
This is a repository copy of Linear rank-width and linear clique-width of trees.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/101098/

Version: Accepted Version

Article:

Adler, I and Kante, MM (2015) Linear rank-width and linear clique-width of trees.
Theoretical Computer Science, 589. pp. 87-98. ISSN 0304-3975

https://doi.org/10.1016/j.tcs.2015.04.021

© 2015, Elsevier. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Linear Rank-Width and Linear Clique-Width of

Trees⋆

Isolde Adler1⋆⋆ and Mamadou Moustapha Kanté2

1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany.
iadler@informatik.uni-frankfurt.de

2 Clermont-Université, Université Blaise Pascal, LIMOS, CNRS, France.
mamadou.kante@isima.fr

Abstract We show that for every forest T the linear rank-width of T is
equal to the path-width of T , and the linear clique-width of T equals the
path-width of T plus two, provided that T contains a path of length three.
It follows that both linear rank-width and linear clique-width of forests can
be computed in linear time. Using our characterization of linear rank-width
of forests, we determine the set of minimal excluded acyclic vertex-minors
for the class of graphs of linear rank-width at most k.

Keywords: Linear rank-width, linear clique-width, vertex-minors

1 Introduction

Rank-width [35] is a graph parameter introduced by Oum and Seymour with the
goal of efficient approximation of the clique-width [11] of a graph. Linear rank-
width can be seen as the linearized variant of rank-width, similar to path-width,
which can be seen as the linearized variant of tree-width. While path-width is a
well-studied notion, much less is yet known about linear rank-width. Any graph of
k-bounded path-width has k-bounded linear rank-width, but conversely the differ-
ence is unbounded. For example, the class of all complete (bipartite) graphs has
linear rank-width at most 1, but unbounded path-width. Linear clique-width, a lin-
earized version of clique-width, was introduced independently by several authors
when studying the computational complexity of clique-width [14,17,18,19,20,31].
Heggernes et al. [21,22,23] investigated computing linear clique-width on restricted
graph classes.

Linear rank-width is equivalent to linear clique-width in the sense that any graph
class has bounded linear clique-width if and only if it has bounded linear rank-width.
Computing linear rank-width is NP-complete in general. In fact, it is proved in [14]
that approximating linear clique-width is NP-hard and one can easily reduce the
approximation of linear clique-width to the approximation of linear rank-width.
Moreover, very little is known about efficient computation of linear rank-width on
restricted graph classes. The only known results are for special types of graphs, such
as for complete (bipartite) graphs, and linear clique-width is known to be polynomial
time computable on thickened paths [23] and k-path powers [21]. Even for the very
natural class of forests efficient computability was open. In contrast, many classes
are known that allow efficient computation of path-width [5,6,7,13,15,29,32,37].

In this paper, we provide the first non-trivial graph class on which linear rank-
width can be computed in polynomial (even linear) time. We prove

Theorem 1 Linear rank-width and linear clique-width of forests can be computed
in linear time.
⋆ A preliminary version of this paper appeared in [2].

⋆⋆ Supported by the German Research Council, Project GalA, AD 411/1-1.

2

Since path-width of forests can be computed in linear time by [13], Theorem 1
is an immediate corollary of the following two theorems.

Theorem 2 The linear rank-width of any forest equals its path-width.

Theorem 3 Let T be a tree. If T contains a path of length 3, then the linear clique-
width of T equals the path-width of T plus 2. Otherwise, the linear clique-width of
T equals the path-width of T plus 1.

The statements of Theorems 2 and Theorem 3 fail for graphs contaning cy-
cles. While it was known that the class of all trees has unbounded linear rank-
width (see [15] for a combinatorial proof) and unbounded path-width, Theorem 2
is somewhat surprising, because it actually equates two structurally very differ-
ent parameters: Path-width and linear rank-width are graph parameters based on
linear orderings of the vertex set of the given graph. Intuitively, path-width seeks
for an ordering that minimizes the maximum number of edges ‘crossing’ a cut of
the ordering, while linear rank-width seeks to minimize the maximum rank of cer-
tain matrices associated with the cuts of the ordering. Linear clique-width in turn
seeks to minimize the number of colours that allow to construct the given graph by
introducing (coloured) vertices one by one and adding edges based on the vertex
colours.

It is known that the linear clique-width of any graph is bounded by its path-
width plus 2 [14]. Since linear rank-width is bounded by linear clique-width, the
same bound carries over to linear rank-width. We show that the linear rank-width
of any graph is bounded by its path-width. This is not hard to prove, but it seems
it was not written down yet. For forests we show that the converse holds, too.

The proof of Theorem 2 uses the characterization of path-width by the cops and
invisible robber game [28]. Given an ordering of the vertices of a forest T witnessing
the linear rank-width of T , we construct a winning strategy for the cops. Here it
is not sufficient for the cops to search the vertices according to the given ordering,
but a more involved strategy yields the result. Our proof method is constructive. It
shows that, given an n-vertex tree and an ordering of its vertices witnessing its linear
rank-width, we can transform the given ordering into a winning strategy for the cops
(using the original ordering as ‘landnarks’), and hence into a path decomposition,
in time O(n2 · log2(n)). For determining the linear clique-width of trees we take a
different approach by giving a recursive characterization of the linear clique-width
of trees. The ideas we introduce here might also be useful in future research on
comparing width parameters.

It is known that tree-width and path-width do not increase when taking minors.
Similarly, (linear) rank-width does not increase when taking vertex-minors [8,24].
For a graph G and a vertex x of G, the local complementation at x of G consists
in replacing the subgraph induced on the neighbors of x by its complement; and
a graph H is a vertex-minor of G if H can be obtained from G by a sequence
of local complementations and deletions of vertices. The set of minimal excluded
vertex-minors is known to be finite for every class of graphs that is closed under
vertex-minors and has bounded rank-width [34]. Moreover given k, the number of
vertices of a minimal excluded vertex-minor for rank-width ≤ k is bounded by
(6k+1 − 1)/5 [24], and hence one can theoretically compute the set of minimal
exclude vertex-minors for rank-width ≤ k in time depending only on k by searching
among all graphs of size at most (6k+1 − 1)/5 and keeping only the non-isomorphic
ones which have rank-width k+1 and every proper vertex-minor has rank-width k.
However, until now, explicit sets of minimal excluded vertex-minors are only known
for circle graphs [9], distance-hereditary graphs [24], and for graphs of linear rank-
width at most one [1]. For graphs of linear rank-width at most k, some minimal

3

excluded vertex-minors were established in [25]. Using Theorem 2, we determine
the set of minimal excluded acyclic vertex-minors for linear rank-width k. It turns
out that they coincide with the minimal excluded minors for graphs of path-width
at most k that are acyclic [38].

Outline of the paper. Section 2 introduces the terminology, the notion of linear
rank-width and the cops and invisible robber game. In Section 3 we prove that
linear rank-width and path-width coincide on forests (Theorem 2), in Section 4 we
prove Theorem 3 characterizing the linear clique-width of forests. In Section 5 we
give the set of minimal excluded acyclic vertex-minors for the class of graphs of
linear rank-width k, and we conclude with Section 6.

2 Preliminaries

For a set A we denote the power set of A by 2A. We let A \ B := {x ∈ A | x /∈ B}
denote the difference of two sets A and B. For two sets A and B let A∆B :=
(A \B)∪ (B \A) denote the symmetric difference of A and B. For an integer n > 0
we let [n] := {1, . . . , n}.

For sets R and C an (R,C)-matrix is a matrix where the rows are indexed
by elements in R and columns are indexed by elements in C. (Since we are only
interested in the rank of matrices, it suffices to consider matrices up to permutations
of rows and columns.) For an (R,C)-matrixM , ifX ⊆ R and Y ⊆ C, we letM [X,Y]
be the submatrix of M obtained by restricting M to the rows and columns indexed
by the elements belonging to X and Y , respectively. If M is an (R,C)-matrix and
when the context is clear we will identify the row indexed by x ∈ R with x (similarly
for the column indexed by y ∈ C); hence we will say for instance that a subset X of
R is a basis for the rows of M if the rows indexed by X form a basis for the rows of
M and similarly for other linear algebra terminologies involving rows or columns.

In this paper, graphs are finite, simple and undirected, unless stated otherwise.
Let G be a graph. We denote the vertex set of G by V (G) and the edge set by
E(G). We regard edges as two-element subsets of V (G). For a vertex v ∈ V (G) we
let NG(v) := {u ∈ V (G) | {v, u} ∈ E(G)} denote the set of neighbors of v (in G).
The degree of v (in G) is degG(v) := |NG(v)|. A partition of V (G) into two sets
X and Y (i. e. X ∪̇Y = V (G)) is called a cut in G, and we denote it by (X,Y).
In a linear ordering x1, . . . , xn, each 1 ≤ i ≤ n − 1 induces a cut (Xi, Yi) with
Xi := {x1, . . . , xi} and Yi := {xi+1, . . . , xn}.

A graph not containing a cycle is called acyclic. A path from u to v in a graph
G is a sequence P := u1, . . . , up of pairwise distinct vertices of G, where u0 := u1

and up := v, such that {ui, ui+1} ∈ E(G) for every 0 ≤ i ≤ p − 1, and p is called
the length of P . A connected graph is a graph where any two vertices are connected
by a path. A forest is an acyclic graph and a tree is a connected forest. A leaf of a
tree is a vertex of degree one. A star is a tree with at most one non-leaf vertex.

The distance between two vertices u, v ∈ V (G) is the length of a shortest path
from u to v. A rooted tree is a tree with a distinguished vertex r, called the root.
The height of a rooted tree is the maximal length of a path from the root to a leaf.
For a rooted tree T with root r and vertex v ∈ V (T) we denote by T v the subtree
of T rooted at v and induced by those vertices u ∈ V (T) such that the path from r
to u contains v. For a rooted tree T it is sometimes convenient to orient the edges
of T in the direction away from the root, thus obtaining an oriented tree.

Linear rank-width and path-width. Let G be a graph, and let AG be the
adjacency (V (G), V (G))-matrix of G. (See [16] for the basic properties of adjacency

4

matrices.) The linear rank-width of G is defined as

lrw(G) := min
v1,...,vn linear ordering of V (G)

max
i∈[n−1]

{rk(AG[Xi, Yi])}.

A path decomposition ofG is a pair (P,B), where P is a path and B = (Bt)t∈V (P)

is a family of subsets Bt ⊆ V (G), satisfying

1. For every v ∈ V (G) there exists a t ∈ V (P) such that v ∈ Bt.
2. For every e ∈ E(G) there exists a t ∈ V (P) such that e ⊆ Bt.
3. For every v ∈ V (G) the set {t ∈ V (P) | v ∈ Bt} is connected in P .

The width of a path decomposition (P,B) is defined as w(P,B) := max{|Bt| |
t ∈ V (P)} − 1. The path-width of G is defined as

pw(G) := min{w(P,B) | (P,B) is a path decomposition of G}.

Observation 4 The linear rank-width (or path-width) of a graph equals the maxi-
mum of the linear rank-width (or path-width) of its connected components.

It is easy also to see that caterpillars, i.e. the graphs that contain a path P such
that every vertex has distance at most one to some vertex of P , have path-width
≤ 1. Indeed, the graphs of path-width at most 1 are precisely the disjoint unions
of caterpillars. One can derive from [3] that graphs of linear rank-width at most 1
are exactly those that are locally equivalent to caterpillars (where two graphs G
and H are locally equivalent, if H can be obtained from G by a sequence of local
complementations). Using a labelling scheme, Ganian [15] characterizes the graphs
of linear rank-width at most 1 as thread graphs. It is worth noticing that the path-
width of trees, as well as their linear rank-width, is not bounded. For example, the
rooted binary tree Th of height h satisfies pw(Th) = ⌈h/2⌉ [36], and a combinatorial
proof for the unboundedness of the linear rank-width of trees can be found in [15].

Before continuing let us first recall the following easy fact that was not written
down anywhere.

Lemma 5 Any graph G satisfies lrw(G) ≤ pw(G).

Proof. Let (P,B) be a path decomposition of G of width pw(G). W. l. o. g. we
may assume that (P,B) is such that any two distinct vertices t, t′ ∈ V (P) satisfy
Bt 6⊆ Bt′ . Assume that the vertices of P are t1, . . . , tm, appearing in this order on
the path. Let B′(t1) := B(t1), and for every 1 < i ≤ m let B′(ti) := B(ti)\B(ti−1).
Then the family B′ := (B′(ti))i∈[m] is a partition of V (G) into non-empty sets. For
each i ∈ [m] choose an ordering of the vertices in B′(ti) and combine these orderings
to an ordering of V (G) that respects the path P . We claim that this ordering
witnesses lrw(G) ≤ pw(G). At every cut in the ordering, the corresponding matrix
has at most pw(G) non-zero rows. To see this, let (X,Y) be a cut in the ordering
with X = B′(t1) ∪ . . . ∪ B′(ti) ∪ X ′ and Y = Y ′ ∪ B′(ti+2) ∪ . . . ∪ B′(tm), where
B′(ti+1) = X ′ ∪̇Y ′ is a partition of B′(ti+1) into two sets X ′ and Y ′ with Y ′ 6= ∅.
By the definition of path decompositions, a vertex v ∈ B′(t1)∪. . .∪B

′(ti) is adjacent
to a vertex in Y if and only if v ∈ B(ti+1). Let X0 be the set of such vertices. Now
only vertices in X0 ∪X ′ can have neighbors in Y . Since X0 ∪X ′ ⊆ B(ti+1) \Y

′ and
Y ′ 6= ∅, it follows that the rank of the matrix at (X,Y) is at most pw(G). ⊓⊔

The cops and invisible robber game. Let G be a graph and let k ≥ 0 be an
integer. The cops and invisible robber game on G (with game parameter k) is played
by two players, the cop player and the robber player, on the graph G. The cop player
controls k cops and the robber player controls the robber. Both the cops and the

5

robber move on the vertices of G. Some of the cops move to at most k vertices and
the robber stands on a vertex r not occupied by the cops. At all times, the robber
is invisible to the cops. Initially, no cops occupy vertices and the robber chooses
a vertex to start playing. In each move, some of the cops fly in helicopters to at
most k new vertices. During the flight, the robber sees which position the cops are
approaching and before they land she quickly tries to escape by running arbitrarily
fast along paths of G to a vertex r′, not being allowed to run through a vertex
occupied by a cop. Hence, if X ⊆ V (G) is the cops’ position, the robber stands on
r ∈ V (G) \ X, and after the flight, the cops occupy the set Y ⊆ V (G), then the
robber can run to any vertex r′ within the connected component of G \ (X ∩ Y)
containing r. The cops win if they land a cop via helicopter on the vertex occupied
by the robber. The robber wins if she can always elude capture.

A play is a sequence of cop positions X0, X1, X2, . . . with X0 := ∅ and |Xi| ≤ k
for all i. At each step of a play, we can describe the set of cleared vertices as follows.
At the position X0, the set of cleared vertices is A0 := ∅. After the cops’ move to
Xi (for i > 0), the set of cleared vertices is

Ai := (Ai−1 ∪Xi) \ {r ∈ V (G) | there is a path from V (G) \Ai−1

to r in G \ (Xi−1 ∩Xi)}.

Winning strategies are defined in the usual way. The invisible cop-width of G,
icw(G), is the minimum number of cops having a winning strategy on G.

A winning strategy for the cops ismonotone, if for any playX0, X1, X2, . . . played
according to the strategy, the sets A0, Ai, A2, . . . form a non-decreasing sequence
(with respect to ⊆). The monotone invisible cop-width of G, monicw(G), is the
minimum number of cops having a monotone winning strategy on G.

Theorem 6 ([12]) Any graph G satisfies monicw(G) = pw(G) + 1.

3 Linear Rank-Width and Path-Width of Trees

This section is devoted to the proof of the converse of Lemma 5 for forests, showing
that lrw(T) ≥ pw(T) holds for any forest T . By Observation 4 we can restrict
ourselves to trees instead of forests. Our proof turns a linear ordering of V (T)
witnessing lrw(T) into a winning strategy for k + 1 cops. Roughly, the idea is
that k cops move from basis to basis along the matrices at the cuts, clearing the
vertices along the ordering on their way. One additional cop is used to make the
transitions. For an intuition, suppose the cops occupy a vertex set B corresponding
to a basis of the matrix AT [Xi, Yi] where (Xi, Yi) is the cut at index i. Now two
cases arise, depending on whether the next vertex vi+1 is spanned by the rows of
AT [Xi+1, Yi+1] corresponding to B or not. The following two lemmas deal with the
case that vi+1 is spanned by the rows of AT [Xi+1, Yi+1] (vi+1 is ‘dependent’ on the
rows of AT [Xi+1, Yi+1]). Lemma 7 highlights structural properties of the tree T in
this situation, and Lemma 8 shows the next cop move in this situation (clearing
vertex vi+1). We start with a definition.

Let T be a tree and let (X,Y) be a cut in T . Let B ⊆ X be a basis of the row
space of AT [X,Y]. For x ∈ X \ B with NT (x) ∩ Y 6= ∅, i.e, the row vector of x in
AT [X,Y] has a non-zero entry, let Bx ⊆ B be the (unique) minimal subset of B
spanning x. Let Tx be the subgraph of T with vertex set V (Tx) = X ′ ∪̇Y ′, where
X ′ := Bx ∪{x} and Y ′ := NT (Bx ∪{x})∩Y , and with edge set E(T ′) := {{u, v} ∈
E(T) | u ∈ X ′, v ∈ Y ′}. We call Tx the B-basic tree of x (at (X,Y)). With these
assumptions we have the following two lemmas.

Lemma 7 (Spanning dependent vertices)

6

1. Tx is a tree.
2. Each leaf z of Tx is a vertex in X ′, and |NT (z) ∩ Y | = dTx

(z) = 1.
3. The vertices in Y ′ have degree two in Tx.
4. |Y ′| = |Bx|.

Proof. 1. Since T is a tree it suffices to show that Tx is connected. If not, Tx

has a component C that does not contain x. Then C can be written as C =
B′ ∪ (NT (B

′) ∩ Y) for some non-empty subset B′ (Bx. Because X ′ = Bx ∪
{x} and Bx is the subset of B that spans the row of x in AT [X,Y], then
the rows of AT [X

′, Y ′] sum up to zero, and moreover since C is a component,
the rows of AT [X

′, Y ′] corresponding to B′ must already sum up to zero (to
see this, permute the rows and columns of AT [X

′, Y ′] in such a way, that the
resulting matrix is a block matrix with non-zero blocks only along the diagonal),
a contradiction to B being a basis.

2. Since the rows of AT [X
′, Y ′] sum up to zero, for every vertex y ∈ Y ′, degTx

(y)
is even, so y is not a leaf. Hence the leaves are in X ′ ⊆ X. Since by definition
of Tx, all neighbors in Y of vertices in X ′ belong to Tx, the leaves of Tx are
vertices in X with a unique neighbor in Y .

3. By (1), Tx is a tree. Choose x as a root and orient the edges of Tx away from the
root. Recall that any vertex in Y ′ has even degree in Tx. Towards a contradiction,
assume now that a vertex y ∈ Y ′ has degree ≥ 4 (see Figure 1). Fix a successor
z of y in Tx. All vertices of Y ′ that lie in the subtree Ty \ Tz have even degree
in T y \ T z. But then the sum over all those rows of AT [X

′, Y ′] that correspond
to vertices in T y \ T z is the zero vector, a contradiction to the fact that B is a
basis. Hence every vertex in Y ′ has degree 2 in Tx.

4. Follows from (1) and (3). ⊓⊔

x

y

z

Figure 1. The tree Tx in the proof of Lemma 7. Triangles mean subtrees. Black vertices
are in X

′, white vertices are in Y
′ and all white vertices have degree 2.

Lemma 8 (Clearing dependent vertices) Suppose that in the (k+1)-cops and
robber game on T the cops have cleared all vertices in X \ {x} and the game is
in a position where at most k cops are occupying vertices. Furthermore, assume
that exactly |Bx| cops are occupying vertices of Tx, and in addition, for each vertex
b ∈ Bx, either b is occupied by a cop, or NT (b)∩Y is occupied by cops. Then there is
a sequence of monotone moves of |Bx|+ 1 cops, involving only the cops on vertices
of Tx plus one additional cop, that ends in a position, where

7

1. the vertices in X ∪ V (Tx) \ {x} are cleared,

2. all vertices in Y ′ are occupied,

3. exactly |Bx| cops occupy vertices of Tx.

Proof. Choose x as the root of Tx, and we let g : Bx → Y ′ where for each z ∈ Bx

we let g(z) be the predecessor of z in the orientation of Tx. From Lemma 7(3) and
Lemma 7(4) we know that g is a bijection. Roughly, the idea is that the cops
occupying vertices of Bx move to Y ′ according to the bijection g. This is done
bottom-up along Tx with the temporary employment of one additional cop.

By assumption, all vertices of Tx that lie in X ′ \ {x} = Bx are cleared, and
for each vertex b ∈ Bx, either b is occupied by a cop, or NT (b) ∩ Y is occupied by
cops. The cops make a few moves such that for all b ∈ Bx, the set NT (b) ∩ Y is
occupied by cops. This is done as follows. For every leaf b in Tx that is occupied by
a cop, we move the cop occupying b to the unique neighbor of b in Y , i.e. to g(b).
For this, we place the (k + 1)st cop on b as well, and move the (one) cop from b to
the neighbor in Y . By Lemma 7(2), the leaves of Tx have a unique neighbor in Y .
Now, whenever all successors of a vertex b ∈ Bx ⊆ V (Tx) are occupied by cops, we
move the cop occupying b to g(b) (again with the temporary help of the (k + 1)st
cop). Proceeding like this from the leaves of Tx to the root, by Lemma 7(3), finally,
exactly the vertices in Y ′ are occupied by cops and the vertices in X ∪ V (Tx) \ {x}
are cleared. Part 3 follows from Lemma 7(4). This finishes the proof. ⊓⊔

Theorem 9 Any tree T satisfies pw(T) ≤ lrw(T). Moreover, given T and a linear
ordering of its vertex set V witnessing lrw(T), there is an algorithm of running time
O(|V |2 · log2(|V |)) that computes a path decomposition of T of width at most lrw(T).

Proof. If |V (T)| ≤ 1, then the theorem holds. Assume now that |V (T)| ≥ 2. Let
v1, . . . , vn be a linear ordering of V (T) witnessing k := lrw(T). For i ∈ [n] let
Xi := {v1, . . . , vi} and Yi := {vi+1, . . . , vn}.

We describe a strategy for k + 1 cops. The strategy follows the linear ordering
of V (T). For each new vertex vi that has to be cleared, we describe a transition –
a finite sequence of monotone cop moves to make sure that vi is cleared. After the
ith transition, the following invariants hold.

(I1) Every vertex in Xi is cleared.

There is a basis Bi ⊆ Xi of the rows of AT [Xi, Yi] such that

(I2) each b ∈ Bi satisfies:

b is occupied by a cop or NT (b)∩ Yi is occupied by cops, and no vertex
in the set Xi \Bi is occupied by a cop.

(I3) The cops occupy exactly |Bi| vertices.

Let ℓ be the greatest index i ≤ k such that the rank of AT [Xi, Yi] is equal to i.
Then ℓ ≥ 1 because |V (T)| ≥ 2. The first ℓ transitions simply consist in placing
cops on the vertices v1, . . . , vℓ, successively. Obviously, after each such transition,
the invariants hold.

Suppose we have completed the ith transition, and we want to make the (i+1)st
transition. Moving from AT [Xi, Yi] to AT [Xi+1, Yi+1], exactly one of the following
cases occurs.

(a) In AT [Xi+1, Yi+1], the new vertex vi+1 is in the span of Bi.

(b) In AT [Xi+1, Yi+1], the new vertex vi+1 is not in the span of Bi.

8

Observe that Bi can span the rows of AT [Xi+1, Yi+1], but may be linearly de-
pendent in AT [Xi+1, Yi+1]. If it is linearly dependent in AT [Xi+1, Yi+1], then the
size of a maximum linearly independent subset of Bi is |Bi| − 1, because deleting a
column can only decrease the rank by one.

Claim 1: If the size of a maximum linearly independent subset ofBi inAT [Xi+1, Yi+1]
is |Bi| − 1, then there exists a vertex vN ∈ NT (vi+1) ∩Bi such that Bi \ {vN} is a
maximum linearly independent subset of Bi in AT [Xi+1, Yi+1].

Proof of the Claim: If Bi is linearly dependent in AT [Xi+1, Yi+1] and linearly
independent in AT [Xi, Yi], there exists a row of AT [Xi, Yi] corresponding to a vertex
u ∈ Bi that is generated by Bi \ {u} and that has a 1 at the column corresponding
to vi+1, and hence u ∈ NT (vi+1). ⊣

If Bi is linearly dependent in AT [Xi+1, Yi+1], we pick vN ∈ NT (vi+1) ∩Bi as in
Claim 1 and we let B′

i := Bi \ vN . If Bi is linearly independent in AT [Xi+1, Yi+1],
we let B′

i := Bi. If vi+1 is in the span of Bi, we let Bi+1 := B′
i. Otherwise, we let

Bi+1 := B′
i ∪ {vi+1}. Obviously, Bi+1 is a basis of AT [Xi+1, Yi+1].

For each v spanned by Bi+1 let Tv denote the Bi+1-basic tree of v at the cut
(Xi+1, Yi+1). The following follows from the fact that T is a tree and the vertex vN
is adjacent to vi+1.

Claim 2: Assuming Bi is linearly dependent in AT [Xi+1, Yi+1], let vN ∈ NT (vi+1)∩
Bi be as in Claim 1.

(i) The Bi+1-basic tree of vN does not contain vi+1.
(ii) If moreover vi+1 is spanned by Bi in AT [Xi+1, Yi+1], then V (Tvi+1

)∩V (TvN) = ∅
and there is no edge other than {vN , vi+1} between a vertex of Tvi+1

and a vertex
of TvN . ⊣

We distinguish two cases, depending on whether a cop occupies vi+1.

Case 1. After the ith transition, vi+1 is not occupied by a cop.
Then by the inductive invariant (I1), the set NT (vi+1) ∩Xi+1 = NT (vi+1) ∩Xi is
occupied by cops, and hence NT (vi+1) ∩Xi ⊆ Bi by the inductive invariant (I2).

Case 1.1 Vertex vi+1 is in the span of Bi in AT [Xi+1, Yi+1].
If vi+1 has no neighbors in Yi+1, then we use the (k + 1)st cop to step on vi+1

and remove the cop again. Otherwise, let T ′ be the Bi+1-basic tree of vi+1, and let
B′ ⊆ Bi+1 be the minimal subset of Bi+1 spanning vi+1. Since T has no cycles,
V (T ′)∩

(

NT (vi+1)∩Xi+1

)

= ∅. Hence we can use Lemma 8 to move to NT (vi+1)∩
Yi+1 with at most |B′|+ 1 ≤ k+ 1 cops, ending in a position where at most k cops
are on V (T). Since NT (vi+1) ∩ Yi+1 is occupied by cops, we can use the (k + 1)st
cop to step on vi+1 and then lift the (k+ 1)st cop up again, thus clearing vi+1. We
have then cleared Xi+1.

It remains to verify (I2) and (I3). By the inductive hypothesis, (I2) is already
satisfied, and if Bi is linearly independent in AT [Xi+1, Yi+1], (I3) is also satisfied. So
assume Bi is linearly dependent in AT [Xi+1, Yi+1]. If vN does not have a neighbor
in Yi+1 we can safely remove the cop from vN . Otherwise, if it has a neighbor in
Yi+1, we can use Lemma 8 to move to NT (vN) ∩ Yi+1, and we then lift up the cop
from vN . By Claim 2, we can do it safely. In this way, we end the transition with
a position of |Bi+1| cops on V (T). This follows from Lemma 8(3) and Claim 2.
Hence all three invariants are satisfied. Finally, note that all performed cop moves
are monotone.

Case 1.2. Vertex vi+1 is not in the span of Bi in AT [Xi+1, Yi+1].
If Bi is linearly independent in AT [Xi+1, Yi+1], then we place a cop in vi+1 and then
all the three conditions are clearly satisfied. So we may assume that Bi is linearly

9

dependent in AT [Xi+1, Yi+1]. If vN has no neighbors in Yi+1, we place the (k+1)st
cop on vi+1 (vi+1 is not already occupied by a cop) and we then remove the cop
from vN . After these moves, at most k cops are occupying vertices.

Now, if vN has a neighbor in Yi+1, take the Bi+1-basic tree TvN
of vN and use

Lemma 8 to move cops in V (TvN
) \ {vN} to NT (vN)∩Yi+1. Claim 2 guarantees the

safety of these moves. After these moves, at most k cops are occupying vertices. If
vi+1 was occupied by a cop, then remove the cop that is still occupying the vertex
vN . If vi+1 was not occupied by a cop, then we place the (k + 1)st cop on vi+1

and remove the cop that occupy the vertex vN . After these moves, vi+1 is cleared
and since we did not recontaminate Xi, Xi+1 is cleared. Moreover, exactly |Bi+1|
vertices of T are occupied by cops (Lemma 8(3) and Claim 2), and since the other
cops are not moved, (I2) is satisfied. Hence the three invariants are satisfied. Again,
note that all performed cop moves are monotone.

Case 2. After the ith transition, vi+1 is occupied by a cop.
By the inductive invariant (I1), each vertex b ∈ NT (vi+1) ∩Xi+1 = NT (vi+1) ∩Xi

is cleared, hence either b is occupied by a cop, or NT (b)∩ Yi+1 is occupied by cops.

Case 2.1. Vertex vi+1 is in the span of Bi in AT [Xi+1, Yi+1].
For every b ∈ {vN , vi+1} such that V (Tb)∩ Yi+1 contains an unoccupied vertex, we
use Lemma 8 to move cops in V (Tb) \ {b} to V (Tb)∩Yi+1. This is possible, because
the Bi+1-basic trees involved are pairwise disjoint and pairwise connected via vi+1

only (Claim 2). After that, we remove the cops occupying vertices in {vN , vi+1}. The
cop moves are monotone, and we can conclude that the three inductive invariants
are satisfied.

Case 2.2. Vertex vi+1 is not in the span of Bi in AT [Xi+1, Yi+1].
As in Case 1.2 we may assume that Bi is linearly dependent in AT [Xi+1, Yi+1],
otherwise the three invariants are trivially satisfied. If V (TvN

) ∩ Yi+1 contains an
unoccupied vertex, we use Lemma 8 to move cops in V (TvN

) \ {vN} to V (TvN) ∩
Yi+1. After that, we remove the cop occupying the vertex vN . The cop moves are
monotone, and we can conclude that the three inductive invariants are satisfied.

Let us now discuss the time complexity and assume T has n vertices. From
Cases 1 and Cases 2 in order to clean the vertex vi+1 we may move some cops to
NT (vi+1)∩Yi+1 and/or to NT (vN)∩Yi+1, and this can be done in time O(n) using
the Bi+1-basic trees of vi+1 and vN . So it is enough to show that the Bi+1-basic
trees of vN and vi+1 can be constructed in time O(n · log2(n)). If |Bi| = k, then
by Gaussian elimination one can compute a row basis Bi+1 of AT [Xi+1, Yi+1] in
time O(k2 · n), and eventually identify the subset S of Bi+1 that generates vN if
Bi is linearly dependent in AT [Xi+1, Yi+1], and similarly we can identify the subset
S′ of Bi+1 that generates vi+1 if this latter one is in the span of Bi. Now, from S
and S′ we can compute the Bi+1-basic trees of vN and of vi+1, respectively, in time
O(n). Since k ≤ log(n) (the linear rank-width of a tree is bounded by log(n)), we
can conclude that vi+1 can be cleaned in time O(n · log2(n)), and hence a winning
strategy with k + 1 cops can be computed in time O(n2 · log2(n)), which in turn
gives rise to a path decomposition of width k. ⊓⊔

Note that the statements of Theorems 2 and Theorem 3 fail for Kn, the complete
graph with n ≥ 3 vertices. While lrw(Kn) = 1 and lcw(Kn) = 2, we have pw(Kn) =
n− 1.

Proof of Theorem 2. The theorem now follows from Lemma 5 and Theorem 9. ⊓⊔

Theorem 2 combined with [13] immediately gives the following as a corollary.

Corollary 10 There is a linear time algorithm that computes the linear rank-width
of any forest, and an ordering of its vertex set V witnessing its linear rank-width
can be computed in time O(|V | · log(|V |)).

10

We conclude this section with two examples illustrating the cop strategy in the
proof of Theorem 9. In particular, the first one shows that it is not sufficient for
the cops to simply follow the vertices along the linear ordering witnessing the linear
rank-width.

Example 11 1. Let T be the graph shown in Figure 2(a). The ordering b, a, c, d, e
is a witness for lrw(T) ≤ 1. The strategy for two cops according to the proof of
Theorem 9 is as follows: the first cop moves to b and then the second cop moves
to a and remains there. Now the first cop moves to c, d, e in this order.

2. The tree T in Figure 2(b) satisfies lrw(T) = 2. The given ordering (attached
to the vertices) witnesses lrw(T) ≤ 2. The strategy for three cops according
to Theorem 9 is {1}, {1, 2}, {2, 3}, {2, 4}, {4, 5}, {4, 5, 6}, {4, 6, 7}, {4, 8}, {8, 9},
{8, 9, 10}, {8, 10, 11}, {8, 10, 12}, {8, 12, 13}, {8, 13, 14}, {8, 14, 15}, {8, 16}, {8, 16, 17},
{8, 17, 18}, {8, 17, 19}, {8, 19, 20}, {19, 20, 21}, {21, 22}.

b

a

c d e
(a)

18

31

14

9

8

17

20

22

75

4

2 6

13

15

11
10

1912

21

16

(b)

Figure 2. The star of Example 11(1) and the tree of Example 11(2).

4 Linear Clique-Width and Path-Width

In this section we prove Theorem 3, characterizing the linear clique-width of trees
in terms of their path-width.

Let us recall the definition of linear clique-width [14,19,31]. Let k be a positive
integer. A k-labeled graph is a pair (G, γ) where G is a graph and γ : V (G) → [k]
is a mapping (that maps each vertex to one of k labels); we will also denote it by
(V (G), E(G), γ). The k-labeled graph consisting of a single vertex labeled by i ∈ [k]
is denoted by (i, γi). The set LIN-CWk of k-labeled graphs is defined inductively
with the following operations.

1. For each i ∈ [k], (i, γi) is in LIN-CWk.
2. If i, j ∈ [k] and (G, γ) is in LIN-CWk, then (ρi→j(G), γ′) is in LIN-CWk and

denotes the k-labeled graph (V (G), E(G), γ′) with

γ′(x) :=

{

γ(x) if γ(x) 6= i,

j if γ(x) = i.

11

3. If i, j ∈ [k], i 6= j, and (G, γ) is in LIN-CWk, then (ηi,j(G), γ) is in LIN-CWk

and denotes the k-labeled graph (V (G), E′, γ) with

E′ := E(G) ∪ {{x, y} | γ(x) = i and γ(y) = j} .

4. If i ∈ [k] and (G, γ) is in LIN-CWk, then (G⊕ i, γ′) is in LIN-CWk and denotes
the graph (V (G) ∪ {z}, E(G), γ′) where z /∈ V (G) and

γ′(x) :=

{

γ(x) if x ∈ V (G),

i if x = z.

An expression built with the operations i, ρi→j , ηi,j and ⊕ according to the
definition of LIN-CWk is called a linear k-expression. The linear clique-width of
a graph G, denoted by lcw(G), is the minimum k such that G is isomorphic to
a graph in LIN-CWk (after forgetting the labels). For example the linear clique-
width of a path of length 3 is 3. Note that if H is an induced subgraph of G, then
lcw(H) ≤ lcw(G). Moreover, any linear k-expression t defining a graph G defines a
linear ordering of V (G) witnessing the ordering in which the vertices of G appear
in t.

Lemma 12 ([10,14]) Any graph G satisfies lcw(G) ≤ pw(G) + 2. ⊓⊔

Lemma 13 Let T be a tree obtained from three trees T1, T2 and T3 by adding a
new vertex r adjacent to one vertex in each of the three trees. If lcw(Ti) ≥ k for
each i ∈ {1, 2, 3}, then lcw(T) ≥ k + 1.

Proof. If k = 1 then each Ti is a single vertex and hence T is a star with 3 leaves,
and we have lcw(T) = 2, because at least two different labels are necessary for
adding an edge.

Assume that k > 1. This implies in particular, that each Ti has at least two
vertices. Let ℓ := lcw(T). We show that ℓ ≥ k + 1. Let t be a linear ℓ-expression
defining T . and let π := (v1, . . . , vn) be the linear ordering of V (T) corresponding to
t. W. l. o. g. assume that the operations in t are carried out in such a way, that each
introduction of a new vertex v (operation type 1) is followed by a disjoint union
(operation type 4), which in turn is followed by all possible edge additions involving
v (operations of type 3) and finally by recolorings that leave us with the smallest
number of labels that is possible at this step [10, Proposition 2.101]. Moreover, we
can assume that there is one distinguished label, the unlabel, that is assigned to a
vertex once all its neighbors in T have been constructed (see for instance [33]).

Assume that v1 /∈ V (T2) and vn /∈ V (T2). Let π2 := u1, . . . , up be the linear
ordering of V (T2) obtained by restricting π to V (T2) and let t2 be the corresponding
subterm of t, which by the assumption above is a linear k-expression defining the
tree T2. Let (X,Y) be a cut in π2, where X is partitioned into at least k label classes
(defined by the pre-images of the ≥ k different labels), and assume that in t2 we
cannot reduce the number of labels at (X,Y) by a recoloring operation. Such a cut
exists because by assumption, lcw(T2) = k. If X is partitioned into more than k
label classes, then we are done, because then ℓ ≥ k + 1. Hence assume that X is
partitioned into exactly k label classes.

Choose a cut (X ′, Y ′) of π such that X ⊆ X ′ and Y ⊆ Y ′. Since T \ T2 is
connected and by the choice of t2, there are two vertices x and y such that x ∈ X ′\X,
y ∈ Y ′ \Y , and {x, y} ∈ E(T). Assume w.l.o.g that x ∈ V (T1). If y has no neighbor
in X, then, in t, the vertex x cannot have the same label as any other vertex in X,
and, since X is already partitioned into k label classes, this shows that ℓ ≥ k + 1.

Assume now that there is a vertex z in X that is a neighbor of y. Then y = r,
{z} = NT (y)∩V (T2) and similarly {x} = NT (y)∩V (T1) because by the assumption

12

r has only one neighbor in T2 and also one neighbor in T1. Now if one of the neighbors
of z in T2 is contained in Y , then x cannot have the same label as any other vertex
in X, and hence ℓ ≥ k+1. Hence we may assume that NT2

(z) ⊆ X. If x and z have
different labels, then the label of x must be unique and ℓ ≥ k + 1. Hence we may
assume that x and z have the same label. Then no other vertex in X has this label.

Towards a contradiction, suppose that at the cut (X ′, Y ′) in t there are only k
labels. If there is a vertex x′ in T1 with {x′}∪NT (x

′) ⊆ X ′, then by the assumption
above x′ is labelled by the unlabel in t and we can reduce the number of labels at
the cut (X,Y) in t2 by assigning the unlabel to z (because z does not have the same
label as any other vertex in X) – a contradiction to the choice of (X,Y). Hence
every vertex in V (T1)∩X ′ has a neighbor in Y ′. Since x and z have the same label,
all the neighbors of NT1

(x) ⊆ X ′. Using this and the fact that k ≥ 2, we see that
there exists at least one vertex x′ 6= x in V (T1) ∩X ′ and this vertex must have a
neighbor in Y ′. But no vertex in T2 can have the same label as x′. Again, we can
reduce the number of labels at the cut (X,Y) in t2 by assigning the label of x′ to
z – a contradiction to the choice of (X,Y). Hence there are at least k + 1 labels at
the cut (X ′, Y ′) in t, proving that lrw(T) ≥ k + 1. ⊓⊔

We use the following Lemma, proved in [13, Theorem 3.1].

Lemma 14 ([13]) Let T be a tree and let k ≥ 1 be an integer. Then pw(T) ≤ k if
and only if for all v ∈ V (T) at most two of the trees in T \ v have path-width k and
all others have path-width less than k. ⊓⊔

Lemma 15 Any tree T containing a path of length three satisfies lcw(T) ≥ pw(T) + 2.

Proof. We use induction on k := pw(T). If k = 1 we are done because the linear
clique-width of paths of length three is 3. If k = 2, then any tree of path-width 2
contains the tree R3 obtained from the star with 3 leaves by subdividing once each
edge (cf. Figure 3), and by [22] lcw(R3) = 4. Now assume that for some k ≥ 2,
any tree having path-width ℓ ≤ k and containing a path of length three has linear
clique-width at least ℓ+2. Let T be a tree that contains a path of length three and
satisfies pw(T) = k + 1. By Lemma 14 there exists a vertex r ∈ V (T) such that at
least three trees in T \ r have path-width at least k. Since k ≥ 2 each of these trees
contain a path of length at least three, and by induction, these trees have linear
clique-width at least k + 2 and hence by Lemma 13, lcw(T) ≥ k + 3. ⊓⊔

Proof of Theorem 3. The first statement follows from Lemmas 12 and 15. For the
second statement, if T does not contain a path of length three, then it is a star.
Since stars with at least one edge have linear clique-width 2 and path-width 1, we
can conclude that lcw(T) = pw(T) + 1. ⊓⊔

Before extending the result to forests, let’s warm up with some examples. The
forest T consisting of two isolated edges satisfies lcw(T) = 3, while each of the con-
nected components of T has linear clique-width 2. Moreover, the forest T ′ consisting
of an isolated vertex and an isolated edge satisfies lcw(T ′) = 2 (first construct the
edge), and the forest T ′′ obtained from T ′ by adding a second isolated edge satisfies
lcw(T ′′) = 3. For extending our results from trees to forests, we use the following
straightforward observation.

Observation 16 Let T be a forest with at least one edge. If T contains a path of
length 3, then lcw(T) is equal to the maximum of the linear clique-widths of its
connected components. If T contains no path of length 3, and exactly one connected
component of T assumes the maximum of the linear clique-widths of the connected
components of T , then lcw(T) is equal to the maximum of the linear clique-widths
of its connected components. If T contains no path of length 3 and at least two of

13

the connected components of T assume the maximum of the linear clique-widths of
the connected components of T , then lcw(T) is equal to the maximum of the linear
clique-widths of its connected components +1.

Proof. Let T1, T2, . . . , Tp be the connected components of T , and let k := max{lcw(Ti)}.
Let t1, t2, . . . , tp be respectively the linear expressions defining T1, T2, . . . , Tp, and
let t′i := ©ρi→0

(ti), where 0 is the unlabel color, that is never used to create an edge.
Let t := tp ⊕ t′p−1 ⊕ · · · ⊕ t′1. It is clear that t defines T because the color 0 is never
used to create an edge. Assume T contains a path of length 3 and let T1, . . . , Tℓ be
the trees with a path of length 3. Then, for each 1 ≤ i ≤ ℓ, lcw(Ti) = pw(Ti)+2 and
ti uses surely the unlabel color, and for ℓ+1 ≤ i ≤ p, we have lcw(Ti) = pw(Ti)+1.
Therefore, the linear expression t uses k colors.

If any of the Ti’s has a path of length 3, then T is a disjoint union of stars and k =
2. Now, if lcw(T1) = 2, and lcw(Ti) ≤ 1 for all i 6= 1, then

⊕

2≤i≤p 1⊕ (η1,2(1⊕ 2))
clearly defines T . Finally, if lcw(T1) = lcw(T2) = k = 2, then it is proved in [33]
that the linear clique-width of T is 3. ⊓⊔

Corollary 1. There is a linear time algorithm that computes the linear clique-width
of any n-vertex forest T , and a linear lcw(T)-expression can be computed in time
O(n · log(n)).

Proof. From [13] there is a linear time algorithm that computes the path-width
of any forest, and an optimal path-decomposition can be computed in time O(n ·
log(n)) for every n-vertex forest. Hence, the statement follows from Observation
16 characterizing the linear clique-width of forests, and the proof of Lemma 12 in
[10], which computes from an optimal path-decomposition (P,B) of width k a linear
(k+2)-expression in time O(max{k, ℓ}·n) where ℓ is the maximum number of edges
in a bag of (P,B). ⊓⊔

5 Minimal Excluded Acyclic Vertex-Minors

As an application, in this section we identify the minimal excluded acyclic vertex-
minors for linear rank-width k by using both Lemma 14 and Theorem 2.

For a graph G and a vertex x of G, the local complementation at x of G consists
in replacing the subgraph induced on the neighbors of x by its complement. The
resulting graph is denoted by G ∗ x. If H can be obtained from G by a sequence of
local complementations, then G and H are called locally equivalent. A graph H is
called a vertex-minor of a graph G if H is isomorphic to a graph obtained from G by
applying a sequence of local complementations and deletions of vertices. The graph
H is a proper vertex-minor of G if H is a vertex-minor of G and |V (H)| < |V (G)|.
A graph G is a minimal excluded vertex-minor for the class of graphs of linear
rank-width k, if lrw(G) > k and lrw(H) ≤ k for all proper vertex-minors H of G.
See [8,24] for more information on vertex-minors.

We say that a graph G is a minimal excluded acyclic vertex-minor for the class of
graphs of linear rank-width k, if G is acyclic and every proper acyclic vertex-minor
of G has linear rank-width less than k. Note that a minimal excluded acyclic vertex-
minor may not be a minimal excluded vertex-minor. For example, R3 of Figure 3 is
a minimal excluded acyclic vertex-minor for the class of graphs of linear rank-width
at most 1, but it contains the net graph, also of Figure 3, as a proper vertex-minor,
which in turn is a minimal excluded vertex-minor for the class of graphs of linear
rank-width at most one [1].

We now determine the set of pairwise not locally equivalent minimal excluded
acyclic vertex-minors for linear rank-width k. Due to minimality, the minimal ex-
cluded (acyclic) vertex-minors for linear rank-width k are necessarily connected.

14

Figure 3. The subdivided 3-star R3, and the net graph.

Let H1 := {R3}. For k ≥ 2, let Hk be the set of (pairwise non isomorphic) trees
obtained by taking a new vertex r and three trees in Hk−1, and by linking this new
vertex to one vertex in each of these three trees. Notice that all the trees in Hk

have the same size. By Rk we denote the set of (pairwise non isomorphic) trees T ′

obtained from trees T ∈ Hk by adding a new vertex adjacent to one vertex of T . A
rooted tree in Hk ∪Rk is a tree T in Hk ∪Rk rooted at some vertex.

A rooted tree H is a rooted vertex-minor of a rooted tree G if H is a vertex-
minor of G, H is obtained without applying a local complementation at the root of
G and the root of H is mapped to the root of G. We recall that if T is a rooted tree
and v is a vertex of T then we denote by T v the subtree of T rooted at v.

Lemma 17 Let k ≥ 2 and let T be a rooted tree of linear rank-width k. Let 2 ≤ ℓ ≤
k and let v ∈ V (T) be such that T v has linear rank-width ℓ. Then T v has a rooted
tree in Hℓ−1 ∪Rℓ−1 as a rooted vertex-minor.

Proof. We prove it by induction on ℓ. Let v be such that T v has linear rank-width
2. By Lemma 14 there exists a vertex u in T v such that Tu is isomorphic to a
rooted star, rooted at its center, by subdividing at least once three of its edges.
Let H be the rooted subtree of T v induced by the vertices in the path from v to u
and three paths of length two originated from u. It is clear that Hu is isomorphic
to a rooted tree in H1 (by taking in the tree in H1 the vertex of degree three as
root). Now it is clear that H admits a rooted tree in H1 ∪ R1 as a rooted vertex-
minor by applying local complementations at intermediate vertices in the path from
v to u and removing them after each local complementation. Since H is a rooted
vertex-minor of T v, we are done.

Now assume the claim is true for all vertices v of T such that T v has linear
rank-width at most ℓ′ and let u be a vertex of T such that Tu has linear rank-width
ℓ′ + 1. By Lemma 14 there exists a vertex v in Tu such that T v has linear rank-
width ℓ′ + 1 and three neighbors v1, v2 and v3 such that T vi has linear rank-width
ℓ′. By inductive hypothesis for each i ∈ {1, 2, 3} there exists a rooted tree Hi in
Hℓ′−1∪Rℓ′−1 such that Hi is a rooted vertex-minor of T vi . For each i ∈ {1, 2, 3} the
local complementations applied to obtain Hi do not modify the tree in T \ T vi . So
the rooted tree obtained from T v and composed of the His and of the paths from u
to the vis is a rooted vertex-minor of Tu. We obtain a tree in Hℓ′ ∪Rℓ′ as a rooted
vertex-minor of Tu as follows. If Hi is in Rℓ′−1, then apply a local complementation
at vi, and then remove vi. In this way, we get a vertex-minor of T v rooted at v
and isomorphic to a rooted tree in Hℓ′ . By applying local complementations at
intermediate vertices in the path from v to u and removing them after each local
complementation we get a rooted tree in Hℓ′ ∪Rℓ′ as a rooted vertex-minor of Tu.

⊓⊔

Lemma 18 Let k ≥ 1 be an integer. Every tree of linear rank-width k+1 contains
a tree in Hk as a vertex-minor.

15

Proof. Let T be a tree with linear rank-width k + 1. By Theorem 2 and Lemma
14 there exists a vertex r and three trees T1, T2 and T3 of T \ r such that each
Ti has linear rank-width k and has a vertex ri adjacent to r. Let F := T [V (T1) ∪
V (T2)∪V (T3)∪{r}], which is a subtree of T . Notice that by Lemma 14 F has linear
rank-width k + 1. Let us root F in r and let r1, r2 and r3 denote the neighbors of
r in F . By Lemma 17 each Ti has a rooted tree Hi in Hk−1 ∪ Rk−1 as a rooted
vertex-minor. Then the tree F ′ composed of the rooted trees His and of the edges
{r, ri} is a rooted vertex-minor of F . We obtain a tree in Hk from F ′ as follows. If
Hi is in Rk−1, then apply a local complementation at ri, and then remove ri. Since
we can do each local complementation independently, we are done. ⊓⊔

Theorem 19 For each k ≥ 1, the set Hk is the set of minimal excluded acyclic
vertex-minors for linear rank-width k.

Proof. One can prove by induction, by using Theorem 2 and Lemma 14, that each
tree in Hk has linear rank-width k + 1 and is minimal (as a tree) with respect to
this property. Moreover, by Lemma 18 any tree of linear rank-width k+ 1 contains
as a vertex-minor a tree in Hk. So it is enough to prove that two trees in Hk are not
locally equivalent. Bouchet has proved in [8] that two trees are locally equivalent if
and only if they are isomorphic. Hence, since no two trees in Hk are isomorphic, we
are done. ⊓⊔

Notice that Theorem 19 is another unexpected relation between linear rank-
width and path-width of trees. In fact, as proved in [38] the set Hk is also the set
of acyclic (topological) minor obstructions for path-width k.

6 Conclusion

We proved that linear rank-width and path-width coincide on forests, and we de-
termined the linear clique-width of forests in terms of their path-width. While the
proof of the former result uses a game characterization of path-width, the proof of
the latter is based on a Lemma 13 which gives a recursive characterization of the
linear clique-width of trees (similar to Lemma 14 for path-width of trees). Indeed,
linear rank-width can be characterized recursively in a similar way [26, Lemma 4.1],
and this characterization can be used to prove the equality of linear rank-width and
path-width on forests. Our characterizations imply the existence of linear time al-
gorithms for computing the linear rank-width and the linear clique-width of forests.
The recent paper [3] gives a polynomial time algorithm for computing the linear
rank-width of distance-hereditary graphs. It is still wide open, whether a similar re-
sult can be obtained for computing linear clique-width. More generally, it is natural
to ask whether there is a polynomial time algorithm for computing linear rank-
width (or path-width or linear clique-width) on graphs of bounded rank-width. It
is also open, whether there is a polynomial time algorithm that computes linear
rank-width (or linear clique-width) on series-parallel graphs.

It should be possible to extend our methods to characterize linear NLC-width
(cf. [19]) of trees in terms of their path-width (similar to Theorem 3), but it seems
harder to identify the exceptions (as the stars for clique-width) and the basic graphs
to start the induction (as the R3 graph).

We used the fact that linear rank-width and path-width coincide on forests
to determine the set of minimal excluded acyclic vertex-minors for linear rank-
width k. One can probably use the same technique to compute the set of minimal
excluded acyclic induced subgraphs for linear rank-width and linear clique-width k.
The complete set of minimal excluded vertex-minors for linear rank-width k is
unknown and a next step could be to determine the set of distance-hereditary

16

excluded vertex-minors for linear rank-width k (we know from [25] and [3] that
their number is doubly exponential in k). In [24] it is proved that the size of the
excluded vertex-minors for rank-width k is bounded by (6k+1 − 6)/5, and similar
results exist for tree-width and path-width [30]. Can we get a similar result for linear
rank-width? Such a bound would prove the existence of an effective algorithm for
checking whether a graph has linear rank-width at most k, for fixed k, while we
only know from [34] that an algorithm exists.

Contrary to (linear) rank-width (linear) clique-width is not monotone with re-
spect to vertex-minor inclusion. For example, the path P on three edges has (linear)
clique-width 3, while the graph G obtained from P by a local complementation at a
vertex of degree 2 in P is a triangle with a pendant edge, and G has (linear) clique-
width 2. Characterizing linear clique-width with respect to the induced subgraph
inclusion seems to be a hard task and few results have been obtained [17,23]. Can
we at least characterize the linear clique-width of co-graphs (which have clique-
width at most 2) or, more generally, of distance-hereditary graphs (which have
clique-width at most 3) in order to identify the set of distance-hereditary excluded
induced subgraphs for linear clique-width k?

The characterizations of linear rank-width and linear clique-width of forests in
terms of their path-width are surprising. However, we believe that forests are ex-
ceptional and, except for special types of graphs (e. g. grids), such characterizations
are not to be expected. But we believe that the results in this paper can be used to
(approximately) compute the linear rank-width or clique-width of tree-like graphs.

References

1. Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear
rank-width at most 1. Discrete Applied Mathematics, 168:3–13, 2014.

2. Isolde Adler and Mamadou Moustapha Kanté. Linear rank-width and linear clique-
width of trees. In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reischuk, editors,
WG, volume 8165 of Lecture Notes in Computer Science, pages 12–25. Springer, 2013.

3. Isolde Adler, Mamadou Moustapha Kanté, and O.-joung Kwon. Linear rank-width
of distance-hereditary graphs. In Dieter Kratsch and Ioan Todinca, editors, Graph-

Theoretic Concepts in Computer Science - 40th International Workshop, WG 2014.

Revised Selected Papers, volume 8747 of Lecture Notes in Computer Science, pages
42–55. Springer, 2014.

4. Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly
excluding a forest. J. Comb. Theory, Ser. B, 52(2):274–283, 1991.

5. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

6. Hans L. Bodlaender, Ton Kloks, and Dieter Kratsch. Treewidth and pathwidth of
permutation graphs. SIAM J. Discrete Math., 8(4):606–616, 1995.

7. Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of cographs.
In John R. Gilbert and Rolf G. Karlsson, editors, SWAT, volume 447 of Lecture Notes

in Computer Science, pages 301–309. Springer, 1990.

8. André Bouchet. Transforming trees by successive local complementations. J. Graph

Theory, 12(2):195–207, 1988.

9. André Bouchet. Circle graph obstructions. J. Comb. Theory, Ser. B, 60(1):107–144,
1994.

10. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order

Logic, A Language-Theoretic Approach. Cambridge University Press, 2012.

11. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77–114, 2000.

12. Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search
games on graphs and related parameters. Theor. Comput. Sci., 172(1-2):233–254,
1997.

17

13. Jonathan A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. The vertex sepa-
ration and search number of a graph. Inf. Comput., 113(1):50–79, 1994.

14. Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-
width is np-complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

15. Robert Ganian. Thread graphs, linear rank-width and their algorithmic applications.
In Costas S. Iliopoulos and William F. Smyth, editors, IWOCA, volume 6460 of Lecture
Notes in Computer Science, pages 38–42. Springer, 2010.

16. Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2001.

17. Frank Gurski. Characterizations for co-graphs defined by restricted nlc-width or clique-
width operations. Discrete Mathematics, 306(2):271–277, 2006.

18. Frank Gurski. Linear layouts measuring neighbourhoods in graphs. Discrete Mathe-

matics, 306(15):1637–1650, 2006.

19. Frank Gurski and Egon Wanke. On the relationship between nlc-width and linear
nlc-width. Theor. Comput. Sci., 347(1-2):76–89, 2005.

20. Frank Gurski and Egon Wanke. The nlc-width and clique-width for powers of graphs
of bounded tree-width. Discrete Applied Mathematics, 157(4):583–595, 2009.

21. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. A complete characterisa-
tion of the linear clique-width of path powers. In Jianer Chen and S. Barry Cooper,
editors, TAMC, volume 5532 of Lecture Notes in Computer Science, pages 241–250.
Springer, 2009.

22. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. Graphs of linear clique-
width at most 3. Theor. Comput. Sci., 412(39):5466–5486, 2011.

23. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs. Discrete Applied

Mathematics, 160(6):888–901, 2012.

24. Sang il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100,
2005.

25. Jisu Jeong, O.-joung Kwon, and Sang-il Oum. Excluded vertex-minors for graphs of
linear rank-width at most k. Eur. J. Comb., 41:242–257, 2014.

26. O joung Kwon. Connecting rank-width and tree-width via pivot-minors, 2012. Master’s
Thesis.

27. Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6):345 – 350, 1992.

28. Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theor.

Comput. Sci., 47(3):205–218, 1986.

29. Ton Kloks and Hans L. Bodlaender. Approximating treewidth and pathwidth of some
classes of perfect graphs. In Toshihide Ibaraki, Yasuyoshi Inagaki, Kazuo Iwama,
Takao Nishizeki, and Masafumi Yamashita, editors, ISAAC, volume 650 of Lecture

Notes in Computer Science, pages 116–125. Springer, 1992.

30. Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb.

Theory, Ser. B, 73(1):7–40, 1998.

31. Vadim V. Lozin and Dieter Rautenbach. The relative clique-width of a graph. J.

Comb. Theory, Ser. B, 97(5):846–858, 2007.

32. Nimrod Megiddo, S. Louis Hakimi, M. R. Garey, David S. Johnson, and Christos H.
Papadimitriou. The complexity of searching a graph. J. ACM, 35(1):18–44, 1988.

33. Daniel Meister. Clique-width with an inactive label. Discrete Mathematics, 337:34–64,
2014.

34. Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Transactions

on Algorithms, 5(1), 2008.

35. Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width.
J. Comb. Theory, Ser. B, 96(4):514–528, 2006.

36. Petra Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit
algorithmischer Probleme. Akademie der Wissenschaften der DDR, Berlin, 1989. PhD
thesis.

37. Karol Suchan and Ioan Todinca. Pathwidth of circular-arc graphs. In Andreas
Brandstädt, Dieter Kratsch, and Haiko Müller, editors, WG, volume 4769 of Lecture
Notes in Computer Science, pages 258–269. Springer, 2007.

18

38. Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic forbidden minors
for the family of graphs with bounded path-width. Discrete Mathematics, 127(1-
3):293–304, 1994.

References

1. Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear
rank-width at most 1. Discrete Applied Mathematics, 168:3–13, 2014.

2. Isolde Adler and Mamadou Moustapha Kanté. Linear rank-width and linear clique-
width of trees. In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reischuk, editors,
WG, volume 8165 of Lecture Notes in Computer Science, pages 12–25. Springer, 2013.

3. Isolde Adler, Mamadou Moustapha Kanté, and O.-joung Kwon. Linear rank-width
of distance-hereditary graphs. In Dieter Kratsch and Ioan Todinca, editors, Graph-

Theoretic Concepts in Computer Science - 40th International Workshop, WG 2014.

Revised Selected Papers, volume 8747 of Lecture Notes in Computer Science, pages
42–55. Springer, 2014.

4. Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly
excluding a forest. J. Comb. Theory, Ser. B, 52(2):274–283, 1991.

5. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

6. Hans L. Bodlaender, Ton Kloks, and Dieter Kratsch. Treewidth and pathwidth of
permutation graphs. SIAM J. Discrete Math., 8(4):606–616, 1995.

7. Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of cographs.
In John R. Gilbert and Rolf G. Karlsson, editors, SWAT, volume 447 of Lecture Notes

in Computer Science, pages 301–309. Springer, 1990.

8. André Bouchet. Transforming trees by successive local complementations. J. Graph

Theory, 12(2):195–207, 1988.

9. André Bouchet. Circle graph obstructions. J. Comb. Theory, Ser. B, 60(1):107–144,
1994.

10. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order

Logic, A Language-Theoretic Approach. Cambridge University Press, 2012.

11. Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77–114, 2000.

12. Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search
games on graphs and related parameters. Theor. Comput. Sci., 172(1-2):233–254,
1997.

13. Jonathan A. Ellis, Ivan Hal Sudborough, and Jonathan S. Turner. The vertex sepa-
ration and search number of a graph. Inf. Comput., 113(1):50–79, 1994.

14. Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-
width is np-complete. SIAM J. Discrete Math., 23(2):909–939, 2009.

15. Robert Ganian. Thread graphs, linear rank-width and their algorithmic applications.
In Costas S. Iliopoulos and William F. Smyth, editors, IWOCA, volume 6460 of Lecture
Notes in Computer Science, pages 38–42. Springer, 2010.

16. Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 2001.

17. Frank Gurski. Characterizations for co-graphs defined by restricted nlc-width or clique-
width operations. Discrete Mathematics, 306(2):271–277, 2006.

18. Frank Gurski. Linear layouts measuring neighbourhoods in graphs. Discrete Mathe-

matics, 306(15):1637–1650, 2006.

19. Frank Gurski and Egon Wanke. On the relationship between nlc-width and linear
nlc-width. Theor. Comput. Sci., 347(1-2):76–89, 2005.

20. Frank Gurski and Egon Wanke. The nlc-width and clique-width for powers of graphs
of bounded tree-width. Discrete Applied Mathematics, 157(4):583–595, 2009.

21. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. A complete characterisa-
tion of the linear clique-width of path powers. In Jianer Chen and S. Barry Cooper,
editors, TAMC, volume 5532 of Lecture Notes in Computer Science, pages 241–250.
Springer, 2009.

19

22. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. Graphs of linear clique-
width at most 3. Theor. Comput. Sci., 412(39):5466–5486, 2011.

23. Pinar Heggernes, Daniel Meister, and Charis Papadopoulos. Characterising the linear
clique-width of a class of graphs by forbidden induced subgraphs. Discrete Applied

Mathematics, 160(6):888–901, 2012.
24. Sang il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100,

2005.
25. Jisu Jeong, O.-joung Kwon, and Sang-il Oum. Excluded vertex-minors for graphs of

linear rank-width at most k. Eur. J. Comb., 41:242–257, 2014.
26. O joung Kwon. Connecting rank-width and tree-width via pivot-minors, 2012. Master’s

Thesis.
27. Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width.

Information Processing Letters, 42(6):345 – 350, 1992.
28. Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theor.

Comput. Sci., 47(3):205–218, 1986.
29. Ton Kloks and Hans L. Bodlaender. Approximating treewidth and pathwidth of some

classes of perfect graphs. In Toshihide Ibaraki, Yasuyoshi Inagaki, Kazuo Iwama,
Takao Nishizeki, and Masafumi Yamashita, editors, ISAAC, volume 650 of Lecture

Notes in Computer Science, pages 116–125. Springer, 1992.
30. Jens Lagergren. Upper bounds on the size of obstructions and intertwines. J. Comb.

Theory, Ser. B, 73(1):7–40, 1998.
31. Vadim V. Lozin and Dieter Rautenbach. The relative clique-width of a graph. J.

Comb. Theory, Ser. B, 97(5):846–858, 2007.
32. Nimrod Megiddo, S. Louis Hakimi, M. R. Garey, David S. Johnson, and Christos H.

Papadimitriou. The complexity of searching a graph. J. ACM, 35(1):18–44, 1988.
33. Daniel Meister. Clique-width with an inactive label. Discrete Mathematics, 337:34–64,

2014.
34. Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Transactions

on Algorithms, 5(1), 2008.
35. Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width.

J. Comb. Theory, Ser. B, 96(4):514–528, 2006.
36. Petra Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit

algorithmischer Probleme. Akademie der Wissenschaften der DDR, Berlin, 1989. PhD
thesis.

37. Karol Suchan and Ioan Todinca. Pathwidth of circular-arc graphs. In Andreas
Brandstädt, Dieter Kratsch, and Haiko Müller, editors, WG, volume 4769 of Lecture
Notes in Computer Science, pages 258–269. Springer, 2007.

38. Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic forbidden minors
for the family of graphs with bounded path-width. Discrete Mathematics, 127(1-
3):293–304, 1994.

