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Abstract. This paper introduces semantic mutation testing (SMT) into multi-

agent systems. SMT is a test assessment technique that makes changes to the in-

terpretation of a program and then examines whether a given test set has the 

ability to detect each change to the original interpretation. These changes repre-

sent possible misunderstandings of how the program is interpreted. SMT is also 

a technique for assessing the robustness of a program to semantic changes. This 

paper applies SMT to three rule-based agent programming languages, namely 

Jason, GOAL and 2APL, provides several contexts in which SMT for these 

languages is useful, and proposes three sets of semantic mutation operators (i.e., 

rules to make semantic changes) for these languages respectively, and a set of 

semantic mutation operator classes for rule-based agent languages. This paper 

then shows, through preliminary evaluation of our semantic mutation operators 

for Jason, that SMT has some potential to assess tests and program robustness. 

Keywords: Semantic Mutation Testing, Agent Programming Languages, Cog-

nitive Agents 

1 Introduction 

Testing multi-agent systems (MASs) is difficult because MASs may have some prop-

erties such as autonomy and non-determinism, and they may be based on models such 

as BDI which are quite different to ordinary imperative programming. There are many 

test techniques for MASs, most of which attempt to address these difficulties by 

adapting existing test techniques to the properties and models of MASs [9, 13]. For 

instance, SUnit is a unit-testing framework for MASs that extends JUnit [17]. 

Some test techniques for MASs introduce traditional mutation testing, which is a 

powerful technique for assessing the adequacy of test sets. In a nutshell, traditional 

mutation testing makes small changes to a program and then examines whether a 

given test set has the ability to detect each change to the original program. These 

changes represent potential small slips. Work on traditional mutation testing for 

MASs includes [1, 10, 14–16]. 

In this paper, we apply an alternative approach to mutation testing, namely seman-

tic mutation testing (SMT) [5], to MASs. Rather than changing the program, SMT 

changes the semantics of the language in which the program is written. In other 

words, it makes changes to the interpretation of the program. These changes represent 



possible misunderstandings of how the program is interpreted. Therefore, SMT as-

sesses a test set by examining whether it has the ability to detect each change to the 

original interpretation of the program. 

SMT can be used not only to assess tests, but also to assess the robustness of a pro-

gram to semantic changes: Given a program, if a change to its interpretation cannot be 

detected by a trusted test set, the program is considered to be robust to this change. 

This paper makes several contributions. First, it applies SMT to three rule-based 

agent programming languages, namely Jason, GOAL and 2APL. Second, it provides 

several contexts (scenarios) in which SMT for these languages is useful. Third, it 

proposes three sets of semantic mutation operators (i.e., rules to make semantic 

changes) for these languages respectively, and a broader set of semantic mutation 

operator classes (that serve as a guide to derivation of semantic mutation operators) 

for rule-based agent languages. Finally, it presents a preliminary evaluation of the 

semantic mutation operators for Jason, which shows some potential of SMT to assess 

tests and program robustness. 

The remainder of this paper is structured as follows: Section 2 describes two types 

of mutation testing – traditional mutation testing and semantic mutation testing. Sec-

tion 3 describes SMT for Jason, GOAL and 2APL by showing several contexts in 

which it is useful and the source of semantic changes required to apply SMT in each 

context. Section 4 proposes sets of semantic mutation operators for these languages 

and a set of semantic mutation operator classes for rule-based agent languages. Sec-

tion 5 evaluates the Jason semantic mutation operators. Section 6 summarizes our 

work and suggests where this work could go in the future. 

2 Mutation Testing 

2.1 Traditional Mutation Testing 

Traditional mutation testing is a test assessment technique that generates modified 

versions of a program and then examines whether a given test set has the ability to 

detect the modifications to the original program. Each modified program is called a 

mutant, which represents a realistic small fault in the program. Mutant generation is 

guided by a set of rules called mutation operators. For instance, Figure 1(a) shows a 

piece of a program and Figure 1(b) – 1(f) show five mutants generated as the result of 

the application of a single mutation operator called Relational Operator Replacement, 

which replaces one of the relational operators (<, ≤, >, ≥, =, ≠) with another operator.  

After mutant generation, the original program and each mutant are executed 

against all tests in the test set. For a mutant, if its resultant behaviour differs from the 

behaviour of the original program on some test, the mutant will be marked as killed, 

which indicates that the corresponding modification can be detected by the test set. 

Therefore, the fault detection ability of the test set can be assessed by the mutant kill 

rate – the ratio of the killed mutants to all generated mutants: the higher the ratio is, 

the more adequate the test set is. In the example shown in Figure 1, a test set consist-

ing of a single test in which the input is x=3, y=5 cannot kill the mutants shown in 

Figure 1(b) and 1(f) because on that test these two live mutants result in the same 



behaviour as the original program (i.e., return a). Therefore, the mutant kill rate is 

3/5. According to this result we can enhance the test set by adding a test in which the 

input is x=4, y=4 and another test in which the input is x=4, y=3 in order to kill these 

two live mutants respectively and get a higher mutant kill rate (the highest kill rate is 

1, as this example shows).  

 

Fig. 1. An example of traditional mutation testing 

Many studies provide evidence that traditional mutation testing is a powerful test 

assessment technique, so it is often used to assess other test techniques [2, 12]. How-

ever, the mutation operators used to guide mutant generation may lead to a large 

number of mutants because a single mutation operator has to be applied to each rele-

vant point in the program and a single mutant only contains a modification to a single 

relevant point (as shown in Figure 1). This makes comparing the behaviour of the 

original program and that of each mutant on each test is computationally expensive. 

Another problem is that traditional mutation testing unpredictably produces 

equivalent mutants – alternatives to the original program that are not representative of 

faulty versions, in that their behaviour is no different from the original in any way that 

matters for the correctness of the program. Thus, no reasonable test set can detect the 

modifications they contain. Equivalent mutants must therefore be excluded from test 

assessment (i.e., the calculation of the mutant kill rate). The exclusion of equivalent 

mutants requires much extra manual work although this process may be partially au-

tomated. 

2.2 Semantic Mutation Testing 

Clark et al. [5] propose semantic mutation testing (SMT) and extend the definition of 

mutation testing as follows: suppose N represents a program and L represents the 

semantics of the language in which the program is written (so L determines how N is 

interpreted), the pair (N, L) determines the program’s behaviour. Traditional mutation 

testing generates modified versions of the program namely N à (N1, N2, …, Nk) 



while SMT generates different interpretations of the same program namely L à (L1, 

L2, …, Lk). For SMT, L1, L2, …, Lk represent semantic mutants, the generation of 

which is guided by a set of semantic mutation operators. For instance, Figure 2 shows 

a piece of a program, a semantic mutant (i.e., a different interpretation of this pro-

gram) is generated by the application of a single semantic mutation operator that 

causes the if keyword to be used for mutual exclusion (i.e., when an if is directly fol-

lowed by another if, the second if statement is interpreted the same as an else-if state-

ment). 

 

Fig. 2. An example of semantic mutation testing 

SMT assesses a test set in a similar way as traditional mutation testing – comparing 

the system behaviour each semantic mutant results in with that the original interpreta-

tion results in so as to detect the killed mutants. In the example shown in Figure 2, a 

test set consisting of a single test in which the input is x=2 cannot kill the semantic 

mutant because on that test the mutant results in the same behavior as the original 

interpretation (i.e., only do A). Therefore, the mutant kill rate is 0/1 = 0. We can en-

hance this test set by adding another test in which the input is x=4 in order to kill the 

live mutant. 

SMT is a useful test assessment technique because it can simulate a different class 

of faults than traditional mutation testing – possible misunderstandings of how the 

program is interpreted rather than small slips. Although semantic changes can be sim-

ulated by changes to the program, SMT often requires higher order (traditional) muta-

tion
1
 to simulate a semantic change, and empirical studies (e.g., [11]) show that some 

higher order mutants are harder to kill than first-order mutants. In addition, [5] show 

that SMT has potential to capture some faults that cannot be captured by traditional 

mutation testing. 

SMT can be used not only to assess tests, but also to assess the robustness of a pro-

gram to semantic changes. Given a semantic mutant, if it cannot be killed by a trusted 

                                                             
1
  Higher order mutation generates a higher order mutant by making more than one change to 

the program (these changes may form a subtle fault that is hard to detect). In contrast, most 

traditional mutation is first order, which generates a first order mutant by making only a sin-

gle and simple change to the program. 

 

 

 

 



test set
2
, it will be considered as “equivalent”

3
, which indicates that the program is 

robust to the corresponding semantic change, otherwise the program may need to be 

improved to resist this change. In the example shown in Figure 2, if the program is 

required to be robust to the semantic change, it can be modified to ensure that only 

one branch is executed in any case. 

SMT has another difference to traditional mutation testing: it generates far fewer 

mutants because a single semantic mutation operator only leads to a single semantic 

mutant
4
, namely a different interpretation of the same program (as shown in Figure 2), 

while a single traditional mutation operator may lead to many mutants each of which 

contains a modification to a single relevant point in the program (as shown in Figure 

1). This makes SMT less computationally costly. 

We know that SMT makes semantic changes for assessing tests or program robust-

ness. For a particular language, which semantic changes should be made by SMT are 

context-dependent. For instance, to assess tests for a program written by a novice 

programmer, semantic changes to be made can be derived from common novices’ 

misunderstandings. To assess the portability of a program between different versions 

of the interpreter, semantic changes to be made can be derived from the differences 

between these versions. 

3 Semantic Mutation Testing for Jason, GOAL and 2APL 

We investigate semantic mutation testing for MASs by first applying it to three rule-

based programming languages for cognitive agents, namely Jason, GOAL and 2APL. 

These languages have similar semantics – an agent deliberates in a cyclic process in 

which it selects and executes rules according to and affecting its mental states. They 

also have similar constructs to implement such agents such as beliefs, goals and rules. 

The details of these languages can be found in [4, 6, 8] and are not provided here. 

From Section 2 we know that for a particular language, the semantic changes that 

can most usefully be made by SMT is context-dependent. In the remainder of this 

section we provide several contexts in which SMT for the chosen agent languages is 

useful – migration between languages, evolution of languages, common misunder-

standings, and ambiguity of informal semantics. We also show the source of semantic 

changes required to apply SMT in each context. 

                                                             
2
  A trusted test set is the one that is considered as “good enough” for the requirement. It 

doesn’t need to be the full test set that is usually impractical; instead it can choose not to 

cover some aspects or to tolerate some errors. 
3
  Here the term “equivalent” is different to the one used in the context of test assessment, in 

which a mutant is equivalent only if there exist no tests that can kill this mutant. In the con-

text of robustness assessment, a mutant is equivalent if only the trusted test set cannot kill it. 
4
  This rule can be relaxed, namely mutating the semantics of only parts of the program instead 

of mutating the semantics of the whole program. This is useful e.g., when the program is de-

veloped by several people. 



3.1 Migration between Languages 

When a programmer migrates a program from one language to another, or simply 

starts to write a new program in a new (to him or her) language, he or she may have 

misunderstandings that come from the semantic differences between the new lan-

guage and the old one(s) he or she ever used. Therefore, in order for SMT to simulate 

such misunderstandings, we should first find out their source, namely the semantic 

differences, by comparison between Jason, GOAL and 2APL. Since these languages 

each have large semantic size and distinctive features, we use the following strategies 

to guide the derivation of the semantic differences. 

• Dividing the semantics of each of these languages into five aspects, as shown in 

Table 1. We do this because first of all, it provides a guide to derivation of seman-

tic differences. Second, we focus on examining four aspects of the semantics, 

namely deliberation step order, rule selection, rule execution, and mental state que-

ry and update, which are important and common to rule-based agent languages. We 

also roughly examine other aspects of the semantics in order for completeness. Fi-

nally, it is reasonable that common aspects of the semantics are more likely to 

cause misunderstandings than distinctive aspects in the context of migration, be-

cause distinctive aspects are usually supported by distinctive constructs that a pro-

grammer would normally take time to learn. 

• Focusing on semantic differences between similar constructs. As [5] suggests, such 

differences easily cause misunderstandings because when migrating a program a 

programmer may just copy the same or similar constructs without careful examina-

tion of their semantics given by the new language. 

• Examining both formal and informal semantics of these languages. We start with 

examining the formal semantics because they can be directly compared. We also 

verify those that are informally defined through programming and examination of 

the interpreter source code. 

• Focusing on the default options of the interpreter. The interpreters for these lan-

guages are customizable, for instance, the Jason agent architecture can be custom-

ized by inheritance of the Java class that implements the default agent architecture; 

the GOAL rule selection order can be customized in the GOAL agent description. 

We think default options are more likely to cause misunderstandings in the context 

of migration because if a programmer customizes an element it suggests he or she 

is familiar with its semantics. 

  



Table 1.  The aspects of the semantics of Jason, GOAL and 2APL (those marked with an aster-

isk are the ones we focus on) 

ID Aspect Description 

1 
Deliberation step 

order*  

Each deliberation cycle consists of a sequence of steps, e.g., rule 

selection à rule execution is a two-step sub-sequence. 

2 Rule selection*  
Rule selection is an important deliberation step in which one or 

several rules are chosen to be new execution candidates. 

3 Rule execution* 
Rule execution is an important deliberation step in which one or 

several execution candidates are executed. 

4 
Mental state query and 

update*  

Mental states (i.e., beliefs and goals) can be queried in some deliber-

ation steps such as rule selection and updated by execution of rules. 

5 Other Other aspects of the semantics not listed above. 

 

We present in Table 2 the semantic differences we found between Jason, GOAL 

and 2APL. These form the source of semantic changes required to apply SMT in the 

context of migration between these languages. 

Difference 1 comes from the order of two important deliberation steps, namely rule 

selection and rule execution. A Jason agent first selects a rule to be a new execution 

candidate and then executes an execution candidate. A GOAL agent processes its 

modules one by one, in each module it first selects and executes event rules and then 

selects and executes an action rule (both event and action rules are defined in the 

module being processed). A 2APL agent first selects action rules to be new execution 

candidates, and then executes all execution candidates, next selects an external event 

rule, an internal event rule and a message event rule to be new execution candidates. 

Difference 2 comes from the rule selection deliberation step. Jason, GOAL and 

2APL differ in two aspects of this step, namely the rule selection condition and the 

default rule selection order. For the rule selection condition, a Jason or 2APL rule can 

be selected to be a new execution candidate if both its trigger condition and guard 

condition get satisfied (“applicable”), while a GOAL rule can be selected if it is appli-

cable and the pre-condition of its first action gets satisfied (“enabled”). For the default 

rule selection order, Jason rules are selected in linear order (i.e., rules are examined in 

the order they appear in the agent description, and the first applicable rule is selected), 

GOAL action rules are selected in linear order while GOAL event rules are selected 

in “linearall” order (i.e., rules are examined in the order they appear in the agent de-

scription, and all enabled rules are selected), 2APL action rules are selected in “lin-

earall” order while 2APL event rules of each type (external, internal, message) are 

selected in linear order.  

Difference 3 comes from the rule execution deliberation step. In this step a Jason 

agent executes a single action in a single execution candidate, a GOAL agent executes 

all actions in each selected event rule and each selected action rule
5
, a 2APL agent 

executes a single action in each execution candidate. 

  

                                                             
5
 Unlike Jason and 2APL, a GOAL agent has no intention set or similar structure, so a GOAL 

rule is immediately attempted to completely execute once selected. 



 

Table 2.  Semantic differences between Jason, GOAL and 2APL 

ID Source Jason GOAL 2APL 

1 The order of 

rule selection 

and rule 

execution 

select a rule à execute 

a rule 

(select and execute event 

rules à select and 

execute an action rule) x 

Number_of_Modules 

select action rules à 

execute rules à select 

an external event rule 

à select an internal 

event rules à select a 

message event rule 

2 Rule  

selection 

• applicable 

• linear 

• enabled 

• linear (action 

rules) and linearall 
(event rules) 

• applicable 

• linear (event 

rules) and linear-
all (action rules) 

3 Rule  

execution 

• one rule/cycle 

• one action/rule 

• one rule/cycle 

(action rules) and 

all rules/cycle 

(event rules) 

• all actions/rule 

• all rules/cycle 

• one action/rule 

4 Belief query linear random  linear 

5 Belief  

addition 

start end end 

6 Goal query E à I; linear random linear 

7 Goal  

addition 

end of E end start or end 

8 Goal  

deletion 

delete the event or 

intention that relates to 

the goal φ 

delete all super-goals of 

the goal φ 

delete the goal φ, all 

sub-goals of φ or all 

super-goals of φ 

9 Goal type procedural declarative declarative 

10 Goal  

commitment 

strategy 

no blind blind 

 

Difference 4 comes from the belief query. In a Jason or 2APL agent, beliefs are 

queried in linear order (i.e., beliefs are examined in the order they are stored in the 

belief base, and the first matched belief is returned). In a GOAL agent, beliefs are 

queried in random order (i.e., beliefs are randomly accessed, and the first matched 

belief is returned). 

Difference 5 comes from the belief addition. In a Jason agent, a new belief is added 

to the start of the belief base. In a GOAL or 2APL agent a new belief is added to the 

end of the belief base. 

Difference 6 comes from the goal query. For a Jason agent, since it keeps implicit 

goals or desires in goal type events and goal type intentions instead of keeping explic-

it goals, it queries a goal by first examining its event base then its intention set, in 



each of which it follows linear query order. In a GOAL agent, goals are queried in 

random order. In a 2APL agent, goals are queried in linear order. 

Difference 7 comes from the goal addition. In a Jason or GOAL agent, a new goal 

is added to the end of the event or goal base. In a 2APL agent, a new goal is added to 

the start or the end of the goal base according to the relevant agent description (i.e., 

adopta or adoptz). 

Difference 8 comes from the goal deletion. Given a goal φ to be deleted, a Jason 

agent deletes the event or intention that relates to φ, a GOAL agent deletes all goals 

that have φ as a logical sub-goal, a 2APL agent deletes φ, all goals that are a logical 

sub-goal of φ, or all goals that have φ as a logical sub-goal according to the relevant 

agent description (i.e., dropgoal, dropsubgoal or dropsupergoal). 

Difference 9 comes from the goal type. Jason adopts procedural goals – goals that 

only serve as triggers of procedures although it supports declarative goal patterns. 

GOAL and 2APL adopt declarative goals – goals that also represent states of affairs 

to achieve. 

Difference 10 comes from the goal commitment strategy. Jason doesn’t adopt any 

goal commitment strategy (i.e., a goal is just dropped once its associated intention is 

removed as the result of completion or failure) although it supports various commit-

ment strategy patterns. GOAL and 2APL adopt blind goal commitment strategy, 

which requires a goal is pursued until it is achieved or declaratively dropped. 

3.2 Evolution of Languages 

When a programmer moves a program from a language to its successor, he or she 

may have misunderstandings that come from the semantic evolution. Another scenar-

io is that a programmer may want to examine whether a program written in a lan-

guage is compatible with a newer version of this language. To derive semantic chang-

es required to apply SMT in these scenarios, we should first find out their source, 

namely the semantic differences between these languages/versions. We take 2APL 

and 3APL [7] as an example. 2APL is a successor of 3APL that modifies and extends 

3APL. Table 3 shows some semantic differences between them. We explain these 

differences as follows. 

Table 3.  Semantics differences between 2APL and 3APL 

ID Source 2APL 3APL 

1 PR-rules plan repair plan revision 

2 
The order of rule selection 

and rule execution 
see Table 2 

select an action rule à select a 

PR-rule à execute a rule 

3 Action rule selection linearall linear 

4 Rule execution all rules/cycle one rule/cycle 

 

Difference 1 comes from the PR-rules. In 2APL, the abbreviation “PR” means 

“plan repair”, a PR-rule (i.e. an internal event rule) is selected only when a relevant 

plan fails. In 3APL, “PR” means “plan revision”, a PR-rule is selected when matching 

some plan. 



Difference 2 comes from the order of rule selection and rule execution deliberation 

steps. The order adopted by a 2APL agent has been described in Sub-section 3.1. In 

contrast, a 3APL agent selects an action rule then a PR-rule to be new execution can-

didates then executes an execution candidate. 

Difference 3 comes from the action rule selection order. As described in Sub-

section 3.1, 2APL action rules are selected in “linearall” order. In contrast, 3APL 

action rules are selected in linear order. 

Difference 4 comes from the rule execution deliberation step. As described in Sub-

section 3.1, a 2APL agent executes all execution candidates in a deliberation cycle. In 

contrast, a 3APL agent executes a single execution candidate. 

3.3 Common Misunderstandings 

A programmer may have misunderstandings that are common to a particular group of 

people he or she belongs to. Such misunderstandings can be identified by analysis of 

these people’s common mistakes or faults. We take GOAL as an example: Table 4 

shows some possible misunderstandings of the GOAL’s semantics that are derived 

from some common faults made by GOAL novice programmers [18]. We explain 

these misunderstandings as follows. 

Table 4.  Possible novice programmers' misunderstandings of GOAL 

ID Fault Possible Misunderstanding 

1 Wrong rule order By default rules are selected in another available order. 

2 
A single rule including two 

user-defined actions 
A rule can have more than one user-defined action. 

3 
Using “if then” instead of 

“forall do” 

Existential quantification can be used for universal quantifica-

tion. 

 

Possible misunderstanding 1 comes from the fault of the wrong rule order. If a 

programmer makes this fault in the GOAL agent description, he or she may have the 

misunderstanding that rules are selected in another available order
6
 by default, e.g., 

action rules are selected in “linearall” order rather than linear order. 

Possible misunderstanding 2 comes from the fault of a single rule including two 

user-defined actions. If a programmer makes this fault, he or she may have the mis-

understanding that this is allowed like other agent languages. 

Possible misunderstanding 3 comes from the fault of using “if then” instead of 

“forall do”. If a programmer makes this fault, he or she may have the misunderstand-

ing that existential quantification can be used for universal quantification. 

                                                             
6
  GOAL supports four available rule evaluation orders: linear, linearall, random and ran-

domall. 



3.4 Ambiguity of Informal Semantics 

A programmer may have misunderstandings of the semantics that are not precisely or 

formally defined. For instance, [3] gives two examples of such misunderstandings of 

Jason as shown in Table 5. We explain these misunderstandings as follows. 

Table 5.  Possible misunderstandings due to Jason’s informal semantics 

ID Source Possible Misunderstanding 

1 Goal deletion event 
 “when an intention fails” à “when an intention is re-

moved” 

2 Test goal addition event 
 “when a test goal action fails” à “when a test goal action 

is executed” 

 

Possible misunderstanding 1 comes from the goal deletion event (-!e or -?e). A 

goal deletion event is generated when an intention with the corresponding goal 

achievement event (+!e or +?e) fails. A programmer may have the misunderstanding 

that this event is generated when this intention is removed as the result of completion 

or failure. 

Possible misunderstanding 2 comes from the test goal addition event (+?e). A test 

goal addition event is generated when the corresponding test goal action (?e) fails. A 

programmer may have the misunderstanding that this event is generated when this 

action is executed, which is similar to the achievement goal addition event (+!e). 

3.5 Discussion 

SMT for Jason, GOAL and 2APL is of particular interest in the contexts discussed 

above considering: 

• These languages are similar. As mentioned above they have similar semantics and 

constructs. Subtle semantic differences between similar constructs easily cause 

misunderstandings. 

• These languages have elements that are allowed to customize. By mutating the 

semantics to represent different customizations it is possible to explore the robust-

ness of a program. 

4 Semantic Mutation Operators for Jason, GOAL and 2APL 

According to our derived sources of semantic changes required to apply SMT in dif-

ferent contexts, we derive three respective sets of semantic mutation operators for 

Jason, GOAL and 2APL as shown in Table 6 – 8. Due to space limitations we don’t 

explain each semantic mutation operator in details. 

We observe that most of these operators act on the four aspects of the semantics we 

focus on, namely deliberation step order, rule selection, rule execution and mental 

state query and update (see Table 1). By further analysis we derive a set of semantic 

mutation operator classes for rule-based agent languages as shown in Table 9. These 



classes provide a guide to derivation of semantic mutation operators for these lan-

guages.  

Table 6.  Semantic mutation operators for Jason 

ID Semantic Mutation Operator Description 

1 Rule selection order change (RSO) linear à linearall 

2 Rule execution strategy change (RES) one rule/cycle à all rules/cycle 

3 Rule execution strategy change 2 (RES2) 
interleaved execution of rules à non-interleaved 

execution of rules 

4 Belief query order change (BQO) linear à random 

5 Belief addition position change (BAP) start à end 

6 Goal query order change (GQO) linear à random 

7 Goal addition position change (GAP) end à start 

8 Goal deletion event semantics change 

(GDES) 
“when a plan fails” à “when a plan is removed” 

9 Test goal achievement event semantics 

change (TGAES) 

“when a test goal action fails” à “when a test goal 

action is executed” 

Table 7.  Semantic mutation operators for GOAL 

ID Semantic Mutation Operator Description 

1 Rule selection and execution order 

change (RSEO) 

select and execute event rules then an action rule à 

select and execute an action rule then event rules 

2 Rule selection condition change (RSC) enabled à applicable 

3 Rule selection order change (RSO) change between linear, linearall, random and ran-

domall 

4 Belief query order change (BQO) random à linear 

5 Belief addition position change (BAP) end à start 

6 Goal query order change (GQO) random à linear 

7 Goal addition position change (GAP) end à start 

8 Goal deletion strategy change (GDS) delete all super-goals of φ à delete only φ or delete 

all sub-goals of φ 

9 The maximum number of user-defined 

actions change (MNUA) 
1 à more than 1 

10 Quantification type change (QT) make existential quantification (“if then”) used for 

universal quantification (“forall do”) 

 

  



Table 8.  Semantic mutation operators for 2APL 

ID Semantic Mutation Operator Description 

1 
Rule selection and execution order 

change (RSEO) 

change the original order “select action rules à 

execute rules à select event rules” to “select action 

rules à select event rules à execute rules” or “se-

lect event rules à select action rules à execute 

rules” 

2 Rule selection condition change (RSC) applicable à enabled 

3 Rule selection order change (RSO) change between linear and linearall 

4 Rule execution strategy change (RES) all rules/cycle à one rule/cycle 

5 Belief query order change (BQO) linear à random 

6 Belief addition position change (BAP) end à start 

7 Goal query order change (GQO) linear à random 

8 PR-rule semantics change (PRRS) plan repair à plan revision 

Table 9.  Semantic mutation operator classes for rule-based agent languages 

ID Semantic Mutation Operator Class 

1 Rule selection and execution order change 

2 Rule selection condition change 

3 Rule selection order change 

4 Rule execution strategy change 

5 Mental state query order change 

6 Mental state addition position change 

7 Mental state deletion strategy change 

8 Other change 

5 Evaluation of Semantic Mutation Operators for Jason 

We have implemented our derived semantic mutation operators for Jason (as shown 

in Table 6) by modifying the source code of the Jason interpreter. Here we use two 

Jason projects in a preliminary evaluation of these operators, in order to assess the 

potential of SMT to assess tests and program robustness. 

The Jason projects we chose are two of the examples released with the Jason inter-

preter. The first project is a simple one called Domestic Robot (DR), in which a do-

mestic robot gets beer from the fridge and then serves its owner the beer until the 

owner reaches a certain limit of drinking. The robot will ask a supermarket to deliver 

beer when the fridge is empty. The second project is a relatively complex one called 

Gold Miners (the 2
nd

 version, “GM II”), in which two teams of gold-mining agents 

compete against each other to retrieve as many pieces of gold scatters as possible in a 

grid-like territory, finding suitable paths to then take the retrieved gold to a depot. 

We use two sets of randomly generated tests to test these Jason projects respective-

ly (40 tests for DR and 102 tests for GM II). Each test is a starting configuration of 

the Jason project, which is represented by a set of parameters extracted from the agent 

description and the environment description such as the limit of drinking and the map 

size. 



We run each Jason project under the original interpreter and each modified version 

of the interpreter (that implements a semantic mutation operator) against the corre-

sponding test set, after which we collect and analyze the SMT results. We present the 

final results in Table 10. 

Table 10.  Results of semantic mutation testing 

Semantic Mutation Operator Resultant Mutant of DR Resultant Mutant of GM II 

RSO NE K 

RES E E 

RES2 NE K 

BQO E E 

BAP E NE 

GQO N/A E 

GAP E E 

GDES K K 

TGAES K N/A 

 

As is normal for SMT, a semantic mutation operator here leads to a single semantic 

mutant if the interpretation of the Jason project involves the relevant semantics; oth-

erwise the operator is not applicable to the Jason project (N/A). The resultant mutants 

are either equivalent to the original interpretation (E), non-equivalent and killed by 

the test set (K), or non-equivalent and not killed by the test set (NE).  

Test Assessment 

The non-equivalent and unkilled mutants indicate the weaknesses in the test sets. 

In order to kill such a mutant that the RSO operator leads to, we need a test that can 

capture the differences in the resultant agent behaviour between selecting all applica-

ble plans and selecting only the first applicable plan. These plans must have the same 

triggering event, the contexts that are not mutually exclusive and the ability to affect 

the agent behaviour. In the DR project, the only two such plans are the plan to get 

beer when the fridge is empty (p1) and the plan to get beer when the owner reaches 

the limit of drinking (p2). Therefore, we can design a test on which the limit of drink-

ing is just reached when there is no beer in the fridge by e.g., modifying the initial 

amount of beer in the fridge. This test will cause p2 to be executed twice under the 

mutated interpreter so that the owner will be advised about drinking twice. 

In order to kill the non-equivalent mutant that the RES2 operator leads to, we need 

a test that can capture the differences in the resultant agent behaviour between inter-

leaved execution of plans and non-interleaved execution of plans. These plans must 

have a chance to compete for execution and the ability to affect the agent behaviour. 

In the DR project, the only two such plans are the plan to move to the fridge and the 

plan to notify the current time (as requested by the owner on occasion). Therefore, we 

can design a test that can detect the difference in the agent behaviour – the robot un-

der the original interpreter has a chance to notify the current time while moving to the 

fridge, while it always notifies the time after arriving at the fridge under the mutated 

interpreter. It is worth noting that since the robot takes much longer to stay at the 



fridge (a few seconds) than to move to the fridge (less than one second) on the origi-

nal test set, the agent has a much bigger chance to notify the time at the fridge than on 

the move although under the original interpreter. Therefore, we can increase the 

chance to notify the time on the move by e.g., largely increasing the map size (so that 

the robot will take longer to move), to make it more likely we will kill the mutant.  

In order to kill the non-equivalent mutant that the BAP operator leads to, we need a 

test that can capture the differences in the resultant agent behaviour between different 

orderings of beliefs. In the GM II project, there is only one description that causes the 

order of beliefs to matter – the actions to announce to other teammates all gold depos-

its that the gold miner agent perceived and that have not been handled or announced 

yet. Under the original interpreter, the gold miner agent will first announce the gold it 

perceived most recently; under the mutated interpreter, it will first announce the gold 

it perceived initially. The different orders of gold announcements may cause other 

teammates to bid for and be allocated different gold. Therefore, we can add a test that 

can detect this difference. It is worth noting that this difference to the original behav-

iour may not be a violation of the correctness requirements; instead it may be just a 

tiny variation that reflects the non-determinism of multi-agent systems, in which case 

the mutant is considered as equivalent.  

Robustness Assessment 

Where our operators produced equivalent mutants, it indicates that the Jason pro-

ject is robust to the corresponding semantic changes. From these equivalent mutants 

we can come up with some ideas of how to resist these changes. For instance, in order 

to resist the semantic changes caused by the BQO and GQO operators while not af-

fecting the agent behaviour under the original interpreter, the agent description has to 

be improved so that there can be only one matched belief or goal at most for each 

query. To resist the semantic change caused by the GAP operator, the agent descrip-

tion can be improved so that the agent behaviour is independent of the order of the 

goal type events and intentions. 

Those mutants that are or can be killed indicate that the Jason project is not robust 

to the corresponding semantic changes. For instance, the DR project does not behave 

correctly under the semantic change caused by the RSO operator. In order to be robust 

to this change the agent description can be improved so that there can be only one 

applicable plan at most in any case. As another example, the DR project does not 

behave correctly under the semantic change caused by the RES2 operator. In order to 

be robust to this change the agent description can be improved so that there can be 

only one non-empty competitive intention at most in any case. Another example is 

that the GM II project cannot resist the semantic change caused by the BAP operator. 

In order to be robust to this change the agent description can be improved so that the 

agent behaviour is independent of the order of the beliefs. 



6 Conclusions 

Semantic mutation testing (SMT) is a useful technique for assessing tests and the 

robustness of a program to semantic changes. In this paper we applied SMT to three 

agent languages, namely Jason, GOAL and 2APL. We showed that SMT for these 

languages is useful in several contexts – migration between languages, evolution of 

languages, common misunderstandings, and ambiguity of informal semantics. We 

derived sets of semantic mutation operators for these languages, and a broader set of 

semantic mutation operator classes that are applicable to rule-based agent languages. 

Finally, we used two Jason projects in a preliminary evaluation of the semantic muta-

tion operators for Jason. The results suggest that SMT can indicate some weaknesses 

in test sets and programs. 

Our future work will focus on further evaluation of the semantic mutation opera-

tors for Jason. To further evaluate the ability of these operators to assess tests, we will 

examine their representativeness in comparison to realistic misunderstandings and 

their power by looking for more hard-to-kill mutants (as we have done in this paper), 

as suggested by [8]. To further evaluate the ability of these operators to assess pro-

gram robustness, we will apply them to more Jason projects and provide specific rules 

to change the agent description in order to improve robustness. 
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