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USING CONTEXTUAL INFORMATION IN JOINT FACTOR EIGENSPACE MLLR FOR

SPEECH RECOGNITION IN DIVERSE SCENARIOS

Oscar Saz, Thomas Hain

Speech and Hearing Research Group, The University of Sheffield, Sheffield, UK

ABSTRACT

This paper presents a new approach for rapid adaptation in

the presence of highly diverse scenarios that takes advantage

of information describing the input signals. We introduce

a new method for joint factorisation of the background and

the speaker in an eigenspace MLLR framework: Joint Fac-

tor Eigenspace MLLR (JFEMLLR). We further propose to

use contextual information describing the speaker and back-

ground, such as tags or more complex metadata, to provide

an immediate estimation of the best MLLR transformation for

the utterance. This provides instant adaptation, since it does

not require any transcription from a previous decoding stage.

Evaluation in a highly diverse Automatic Speech Recognition

(ASR) task, a modified version of WSJCAM0, yields an im-

provement of 26.9% over the baseline, which is an extra 1.2%

reduction over two–pass MLLR adaptation.

Index Terms— Speech recognition, adaptation, eigenspace

MLLR, joint factorisation, metadata

1. INTRODUCTION

One of the main challenges in Automatic Speech Recognition

(ASR) is to achieve robustness in highly diverse scenarios.

Speaker adaptation techniques, such as Maximum Likelihood

Linear Regression (MLLR) [1], are used to deal with the vari-

ability introduced by multiple speakers. Equally, noise com-

pensation techniques, such as SPLICE [2, 3], are used in de-

graded acoustic conditions. However, the presence of diverse

scenarios, with unbalanced or unreliable data, also degrades

the performance of adaptation and normalisation techniques.

Acoustic model factorisation techniques in ASR [4, 5, 6,

7], which separate the many factors in an audio signal, are

gaining relevance in dealing with diverse acoustic conditions,

as they did before in speaker identification tasks [8, 9]. Early

techniques for providing factorisation in ASR were Cluster

Adaptive Training (CAT) [10] and eigenspace MLLR [11,

12]. The latter was proposed to represent the speaker variabil-

ity as a set of eigenvoices extracted via Principal Component

Analysis (PCA) [13] from a set of training speakers. For a
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new speaker, an MLLR transformation is estimated as a lin-

ear combination of these eigenvoices. This technique was also

shown to deal with the variablity in the background [14, 15].

Recently, there is a growing trend for augmenting audio–

visual data with contextual information and metadata describ-

ing its content. This metadata already exists for some ASR

tasks where the diversity of scenarios is of more concern, like

meetings or media [16] and can provide useful information

regarding speakers and acoustic conditions. So far, the only

metadata commonly used are speaker labels in order to per-

form speaker adaptation. But the information available can be

much richer than that and it is, mostly, unexploited.

Our goal is to make all this existing metadata useful for

ASR tasks. Since there are many factors that can be described

by this metatada, the use of acoustic factorisation will be re-

quired. For that, we propose a new joint factor approach in

eigenspace MLLR and a novel methodology to apply adap-

tation based only in context information, such as tags. This

does not require any prior processing of the signal, since only

tag information is used, resulting in instant adaptation.

This paper is organised as follows: Section 2 reviews

eigenspace MLLR adaptation. Section 3 presents our pro-

posal for joint factorisation. In Section 4 we derive how to

use contextual information to estimate the eigenspace coeffi-

cients. Then, in Section 5 we present our experimental setup

with WSJCAM0; followed by Sections 6 and 7 where the

results and conclusions to this work are presented.

2. EIGENSPACE MLLR

MLLR is an adaptation technique that learns a transformation

(W ), consisting of transformation matrix A and bias vector b,

on the means of the Gaussian distributions (µ) of a speaker

independent Hidden Markov Model (HMM), as Equation 1.

µ̂ = Aµ+ b =
[

b A
]

[

1
µ

]

= Wµ (1)

Eigenspace MLLR was proposed when little adaptation

data exists [11, 12]. In it, eigenvoices (Wm) are trained per-

forming PCA on a set of MLLR transformations from a large

number of training speakers (a hundred or more) [11]. For a

new speaker, an MLLR transformation (Ŵ ) is estimated as a

linear combination of the M+1 most relevant eigenvoices, as



shown in Equation 2. The first eigenvoice (W0) is the mean

of the space, and its coefficient (α0) is forced to be 1 [14].

Ŵ =

M
∑

m=0

αm ·Wm = W0 +

M
∑

m=1

αm ·Wm (2)

The coefficients αm are obtained via Maximum Likeli-

hood Eigen Decomposition (MLED) [11, 14], in a way sim-

ilar to [10], maximising the likelihood of the data given the

model, although discriminative approaches exist [17]. Using

a small number of eigenvoices (M ≈ 50) [11], just a few

seconds of speech are required. Other works in eigenspace

MLLR [14] have proposed using also background–specific

MLLR transformations when calculating the eigenvoices. In

this case, background variability is also modelled, leading to

improvements in noisy background conditions.

3. JOINT FACTOR EIGENSPACE MLLR (JFEMLLR)

Eigenspace MLLR with speaker and background transforms

[14] defines a full space where some eigenspace MLLR trans-

formations represent background characteristics while other

eigenspace MLLR transformations represent speaker charac-

teristics. Follow–up work [15] proposed separating the back-

ground and speaker influence by learning two different sets of

eigenspaces, with a small improvement in performance.

We propose to perform joint factorisation of the back-

ground and speaker spaces in a similar fashion to Joint Factor

Analysis (JFA) [8]. The formulation of this proposal is

shown in Equation 3, where the final MLLR transforma-

tion estimated for an input utterance is the combination of

three elements: The mean of the space (W0); N background

eigenspace MLLR transformations (W bgd
n ); and P speaker

eigenspace MLLR transformations (W spk
p )

Ŵ = W0 +

N
∑

n=1

βn ·W bgd
n +

P
∑

p=1

γp ·W
spk
p (3)

To achieve joint factorisation, the background and speaker

eigenspaces are trained in separated stages. Initially, PCA

is used on the training data to create the full variability

eigenspace (Wm) and a background eigenspace (W bgd
n ).

These eigenspaces are applied to the training data to de-

fine the MLLR transformation for each utterance in both

the full variability and background spaces. Substracting the

background–space transformation from the full variability

transformation obtains the speaker residual for each utter-

ance. Finally, performing PCA on these residuals will provide

the set of speaker–specific eigenbases (W spk
p ).

For each test utterance, the combination coefficients for

each set of bases (βn for background and γp for speaker) are

estimated separately using the MLED algorithm and the final

transformation is calculated as in Equation 3.

4. USING CONTEXTUAL INFORMATION IN

EIGENSPACE MLLR

The main proposal of this work is the use of contextual in-

formation when estimating the vector of combination coeffi-

cients φ = [α0, ..., αM ]T in eigenspace MLLR and, by exten-

sion, in JFEMLLR (βn and γp instead of αm). At this point,

contextual information will be defined as a set of discrete tags

used to describe properties of a speech signal. A tag cloud of

T tags (Tags = {Tag1, Tag2, ..., TagT }) can be set for any

input signal, describing different characteristics of the speaker

(gender, age, ...) or the background (channel, noise, ...).

By calculating the coefficients in the eigenspace MLLR

framework for all the training utterances using the MLED al-

gorithm, it is possible to estimate a probability distribution of

these coefficients for any given tag Tagt that appears in the

training data. Using a Gaussian Mixture Model (GMM) of G

Gaussians, the likelihood of the coefficients φ given tag Tagt

is calculated as in Equation 4.

P (φ|Tagt) =

G
∑

g=1

cTagt

g ·N(φ;µTagt

g ,ΣTagt

g ) (4)

For an input signal with given tags Tags the coefficients

that maximise the likelihood of those tags are estimated in

Equation 5.
φ̂ = argmax

φ

P (φ|Tags) (5)

Assuming the tags to be independent it is possible to max-

imise the log–likelihood in Equation 6, which can be approx-

imated by Equation 7.

Q(φ) =

T
∑

t=1

G
∑

g=1

log
(

cTagt

g ·N(φ;µTagt

g ,ΣTagt

g )
)

(6)

Q(φ) =
1

2

T
∑

t=1

G
∑

g=1

[

(φ− µTagt

g )T (ΣTagt

g )−1(φ− µTagt

g )
]

(7)

Q(φ) is maximised by equalling the derivative in Equa-

tion 8 to zero, leading to Equation 9 where φ is calculated.

∂Q(φ)

∂φ
=

T
∑

t=1

G
∑

g=1

[

(ΣTagt

g )−1φ− (ΣTagt

g )−1µTagt

g

]

(8)

T
∑

t=1

G
∑

g=1

[

(ΣTagt

g )−1µTagt

g

]

=
[

T
∑

t=1

G
∑

g=1

(ΣTagt

g )−1

]

· φ (9)

In Equation 9, if there is only one tag modelled with a

single Gaussian, the coefficients will result to be the mean of

such Gaussian, since this is the only information available to

estimate them. If more tags are used, the resulting coefficients

will be an interpolation among the means of their models.
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Fig. 1. Eigenspace MLLR framework

The eigenspace MLLR framework in Figure 1 is replaced

by Figure 2. The first decoding to obtain a transcription for

the MLLR estimation is not required when tags are used.

Now, the MLLR transform can be calculated instantly.

5. EXPERIMENTAL SETUP

The proposed algorithms were evaluated on a modified ver-

sion of the WSJCAM0 corpus. WSJCAM0 is a re–recording

of the WSJ corpus by British speakers [18]. 7,387 utterances

from 86 speakers were used for model training and 4 sets to-

talling 1,315 utterances from 18 speakers were used for eval-

uation. Two test sets are 5,000–word closed vocabulary tasks

with a bigram language model, the other two sets are 20,000–

word open vocabulary tasks with a trigram language model.

Modified train and test sets were generated introducing

highly diverse background conditions. These sets will be fur-

ther referred to as Diverse sets, opposed to the original Clean

sets. The diverse backgrounds are defined by three variables:

• Channel: Close–talk microphone (50%) or table–top

microphone (50%).

• Background: Clean background (33%) or music back-

ground (33%), divided equally in orchestral and popu-

lar contemporary, or noisy background (33%), divided

equally in traffic, outdoors, cocktail party and applause.

• Signal–to–Noise Ratio (SNR): Uniform distribution

from 5 to 15dB if music or noise are present.

Metadata is available in the form of tags. Each signal has

3 tags describing the speaker (gender, age and accent) as de-

fined in the WSJCAM0 corpus and another 3 describing the

background (channel, noise type and SNR) as explained pre-

viously. The tags were augmented with combinations of them

(for instance, the combination of gender and age).

The ASR system used was a Hidden Markov Model

Toolkit (HTK) [19] setup. Crossword triphone models were

trained using Maximum Likelihood (ML), with 16 Gaussian

mixtures per state. 39-dimension feature vectors were used

with 13 Perceptual Linear Predictive (PLP) features [20] and

their first and second derivatives. Cepstral Mean Normaliza-

tion (CMN) was applied to the static features.
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Fig. 2. Eigenspace MLLR with contextual information

5.1. Baseline results

The baseline Word Error Rates (WER) for speaker indepen-

dent ML models are shown on Table 1. The results on Clean

data show an average WER of 9.5%. Using the Clean mod-

els on the Diverse sets, the WER rose significantly to 33.1%.

Training models on the Diverse training data the results on

the Diverse test sets saw their WER reduced to 20.3%.

Table 1. Baseline WER(%) on the modified WSJCAM0 data.

Train Test 5K set 20K set Total

Clean Clean 5.8 13.0 9.5

Clean Diverse 27.0 39.1 33.1

Diverse Diverse 14.9 25.5 20.3

6. RESULTS

The first adaptation methods evaluated in the decoding of

the Diverse test sets with models trained on Clean data were

MLLR and eigenspace MLLR. All transformations used were

full matrices with 5 regression classes. The results in Table

2 show that speaker adaptation yielded a 25.7% relative im-

provement over the baseline; since none of the test speakers

appeared in the training set, speaker adaptation was per-

formed unsupervised after a first decoding. Adaptation to the

background, by training transformations for each combina-

tion of channel, background and SNR in a supervised fashion

from the Diverse training data, provided 26.9% improvement.

Finally, an eigenspace of 30 bases was created from speaker

and background transformations trained from the Diverse

training data. The relative improvement with eigenspace

MLLR was 31.1%, significantly higher than using MLLR

adaptation. Eigenspace MLLR was able to provide solid

improvement due to its ability to factorise the space.

Table 2. WER(%) with MLLR and eigenMLLR adaptation.

Adaptation 5K set 20K set Total

Unsupervised speaker MLLR 19.3 29.8 24.6

Supervised background MLLR 18.5 29.9 24.2

Eigenspace MLLR 17.0 28.5 22.8

The JFEMLLR approach was evaluated afterwards. The



results in Table 3 show how it achieved equal performance to

the full variability eigenspace MLLR (30.5% improvement).

Within JFEMLLR, it was possible to perform adaptation us-

ing each of the subspaces separately. The factorised back-

ground eigenspace MLLR yielded 24.1% WER and the fac-

torised speaker eigenspace MLLR gave 25.0% WER. In this

case, 15 bases were used for each subspace, so the jointly fac-

torised space was modelled with 30 bases.

Table 3. WER(%) with JFEMLLR adaptation.

Eigenspace 5K set 20K set Total

Background 18.1 29.9 24.1

Speaker 18.8 31.1 25.0

Background & Speaker 17.3 28.6 23.0

Finally, the use of the tags assigned to each utterance was

introduced in the estimation of eigenspace MLLR and JFEM-

LLR transformations. The distribution of the combination

coefficients for each tag was modelled as a single Gaussian.

Table 4 shows the results for these experiments, where all the

cases showed solid improvements over the baseline. Mod-

elling speaker tags alone provided less improvement than

modelling background tags alone (21.5% to 27.5%, respec-

tively). In this case, the background tags were more informa-

tive and more useful for adaptation. Combining both sources

of tags degraded the performance in eigenspace MLLR with

respect to using only background tags, while it provided a

further 1.2% improvement in JFEMLLR. This indicated that

having both spaces jointly factorised was better when it came

to model the information provided by contextual information.

Table 4. WER(%) with tags in eigenMLLR and JFEMLLR.

Space Tags used 5K set 20K set Total

EigenMLLR

Background 18.6 30.5 24.6

Speaker 20.0 32.3 26.3

Backg. + Spk. 18.9 30.8 24.9

JFEMLLR

Background 18.6 30.4 24.6

Speaker 19.8 32.0 26.0

Backg. + Spk. 18.2 30.1 24.2

6.1. Influence of the amount of training data

One of the main advantages of this proposed method is that it

does not require any prior processing or first pass of decoding

of the input utterance. In this way, it can be used to provide

instant adaptation in a single pass of decoding. However, it

requires training data from the diverse scenarios to extract

the eigenbases and train the a priori models of the tags. In

most cases, this type of diverse data is only available in small

amounts, which could become a drawback. An evaluation

on the robustness of this approach to the amount of Diverse

training data available was performed. For that, an approx-

imate one fifth of the original Diverse training data (1,515

utterances) was randomly extracted. A comparison was made

among training ML models, supervised background MLLR

transformations and JFEMLLR with tag models, using this

reduced training set. The results are presented in Table 5. ML

models and supervised MLLR transformations suffered a sig-

nificant degradation with limited data, while JFEMLLR using

tag models gave the same performance as with the full train-

ing set. This indicated that large amounts of training data are

not strictly required to provide adaptation in this framework.

Table 5. WER(%) with limited Diverse training data.

Condition 5K set 20K set Total

Diverse ML models 19.7 32.8 26.3

Supervised background MLLR 19.3 31.3 25.4

JFEMLLR with tag models 18.1 30.2 24.2

7. CONCLUSIONS

With the results seen we can conclude that using contextual

information in a joint factorisation scheme is able to provide

instant adaptation to diverse backgrounds and speakers. This

adaptation only requires the processing of the utterance’s tags

to provide an MLLR transformation that can be used directly

in decoding. The joint factorisation scheme proposed (JFEM-

LLR) has been shown to be useful to deal with background

and speaker metadata separately.

Although our approach requires training data in similar

conditions to those existing in the evaluation sets, it was

shown to be robust to data sparsity compared to other ap-

proaches that also require training data like ML training or

supervised MLLR. Furthermore, not all the possible condi-

tions are required to exist in the training set, since the model

can even be used with very broad categories, such as speaker

gender or a rough description of the type of background noise.

In future work, we aim to investigate how to deal not

only with discrete tags but with naturally occurring metadata.

This metadata could be, for instance, agenda briefs in meeting

recordings or synopsis in media programmes. This requires

processing of unstructured data into a set of categories that

can describe either speaker or background in a way that can

be handled by the proposed models.

As metadata and other sources of information keep grow-

ing and becoming more usual in audio–visual data sets, tech-

niques like the one proposed can help improve the perfor-

mance of ASR systems. This includes transcription tools for

tasks where there is a high diversity of speakers and scenar-

ios, but where metadata is usually available, and that could

benefit from it.
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