
This is a repository copy of Semantic Mutation Testing for Multi-Agent Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/103115/

Version: Accepted Version

Proceedings Paper:
Huang, Zhan and Alexander, Rob orcid.org/0000-0003-3818-0310 (2015) Semantic
Mutation Testing for Multi-Agent Systems. In: The International Workshop on Engineering
Multi-Agent Systems (EMAS). .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Semantic Mutation Testing for Multi-Agent Systems

Zhan Huang and Rob Alexander

Department of Computer Science, University of York, York, United Kingdom

{zhan.huang,robert.alexander}@cs.york.ac.uk

Abstract. This paper introduces semantic mutation testing (SMT) into multi-

agent systems. SMT is a test assessment technique that makes changes to the in-

terpretation of a program and then examines whether a given test set has the

ability to detect each change to the original interpretation. These changes repre-

sent possible misunderstandings of how the program is interpreted. SMT is also

a technique for assessing the robustness of a program to semantic changes. This

paper applies SMT to three rule-based agent programming languages, namely

Jason, GOAL and 2APL, provides several contexts in which SMT for these

languages is useful, and proposes three sets of semantic mutation operators (i.e.,

rules to make semantic changes) for these languages respectively, and a set of

semantic mutation operator classes for rule-based agent languages. This paper

then shows, through preliminary evaluation of our semantic mutation operators

for Jason, that SMT has some potential to assess tests and program robustness.

Keywords: Semantic Mutation Testing, Agent Programming Languages, Cog-

nitive Agents

1 Introduction

Testing multi-agent systems (MASs) is difficult because MASs may have some prop-

erties such as autonomy and non-determinism, and they may be based on models such

as BDI which are quite different to ordinary imperative programming. There are many

test techniques for MASs, most of which attempt to address these difficulties by

adapting existing test techniques to the properties and models of MASs [9, 13]. For

instance, SUnit is a unit-testing framework for MASs that extends JUnit [17].

Some test techniques for MASs introduce traditional mutation testing, which is a

powerful technique for assessing the adequacy of test sets. In a nutshell, traditional

mutation testing makes small changes to a program and then examines whether a

given test set has the ability to detect each change to the original program. These

changes represent potential small slips. Work on traditional mutation testing for

MASs includes [1, 10, 14–16].

In this paper, we apply an alternative approach to mutation testing, namely seman-

tic mutation testing (SMT) [5], to MASs. Rather than changing the program, SMT

changes the semantics of the language in which the program is written. In other

words, it makes changes to the interpretation of the program. These changes represent

possible misunderstandings of how the program is interpreted. Therefore, SMT as-

sesses a test set by examining whether it has the ability to detect each change to the

original interpretation of the program.

SMT can be used not only to assess tests, but also to assess the robustness of a pro-

gram to semantic changes: Given a program, if a change to its interpretation cannot be

detected by a trusted test set, the program is considered to be robust to this change.

This paper makes several contributions. First, it applies SMT to three rule-based

agent programming languages, namely Jason, GOAL and 2APL. Second, it provides

several contexts (scenarios) in which SMT for these languages is useful. Third, it

proposes three sets of semantic mutation operators (i.e., rules to make semantic

changes) for these languages respectively, and a broader set of semantic mutation

operator classes (that serve as a guide to derivation of semantic mutation operators)

for rule-based agent languages. Finally, it presents a preliminary evaluation of the

semantic mutation operators for Jason, which shows some potential of SMT to assess

tests and program robustness.

The remainder of this paper is structured as follows: Section 2 describes two types

of mutation testing – traditional mutation testing and semantic mutation testing. Sec-

tion 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in

which it is useful and the source of semantic changes required to apply SMT in each

context. Section 4 proposes sets of semantic mutation operators for these languages

and a set of semantic mutation operator classes for rule-based agent languages. Sec-

tion 5 evaluates the Jason semantic mutation operators. Section 6 summarizes our

work and suggests where this work could go in the future.

2 Mutation Testing

2.1 Traditional Mutation Testing

Traditional mutation testing is a test assessment technique that generates modified

versions of a program and then examines whether a given test set has the ability to

detect the modifications to the original program. Each modified program is called a

mutant, which represents a realistic small fault in the program. Mutant generation is

guided by a set of rules called mutation operators. For instance, Figure 1(a) shows a

piece of a program and Figure 1(b) – 1(f) show five mutants generated as the result of

the application of a single mutation operator called Relational Operator Replacement,

which replaces one of the relational operators (<, ≤, >, ≥, =, ≠) with another operator.

After mutant generation, the original program and each mutant are executed

against all tests in the test set. For a mutant, if its resultant behaviour differs from the

behaviour of the original program on some test, the mutant will be marked as killed,

which indicates that the corresponding modification can be detected by the test set.

Therefore, the fault detection ability of the test set can be assessed by the mutant kill

rate – the ratio of the killed mutants to all generated mutants: the higher the ratio is,

the more adequate the test set is. In the example shown in Figure 1, a test set consist-

ing of a single test in which the input is x=3, y=5 cannot kill the mutants shown in

Figure 1(b) and 1(f) because on that test these two live mutants result in the same

behaviour as the original program (i.e., return a). Therefore, the mutant kill rate is

3/5. According to this result we can enhance the test set by adding a test in which the

input is x=4, y=4 and another test in which the input is x=4, y=3 in order to kill these

two live mutants respectively and get a higher mutant kill rate (the highest kill rate is

1, as this example shows).

Fig. 1. An example of traditional mutation testing

Many studies provide evidence that traditional mutation testing is a powerful test

assessment technique, so it is often used to assess other test techniques [2, 12]. How-

ever, the mutation operators used to guide mutant generation may lead to a large

number of mutants because a single mutation operator has to be applied to each rele-

vant point in the program and a single mutant only contains a modification to a single

relevant point (as shown in Figure 1). This makes comparing the behaviour of the

original program and that of each mutant on each test is computationally expensive.

Another problem is that traditional mutation testing unpredictably produces

equivalent mutants – alternatives to the original program that are not representative of

faulty versions, in that their behaviour is no different from the original in any way that

matters for the correctness of the program. Thus, no reasonable test set can detect the

modifications they contain. Equivalent mutants must therefore be excluded from test

assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent

mutants requires much extra manual work although this process may be partially au-

tomated.

2.2 Semantic Mutation Testing

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of

mutation testing as follows: suppose N represents a program and L represents the

semantics of the language in which the program is written (so L determines how N is

interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation

testing generates modified versions of the program namely N à (N1, N2, …, Nk)

while SMT generates different interpretations of the same program namely L à (L1,

L2, …, Lk). For SMT, L1, L2, …, Lk represent semantic mutants, the generation of

which is guided by a set of semantic mutation operators. For instance, Figure 2 shows

a piece of a program, a semantic mutant (i.e., a different interpretation of this pro-

gram) is generated by the application of a single semantic mutation operator that

causes the if keyword to be used for mutual exclusion (i.e., when an if is directly fol-

lowed by another if, the second if statement is interpreted the same as an else-if state-

ment).

Fig. 2. An example of semantic mutation testing

SMT assesses a test set in a similar way as traditional mutation testing – comparing

the system behaviour each semantic mutant results in with that the original interpreta-

tion results in so as to detect the killed mutants. In the example shown in Figure 2, a

test set consisting of a single test in which the input is x=2 cannot kill the semantic

mutant because on that test the mutant results in the same behavior as the original

interpretation (i.e., only do A). Therefore, the mutant kill rate is 0/1 = 0. We can en-

hance this test set by adding another test in which the input is x=4 in order to kill the

live mutant.

SMT is a useful test assessment technique because it can simulate a different class

of faults than traditional mutation testing – possible misunderstandings of how the

program is interpreted rather than small slips. Although semantic changes can be sim-

ulated by changes to the program, SMT often requires higher order (traditional) muta-

tion
1
 to simulate a semantic change, and empirical studies (e.g., [11]) show that some

higher order mutants are harder to kill than first-order mutants. In addition, [5] show

that SMT has potential to capture some faults that cannot be captured by traditional

mutation testing.

SMT can be used not only to assess tests, but also to assess the robustness of a pro-

gram to semantic changes. Given a semantic mutant, if it cannot be killed by a trusted

1
 Higher order mutation generates a higher order mutant by making more than one change to

the program (these changes may form a subtle fault that is hard to detect). In contrast, most

traditional mutation is first order, which generates a first order mutant by making only a sin-

gle and simple change to the program.

test set
2
, it will be considered as “equivalent”

3
, which indicates that the program is

robust to the corresponding semantic change, otherwise the program may need to be

improved to resist this change. In the example shown in Figure 2, if the program is

required to be robust to the semantic change, it can be modified to ensure that only

one branch is executed in any case.

SMT has another difference to traditional mutation testing: it generates far fewer

mutants because a single semantic mutation operator only leads to a single semantic

mutant
4
, namely a different interpretation of the same program (as shown in Figure 2),

while a single traditional mutation operator may lead to many mutants each of which

contains a modification to a single relevant point in the program (as shown in Figure

1). This makes SMT less computationally costly.

We know that SMT makes semantic changes for assessing tests or program robust-

ness. For a particular language, which semantic changes should be made by SMT are

context-dependent. For instance, to assess tests for a program written by a novice

programmer, semantic changes to be made can be derived from common novices’

misunderstandings. To assess the portability of a program between different versions

of the interpreter, semantic changes to be made can be derived from the differences

between these versions.

3 Semantic Mutation Testing for Jason, GOAL and 2APL

We investigate semantic mutation testing for MASs by first applying it to three rule-

based programming languages for cognitive agents, namely Jason, GOAL and 2APL.

These languages have similar semantics – an agent deliberates in a cyclic process in

which it selects and executes rules according to and affecting its mental states. They

also have similar constructs to implement such agents such as beliefs, goals and rules.

The details of these languages can be found in [4, 6, 8] and are not provided here.

From Section 2 we know that for a particular language, the semantic changes that

can most usefully be made by SMT is context-dependent. In the remainder of this

section we provide several contexts in which SMT for the chosen agent languages is

useful – migration between languages, evolution of languages, common misunder-

standings, and ambiguity of informal semantics. We also show the source of semantic

changes required to apply SMT in each context.

2
 A trusted test set is the one that is considered as “good enough” for the requirement. It

doesn’t need to be the full test set that is usually impractical; instead it can choose not to

cover some aspects or to tolerate some errors.
3
 Here the term “equivalent” is different to the one used in the context of test assessment, in

which a mutant is equivalent only if there exist no tests that can kill this mutant. In the con-

text of robustness assessment, a mutant is equivalent if only the trusted test set cannot kill it.
4
 This rule can be relaxed, namely mutating the semantics of only parts of the program instead

of mutating the semantics of the whole program. This is useful e.g., when the program is de-

veloped by several people.

3.1 Migration between Languages

When a programmer migrates a program from one language to another, or simply

starts to write a new program in a new (to him or her) language, he or she may have

misunderstandings that come from the semantic differences between the new lan-

guage and the old one(s) he or she ever used. Therefore, in order for SMT to simulate

such misunderstandings, we should first find out their source, namely the semantic

differences, by comparison between Jason, GOAL and 2APL. Since these languages

each have large semantic size and distinctive features, we use the following strategies

to guide the derivation of the semantic differences.

• Dividing the semantics of each of these languages into five aspects, as shown in

Table 1. We do this because first of all, it provides a guide to derivation of seman-

tic differences. Second, we focus on examining four aspects of the semantics,

namely deliberation step order, rule selection, rule execution, and mental state que-

ry and update, which are important and common to rule-based agent languages. We

also roughly examine other aspects of the semantics in order for completeness. Fi-

nally, it is reasonable that common aspects of the semantics are more likely to

cause misunderstandings than distinctive aspects in the context of migration, be-

cause distinctive aspects are usually supported by distinctive constructs that a pro-

grammer would normally take time to learn.

• Focusing on semantic differences between similar constructs. As [5] suggests, such

differences easily cause misunderstandings because when migrating a program a

programmer may just copy the same or similar constructs without careful examina-

tion of their semantics given by the new language.

• Examining both formal and informal semantics of these languages. We start with

examining the formal semantics because they can be directly compared. We also

verify those that are informally defined through programming and examination of

the interpreter source code.

• Focusing on the default options of the interpreter. The interpreters for these lan-

guages are customizable, for instance, the Jason agent architecture can be custom-

ized by inheritance of the Java class that implements the default agent architecture;

the GOAL rule selection order can be customized in the GOAL agent description.

We think default options are more likely to cause misunderstandings in the context

of migration because if a programmer customizes an element it suggests he or she

is familiar with its semantics.

Table 1. The aspects of the semantics of Jason, GOAL and 2APL (those marked with an aster-

isk are the ones we focus on)

ID Aspect Description

1
Deliberation step

order*

Each deliberation cycle consists of a sequence of steps, e.g., rule

selection à rule execution is a two-step sub-sequence.

2 Rule selection*
Rule selection is an important deliberation step in which one or

several rules are chosen to be new execution candidates.

3 Rule execution*
Rule execution is an important deliberation step in which one or

several execution candidates are executed.

4
Mental state query and

update*

Mental states (i.e., beliefs and goals) can be queried in some deliber-

ation steps such as rule selection and updated by execution of rules.

5 Other Other aspects of the semantics not listed above.

We present in Table 2 the semantic differences we found between Jason, GOAL

and 2APL. These form the source of semantic changes required to apply SMT in the

context of migration between these languages.

Difference 1 comes from the order of two important deliberation steps, namely rule

selection and rule execution. A Jason agent first selects a rule to be a new execution

candidate and then executes an execution candidate. A GOAL agent processes its

modules one by one, in each module it first selects and executes event rules and then

selects and executes an action rule (both event and action rules are defined in the

module being processed). A 2APL agent first selects action rules to be new execution

candidates, and then executes all execution candidates, next selects an external event

rule, an internal event rule and a message event rule to be new execution candidates.

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and

2APL differ in two aspects of this step, namely the rule selection condition and the

default rule selection order. For the rule selection condition, a Jason or 2APL rule can

be selected to be a new execution candidate if both its trigger condition and guard

condition get satisfied (“applicable”), while a GOAL rule can be selected if it is appli-

cable and the pre-condition of its first action gets satisfied (“enabled”). For the default

rule selection order, Jason rules are selected in linear order (i.e., rules are examined in

the order they appear in the agent description, and the first applicable rule is selected),

GOAL action rules are selected in linear order while GOAL event rules are selected

in “linearall” order (i.e., rules are examined in the order they appear in the agent de-

scription, and all enabled rules are selected), 2APL action rules are selected in “lin-

earall” order while 2APL event rules of each type (external, internal, message) are

selected in linear order.

Difference 3 comes from the rule execution deliberation step. In this step a Jason

agent executes a single action in a single execution candidate, a GOAL agent executes

all actions in each selected event rule and each selected action rule
5
, a 2APL agent

executes a single action in each execution candidate.

5
 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL

rule is immediately attempted to completely execute once selected.

Table 2. Semantic differences between Jason, GOAL and 2APL

ID Source Jason GOAL 2APL

1 The order of

rule selection

and rule

execution

select a rule à execute

a rule

(select and execute event

rules à select and

execute an action rule) x

Number_of_Modules

select action rules à

execute rules à select

an external event rule

à select an internal

event rules à select a

message event rule

2 Rule

selection

• applicable

• linear

• enabled

• linear (action

rules) and linearall
(event rules)

• applicable

• linear (event

rules) and linear-
all (action rules)

3 Rule

execution

• one rule/cycle

• one action/rule

• one rule/cycle

(action rules) and

all rules/cycle

(event rules)

• all actions/rule

• all rules/cycle

• one action/rule

4 Belief query linear random linear

5 Belief

addition

start end end

6 Goal query E à I; linear random linear

7 Goal

addition

end of E end start or end

8 Goal

deletion

delete the event or

intention that relates to

the goal φ

delete all super-goals of

the goal φ

delete the goal φ, all

sub-goals of φ or all

super-goals of φ

9 Goal type procedural declarative declarative

10 Goal

commitment

strategy

no blind blind

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are

queried in linear order (i.e., beliefs are examined in the order they are stored in the

belief base, and the first matched belief is returned). In a GOAL agent, beliefs are

queried in random order (i.e., beliefs are randomly accessed, and the first matched

belief is returned).

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added

to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the

end of the belief base.

Difference 6 comes from the goal query. For a Jason agent, since it keeps implicit

goals or desires in goal type events and goal type intentions instead of keeping explic-

it goals, it queries a goal by first examining its event base then its intention set, in

each of which it follows linear query order. In a GOAL agent, goals are queried in

random order. In a 2APL agent, goals are queried in linear order.

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal

is added to the end of the event or goal base. In a 2APL agent, a new goal is added to

the start or the end of the goal base according to the relevant agent description (i.e.,

adopta or adoptz).

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason

agent deletes the event or intention that relates to φ, a GOAL agent deletes all goals

that have φ as a logical sub-goal, a 2APL agent deletes φ, all goals that are a logical

sub-goal of φ, or all goals that have φ as a logical sub-goal according to the relevant

agent description (i.e., dropgoal, dropsubgoal or dropsupergoal).

Difference 9 comes from the goal type. Jason adopts procedural goals – goals that

only serve as triggers of procedures although it supports declarative goal patterns.

GOAL and 2APL adopt declarative goals – goals that also represent states of affairs

to achieve.

Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any

goal commitment strategy (i.e., a goal is just dropped once its associated intention is

removed as the result of completion or failure) although it supports various commit-

ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy,

which requires a goal is pursued until it is achieved or declaratively dropped.

3.2 Evolution of Languages

When a programmer moves a program from a language to its successor, he or she

may have misunderstandings that come from the semantic evolution. Another scenar-

io is that a programmer may want to examine whether a program written in a lan-

guage is compatible with a newer version of this language. To derive semantic chang-

es required to apply SMT in these scenarios, we should first find out their source,

namely the semantic differences between these languages/versions. We take 2APL

and 3APL [7] as an example. 2APL is a successor of 3APL that modifies and extends

3APL. Table 3 shows some semantic differences between them. We explain these

differences as follows.

Table 3. Semantics differences between 2APL and 3APL

ID Source 2APL 3APL

1 PR-rules plan repair plan revision

2
The order of rule selection

and rule execution
see Table 2

select an action rule à select a

PR-rule à execute a rule

3 Action rule selection linearall linear

4 Rule execution all rules/cycle one rule/cycle

Difference 1 comes from the PR-rules. In 2APL, the abbreviation “PR” means

“plan repair”, a PR-rule (i.e. an internal event rule) is selected only when a relevant

plan fails. In 3APL, “PR” means “plan revision”, a PR-rule is selected when matching

some plan.

Difference 2 comes from the order of rule selection and rule execution deliberation

steps. The order adopted by a 2APL agent has been described in Sub-section 3.1. In

contrast, a 3APL agent selects an action rule then a PR-rule to be new execution can-

didates then executes an execution candidate.

Difference 3 comes from the action rule selection order. As described in Sub-

section 3.1, 2APL action rules are selected in “linearall” order. In contrast, 3APL

action rules are selected in linear order.

Difference 4 comes from the rule execution deliberation step. As described in Sub-

section 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In

contrast, a 3APL agent executes a single execution candidate.

3.3 Common Misunderstandings

A programmer may have misunderstandings that are common to a particular group of

people he or she belongs to. Such misunderstandings can be identified by analysis of

these people’s common mistakes or faults. We take GOAL as an example: Table 4

shows some possible misunderstandings of the GOAL’s semantics that are derived

from some common faults made by GOAL novice programmers [18]. We explain

these misunderstandings as follows.

Table 4. Possible novice programmers' misunderstandings of GOAL

ID Fault Possible Misunderstanding

1 Wrong rule order By default rules are selected in another available order.

2
A single rule including two

user-defined actions
A rule can have more than one user-defined action.

3
Using “if then” instead of

“forall do”

Existential quantification can be used for universal quantifica-

tion.

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a

programmer makes this fault in the GOAL agent description, he or she may have the

misunderstanding that rules are selected in another available order
6
 by default, e.g.,

action rules are selected in “linearall” order rather than linear order.

Possible misunderstanding 2 comes from the fault of a single rule including two

user-defined actions. If a programmer makes this fault, he or she may have the mis-

understanding that this is allowed like other agent languages.

Possible misunderstanding 3 comes from the fault of using “if then” instead of

“forall do”. If a programmer makes this fault, he or she may have the misunderstand-

ing that existential quantification can be used for universal quantification.

6
 GOAL supports four available rule evaluation orders: linear, linearall, random and ran-

domall.

3.4 Ambiguity of Informal Semantics

A programmer may have misunderstandings of the semantics that are not precisely or

formally defined. For instance, [3] gives two examples of such misunderstandings of

Jason as shown in Table 5. We explain these misunderstandings as follows.

Table 5. Possible misunderstandings due to Jason’s informal semantics

ID Source Possible Misunderstanding

1 Goal deletion event
 “when an intention fails” à “when an intention is re-

moved”

2 Test goal addition event
 “when a test goal action fails” à “when a test goal action

is executed”

Possible misunderstanding 1 comes from the goal deletion event (-!e or -?e). A

goal deletion event is generated when an intention with the corresponding goal

achievement event (+!e or +?e) fails. A programmer may have the misunderstanding

that this event is generated when this intention is removed as the result of completion

or failure.

Possible misunderstanding 2 comes from the test goal addition event (+?e). A test

goal addition event is generated when the corresponding test goal action (?e) fails. A

programmer may have the misunderstanding that this event is generated when this

action is executed, which is similar to the achievement goal addition event (+!e).

3.5 Discussion

SMT for Jason, GOAL and 2APL is of particular interest in the contexts discussed

above considering:

• These languages are similar. As mentioned above they have similar semantics and

constructs. Subtle semantic differences between similar constructs easily cause

misunderstandings.

• These languages have elements that are allowed to customize. By mutating the

semantics to represent different customizations it is possible to explore the robust-

ness of a program.

4 Semantic Mutation Operators for Jason, GOAL and 2APL

According to our derived sources of semantic changes required to apply SMT in dif-

ferent contexts, we derive three respective sets of semantic mutation operators for

Jason, GOAL and 2APL as shown in Table 6 – 8. Due to space limitations we don’t

explain each semantic mutation operator in details.

We observe that most of these operators act on the four aspects of the semantics we

focus on, namely deliberation step order, rule selection, rule execution and mental

state query and update (see Table 1). By further analysis we derive a set of semantic

mutation operator classes for rule-based agent languages as shown in Table 9. These

classes provide a guide to derivation of semantic mutation operators for these lan-

guages.

Table 6. Semantic mutation operators for Jason

ID Semantic Mutation Operator Description

1 Rule selection order change (RSO) linear à linearall

2 Rule execution strategy change (RES) one rule/cycle à all rules/cycle

3 Rule execution strategy change 2 (RES2)
interleaved execution of rules à non-interleaved

execution of rules

4 Belief query order change (BQO) linear à random

5 Belief addition position change (BAP) start à end

6 Goal query order change (GQO) linear à random

7 Goal addition position change (GAP) end à start

8 Goal deletion event semantics change

(GDES)
“when a plan fails” à “when a plan is removed”

9 Test goal achievement event semantics

change (TGAES)

“when a test goal action fails” à “when a test goal

action is executed”

Table 7. Semantic mutation operators for GOAL

ID Semantic Mutation Operator Description

1 Rule selection and execution order

change (RSEO)

select and execute event rules then an action rule à

select and execute an action rule then event rules

2 Rule selection condition change (RSC) enabled à applicable

3 Rule selection order change (RSO) change between linear, linearall, random and ran-

domall

4 Belief query order change (BQO) random à linear

5 Belief addition position change (BAP) end à start

6 Goal query order change (GQO) random à linear

7 Goal addition position change (GAP) end à start

8 Goal deletion strategy change (GDS) delete all super-goals of φ à delete only φ or delete

all sub-goals of φ

9 The maximum number of user-defined

actions change (MNUA)
1 à more than 1

10 Quantification type change (QT) make existential quantification (“if then”) used for

universal quantification (“forall do”)

Table 8. Semantic mutation operators for 2APL

ID Semantic Mutation Operator Description

1
Rule selection and execution order

change (RSEO)

change the original order “select action rules à

execute rules à select event rules” to “select action

rules à select event rules à execute rules” or “se-

lect event rules à select action rules à execute

rules”

2 Rule selection condition change (RSC) applicable à enabled

3 Rule selection order change (RSO) change between linear and linearall

4 Rule execution strategy change (RES) all rules/cycle à one rule/cycle

5 Belief query order change (BQO) linear à random

6 Belief addition position change (BAP) end à start

7 Goal query order change (GQO) linear à random

8 PR-rule semantics change (PRRS) plan repair à plan revision

Table 9. Semantic mutation operator classes for rule-based agent languages

ID Semantic Mutation Operator Class

1 Rule selection and execution order change

2 Rule selection condition change

3 Rule selection order change

4 Rule execution strategy change

5 Mental state query order change

6 Mental state addition position change

7 Mental state deletion strategy change

8 Other change

5 Evaluation of Semantic Mutation Operators for Jason

We have implemented our derived semantic mutation operators for Jason (as shown

in Table 6) by modifying the source code of the Jason interpreter. Here we use two

Jason projects in a preliminary evaluation of these operators, in order to assess the

potential of SMT to assess tests and program robustness.

The Jason projects we chose are two of the examples released with the Jason inter-

preter. The first project is a simple one called Domestic Robot (DR), in which a do-

mestic robot gets beer from the fridge and then serves its owner the beer until the

owner reaches a certain limit of drinking. The robot will ask a supermarket to deliver

beer when the fridge is empty. The second project is a relatively complex one called

Gold Miners (the 2
nd

 version, “GM II”), in which two teams of gold-mining agents

compete against each other to retrieve as many pieces of gold scatters as possible in a

grid-like territory, finding suitable paths to then take the retrieved gold to a depot.

We use two sets of randomly generated tests to test these Jason projects respective-

ly (40 tests for DR and 102 tests for GM II). Each test is a starting configuration of

the Jason project, which is represented by a set of parameters extracted from the agent

description and the environment description such as the limit of drinking and the map

size.

We run each Jason project under the original interpreter and each modified version

of the interpreter (that implements a semantic mutation operator) against the corre-

sponding test set, after which we collect and analyze the SMT results. We present the

final results in Table 10.

Table 10. Results of semantic mutation testing

Semantic Mutation Operator Resultant Mutant of DR Resultant Mutant of GM II

RSO NE K

RES E E

RES2 NE K

BQO E E

BAP E NE

GQO N/A E

GAP E E

GDES K K

TGAES K N/A

As is normal for SMT, a semantic mutation operator here leads to a single semantic

mutant if the interpretation of the Jason project involves the relevant semantics; oth-

erwise the operator is not applicable to the Jason project (N/A). The resultant mutants

are either equivalent to the original interpretation (E), non-equivalent and killed by

the test set (K), or non-equivalent and not killed by the test set (NE).

Test Assessment

The non-equivalent and unkilled mutants indicate the weaknesses in the test sets.

In order to kill such a mutant that the RSO operator leads to, we need a test that can

capture the differences in the resultant agent behaviour between selecting all applica-

ble plans and selecting only the first applicable plan. These plans must have the same

triggering event, the contexts that are not mutually exclusive and the ability to affect

the agent behaviour. In the DR project, the only two such plans are the plan to get

beer when the fridge is empty (p1) and the plan to get beer when the owner reaches

the limit of drinking (p2). Therefore, we can design a test on which the limit of drink-

ing is just reached when there is no beer in the fridge by e.g., modifying the initial

amount of beer in the fridge. This test will cause p2 to be executed twice under the

mutated interpreter so that the owner will be advised about drinking twice.

In order to kill the non-equivalent mutant that the RES2 operator leads to, we need

a test that can capture the differences in the resultant agent behaviour between inter-

leaved execution of plans and non-interleaved execution of plans. These plans must

have a chance to compete for execution and the ability to affect the agent behaviour.

In the DR project, the only two such plans are the plan to move to the fridge and the

plan to notify the current time (as requested by the owner on occasion). Therefore, we

can design a test that can detect the difference in the agent behaviour – the robot un-

der the original interpreter has a chance to notify the current time while moving to the

fridge, while it always notifies the time after arriving at the fridge under the mutated

interpreter. It is worth noting that since the robot takes much longer to stay at the

fridge (a few seconds) than to move to the fridge (less than one second) on the origi-

nal test set, the agent has a much bigger chance to notify the time at the fridge than on

the move although under the original interpreter. Therefore, we can increase the

chance to notify the time on the move by e.g., largely increasing the map size (so that

the robot will take longer to move), to make it more likely we will kill the mutant.

In order to kill the non-equivalent mutant that the BAP operator leads to, we need a

test that can capture the differences in the resultant agent behaviour between different

orderings of beliefs. In the GM II project, there is only one description that causes the

order of beliefs to matter – the actions to announce to other teammates all gold depos-

its that the gold miner agent perceived and that have not been handled or announced

yet. Under the original interpreter, the gold miner agent will first announce the gold it

perceived most recently; under the mutated interpreter, it will first announce the gold

it perceived initially. The different orders of gold announcements may cause other

teammates to bid for and be allocated different gold. Therefore, we can add a test that

can detect this difference. It is worth noting that this difference to the original behav-

iour may not be a violation of the correctness requirements; instead it may be just a

tiny variation that reflects the non-determinism of multi-agent systems, in which case

the mutant is considered as equivalent.

Robustness Assessment

Where our operators produced equivalent mutants, it indicates that the Jason pro-

ject is robust to the corresponding semantic changes. From these equivalent mutants

we can come up with some ideas of how to resist these changes. For instance, in order

to resist the semantic changes caused by the BQO and GQO operators while not af-

fecting the agent behaviour under the original interpreter, the agent description has to

be improved so that there can be only one matched belief or goal at most for each

query. To resist the semantic change caused by the GAP operator, the agent descrip-

tion can be improved so that the agent behaviour is independent of the order of the

goal type events and intentions.

Those mutants that are or can be killed indicate that the Jason project is not robust

to the corresponding semantic changes. For instance, the DR project does not behave

correctly under the semantic change caused by the RSO operator. In order to be robust

to this change the agent description can be improved so that there can be only one

applicable plan at most in any case. As another example, the DR project does not

behave correctly under the semantic change caused by the RES2 operator. In order to

be robust to this change the agent description can be improved so that there can be

only one non-empty competitive intention at most in any case. Another example is

that the GM II project cannot resist the semantic change caused by the BAP operator.

In order to be robust to this change the agent description can be improved so that the

agent behaviour is independent of the order of the beliefs.

6 Conclusions

Semantic mutation testing (SMT) is a useful technique for assessing tests and the

robustness of a program to semantic changes. In this paper we applied SMT to three

agent languages, namely Jason, GOAL and 2APL. We showed that SMT for these

languages is useful in several contexts – migration between languages, evolution of

languages, common misunderstandings, and ambiguity of informal semantics. We

derived sets of semantic mutation operators for these languages, and a broader set of

semantic mutation operator classes that are applicable to rule-based agent languages.

Finally, we used two Jason projects in a preliminary evaluation of the semantic muta-

tion operators for Jason. The results suggest that SMT can indicate some weaknesses

in test sets and programs.

Our future work will focus on further evaluation of the semantic mutation opera-

tors for Jason. To further evaluate the ability of these operators to assess tests, we will

examine their representativeness in comparison to realistic misunderstandings and

their power by looking for more hard-to-kill mutants (as we have done in this paper),

as suggested by [8]. To further evaluate the ability of these operators to assess pro-

gram robustness, we will apply them to more Jason projects and provide specific rules

to change the agent description in order to improve robustness.

References

1. Adra, S.F., McMinn, P.: Mutation operators for agent-based models. In: Proceedings of 5th

International Workshop on Mutation Analysis. IEEE Computer Society (2010)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press

(2008)

3. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure

and some internal actions). In: Proceedings of ECAI’10, pp. 635–640 (2010)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in

AgentSpeak using Jason. John Wiley & Sons (2007)

5. Clark, J.A., Dan, H., Hierons, R.M.: Semantic Mutation Testing. Science of Computer

Programming (2011)

6. Dastani M.: 2APL: A practical agent programming language. Autonomous Agents and

Multi-Agent Systems 16(3), 214–248 (2008)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in

3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-

Agent Programming: Languages, Platforms and Applications, pp. 39–67. Springer, Hei-

delberg (2005)

8. Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini R.H., Dastani M., Dix

J., El Fallah Seghrouchni A. (eds.), Multi-agent programming: Languages, platforms and

applications, vol. 2, pp. 3–37. Springer, Heidelberg (2009)

9. Houhamdi, Z.: Multi-agent system testing: A survey. International Journal of Advanced

Computer Science and Applications (IJACSA) 2(6), 135–141 (2011)

10. Huang Z., Alexander R., Clark J.A.: Mutation Testing for Jason Agents. In: Dalpiaz F.,

Dix J., van Riemsdijk, M.B. (eds.) EMAS 2014. LNCS (LNAI), vol. 8758, pp. 309–327.

Springer, Heidelberg (2014)

11. Jia Y., Harman M.: Higher order mutation testing. J Informat Softw Technol 51(10), pp.

1379–1393 (2009)

12. Mathur, A.P.: Foundations of Software Testing. Pearson (2008)

13. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent

systems. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038, pp.

180–190. Springer, Heidelberg (2011)

14. Saifan, A.A., Wahsheh, H.A.: Mutation operators for JADE mobile agent systems. In: Pro-

ceedings of the 3rd International Conference on Information and Communication Systems,

ICICS (2012)

15. Savarimuthu, S., Winikoff, M.: Mutation operators for cognitive agent programs. In: Pro-

ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS 2013), pp. 1137–1138 (2013)

16. Savarimuthu, S., Winikoff, M.: Mutation Operators for the GOAL Agent Language. In:

Cossentino M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS

(LNAI), vol. 8245, pp. 255–273. Springer, Heidelberg (2013)

17. Tiryaki A.M., Oztuna S., Dikenelli O., Erdur R.C.: Sunit: A unit testing framework for test

driven development of multi-agent systems. In: Agent-Oriented Software Engineering VII.

LNCS, vol. 4405, pp. 156–173. Springer, Heidelberg (2006)

18. Winikoff M.: Novice programmers' faults & failures in GOAL programs. In: Proceedings

of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS 2014), pp. 301–308 (2014)

