach. The resultant system is 
called ACAS X (Airborne Collision Avoidance System X) 
with several versions for different aircraft types, surveillance 

                                                           
1 ADS-B (Automatic Dependent Surveillance-Broadcast) is a cooperative 

surveillance technology with which a UAV will send its real time information, 

such as position and velocity, to its peers via a radio frequency. 

techniques, and operational situations. ACAS XU is the version 
for UAVs and is the one addressed in this paper. 

Different from the TCAS development approach where the 
collision avoidance logic was hand-crafted, the new model-
based optimization approach can automatically generate 
optimal collision avoidance logic based on a probabilistic 
model and a set of preferences [1-3]. Such an approach allows 
developers to focus their effort on building models and 
preferences. The difficult task of optimizing the logic can then 
be left for computers.  

Even though the new approach provides many benefits, it 
poses new challenges for safety assurance of the system. This 
paper analyzes the challenges brought by the new development 
process and provides a tentative partial solution. 

 It first provides a high-level overview of the new 
development process, and given some of the key techniques 
used in the process may be unfamiliar to many readers, we 
walk through an example of a simple UAV collision avoidance 
system development to show some key ideas. We then analyze 
the challenges the new development process poses to safety 
assurance, with a particular focus on system validation. Based 
on the analysis, a Genetic-Algorithm-based approach is 
proposed that can efficiently search a huge space of possible 
situations for undesired ones to help the system development 
and validation. An open-source tool supporting this approach is 
introduced and demonstrated on identifying challenging 
situations for ACAS XU. The paper concludes with a 
discussion of the advantages and disadvantages of the proposed 
approach. 

II. ACAS XU DEVELOPMENT PROCESS 

The ACAS XU development process is illustrated in Fig. 1. 
The first step is to build a model describing the evolvement 
(i.e. states transition) of an encounter involving two aircraft. 
The evolvement of an encounter is affected by two kinds of 
factors: stochastic factors and control factors. There are 
stochastic factors because the aircraft are affected by 
disturbance, wind etc. and the dynamics of the aircraft is 
inherently uncertain. There are control factors because the 
aircraft can be controlled by commands given by the collision 
avoidance system. Therefore, the evolvement of an encounter 



shows both stochastic property and nondeterministic property 
and it can be modelled as a Markov Decision Process (MDP) 
[4]. “Markov” is an assumption, meaning the probability 
distribution of the future states depends only on the current 
state and not on the sequence of events that preceded it. This 
assumption can generally hold by properly defining the state 
representation. Incorporated in the MDP model also is a reward 
or punishment mechanism (preferences) that is used to 

represent system performance requirements. This mechanism 
describes which state or collision avoidance action is good 
(/bad) and how good (/bad) it is. Taking the MDP model as 
input, an optimization technique called Dynamic Programming 
(DP) is used to automatically generate collision avoidance 
logic that maximizes (/minimizes) the reward (/punishment) 
with respect to the model.  
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Fig. 1. ACAS XU development process, adapted from [1]. 

Once the above has been performed, the generated ACAS 
XU logic is evaluated against certain performance metrics (e.g. 
accident rate and false alarm rate etc.) through simulations 
using statistical encounter models (Monte-Carlo simulation). If 
the generated logic failed to achieve the required performance, 
revisions are made to the MDP model manually. 

This model-based optimization approach has several 
benefits over the traditional development approach used for the 
original TCAS, including: 

 Dramatically reducing the error-prone hand coding 
work, thus potentially reducing coding errors and 
shortening the development cycle; 

 Better managing different sources of uncertainty by 
using probabilistic models. As a result, if with a good 
model the generated logic can outperform TCAS in 
term of safety and false alarm rate; 

 Easier to maintain and upgrade. 

According to the reports [2, 3], an early prototype system 
has already demonstrated the second benefit of this new 
approach in simulations. 

The full model and the detailed process for generating 
ACAS XU logic are complex and involve several engineering 
techniques, such as state decomposition and representation, 
sampling and interpolation, aircraft dynamics modelling, 
reward or punishment assignment, etc. To explain how the 
model is build and how it is possible to automatically generate 
collision avoidance logic, we will walk through a simple two-
dimensional collision avoidance system development example 
in section III. This will help readers to appreciate the 
challenges this new development approach poses to safety 
assurance, especially to system validation. Readers who are 
very familiar with MDP models and solvers may choose to 
skip section III. 

III. DEVELOPING A SIMPLE COLLISION AVOIDANCE SYSTEM  

In this section, we will walk through the modelling process 
for developing a simple collision avoidance system in two-
dimensional space. The example is fictional but it shows the 
key ideas of the new development process. We use a fictional 
example because the real models for ACAS XU are too 
complex to explain in such a short paper. 

Fig. 2 shows a two-dimensional vertical plane where two 
UAVs encounter each other. We assume the UAVs move in 
discrete steps and so there is no notion of velocity. We denote 
the UAV at the origin as own-ship and the other as an intruder.  
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Fig. 2. A two-UAV encounter in a 2-D vertical plane. 

To model this situation, four variables are used:  

 ox : the x coordinate of the own-ship; 



 oy : the y coordinate of the own-ship; 

 ix : the x coordinate of the intruder; 

 iy : the y coordinate of the intruder. 

In the horizontal direction, due to relative velocity, we can 
assume the own-ship’s horizontal movement is 0 and at each 
time step the intruder will move left by one grid. So, the states 

can be represented with only three variables },,{ iro yxy , where 

rx represents the relative horizontal distance between the two 

UAVs and also the x coordinate of the intruder.  

We can only control the own-ship in the vertical direction. 
It can choose an action from a hypothetical action set {level off 
(0), move up (+1), move down (-1)}. The +1/-1 means moving 
up/down by one grid.  

The dynamics of the own-ship is uncertain. We model this 
by building a probabilistic model for the own-ship's actions. 
For example, if at the moment the own-ship is in (0, 0) and it 
chooses to move up by one grid, after the action it may result 
in being in (0, 0), (0, 1) and (0, -1), with a hypothetical 
probability distribution {0.2, 0.7, 0.1}. Here we denote this 
probability distribution as {(0, 0)0.2, (0, 1)0.7, (0, -
1)0.1}. Similar distribution applies to the “move down” and 
“level off” action. 

The dynamics of the intruder is also uncertain. However to 
simplify the explanation, we assume the intruder’s horizontal 
movement is deterministic, i.e. at each time step the intruder 
will move left by one grid. We assume the intruder's movement 
in the vertical direction is influenced by white noise, i.e. at 
each time step it may move up/down by a hypothetic 
distribution: {00.5, -10.15, +10.15, -20.1, +20.1}. 
Elements before the “” mean the directions and sizes of 
movements, and elements after it are the probabilities for the 
corresponding movements. So, if the intruder is in (9, 0) at the 
moment, after one time step, it may be in {(8, 0) 0.5, (8, -1) 
0.15, (8, 1) 0.15, (8, -2) 0.1, (8, 2)0.1}.  

Having decided the state representation, action set and state 
transition probabilities, we also specify the desirability for 
different states and actions (“preferences”). For example, we 

punish a collision state (where 
io yy   and 0rx ) with a 

cost of 10000, and punish a move up/down action with a costs 
of 100, and reward a level off action with a reward of 50 (in 
order to make the own-ship level off if there is no collision 
risk).  

The above paragraphs describe the probabilistic 
evolvement (state transitions) of a two-UAV encounter and a 
preference system. It can be modelled as a MDP. The 
advantage of using a probabilistic model such as MDP is that 
different sources of uncertainty can be modelled and better 
managed. 

The purpose is to devise a strategy for the own-ship to 
avoid a collision with the intruder but at the same time not to 
send false alerts too frequent. The strategy for the own-ship can 
be represented as a look-up table (i.e. logic table) mapping 

from a state },,{ iro yxy  to an action (level off, move up, or move 

down). The best strategy is the one that gets the least average 
cost for every state.  

Take this MDP model as input, dynamic programming 
techniques [4] (e.g. Value Iteration or Policy Iteration) can 
automatically figure out the best strategy (an optimal Policy in 
MDP parlance). The dynamic programming techniques are 
very efficient2 with modern computers. 

The resultant logic can be evaluated in simulations, and if it 
does not meet certain requirements, we can modify the MDP 
model (e.g. by setting more representative state transition 
probabilities and with better assignments for preferences) to re-
generate the look-up table.  

This simple example shows the key ideas of how ACAS XU 
is developed. The actual ACAS XU models are more complex 
and in three-dimensional space. Since there is no publicly 
available source code for ACAS XU, we implemented one 
based on technical reports [2, 3]. The source code includes 
MDP models, Value Iteration solvers for MDP, and a graphical 
simulation interface for the generated logic. It is written in Java 
and can be found from: 

 https://github.com/superxueyizou/ACASX_3D.git. 

We have tried to make the implementation as faithful as 
possible to the reports and most of the parameters were set 
according to them, but we cannot guarantee the performance of 
the resultant system. It is certainly not ready to be used in any 
real aircraft. We are confident, however, that it captures the 
properties of the ACAS XU algorithm sufficiently to support 
the testing techniques we describe in this paper. 

IV. CHALLENGES OF THE NEW PROCESS 

Along with the conveniences brought by the model-based 
optimization approach for automatic collision avoidance logic 
generation are challenges for model construction and model 
improvement, which include: 

 To construct tractable mathematical, models the state 
space needs to be discretized with certain resolution, 
and in doing so, interpolation is need, which may cause 
inaccuracy problems; 

 Because of the discretized state space and the stochastic 
nature of the system, sampling techniques are used in 
model construction, which again may cause inaccuracy 
problems; 

 When the performance of the generated logic fails to 
meet requirements, it is not easy to figure out how to 
improve the model because the link from the logic to 
the model is indirect. 

Due to its safety-critical nature, a collision avoidance 
system must undergo rigorous safety analysis and assurance 
process before deployment.  

                                                           
2 For the real ACAS XU model, Value Iteration takes several minutes (less 

than 5 minutes) on an ordinary laptop PC. 

https://github.com/superxueyizou/ACASX_3D.git


Models are put in a central position in this new 
development process. Since the logic is auto-generated by 
computer optimization, it can be proved that the generated 
policy is optimal with respect to the model. By this, it means 
that as long as the model is representative enough of the reality 
and the users’ concern, the generated logic is the best logic that 
can be derived.  

So the possible deficiencies of this approach mainly lie in 
the models used. Key question is: 

Whether the MDP model can properly represent the reality 
and incorporate the users’ concern? 

This question can be viewed from the following two 
aspects: 

 Model structure: Is the chosen modelling technique (i.e. 
MDP model) impressive enough to capture the key 
features of the reality and to incorporate the users’ 
concern? Or should another model (e.g. a POMDP [4] 
model) be used?  

 Model parameters: If a certain mathematical model (say 
MDP) is chosen, how to properly assign values to the 
model parameters so that it best describe the reality and 
users’ concern? For example, what should be the state 
transition probabilities and how to assign reward and 
penalty (cost) values to different actions and states? 

No single solution exists to answering these questions. 
Amongst the various safety assurance activities and techniques, 
verification and validation are two main activities for ensuring 
the correctness and safety of a system.  

These questions can perhaps better be answered by 
validation rather than verification. In general, verification is to 
determine whether the product of a system development stage 
(e.g. specification, design, and implementation etc.) accurately 
represents the developer's conceptual description and 
specifications. In the ACAS XU case, we don’t have a 
conventional set of development stages. The specification, in 
this case, might be the MDP model and the product might be 
the auto-generated logic. But since the logic is synthesized by 
computer optimization technique, which has been proved and 
used for many years, we can have high confidence that the 
optimized logic is correct with respect to the model. Whereas 
validation is to determine whether a product can indeed satisfy 
the real world requirements. In the ACAS XU case, the key 
validation question is whether the generated logic can actually 
have a low accident rate and false alarm rate etc. 

For the validation of ACAS XU, both flight tests and 
simulation studies are required. Flight tests evaluate the system 
in actual operation environments, but can only be conducted in 
few situations due to time, cost and safety constraints. 
Simulation studies, however, can be conducted to test the 
system in various situations to find system deficiencies, albeit 
subject to limitations in the fidelity of the simulation. In 
addition, if the simulated situations are representative of the 
actual operations, then probabilities of different events, such as 
accident rate, can be estimated by Monte-Carlo techniques.  

In [2, 3], Monte-Carlo simulations were used to evaluate 
the generated logic and to decide whether the model was good. 
If in simulation the performance of the generated logic 
outperforms the current TCAS logic, the model is accepted as a 
good model.  

In [2, 3], the Monte-Carlo simulations were conducted by 
using statistical aircraft encounter models [5, 6] that were 
derived from real radar data. However, the radar data are 
almost entirely of manned aircraft encounters (After all, there 
are not many UAVs in the airspace at the moment and UAV 
encounters are even rarer). It is unclear how representative the 
encounter models are of the UAV encounters.  

With respect to validating ACAS XU through simulations, 
there are some specific challenges: 

 On the one hand, the generated logic has a large number 
of states. On the other hand, to model an environment 
with moderate fidelity (e.g. to model the wind effects), 
many control variables are needed. As a result, a huge 
number of possible situations need to be simulated and 
evaluated; 

 With a collision avoidance system, the happening of a 
mid-air collision is very rare. It is also non-deterministic 
because of the influence by the modelled random 
factors. As a result, a large number of simulation runs 
are needed to get a good probability estimation of the 
mid-air collision rate. 

The development of ACAS XU is an iterative process by 
improving the model based on simulation results. The process 
terminates when probabilities of certain events (e.g. mid-air 
collision and false alarm) meet the quantitative requirements. 
Monte-Carlo simulation has the advantage of deriving such 
probabilities, but since the state space is very large on the one 
hand and some events are very rare on the other hand, it is very 
costly in term of computation resource and time. In addition, as 
has been said, it requires a good statistical encounter model, 
which does not yet exist for UAVs.  

As a compliment, rather than deriving probabilities of 
certain events, we can search for situations where certain 
undesired events for ACAS XU happen and then analyze the 
situations to decide whether the undesired events are 
unavoidable in such cases. If we decide the undesired events 
should not have happened, then improvement of the model is 
needed. But if we have searched enough but still cannot find 
any undesired events, we can then be more confident that the 
undesired event will not happen, or we can further evaluate the 
system using Monte-Carlo simulation. Such an approach can 
contribute to the fast iteration and validation of the system. 

In the next section, we propose an approach to efficiently 
searching for situations where certain undesired events happen.  

V. AN EFFICIENT APPROACH TO IDENTIFYING 

CHALLENGING SITUATIONS 

In this paper, we propose an approach to efficiently 
identifying challenging situations where certain undesired (or 
desired) events happen, for example, identifying situations 
where accident rate or false alarm rate is significantly higher. If 



found, the challenging situations can be further analyzed and 
act as the start point for improving the system. If not found, it 
will gain confidence that the system is safe. 

The approach is based on Genetic Algorithm (GA) and is 
shown schematically in Fig. 3. 
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Fig. 3. A GA-based approach to identifying challenging situations. 

In this approach, the space of all possible scenarios is 
unknown, but every single scenario of it can be parameterized. 
Since some parameters (e.g. UAV speed, heading) can be 
assigned a continuous value, the search space is infinite. The 
parameterized scenarios can then be encoded as genomes for 
the use of GA. The genomes configure scenarios, based on 
which encounter scenarios can be generated for simulating by a 
scenario generator. The generated scenarios are evaluated by 
running simulations and the result as fitness is passed to the 
GA. According to the fitness, the GA evolves the encoded 
scenarios in order to get a higher fitness in the next iteration. 
The process iterates until a scenario with the desired fitness is 
found or the allotted time is over. 

The proposed approach is quite general and could be used 
to search for situations where certain undesired (or desired) 
events happen. The requirement is that a proper fitness 
function can be defined to quantify the extent to which any 
generated scenario agrees with the searched-for situations. A 
good fitness function should provide a higher quantitative 
value for more agreed situations than less agreed situations. 
Use this value as a heuristic, GA can then possibly guide the 
search to increasingly promising areas of the search space. 

In [7] we present the demonstration and a preliminary 
evaluation of a similar approach to find mid-air collision 
situations for a simple collision avoidance algorithm named 
Selective Velocity Obstacle (SVO) [8]. We showed in [7] that 
the proposed approach can find some cases that a random-
search-based approach took a long time to find. Compared with 
ACAS XU, SVO algorithm is much simpler and we had only 
run two-dimensional simulations for it. In this paper, we will 
apply the proposed approach to ACAS XU and run simulations 
in three-dimensional space. In section VII we will demonstrate 
this approach on identifying challenging situations where 

ACAS XU behaves poorly. The fitness function for the task 
will also be described in section VII. Before that, we give the 
key details of the approach and its tool support in the following 
section. 

VI. APPROACH DETAILS AND TOOL SUPPORT 

A. Encounter Encoding and Generation 

We evaluate ACAS XU using 3-D simulations. For the 
collision avoidance problem, we only consider two-UAV 
encounter situations. Since ACAS XU is only meant to reduce 
short-term (20-40s ahead) collision risks, we describe the 
encounter with the initial positions and velocities of the two 
UAVs, and after the simulation begins, the two UAVs are 
assumed to follow their initial velocities, but also be affected 
by environment disturbance and be controlled by collision 
avoidance maneuvers. To find challenging situations, we only 
consider encounters where the two UAVs can actually collide 
(or nearly collide) if no collision avoidance actions were taken. 

To use GA, encounter situations need to be encoded as 
genomes. In the rest of this subsection, we will explain how to 
encode the 3-D encounters with a minimum set of parameters 
and how to generate encounters based on this parameterized 
representation.  

In our simulation, the velocity can be represented either by 
three velocity components in each dimension as  TVzVyVx ,, , or 

by ground speed, bearing and vertical speed as  TVsGs ,, . This 

is illustrated in Fig. 4 (a) and the relationship between these 
two representations is as in equation (1). 

 
Fig. 4. (a) Representation of the UAV's velocity. (b) Relative position of 

the intruder (i) with respect to the own-ship (o) at the CPA. 
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Assuming that the initial state of the own-ship has been 

decided (say its initial position is  Tooo zyx ,, and initial 

velocity is  Tooo VsGs ,, ), an intruder can be described by 

specifying the time for the own-ship and the intruder to arrive 
at the Closest Point of Approach (CPA), the intruder's relative 
position at the CPA with respect to the own-ship, as is shown 
in Fig. 4 (b), and the intruder's velocity at the CPA. To specify 
the state of the intruder, 7 parameters are used, which are: 

 The time (T) left for the intruder to arrive at the CPA; 



 The horizontal distance (R) between the two UAVs at 
the CPA, the angle (θ) of this approach, and the vertical 
distance (Y) at the CPA; 

 The velocity  Tiii VsGs ,,  of the intruder at the CPA.  

So, the initial velocity and the initial position of the intruder 
can be obtained by the vector equations (2) and (3): 
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Due to the fact that the collision avoidance logic only 
considers relative state, to reduce the search space and to 
simplify the visualization, we can fix the own-ship’s initial 
position  Tooo zyx ,,  and initial bearing 

o  at some convenient 

values. So only 9 parameters are needed to encode an 

encounter, and they are: },,,,,,,,{ iiioo VsGsYRTVsGs  . 

In the supporting tool, we developed a “scenario generator” 
to generate all kinds of encounters according to different 
assignments to these 9 parameters. A random encounter can be 
generated by uniformly selecting the values for the 9 
parameters from their ranges. 

B. Genetic Algorithms 

GAs are population-based evolutionary search methods. By 
“population-based”, it means that the algorithm holds a set of 
candidate solutions to a specific problem. By “evolutionary”, it 
means that these candidate solutions evolve by a mechanism 
mimicking natural selection (“survival of the fittest”).  

In our use of GAs, the initial population is set up with n 
individuals, with each individual’s genome representing the 
assignments of the 9 parameters identified above. Then each 
individual of the population is evaluated by simulations and the 
fitness of that individual can be calculated. According to the 
fitness, the selection process will (re-)sample n individuals 
from the population, and the selected individuals' genome will 
be “crossed-over" and mutated. After these genetic operations, 
the individuals will be used to form the next generation of the 
population, which will replace the old population. This process 
goes on until it runs out of time or the ideal individual(s) has 
been found.  

We implemented the GA by using ECJ3, which is an open-
source Java-based evolutionary computation system. With 
ECJ, we can control the process of GA by a user-provided 
parameter file. In the parameter file we can set the size of the 
population, the number of generations and the selection 
mechanism etc., and we can also designate the class and 
function used to evaluate the fitness of the individuals. 

                                                           
3 http://cs.gmu.edu/~eclab/projects/ecj/ 

C. Simulation 

We use MASON4, an open-source agent-based simulation 
platform in Java, as our simulation framework. Agent-based 
simulation [9] is selected for two main reasons: (1) it naturally 
models the multi-body interaction problem; and (2) it is already 
widely used in air traffic simulations. We chose MASON 
mainly because it is open-source and the user can easily control 
the fidelity of the simulation so that it can be run faster than 
real-time.  

The environment in our simulation is a 3-D infinite flight 
area. We assume the UAVs fly high in the air, so no ground 
terrain is considered. However if UAVs fly at low attitudes, 
terrains may need to be considered, since a vertical collision 
avoidance maneuver may result in a collision with a mountain. 

With MASON, UAVs are modelled as agents. When 
simulation begins, the two UAVs fly following their initial 
velocities but also be affected by environment disturbance. The 
collision avoidance algorithm is incorporated into the UAVs. If 
collision avoidance commands are emitted, UAVs will then 
maneuver according to the commands. 

We assume that in each simulation step the UAVs 
broadcast their state information (position, velocity) via ADS-
B. We explicitly model the sensor noise by adding white noise 
to the received information by each UAV. We also model the 
coordination mechanism between the two UAVs. For example, 
if the own-ship chooses a “climb” maneuver, it will send a 
coordination command to the intruder to require it not to 
choose maneuvers in the same direction. 

To monitor the simulation we define a “Proximity 
Measurer” and an “Accident Detector”. The Proximity 
Measurer measures the proximities (in horizontal distance and 
vertical distance) between the own-ship and the intruder at 
each simulation step, and records the minimum proximity 
experienced by the own-ship so far in a simulation. The 
Accident Detector monitors the simulations and detects any 
mid-air collisions.  

Fig. 5 shows a head-on encounter, where the big yellow dot 
represents the own-ship and the cyan dot represents the 
intruder. In this encounter, the own-ship’s ACAS XU chooses 
“climb” maneuvers (represented by red dots) and by 
coordination, the intruder chooses “descend” maneuvers 
(represented by green dots). Due to the execution of the 
maneuvers, a mid-air collision is avoided. 

The supporting tool integrates the components described 
above. It can run either in headless mode or in visualization 
mode. When run in headless mode, no rendering is needed so 
that the search can be more efficient5. The identified situations 
can then be further analyzed with visualizations. In the 
visualization mode, users can also configure different 
encounters with convenient GUI. The tool is open-source and 
written in Java. It is available at 
https://github.com/superxueyizou/ACASX_3D_Testing.git. 

                                                           
4 http://cs.gmu.edu/~eclab/projects/mason/ 
5 Search time varies depending on the problems and the settings for the GA. 

For the example described in section VII, it took about 300s on an ordinary 

laptop PC. 

http://cs.gmu.edu/~eclab/projects/ecj/
https://github.com/superxueyizou/ACASX_3D_Testing.git
http://cs.gmu.edu/~eclab/projects/mason/


 

Fig. 5. Collision avoidance for a head-on encounter 

VII. APPLICATION 

We demonstrate the proposed approach on identifying 
challenging situations where ACAS XU behaves poorly. 
Specifically, we search for situations where accident rates are 
significantly higher than in other situations. These challenging 
situations are where ACAS XU has difficulty in avoiding mid-
air collisions — once identified, ACAS XU developers may be 
able to use this to improve the MDP model and thus improve 
ACAS XU’s effectiveness. 

To use our proposed approach, the fitness function needs to 
be properly defined for specific problems. Here if a mid-air 
collision happens in a simulated encounter, a value6 of 10000 
will be gained. If no collision happens, the closer the two 
UAVs were, the larger the value (up to 10000) will be gained. 
Since we have modelled environment disturbance by random 
noise, the simulations are not deterministic. We evaluate every 
encounter by running 100 simulations and calculating its 
average gain, which then is the fitness for this encounter. 
Formally, the fitness function is: 
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in which 
kd  is the minimum distance between the two UAVs 

in the kth simulation run. If a mid-air collision happens, 
kd  

will be 0 and this encounter will get the maximum gain 
(10000) for this simulation run. By defining this fitness 
function, the worse ACAS XU behaves in an encounter, the 
higher fitness the encounter will get.  

We set the population size to be 200 and we run 5 
generations of evolution. Fig. 6 shows the fitness for each 
encounter. From Fig. 6 we can see that in the first generation 
(the first 200 encounters) most encounters are with low fitness, 
and over generations more and more encounters get higher 
fitness. Thus, it shows that the GA was guiding the search to 
increasingly challenging situations. 

By further scrutinizing the high fitness encounters (two 
typical encounters are shown in Fig. 7 and Fig. 8), we found 
most of them are tail approach situations, where one UAV was 

                                                           
6 10000 was chosen because in the MDP model 10000 was assigned to mid-

air collision states. In most cases this value will not affect the search process 

since the selection procedure only considers the relative value of the fitness. 

descending and the other was climbing and approaching the 
first one from the tail direction. We found that about 80 to 90 
out of 100 simulation runs of such an encounter would result in 
mid-air collisions. Whereas in a head-on encounter less than 5 
out of 100 simulation runs might result in mid-air collisions. 

Reasons for the high accident rate in such tail approach 
situations need further investigation. One possibility might be 
that since in a tail approach situation the relative speed is very 
small, so even when the two UAVs are actually very close the 
ACAS XU logic still thinks the collision risk is low and does 
not emit collision avoidance commands. But if then there is a 
small disturbance, it may cause the two UAVs to collide since 
they are already in very close proximity. 

 

Fig. 6. Fitness improvement over generations 

 
Fig. 7. A typical collision situation (1) 

 

Fig. 8. A typical collision situation (2) 



VIII. CONCLUSIONS 

In this paper, we introduce the model-based optimization 
approach that is adopted to develop ACAS XU and analyzed the 
challenges the new approach poses to safety assurance, 
particularly to system validation. We proposed and 
demonstrated a Genetic-Algorithm-based approach that can 
efficiently search for challenging situations where certain 
undesired events happen to help the development and 
validation of the system. 

Our proposed approach is probably most valuable in the 
early stage of UAV collision avoidance algorithm 
development. It can quickly find challenging situations for an 
algorithm, such that the algorithm can be improved. One 
weakness of our method is that there is no way to assign 
statistical confidence to the results — it is effective at fault-
finding, but not at providing confirmatory evidence of fault-
freeness. In contrast, Monte-Carlo approaches can provide such 
confidence. In practice, the two techniques may thus prove 
complimentary. 

The model-based optimization approach used in ACAS XU 
development is likely to become increasingly used to develop 
logic for UAV sense and avoid systems and other decision 
support tools as the air traffic system become more complex 
[1]. It is also increasingly used to develop robot systems [10]. 
In this paper we have: 

1. Explained the model-based optimization development 
process for ACAS XU, in order to help readers better 
appreciate the challenges of this new development 
paradigm; 

2. Identified the challenges for safety assurance and 
system validation of ACAS XU, so that interested 
reader can further study it based on the challenges; 

3. Provided a tentative solution and an open-source tool, 
hoping that it can help the development and validation 
of such an important system. 

A limitation of our analysis approach is that it only directly 
identifies discrete situations (points in the search space) that 
show problems. It might be possible to extend the approach to 
instead find areas of the search space that show certain 
properties (e.g. having high accident rate). Data mining 
techniques, such as clustering [11], could potentially be used to 
analyze the logged data to find such areas. Also, more work 
needs to be done to evaluate the real value of the challenging 

situations identified by the proposed approach. However, this 
may be case-specific and needs feedbacks from the ACAS XU 
developers. 
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