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Abstract—Wave propagation in chain-like materials has been 
studied previously at low frequencies. The present study has 
generated these waves at higher frequencies with components 
>200 kHz, using chains of 1 mm diameter spheres. Resonant 
ultrasonic horns at 73 kHz have been used as sources of 
narrowband excitation, which transform into a train of 
broadband impulses that have the characteristics of solitary 
waves. These have potential applications in biomedical 
ultrasound as high amplitude, wide bandwidth impulses. 
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I.  INTRODUCTION  

There has been much recent interest in the use of chain-like 
structures for use with acoustic and ultrasonic signals [1,2]. 
Consider a chain of spheres, such as that shown in Fig.1, which 
is subject to an externally-applied pre-compression force F0. 
An input signal, in the present case a windowed sinusoidal 
tone-burst (FIN), is applied at one end. The signal propagates 
along the chain, and on exit it will be modified by interaction 
with the spheres. In particular, an interesting phenomena can be 
highlighted, namely the Hertzian contact between each pair of 
spheres. This leads to non-linearity, the nature of which is 
dependent upon the relative values of FIN and F0; thus, if FIN ޓޓ 
F0, the non-linearity is maximized. This non-linearity will lead 
to the creation of increased bandwidth. In addition, the use of a 
chain of spheres leads to the potential existence of non-linear 
normal modes of vibration of the system [3,4]. The nature of 
the resultant signals is, in fact, highly dependent on additional 
factors such as the size, shape and number of particles. 

 
Fig. 1. Schematic diagram of a chain of spheres. 

Provided that FIN is sufficiently large, non-linearity will 
lead to the generation of harmonics, which means that the wave 
transmitted from one sphere to the next is modified as it 
travels. Thus, an impulsive input could narrow in time, and 

could also be focused using variable delays. This led to the 
concept of a “sound bullet” [5]. Alternatively, a sine wave 
input would be distorted by harmonic generation to a new 
periodic waveform. In a chain of finite length, the signals 
would also reflect between each end of the chain, further 
changing the detected signal at the output (FOUT in Fig. 1). 

In the present work, the aim was to generate a set of 
impulses at high amplitude, primarily for therapeutic High 
Intensity Focused Ultrasound (HIFU) and drug delivery 
applications. These should also have as wide a bandwidth as 
possible. To achieve this, it was decided to use a high input 
amplitude in the form of a sinusoidal windowed tone-burst, and 
to use this to drive signals through a chain under negligible pre-
compression (FIN ޓޓ F0). Note that recent studies have tended 
to concentrate on using an impulsive input [6]. This study 
focusses on maximizing the ease of generating large values of 
FIN, using resonant excitation at higher frequencies; this could 
perhaps be extended towards the frequencies used in HIFU and 
other applications. The result should then be the maximization 
of harmonic generation and hence increased bandwidth. It was 
also of interest to establish whether a solitary wave could be 
generated. This requires both non-linearity and dispersion to 
exist, and in fact this is a natural occurrence within such chains. 
Solitary waves have interesting properties (solitons will pass 
through another without interaction for example, and can travel 
long distances without changing their fundamental 
characteristics), and tend to travel along the chains with 
particular characteristics. It is these characteristics which this 
research intends to exploit.  

A different strategy has been adopted in the results below to 
those of other researchers, by focusing on the generation of a 
series of harmonics and sub-harmonics in a chain of spheres, 
using a narrow bandwidth input. This leads to the generation of 
solitary wave impulses, and these would be amplified after 
multiple reflections between the two ends of the chain. Thus, 
the approach would be an interaction between the generation of 
different frequency components [7,8], and the natural normal 
modes of the chain itself [3,4]. This would need to be 
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considered carefully in the experimental design, so that the 
conditions might be created for optimal generation of solitary 
travelling wave impulses. 

 

II. EXPERIMENTAL DESIGN 

An ultrasonic horn was used as the source of high 
amplitude input forces. This had a primary resonance at 73 kHz 
plus others at higher frequencies. It was driven by an amplified 
tone-burst of 20 cycles at 73 kHz. This was chosen so as to 
allow the vibrations at the tip of the horn to build up to a high 
amplitude, while keeping the overall time duration of the input 
signal to a reasonable value. The motion at the horn tip under 
these conditions is shown in Fig. 2(a), as measured using a 
Polytec vibrometer. It can be seen that the amplitude at the tip 
(in this case measured as a particle velocity waveform) builds 
up close to a maximum value, and then decays over a similar 
timescale. Note that the frequency response is thus a resonant 
peak, with a finite width at half-maximum value of ~ 4 kHz, as 
shown in Fig. 2(b).  

The tip of the horn was positioned so as to just contact the 
first sphere in a chain via a layer of ultrasonic couplant, as 
shown in the schematic diagram of Fig. 3. The chain of six 
stainless steel ball-bearings, each of 1 mm diameter, was held 
horizontally within a cylindrical channel, with the spheres 
touching under minimal pre-compression F0. At the far end, a 
plate containing an aperture was used to contain the chain. 

Fig. 2. (a) Waveform of the motion of the vibrating horn tip, as measured using 
a vibrometer. Excitation was a tone-burst of 20 cycles at 73 kHz. (b) Spectrum 
of the waveform shown in (a).  

The particle velocity waveform of the end sphere could 
then be measured using the vibrometer. Note that the amplitude 
and frequency of FIN could be varied using the waveform 
generator and power amplifier. The signals were recorded 
using a digital oscilloscope for later analysis. 
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Fig. 3. Schematic diagram of the apparatus  

III. THEORY 

Nesterenko [1] has described the processes that would be 
expected in these chains. The model is based on an analysis 
which looks at the motion of the centre of each sphere. 
Assuming that the displacements of the centre of successive 
spheres are u1, u2,…un , it is possible to derive a model which 
describes the expected motion of the final sphere, as a function 
of the input waveform. Hertzian contact leads to an expression 
describing the force F between adjacent spheres, which is of 
the form: 

ܨ   ൌ ଶாೞଷሺଵିఔೞమሻ ቀ ோభோమோభାோమቁଵ ଶΤ ሾሺܴଵ ൅ ܴଶሻ െ ሺݔଶ െ ଵሻሿଷݔ ଶΤ     (1)     

Here, ܧ is the Young’s modulus and ߥ the Poisson’s ratio 
of each sphere, and ܴ1 and ܴ2 are radii of the spheres with 
centre coordinates 1ݔ and 2ݔ. Note that the force F depends on 
the displacements of the sphere centers to the power 3/2, the 
source of the non-linear behavior.  

Using Eq. (1), it is possible to derive a set of equations 
which describe the dynamic behavior of each sphere in the 
chain. This can then be used to predict the motion of the final 
sphere, and hence the output at the far end. For the last sphere, 
the equation can be written as 

   ݉ ௗమ௨ಿௗ௧మ ൌ ଶξோଷ ቂఏ೘ξଶ ሺݑேିଵ െ ேሻଷݑ ଶΤ െ ேଷݑ௥ߠʹ ଶΤ ቃ ൅ ߣሺݑሶ ேିଵ െ ሶݑ ேሻܪሺݑேିଵ െ ேሻݑ െ ሶݑߣ ேܪሺݑேሻǤ        (2)                    
Here, șr is the effective Young’s modulus for interaction 

between the last sphere of radius R and the end wall of any 
containment, and Ȝ is a damping coefficient to represent losses 
(due to friction, viscous damping etc) in the system. Similar 
expressions can be derived for the interaction between the first 
sphere and the horn, and between other spheres within the 
chain. It is possible to predict the behavior for any input 
waveform. The equations demonstrate that the subsequent 
behavior of the chain will depend on the size, elastic properties 
and number of spheres. Further analysis shows that the 
resultant propagation is expected to have an upper frequency 
limit, or cut-off frequency, beyond which solitary wave 
behavior is not expected.  

IV. EXPERIMENTAL RESULTS 

Experiments have been performed in which the input signal 
at 73 kHz was steadily increased in amplitude, and the output 
waveform recorded in each case using the vibrometer. The 
spectrum of the received signal was also recorded, together 

(a) 

(b) 



with the input waveform from the vibrating horn tip, at each 
excitation level. The evolution of solitary wave transients could 
then be observed as a function of increased input amplitude. 
Three examples are shown in Figs. 4-6.  

(a) 

(b) 

Fig.4. (a) Waveform and (b) spectrum of an experimental signal recorded for a 
chain of 6 ball-bearings of 1 mm diameter. The input force FIN was small, 
having a particle velocity amplitude of 0.15 m/s at 73 kHz. 

 

 (a) 

 (b) 

Fig.5. As Fig. 4, but for an increased input force FIN with a particle velocity 
amplitude of 0.41 ms-1 at 73 kHz. 
 

It can be seen that both the waveform and spectra change 
with input amplitude level. At the lowest amplitudes, Fig. 4, 
the measured waveform in the chain exhibits the 
characteristics of weakly non-linear ultrasound propagation, , 
where most of the signal’s energy distributed at the 
fundamental frequency with the presence of several harmonics 
and a low amplitude sub-harmonic. As the input amplitude 
increases, Fig. 5, a set of shorter transients starts to develop, 
with a spectrum that contains distinct harmonics and sub-
harmonics frequency peaks, with the maximum peak at the 
excitation frequency. At the highest input amplitude, Fig. 6, 
the impulses are now very distinct, and the maximum peak 
amplitude is at a sub-harmonic of the input in the frequency 
spectrum. This demonstrates that the increased input 
amplitude is an important parameter, as the creation of 
impulses becomes more consistent with the FIN ޓޓ F0 

condition.  

The horn could also be driven at different resonant 
frequencies. Fig. 7 shows an example when a frequency of 
112 kHz was used at the maximum input particle velocity 
amplitude (0.55 m/s). Although the signals are smaller in 
amplitude, the fundamental frequency has been retained, and 
there is also a strong sub-harmonic at 56 kHz. Finally, results 
are presented in Fig. 8 for a horn frequency of 207 kHz. The 
input amplitude is now much smaller, and hence the detected 
signal (Fig. 8(a)) has a much reduced signal to noise ratio. 
However, it can be seen that the main feature is a single arrival 
with a decaying oscillation centered around 70 kHz (Fig. 
8(b)). This represents a sub-harmonic at 1/3 of the original 
input frequency. 
 

(a) 

(b) 

Fig.6. As Fig. 4, but for the largest input force FIN at 73 kHz. 
 

  (a) 

  (b) 

Fig.7. (a) Waveform and (b) spectrum of an experimental signal recorded for a 
chain of 6 ball-bearings of 1 mm diameter at 112 kHz. 

 

V. DISCUSSION 

Consider first the data collected using a 73 kHz excitation 
frequency (Figs. 4-6). Here, the process at low input energies 
(Fig. 4) starts as expected with the generation of harmonics due 
to non-linear behavior at the interface between each pair of 
spheres. The signal is still dominated by the fundamental at 73 
kHz, and two harmonics at 146 kHz and 219 kHz are present.  



 

(a) 

 

(b) 

Fig.8. (a) Waveform and (b) spectrum of an experimental signal recorded for a 
chain of 6 ball-bearings of 1 mm diameter. The input force FIN was at 207 
kHz. 

There is a hint of a lower frequency peak in the spectrum of 
Fig. 4(b). This corresponds, in fact, to the resonance of the full 
set of six spheres, i.e. to the frequency expected from reflection 
of signals between the two ends of the chain (~24 kHz). 

As the input drive signal increases in amplitude, Fig. 5, the 
time waveform of Fig. 5(a) starts to exhibit the development of 
separate impulsive signals later in the waveform; these seem to 
develop in time. The corresponding spectrum (Fig. 5(b)) 
demonstrates a strong link to the low frequency component 
seen in Fig. 4. In fact, the observed frequency peaks correspond 
to a set of harmonics of the lowest peak at 24 kHz. This is 
because the signal now develops a set of impulses which reflect 
within the chain, developing a periodic waveform determined 
by the chain characteristics (i.e. effectively a Fourier series). At 
the highest input amplitudes, Fig. 6, the time waveform 
contains a set of prominent impulses, reflecting within the 
chain. These build up with time, and then decay once the input 
signal itself stops. These are thought to be travelling solitary 
wave impulses, each of which has a broad bandwidth, 
separated in time by two transits through the chain of 6 
spheres. 

It is possible to use the theory outlined briefly in Section III 
to predict what would be expected from the Hertzian contact 
problem within a chain of spheres. The initial results of a 
simulation performed with a 20 cycles of tone-burst at 73 kHz 
is shown in Fig. 9. This is for negligible values of the pre-
compression force F0, and thus corresponds approximately to 
the results shown in Fig. 6. It can be seen that, while some 
details differ, the main wave behavior is predicted – a set of 
impulses that build up over time, with the main frequency 
components being both sub-harmonics and harmonics of the 
original drive frequency. The lowest frequency peak 
corresponds to that expected from the round-trip travel time of 
the impulses, as in the experiment. 

The experiments at higher excitation frequencies (presented 
in Figs 7 and 8) show that the generation of harmonics was 
much more difficult under these conditions. This might be 
expected from a smaller degree of non-linearity at the lower 
excitation amplitudes used.  

 

(a) 

  

(b) 

Fig.9. Theoretical predictions showing (a) the waveform and (b) the 
corresponding spectrum for a chain of 6 ball-bearings of 1 mm diameter. The 
input force FIN used for the prediction was the same as that used 
experimentally in Fig. 6 at 73 kHz. 

VI. CONCLUSIONS 

It has been demonstrated that a narrow-bandwidth input at a 
frequency of 73 kHz can be used to generate solitary wave 
impulses in a chain of 6 spheres. These have many potential 
uses in biomedical ultrasound, particularly for therapeutic use. 
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