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Online Discovery of AUV Control Policies

to Overcome Thruster Failures

Seyed Reza Ahmadzadeh1, Matteo Leonetti2, Arnau Carrera3,

Marc Carreras3, Petar Kormushev1, and Darwin G. Caldwell1

Abstract— We investigate methods to improve fault-tolerance
of Autonomous Underwater Vehicles (AUVs) to increase their
reliability and persistent autonomy. We propose a learning-
based approach that is able to discover new control policies
to overcome thruster failures as they happen. The proposed
approach is a model-based direct policy search that learns
on an on-board simulated model of the AUV. The model is
adapted to a new condition when a fault is detected and isolated.
Since the approach generates an optimal trajectory, the learned
fault-tolerant policy is able to navigate the AUV towards a
specified target with minimum cost. Finally, the learned policy
is executed on the real robot in a closed-loop using the state
feedback of the AUV. Unlike most existing methods which rely
on the redundancy of thrusters, our approach is also applicable
when the AUV becomes under-actuated in the presence of a
fault. To validate the feasibility and efficiency of the presented
approach, we evaluate it with three learning algorithms and
three policy representations with increasing complexity. The
proposed method is tested on a real AUV, Girona500.

I. INTRODUCTION

Nowadays Autonomous Underwater Vehicles (AUVs) are

required to operate over longer missions while dealing with

extreme uncertainties in unstructured environments. In such

conditions an undetected failure can lead to the loss of the

vehicle, which is a dramatic event. Even in the case that

the failure is detected, in order to terminate the mission

and rescue the AUV safely, a fault-tolerant strategy must be

considered. In Remotely Operated Vehicles (ROVs), a failure

detection strategy helps a skilled human operator to make a

proper decision. The human expert then decides whether to

terminate the mission or to take a proportionate fault-tolerant

strategy, e.g., turning off a thruster and use the others instead.

Although the failure can happen in all subsystems of the

ROV or AUV, in this paper we focus on the case of thruster

failure. Thruster blocking, rotor failure, and flooded thrusters

are some of the factors that can lead to a thruster failure in

real missions [2].

By definition, fault detection is the process of monitoring a

system in order to recognize the presence of a failure; fault

isolation or diagnosis is the capability to determine which
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Fig. 1. The Girona500 AUV equipped with 5 thrusters (3 are visible in
the photo). In our experiment, one of the surge thrusters is broken.

specific subsystem (thruster in our case), is subject to failure.

The fault detection and isolation scheme for thruster failures

has been extensively investigated in the literature and has

several effective solutions [2], [3], [4], [5].

Fault tolerance is the capability to complete the mis-

sion despite the failure of one or more subsystems. It is

referred to also as fault control, fault accommodation or

control reconfiguration. Most of the existing fault-tolerant

schemes consider some actuator redundancies, so that the

vehicle remains actuated in the Degree of Freedom (DOF)

of interest, even if a fault occurs in one of the thrusters.

For this category of problems a general solution has been

found: reallocating the desired forces on the vehicle over

the working thrusters [3], [2], [6], [7]. While the problem

has been extensively considered in the case of actuator-

redundant vehicles, the literature is still lacking a unifying

approach if a broken thruster makes the AUV under-actuated

[8]. A few works are targeted at AUV controlled with

surfaces [9], [10], [11]. Those methods are specific to the

kinematics and dynamics models of the considered AUV.

Our method, on the other hand, makes use of the model

for simulation, but not in the derivation of the controller,

which is of a pre-defined form. We use a linear function

approximator to represent the policy, whose parameters are

learned depending on the AUV model and the particular task

at hand. M. Andonian et al. [12], design trajectories for an

AUV to overcome an actuator failure and accomplishing the

mission using geometric control theory. They model the AUV

as a forced affine connection control system, and develop

the control strategies through the use of integral curves.

They present a scenario and compute the control signals in



simulation. The presented geometric control is an open-loop

control strategy, therefore its validity is mainly theoretical,

because of the inevitable presence of unmodeled dynamics

and external disturbances. Finally, Choi and Kondo [13],

provide an analysis of the thruster failure combinations for a

vehicle similar to ours. Their method is simple and in some

circumstances applicable to our problem. However, as most

of the other papers, it addresses the problem of tracking a

given trajectory, and does not take into account the trajectory

generation. While this is a common and relevant control

problem, in the case of a thruster failure the pre-defined

trajectory for a functional AUV may not be optimal for

the faulty AUV anymore. Our method generates an optimal

trajectory, that is a trajectory that accomplishes the given

task achieving the lowest cost in the presence of the fault.

Nonetheless, their method could be combined with our open-

loop policy, providing an alternative way of having feedback

control on a trajectory designed for the faulty AUV.

We consider the problem of using the functional thrusters

to bring the vehicle safely to a station where it can be

rescued, when the thruster failure reduces the mobility of

the vehicle, and hence it cannot maneuver as previously

prescribed. We build on the work by Leonetti et al. [14]

which introduced a method to compute a fault-tolerant policy,

and can be utilized in both the cases of redundant and

under-actuated AUVs. The original work is limited in its

applicability in open water by the fact that the only policy

that can be computed online is an open-loop function of

time. In this paper, we performed extensive simulated exper-

iments and individuated an optimization algorithm that can

compute online a state-dependent policy, closing the loop

with perceptions. Consequently, we are able to evaluate the

resulting controller on the real AUV. The AUV we use for our

experiments is Girona500 [15] which is used in PANDORA

[1]. Girona500 is a reconfigurable AUV equipped with

typical navigation sensors (e.g. Doppler Velocity Log, etc.),

basic survey equipments (e.g. side scan sonar, video camera,

etc.), and various thruster layouts. In the layout we selected,

the AUV is equipped with 5 thrusters: 2 heave, 2 surge, and

1 sway thrusters.

II. METHODOLOGY

We frame our approach in the context of model-based

direct policy search for reinforcement learning. This frame-

work comprises a dynamic model of the vehicle (Equation

1), a parameterized representation for the control policy, a

cost function, and an optimization algorithm.

A. AUV Model

According to the standard modeling procedure for under-

water vehicles [16], an AUV can be modeled as a rigid body

subject to external forces and torques while moving in a fluid

environment. The 6 DOF equations of motion for the AUV

are given in a compact form in (1).

η̇ = J(η)ν

MRBν̇ +CRB (ν)ν =−MAν̇ −CA (ν)ν

−D(ν)ν −g(η)+Bu

(1)

where η , [x y z φ θ ψ]T is the pose (position and orien-

tation) vector with respect to the inertial frame and ν ,

[u v w p q r]T is the body velocity vector defined in the

body-fixed frame. J(η) is the velocity transformation matrix,

MRB is the rigid body inertia matrix, CRB is the rigid body

Coriolis and centripetal matrix, MA is the hydrodynamic

added mass matrix, CA is the added mass Coriolis and

centripetal matrix, D is the hydrodynamic damping matrix,

g(η) is the hydrostatic restoring force vector, B is the

actuator configuration matrix, and the vector u the control

input vector or command vector. More details about the equa-

tions of motion can be found in [16]. In order to complete

the dynamic model of the AUV, we use the hydrodynamic

parameters of Girona500, which have been extracted using an

online identification method and reported in [17]. In addition,

it should be considered in the modeling of the system that

the Girona500 AUV was designed to have passive stability

in roll and pitch.

For over-actuated systems, since the vehicle remains redun-

dant even after thruster failure, most approaches operate on

the matrix B, to obtain the required forces/torques by reallo-

cating the command on the functional thrusters. The simplest

way to modify B is ignoring the columns correspondent to

the faulty thrusters. In this paper, on the other hand, we

propose a different approach by computing a new command

function u to reach a given target without modifying the

matrix B. Our approach is applicable in both cases of over-

actuated and under-actuated vehicles.

B. Policy Representation

In this work we consider the control input vector u as

a function Π(χ|θ) of observation vector χ depending on

a parameter vector θ . The policy is represented with a

linear function approximator, that is a function of the form

u = Π(χ|θ) = θ T Φ(χ), where Φ(χ) is a matrix of basis

functions or feature vectors (φi(χ)). Here we use Fourier

basis functions because they are easy to compute accurately

even for high orders, and their arguments are formed by

multiplication and summation rather than exponentiation. In

addition, the Fourier basis seems like a natural choice for

value function approximation [18]. For each Fourier basis

function φi = cos(πci · χ), the coefficient ci determines the

order of the approximation and the correlation between the

observation variables. There are different choices for the

observation vector χ , a number of which will be discussed

in section IV.

C. Cost Function

The performance of the vehicle is measured through a cost

function:

J(θ) =
T

∑
t=0

ct(ηt)

∣

∣

∣

∣

∣

Π(χ|θ)

(2)



where ct is the immediate cost, and depends on the current

state ηt , which in turn is determined by the policy and

its parameters. Therefore, the aim of the agent is to tune

the policy’s parameters in order to minimize the cumulative

cost J over a horizon T . We employ a model-based policy

search approach where trials are performed on the model

and not directly by the vehicle. For AUVs this is not a

practical limitation, as their dynamics has been modeled

accurately. The cost function is the other degree of freedom

of our approach. Many different definitions of the immediate

costs are possible. In policy search over a finite horizon, the

particular path followed by the agent in the state space can be

ignored, and the optimization treated with black-box methods

over θ .

D. Optimization Algorithms

We implement three optimization algorithms to compare

the quality and the computational feasibility of the solution

for online discovery of the fault-tolerant policy. We use a

derivative-free optimization algorithm introduced by Leonetti

et al. [19], the well-known Simulated Annealing [20], and

the powerful stochastic evolutionary algorithm, Differential

Evolution [21]. The first algorithm was used for online

identification of Girona500 as well [17]. Policy gradient

approaches can be used as an alternative solution, because

they estimate the derivative of the policy with respect to

the parameters of the model. The main issue is that the

estimation procedure of these approaches is expensive, so

derivative-free methods are chosen to be applied in this

particular case.

1) Modified Price’s Algorithm: Modified Price’s (MP)

[19] is a global, derivative-free, and iterative black-box op-

timization algorithm with a great potential in its application

to policy search for robotic reinforcement learning tasks.

MP is a combination of a global and a local derivative-free

method, designed for optimization of the non-linear, multi-

modal, and multivariate functions. The global part of the

MP algorithm which has been introduced by Brachetti et al.

[22] is a population-based method. Recently, Leonetti et al.

[19] combined this global search with a deterministic local

search. So, the global phase is used to find a neighbourhood

of the global minimum, and then the local search explores

the neighbourhood to find the global minimum. In this work,

the initial population size for the algorithm is set to 20 times

the number of the parameters and other parameters are set

according to [19].

2) Simulated Annealing: Simulated Annealing (SA) is a

probabilistic meta-heuristic that mimics the physical process

of annealing, in which a material is heated and then the

temperature is slowly lowered to decrease defects, thus mini-

mizing the system energy [20]. The choice of the temperature

or cooling scheduling and the next candidate distribution

are the most important decisions in the definition of the

SA algorithm [23]. Although there are different variants of

this algorithm [24], in this paper we use the standard SA

algorithm. The initial temperature, re-annealing interval, and

temperature function options are set to 100, 100, and ‘fast

annealing’ scheme respectively.

3) Differential Evolution: The Differential evolution (DE)

algorithm, proposed by Storn and Price [21] is simple yet

powerful population-based, stochastic, heuristic evolutionary

algorithm, which is an efficient and effective global opti-

mizer in the continuous search domain. DE uses a similar

crossover, and selection strategies to the genetic algorithm

but a stronger mutation strategies. The standard DE algorithm

includes 10 different options to define the algorithmic struc-

ture (2 crossover schemes and 5 mutation strategies) [21].

According to the classic notation DE/x/y/z, the particular

variant of DE that is used in this work can be classified

as DE/rand/1/bin (where: rand specifies the vector to be

mutated, 1 is the number of difference vectors used, and bin

represents the binomial crossover scheme). In this paper, we

use the standard implementation of the DE algorithm which

can be found in [25]. We set the number of parents N p to 10

times the number of the parameters, and consider weighting

factor F ∈ [0.8,0.9], and crossover constant CR ∈ [0.9,1]
according to [26].

E. Online Procedure

In our scenario, when a thruster is deemed faulty, a

function J is created to represent the cost of a path to the

target location. The on-board model of the AUV is adapted to

the failure conditions (i.e. the isolated thrusters are specified

and ignored in the model). The optimization algorithm is

then used to compute the optimal policy, in the given policy

representation, that takes the AUV as close as possible to

the target location using only the functional thrusters. The

optimization algorithm computes the optimal policy based

on the on-board model of the AUV. The discovered policy

Π substitutes the AUV’s controller that would work under

normal operating conditions. Finally, the learned policy is

executed on the real robot in a closed-loop using the state

feedback of the AUV. It is also possible to use the target

location as a waypoint, by adding a secondary optimization

objective (appropriately weighed) to J. As will be seen

subsequently, the secondary objective enforces the robot to

reach the desired point with a given velocity.

III. EXPERIMENTAL SETUP

We performed our experiments on the dynamic model of

Girona500 presented in (1), whose parameters have been

identified in [17]. All of the experiments, are designed so

that the thruster failure occurs in the horizontal plane, while

the heave movement of the AUV is always controlled by

its original controller. We assume the right surge thruster

to be broken, so we turn it off during the failure recovery

experiments. In such a case, the Girona500 AUV can only

navigate using the left surge and the sway thrusters (the

lateral one). Thus the vehicle becomes under-actuated and

any attempt to change the allocation matrix B would be

ineffective. We use the following definition of the immediate



Fig. 2. Control architecture of the AUV including the controller level and
the fault recovery level. The green line shows the state feedback used in the
state-dependent policy representation (see Section.IV-A and IV-D for more
details).

cost:

ct(〈pt ,vt〉) =

{

‖ pt − pd ‖ if t < T

w ‖ vt − vd ‖ if t = T
(3)

where the state χt = 〈pt ,vt〉 is composed by position and

velocity at time t, pd is the desired location, vd is the desired

velocity and w weighs the velocity objective with respect

to the positional one. The secondary objective is considered

only at the final state (t = T ). For all our experiments we use

T = 60s, since all the target destinations are reachable in 60

seconds. We also designed the cost function so that when the

AUV reaches to an area close enough to the desired position,

‖ pt − pd ‖< 0.2m, the optimization algorithm is terminated.

IV. EXPERIMENTAL RESULT

A. Controller Test

A classical control architecture of an AUV includes a po-

sition/velocity controller that utilizes the desired inputs and

the sensory feedbacks of the vehicle to control the position

or velocity of the system. This architecture is illustrated in

Fig. 2 and is called the controller level. In order to evaluate

the capability of the original controller of Girona500 for

thruster failure recovery, a real-world experiment is designed.

Firstly, we command the AUV to move 3m in the surge

direction (x-axis) and record the thruster commands for all 5

thrusters of the robot. Secondly, we turn off the right surge

thruster and repeat the same test. The video accompanying

this paper includes both experiments and is available online

at [27]. In addition, the recorded data is depicted in Fig. 3. It

can be seen that in the second test the governing controller of

the system tries to use the same configuration of the thrusters

was used in the normal situation. And although the right

surge thruster is broken, the lateral thruster still remains

unused. This experiment shows that the original controller

of the system cannot recover the robot from thruster failure,

and a failure recovery level (the dashed blue box in Fig. 2)

needs to be concatenated to the control level architecture

of the AUV (the dashed red box in Fig. 2). Therefore,

when the fault detection and isolation module identifies a

failure, it sends a message to the higher-level supervisor and,

eventually, modifies the fault-tolerant controller and triggers

the switch.
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Fig. 3. The recorded thruster commands for a normal AUV (left column)
and a damaged AUV (right column - the right surge thruster is broken)
while using the original controller scheme without failure recovery level
(see Section. IV-A for more details).

B. Constant Policy

In the first experiment, a constant policy (a Fourier ex-

pansion of order zero), Π(χ|θ) = θcte , is considered, which

operates as a set of constant commands, (i.e. voltage), given

to the undamaged thrusters. In this case the number of

optimization parameters is equal to the number of undam-

aged thrusters which is 2 in our experiment. Applying the

optimum constant policies computed by the three optimiza-

tion algorithms, the trajectories and velocity profiles can be

seen in Fig. 4(a), 4(b). Since all algorithms are stochastic,

the results may converge to various solutions in different

runs. So we repeated the optimization process 50 times for

each algorithm. The box-plots of the statistical results are

depicted in Fig. 4(c). The central mark presents the median,

the edges of the box are the 25th and 75th percentiles, and

the whiskers extend to the most extreme data-points that are

not considered as outliers. The result suggests that in this

case the Modified Price’s algorithm performs better than the

other two methods, because it needs less number of function

evaluations and converges to better solutions.

C. Time-dependent Policy

In the next experiment, the policy is represented as a

linear function approximator which depends only on time t,

Π(t|θ) = θ T Φ(t). In this representation θ is the parameter

vector and to represent Φ(t) we employ a 3rd order Fourier

basis [18]. In this case the control policy can be more flex-

ible than the constant policy representation in the previous

experiment. Also the desired velocity of 〈0,0〉 becomes more

relevant. The number of optimization parameters, which was

only 2 in the previous experiment, equals to 8 in this case.

As it can be seen in Fig. 4(d), 4(e), the obtained velocity

profiles are varied; however, the acquired trajectories are

similar. Once again, the optimization process was repeated

50 times for each optimization algorithm. The box-plots of

the statistical results are depicted in Fig. 4(f). Increasing

the number of optimization parameters, in this case the



differential Evolution algorithm shows better results.

D. State-dependent Policy

In the last policy representation experiment, we close

the loop by including feedback from the state variables

(i.e. position, orientation, together with linear and angular

velocities). In this case, the policy depends on the state

variables χ , π(χ|θ) = θ T Φ(χ), where θ is the parameter

vector. Employing a 3rd order Fourier basis to represent

Φ(χ), the number of optimization parameters becomes 16 for

each thruster. So, for the experiment in 2D plane including

2 undamaged and one broken thrusters, the total number of

optimization parameters equals to 32. As it can be seen in

Fig. 4(g), 4(h) the acquired velocity profiles are varying

but converged towards 〈0,0〉 more smoothly; however, the

acquired trajectories are similar. Once again, the optimization

process was repeated 50 times for each optimization algo-

rithm. The box-plots of the statistical results are depicted in

Fig. 4(i). Also in this case, the DE algorithm shows a better

performance in terms of the number of function evaluation

and the best value of the objective function.

E. Navigation through Waypoints

In this experiment, two trajectories are generated to reach

a point 50m far from the current position of the robot.

One of the trajectories is a straight line and the other is

an arc of circumference. Along each trajectory a waypoint

is generated every 5m. We iteratively pose the problem of

reaching the next waypoint from the current state (position

and velocity), with a target velocity pointing towards the sub-

sequent waypoint and norm equal to 0.7, the highest linear

velocity of Girona500. The trajectories and the orientation

of the AUV are shown in Fig. 5. The AUV learns to proceed

laterally, using the forward thruster to control the orientation.

Sometimes the AUV happens to turn around, but it is always

able to recover towards the next waypoint. This experiment

is feasible in the real-world using the state-dependent policy

representation and closing the loop. But in fact, either a larger

test facility or an onshore tank is required to validate the

experiment.

F. Learning Distributions

All the applied optimization algorithms generate the initial

population randomly distributed over the upper and lower

bounds of the parameter vector. We collect all the different

solutions from the 50 runs of the experiments in sections

IV-B, IV-C, and IV-D, then fit a normal distribution to each

parameter. Then, the uniform distribution in the algorithm

are replaced by the estimated means and standard deviations

for each parameter. Afterwards, the algorithm generates the

initial population from the learned distributions expecting

better fitness or better objective values. Using this method,

we can collect the best solutions in each experiment and

add them to the set of distributions as a new point. The

final set of distributions represents the internal dynamics

behavior of the model in the presence of failures. In our

experiment, as it is depicted Fig. 6, the optimization process
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Fig. 5. The desired and result trajectories in the case that the AUV
navigates through waypoints. The blue trajectory is the desired and the
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(see Section.IV-E for more details).
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to reach the same results after learning the parameter distributions (see
Section. IV-F for more details).

shows better performance while using learned distribution,

because it starts from better solutions. Measuring the number

of function evaluations in both cases, the algorithm needs

90% less function evaluations when it utilizes the learned

distributions. This method not only decreases the online

computational cost and makes the approach practically faster,

but also employs the dynamical behavior of the system

using previously experienced knowledge. This method can

be considered as lifelong learning, that will improve the

efficiency of the learning algorithm in the long-term, so we

do not consider it in the discussion about computational cost

of the presented method in the next section.

G. Computational Cost

In order to check the feasibility of the presented approach

we need to assure that the policy optimization can be

performed on-board in a short time. So, we compute the

quality of the solution (i.e. distance from the target) over

time for a waypoint 5m away from the initial position of

the AUV. The optimization process was repeated 20 times
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Fig. 4. Acquired results for the 1st experiment with constant policy representation (a)-(c), the 2nd experiment with time-dependent policy representation
(d)-(f), and the 3rd experiment with state-dependent policy representation (g)-(i) (see section IV-B,IV-C, and IV-D for more details.)

and the average result shows that, it took 12 seconds to

find a solution able to take the AUV only 0.5m from the

target and it can find a good solution in less than 2 minutes.

All experiments took place on a single thread on an Intel R©

CoreTM i3-2350M CPU 2.30GHz.

H. Real-world Experiment

In this real-world experiment, we test our approach on

Girona500. As it is depicted in Fig. 7, firstly we command

the robot to move 3m along the surge direction while the

original controller of the system is navigating the AUV; the

blue trajectory in Fig. 7 shows the result. Secondly, we turn

off the right surge thruster and repeat the same experiment.

The behavior of the controller is plotted as the red trajectory

in Fig. 7. The result shows that the original controller of the

system cannot recover the AUV from the failure, and the po-

sition error is increasing gradually. Furthermore, we run the

simulation using the state-dependent policy representation

to find an optimal policy for this thruster failure situation.

The simulation result is plotted as the green trajectory in

Fig. 7. Finally, the same optimal solution is applied to the

real robot and the recorded trajectory is plotted as the black

trajectory in Fig. 7. The behavior of the robot is very similar

to the simulation. Although the presented approach is using

the model of the AUV, the main factors that make the real

and simulated data slightly different can be enumerated as:

1) a manipulator arm was attached to the robot during the

real-world experiment (for some other purpose), which was

not considered neither in the model of the AUV nor in

the identification process of the hydrodynamic parameters,

2) unmodeled disturbances from the dynamic environment

(e.g. currents, eddies and other sources of noise.) The video

accompanying this paper shows the real-world experiments
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Fig. 7. The trajectories recorded in different scenarios during the real-world
experiments (see Section.IV-H for more details).

and is available online at [27].

V. CONCLUSIONS

In this paper a learning-based approach for discovery

of new control policies to overcome thruster failures is

proposed. One of the advantages of this approach is that

it is applicable in both cases which the vehicle becomes

under-actuated or remains over-actuated in the presence of

the failure. In addition, the approach generates an optimal

trajectory that can take the AUV to the target with minimum

cost. In most other methods, on the other hand, trajectory

generation is ignored in the fault-tolerant control problem.

Furthermore, in this work a state-dependent policy is com-

puted online and the fault-tolerant control loop is closed

with state feedbacks. So, contrary to many existing methods,

we are able to evaluate the resulting controller on the real

AUV. Finally, the presented approach can be implemented in

multiple types of underwater vehicles, because the theoretical

aspect is independent of the choice of the vehicle. As far as

a dynamic model of the vehicle and related hydrodynamic

parameters are available the approach is applicable.
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