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Abstract

Background: The shotgun strategy (liquid chromatography coupled with tandem mass spectrometry) is widely
applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run,
which are interpreted by computational tools. Such tools normally use a protein database from which peptide
sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the
correctness of obtained peptide-spectrum matches (PSMs) needs to be evaluated also by algorithms, as a manual
curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform
spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error
estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an
optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved
number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision
boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the
optimization problem has to be executed many times to achieve a significant augmentation in sensitivity.

Results: Here, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning
techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more
true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running
time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs
compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches.

Conclusion: Our approach not only enhances the computational performance, and thus the turn around time of
MS-based experiments in proteomics, but also improves the information content with benefits of a higher
proteome coverage. This improvement, for instance, increases the chance to identify important drug targets or
biomarkers for drug development or molecular diagnostics.

Background

Proteomic studies cover the identification of entire pro-
teomes, the detection of post-translational modifications
(PTMs), protein quantitation, and the determination of
protein interactions. The shotgun strategy by means of
liquid chromatography coupled with tandem mass
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spectrometry (LC-MS/MS) has been considered the
method of choice when the analysis involves complex
mixtures [1-3]. On the other hand, a single MS/MS
experiment typically generates thousand of spectra from
which usually less than 20% are correctly interpreted,
clearly stressing the necessity of computational solutions
for assessing each peptide-spectrum match (PSM) [4,5].
Note that database (DB) search algorithms are far the
most used approach to MS/MS spectrum interpretation.
Notably, Mascot [6] and Sequest [7] are currently the
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most known standard methods for DB search. As a
result, the main computational tools for PSM evaluation
were built to analyze DB search algorithm results. In the
context of peptide/protein identification, which is our
focus here, there are currently two largely used techni-
ques for assessing PSMs produced by DB search meth-
ods: the construction of mixture models implemented in
the PeptideProphet [8] approach and the target-decoy
search strategy [9-13].

In PeptideProphet approach, standard statistical distri-
butions are used to fit observed positive and negative
score distributions. In the case of Sequest, for instance, the
parameters of Gaussian and gamma distributions are
pursued to identify the underlying score distributions of
correct and incorrect hits, respectively. Hence, the prob-
ability that a PSM with a certain score is correct is com-
puted using the corresponding density functions along
with prior probabilities. As long as the assumed distribu-
tions fit the data appropriately, the probabilities are very
accurate and can be used in protein inference as well. On
the other hand, certain datasets might present completely
different score distributions. When dealing with phospho-
proteins, for instance, scores are normally lower than
usual because the process of fragmenting precursor ions
in mass spectrometry via low energy dissociation has a
tendency to be biased towards phosphate groups, leading
to the suppression of important fragment ions [4,11,14].

In contrast, the target-decoy search strategy, works with-
out any a priori assumption about the data, making it a
good and general method for identification assessment in
MS-based proteomics. In this strategy, besides using the
target proteins in the search, a database composed by
decoy (false) sequences is also included in the assignment
procedure. A common approach is to generate decoy
sequences by reversing the target ones, and both sets of
sequences are then used as a composite target-decoy DB
for the search. The resulting false sequences have to be
produced in a way that it is reasonable to assume that a
wrong PSM has an equal probability to come from either
protein sequence (target or decoy). In this case, the num-
ber of decoy PSMs is an excellent estimate for the number
of wrong hits among target PSMs. A desired false discov-
ery rate (FDR) can be achieved by varying the score
threshold and counting decoy results until reaching a sui-
table cutoff value. Even though providing a very good
method to select a set of PSMs with accurate estimate of
its FDR, the target-decoy search strategy, as it was origin-
ally conceived, does not consider sensitivity, i.e., no com-
putational strategy and performance metrics are applied to
find alternative sets of PSMs having the same FDR but
with higher number of hits [5,10,11,13].

Cerqueira et al. [5] proposed a new strategy called
MUDE (MUItivariate DEcoy database analysis) to extend
the target-decoy method. Using Sequest for their
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experiments, the authors prove that a much higher sen-
sitivity can be achieved. The enhancements are two-fold.
First, the authors consider many more quality para-
meters than usual (traditionally uni or bivariate analy-
sis), namely, Xcorr, AC,, AM, SpRank, Perclons, and RT
(retention time) p-value. Second, in the MUDE
approach, the problem of finding threshold values lead-
ing to the desired FDR is treated as an optimization pro-
blem in contrast with simplistic procedures usually
employed to explore possible values. As a consequence, a
much higher discriminatory power is achieved when com-
pared to the traditional target-decoy search strategy and to
PeptideProphet, resulting also in a significant higher sensi-
tivity for the same FDRs. Note, however, that the MUDE
approach provides linear decision boundaries to separate
false from true positives. Furthermore, according to the
authors, the heuristic used to solve the proposed optimiza-
tion problem has to be executed several times in order to
visit many local optima, and the final result is a merge of
several outputs obtained. To achieve the results shown in
[5], the authors performed 45 runs of the proposed proce-
dure. Each run takes on average 10 s, meaning a total run-
ning time of 7.5 minutes, approximately. Considering that
a manual curation may take days or weeks, this is quite a
good performance. On the other hand, it clearly demon-
strates room for enhancements.

We present here MUMAL, a computational tool to per-
form multivariate analysis for the target-decoy search
strategy using powerful machine learning techniques. This
is an improvement to the MUDE method, where the opti-
mization procedure is replaced by the application of neural
networks (NNs) to find better decision boundaries, even in
non-linearly separable data, and the resulting ROC (recei-
ver operating characteristic) curve is analyzed to further
improve sensitivity. Experiments were performed on the
same data generated by Sequest that was used to evaluate
the MUDE approach. In this data, there are six datasets
derived mostly from phosphoproteins, and five datasets
from non-phosphorylated proteins. Given a certain data-
set, we start training a neural network to separate decoy
from non-decoy PSMs. The features used for training are
the six scores proposed in the MUDE procedure. In a
second stage, the resulting ROC curve of the NN model is
analyzed to determine the best probability threshold lead-
ing to the highest sensitivity for the chosen FDR. The user
has the chance to run the same procedure many times,
using different parameter settings, and merge the best
answers (highest sensitivities) of each run in a unique out-
put, similarly to the MUDE pipeline. The difference is that
with considerably fewer iterations, we could achieve signif-
icantly better sensitivities when comparing with MUDE.
In our experiments, we have chosen FDRs varying from 0
to 0.05, so that we could compare the number of PSMs
our method and the MUDE approach could retrieve for
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the same error rates. The results were quite encouraging.
For non-phosphodata, the sensitivities were ca. 26%
higher, while phosphodata presented an average improve-
ment of 24%. Furthermore, the running time of our
procedures was strikingly shorter. A NN model takes
approximately the same time to be built when compared
to a MUDE run. Notice, however, that only few NN runs
are necessary to achieve much better sensitivities. In our
experiments, we performed six NN rounds for each data
in contrast with the 45 runs of the MUDE approach. In
summary, the proposed strategy is able to enhance sensi-
tivity with a running time 7.5 times faster than MUDE.

Methods
MS/MS data
In this work, we used the same data generated from a
LC-MS/MS approach (high performance liquid chroma-
tography coupled with a LTQ FT mass spectrometer
(Thermo Electron, Bremen)) described in the MUDE
publication [5]. For more information on sample prepara-
tion details see Cerqueira et al. [4] and Morandell et al.
[15]. Three datasets were produced from three indepen-
dent phospho-enriched samples. MS/MS Spectrum files
were converted to dta files, the text-file format of
SEQUEST for MS/MS spectra, resulting in 24405 (S1),
23668 (S2) and 18996 (S3) spectra, respectively. Next,
SEQUEST (Bioworks v3.3, Thermo Electron) was run on
this data to assign peptide sequences to each spectrum.
Each dataset (with its respective SEQUEST output) was
divided in two parts, one containing spectra whose top
result was reported as a phosphopeptide, and the other
composed by spectra whose the best assignment indi-
cated a non-phosphopeptide. Each part was further split
based on the precursor charge state. Only charges +2 and
+3 were considered. As a result, the three initial datasets
generated twelve sets. These separations are necessary as
score distributions may vary significantly from a dataset
of phosphorylated proteins to another of non-phosphory-
lated proteins. Important differences in scores are also
noted in datasets with distinct precursor charge state
[8,16]. The twelve datasets were labeled as S1_PH_CH2,
S1_PH_CH3, S1_NPH_CH2, S1_NPH_CH3, S2_PH_
CH2, S2_PH_CH3, S2_NPH_CH2, S2_NPH_CHS3,
S3_PH_CH2, S3_PH_CHS3, S3_NPH_CH2, and S3_NPH_
CH3, where “PH” and “NPH” denote phosphodata and
non-phosphodata, respectively, while “CH2” and “CH3”
represent +2 and +3 charge states, respectively. The data-
set S3_NPH_CH3 was removed from our experiments as
it has shown to contain fewer than 10 correct assign-
ments. It was verified by a decoy DB analysis and with
Trans-Proteomic Pipeline v4.2 (tool containing Peptide-
Prophet) [17].

Finally, in order to use retention time as a discrimina-
tory feature in our method for identification assessment,
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the out files (containing assignments produced by
SEQUEST) of each set was converted to a unique
IdXML (v1.1) file. This is the format used by the algo-
rithm (OpenMS v1.4) for retention time prediction
described by Pfeifer et al. [18].

Database search details

Following Elias et al. [19] recommendation, all searches
used a database constructed as a composition of target
protein sequences appended to their reverse (decoy
sequences). Target proteins were obtained from the
mouse IPI database (v3.18) [20]. The search parameters
were set the same for all runs. Enzyme: trypsin; missed
cleavages: up to 2; fixed modifications: carbamidomethyl
(C), methyl (C-term), Methyl (DE); variable modifica-
tions: oxidation (M), phosphorylation (ST), phosphoryla-
tion (Y); protein mass: unrestricted; mass values:
monoisotopic; peptide mass tolerance: +10 ppm; frag-
ment mass tolerance: +0.6 Da.

Shotgun proteomics and decoy DB analysis

The shotgun strategy by means of LC-MS/MS is currently
the standard method for analyzing complex mixtures. This
strategy arose from an analogy to shotgun DNA sequen-
cing, where small DNA molecules are computationally
assembled into the continuous target sequence. As illu-
strated in Figure 1, shotgun proteomics entails: the diges-
tion of proteins in a complex mixture into peptides, the
separation of these peptides by liquid chromatography
(commonly multidimensional LC), a continuous and auto-
matic acquisition of peptide fragmentation spectra by tan-
dem mass spectrometry, and, finally, the application of
computational tools, such as SEQUEST and MASCOT, to
interpret each MS/MS spectrum, resulting in the identifi-
cation of proteins present in the sample, including their
abundance level and PTMs [1-3]. An important demon-
stration of the power of this method is the work of Wash-
burn et al. [21], where almost 1500 yeast proteins were
identified, comprising also low-abundance proteins such
as transcription factors and protein kinases. The present
work is based on the computational aspects related to pep-
tide/protein identification using the shotgun approach. In
particular, the following text focuses on the MS/MS spec-
trum interpretation problem and describes the elements
involved in our proposed method.

In shotgun proteomics, a natural necessity has arisen to
automatically evaluate resulting PSMs, given the huge
amount typically produced in a single run. One of the
most widely applied procedures to evaluate PSMs gener-
ated by DB search methods is the target-decoy DB search
strategy. In this method, false (decoy) protein sequences
are generated maintaining the amino acids distribution of
real (target) protein sequences. The search is then per-
formed either once using a composite DB containing
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Figure 1 Shotgun proteomics overview. The proteins of a complex mixture are cut by sequence-specific proteolysis into peptides that are, in
turn, fractionated by liquid chromatography. Each peptide is isolated in the mass spectrometer and characterized by MS/MS. A spectrum
represents the peptide’s pattern of fragmentation, which allows the assignment of an amino acid sequence, including PTM information. The
proteins can then be inferred. Quantitation can be also achieved by the shotgun approach for measuring the relative abundance between
peptides identified in two distinct samples treated with different labeling methods [1,2].
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target sequences appended to decoy sequences or twice
using the same parameters and each sequence DB at a
time. The most common ways to generate decoy
sequences are reversing target ones, shuffling them, or
using some randomization process [22,23]. The construc-
tion of a decoy DB as proposed in literature allows the
assumption that a wrong hit (of SEQUEST or any other
DB search algorithm) might come either from a real
sequence or a target one with the same probability. This
means that the number of hits coming from decoy
sequences can be taken as a very good estimate of the

number of wrong PSMs coming from target sequences.
The main advantage of this method is that there is no a
priori assumption on data distribution, which made this
strategy very popular in proteomics. Particularly, the tar-
get-decoy DB search strategy is frequently present in phos-
phoproteomics research, since scores of phosphodata have
a very peculiar distribution [10-12].

In this work, we used a composite DB of target and
reversed sequences. As decoy PSMs are clearly wrong,
they are used to estimate the number of wrong hits
among target hits, but they are not considered in the
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FDR calculation, as seen in previous works. Hence, for a
given dataset of PSMs, FDR is estimated by:

FPR= 2L M
Nr —Dr

Dr is the number of decoy PSMs filtered through a set
of thresholds T, and Ny is the total number of peptide
identifications (decoys and targets) using thresholds in T.
Figure 2 illustrates the estimation of FDR for different
score thresholds.

As already mentioned, decoy DB methods have been
widely applied to find score thresholds leading to a desired
FDR, particularly in the case of phosphodata with typically
odd score distributions. However, to our best knowledge,
this method has been used without any attempt to maxi-
mize sensitivity, where sensitivity here means the propor-
tion of true identifications captured by the chosen
thresholds. Either only one quality parameter is varied or,
even when more scores (normally two) are explored, after
thresholds are determined that produce the desired FDR,
no other score combination that might provide a higher
number of identifications is investigated and verified.
Therefore, the inclusion of other parameters in the analy-
sis as well as a more systematic and elegant way to explore
them are a clear direction for improvements.
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Multivariate analysis in the target-decoy DB strategy
Using multivariate analysis in MUDE for PSM assess-
ment, sensitivity is expected to increase, i.e., a higher
number of PSMs can be detected for a given error .
This was previously illustrated by Figures 3a and 3b [5].
In Figure 3a, twelve peptide hits are shown including
their Xcorr and AC,, (the most known SEQUEST scores
[11,24]) values. This example demonstrates that to
obtain FDR = 0 using only Xcorr, just three hits are
retrieved. When AC,, is included, on the other hand,
five PSMs are obtained with the same error. This is also
emphasized in Figure 3b where values of part (a) are
plotted in the Cartesian plane.

In MUDE, other four important parameters are
included: AM, SpRank, percentage of ions found, and RT
deviation (the difference between observed and predicted
RT), i.e., six features are considered for the assessment
procedure instead of one or two as stated by previous
works. Additionally, MUDE presents an optimization pro-
cedure, termed ¢-masp, to maximize sensitivity for a fixed
error ¢. Even demonstrating a significant increase in sensi-
tivity, this method presents two characteristics that could
be further improved. First, the optimization method pro-
duces only linear decision boundaries. However, we show
in Figure 3b that a non-linear decision boundary (green
curve) could provide an even higher sensitivity for the

mmmmm Decoy hit
mmmmm Normal hit

Figure 2 lllustration of how FDRs are estimated using a composite target-decoy DB. For each different threshold, one can use the number
of decoy hits to estimate the number of wrong PSMs among target hits. See Equation 1.
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Figure 3 Example showing how the inclusion of other parameters can improve sensitivity in a decoy DB approach. For a FDR = 0, just
three identifications can be retrieved when applying Xcorr thresholds. The addition of AC,, allows threshold combinations resulting in five
identifications (rectangles and ellipses). (a) Textual representation. (b) Graphical representation (AC, vs. Xcorr), where crosses represent decoy
PSMs and circles denote normal PSMs. We added here the green curve in (b) to show that a non-linear decision boundary is expected to further
enhance sensitivity in such analysis.

same FDR. Second, the MUDE’s optimization procedure
has to be repeated several times in a typical run to ensure
a high sensitivity. Notice that non-linear learning algo-
rithms can establish more appropriate decision bound-
aries, leading to high sensitivity, in a single run.

Therefore, instead of pursuing a set of thresholds for
PSM scores, as stated in former procedures, our
approach seeks now the establishment of a more com-
plex function to combine such scores, representing a
more accurate decision boundary. This is exactly what
support vector machines (SVMs) and neural networks
can provide.

Deciding the learning algorithm

Before further developing our procedure for PSM assess-
ment, we performed a comparison between the SVM
approach and NNs to decide which method should be
chosen as the main learning algorithm in the MUMAL
pipeline. We used the eleven datasets mentioned in
Section “MS/MS data” to analyze which approach could
provide a higher sensitivity for a 1% FDR. According to
Elias et al. and Balgley et al. [24,25], this FDR represents
the best trade-off between sensitivity and precision when
assessing PSMs. See Section “Varying the discriminant
probability to achieve a desired FDR” for details on how to
calibrate a learning algorithm, using the ROC curve and
decoy hits counting, to obtain a decision boundary that
provides the pursued FDR.

The comparisons were made using the Weka (v3.7.0)
application programming interface (API) [26], which pro-
vides two different implementations of the SVM
approach: SMO [27] and LibSVM [28] as well as an
implementation of a multilayer neural network with
backpropagation. For NN runs, default parameter values
were used. In the case of LibSVM and SMO, the only

change in parameters was probability estimate = true to
allow probability calculation instead of dichotomous clas-
sification of type “yes” or “no”. For more details on para-
meters of these methods, see Tan et al. [29] as well as
Platt [27] and Fan et al. [28].

The result can be seen in Table 1. It clearly demon-
strates the superiority of NNs when compared with SVM.
In all datasets, the number of extracted PSMs was signifi-
cantly higher for NNs. In some cases, it presented more
than a two-fold increase. As described in the following
sections, such derived datasets using the target-decoy
approach can be considered as very noisy, since most non-
decoy hits present similar characteristics as decoy hits.
Table 1 shows that NNs were capable to cope with such a
particular situation more appropriately when compared to
SVM.

Given the results of this first experiment, we pro-
ceeded with the development of the proposed method
using neural networks as the learning algorithm of our
pipeline.

Neural networks

The study of artificial neural networks is an effort to
mimic biological neural systems with the objective to cre-
ate a powerful learning technique [29-32]. Similarly to
human brain, a NN is comprised of a set of nodes inter-
connected by directed links. The first proposed model was
called perceptron [33]. Only two kinds of nodes (neurons)
are present in this simple architecture: input nodes and
one output node. Nodes of the first type represent fea-
tures, while ones of the second kind represent the model
output. Each input node is connected to the output node
by a weighted link. The weights represent the strength of
synaptic connections between neurons. Note that the
human learning process consists exactly of changing the
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Table 1 Comparison between NN and SVM (LibSVM and
SMO)

Dataset NN LibSVM SMO
ST_NPH_CH2 318 158 174
ST_NPH_CH3 398 138 95
S1_PH_CH2 132 88 87
S1_PH_CH3 210 48 111
S2_NPH_CH2 72 37 50
S2_NPH_CH3 88 34 40
S2_PH_CH2 176 71 120
S2_PH_CH3 236 154 139
S3_NPH_CH2 72 - -
S3_PH_CH2 487 231 413
S3_PH_CH3 338 147 295

The values indicate the number of PSMs that the learning method could retrieve
when considering a 1% FDR. The NN values were significantly better. The dashes
indicate that the algorithm could not find a set of hits with 1% FDR, i.e,, there is
no point in the ROC curve corresponding to such an error rate.

strength of such connections due to some repeated stimu-
lus. In a perceptron, the output node computes the
weighted sum of the inputs, subtracts the result by a bias
term, and uses what is called an activation function (that,
in this case, is the signum function) to produce the final
output (if value is positive it outputs +1, if it is negative
the output is -1) [29]. Hence, the process of training a per-
ceptron is the adaptation of weights until getting an accep-
table relation between input and output according to what
is observed in training data.

In order to model more complex relationships between
input and output values, the perceptron model has rapidly
evolved to a more complete structure termed multilayer
neural network. In this model, the network may contain
various intermediary layers called hidden layers (e.g.,
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Figure 4). Besides, the network may apply more complex
activation functions, such as sigmoid (logistic) and hyper-
bolic tangent functions. All this combined, including an
output layer with possibly more than one node, allows the
production of more flexible and useful decision bound-
aries. Furthermore, the learning procedure may apply a
method called backpropagation, where the deviation
between observed and expected outputs is used in a
sophisticated weight update formula in reverse direction,
i.e., weights at level d + 1 are updated before weights at
level d [29].

We have chosen the multilayer with backpropagation
approach implemented in the Weka API [26,32]. Our
NN architecture is depicted in Figure 4. As can be seen,
the input layer nodes correspond to the six features
cited in the last section, there is one hidden layer (with
five nodes in this case), and the output layer has two
nodes, since we wish to perform binary classification
(decoy or non-decoy hit, where value 1 indicates the
class). For each data, we performed six runs using the
same parameter variations (see Tan et al. [29] for a
description of relevant NN parameters). Table 2
describes parameter details (we used sigmoid as activa-
tion function and momentum = 0.2 in all runs).

Varying the discriminant probability to achieve a desired
FDR

Many binary classifiers, including binary NNs, may build
models to output probabilities instead of hard 0’s and 1’s.
In this case, the model is normally built in such way that
the probability 0.5 is set up as the threshold value to
decide to which class a given example belongs (e.g., if P <
0.5, then it is in class 0, otherwise, it belongs to class 1). In
NN with sigmoid functions, for instance, the mapping

\

Figure 4 NN architecture used in our approach. In this case, the hidden layer contains five nodes.
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Table 2 Details of the parameters used in NN training

Run no. No. of nodes in hidden layer Learning rate Epochs

1 4 0.1 1000
2 4 0.2 1000
3 4 03 1000
4 5 0.1 2000
5 5 0.2 2000
6 5 0.3 2000

We performed six runs for each data using the settings shown in the table.

between output values and probabilities are established
using these functions, as illustrated in Figure 5. Notice
that negative values are mapped to probabilities lower
than 0.5, positive values are mapped to probabilities
greater than 0.5, and O corresponds exactly to P = 0.5.

The learning procedure normally seeks to maximize
the number of correctly classified instances, i.e., the
accuracy. It is expected that our datasets lead to low-
accuracy models, since our classes are decoy and normal
hits. Notice that most of normal hits (the wrong ones)
will have similar characteristics when compared to
decoy hits (which are obviously wrong). This is due to
the fact that most of interpretations performed on MS/
MS spectra are wrong. Because of this property in the
shotgun approach, our data can be thought as very
noisy data, which makes the model construction a chal-
lenging task. In fact, the average accuracy obtained for
our eleven datasets was 60% and the FDR for P >0.5 in
all cases was very high.

Nonetheless, the NN training is just the first stage of
our procedure. In order to achieve a more useful
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decision boundary with a maximum predefined FDR, or
error & we propose a cost/benefit analysis for different
probability thresholds as a second stage. After the
model construction, we vary the discriminant probability
until getting a value that leads to a FDR not greater
than ¢. This is exactly what ROC (receiver operating
characteristic) curves explore. A ROC curve is a graphi-
cal plot of true positive rate vs. false positive rate for
several distinct discriminant thresholds [29]. It allows to
visualize which point could be selected as the best trade
off between what is correctly captured by a chosen cut-
off and the consequent error (what is wrongly detected
as positive). Figure 6 shows the ROC curve generated
from a NN model for S3_NPH_CHS3 (the other datasets
have similar curves - not shown). Notice, however, that
the FDR calculation here is performed according to
Equation 1. For a given discriminant probability P, we
count the number of examples N with probability >P
and the number of decoy examples D among N. Then,
Equation 1 is applied to estimate FDR.

As the model construction is performed to maximize
accuracy, we expect maximization of sensitivities as well.
Notice that the MUDE approach also tries to maximize
sensitivity. The difference in our case is that the models
obtained here can construct non-linear decision bound-
aries, denoting the possibility of even higher sensitivities,
as stated previously in the text.

Framework for identification assessment
Figure 7 illustrates the whole procedure that we propose
here as a data mining framework. Initially, RT p-values

J—

Fal
LW

0

Figure 5 Mapping of NN outputs to probability values. A sigmoid function is normally used for such a mapping.
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Figure 6 ROC curve from a NN model for S3_NPH_CH3. True positive rate vs. false positive rate. AUC (area under curve) = 0.682.

(denoting how predicted RTs deviate from observed
RTs) are calculated according to the method described
by Pfeifer et al., where a support vector regression
(SVR) is performed [18]. A training set (a list of peptide
sequences with respective RTs) is constructed based on
the output of a first run of our procedure for ¢ = 0,
using only five scores: AC,, Xcorr, AM, SpRank, percen-
tage of ions found. After this, the NN approach is
applied again using all proposed scores for a user-
defined ¢, resulting in a list of assignments with accepta-
ble FDR. Of course, the user can skip the RT p-value
calculation in the first part, using only five features,
which makes the whole process faster. On the other
hand, the discriminatory power is decreased, as shown
previously [5,18].

Results and discussion
In this paper, we propose a multivariate decoy DB analy-
sis using neural networks and ROC analysis to produce

more flexible decision boundaries. As described for the
MUDE procedure, we also take advantage of many
important scores in contrast to the bivariate decoy analy-
sis (termed here as BIDE) of previous works. On the
other hand, MUMAL achieves higher sensitivity and
much faster running times when compared to MUDE, as
can be seen in our experiments below. Notice that PSMs
are used to build a NN model, which, in turn, is applied
to the same data as our goal is not to apply the obtained
model to future unseen instances, but, instead, we want
to separate correct from incorrect hits. Hence, there is no
sense here in applying traditional statistical methods to
evaluate learning algorithm models, such as cross valida-
tion. The main measure to evaluate our models is the
number of true positives that can be achieved for a cer-
tain maximum FDR.

Our comparisons were performed on the peptide level.
As previously demonstrated, improvements on peptide
level lead also to improvements on protein level, possibly

MUMAL framework

R e i e R s i o . i e i i, i, i

ME for gm0 Einal Original B for chosan &
using anly VR - TR ngumna wsing all scores i
Cngnal B S2000% Assignmerntg] (Construcison of macde] RT p-walues asnygnments | - P.sswnmer-‘-;
£ - e 5 5 ___LE‘ odal far BT y »  Acorr, A, AM, R
assignments Weorr A AM FOR =0 | @modal forl N calculation with p-values LrSpRank, | FDE£E
LnSpRank, pre diciiar) " Parclans, !
Ferclans BT pvalue :
I
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Figure 7 MUMAL framework. Our method is first run for ¢ = 0 so that a training set can be obtained for constructing a RT prediction model.
RT p-values are then calculated and the NN/ROC approach is applied again using all proposed scores for a predefined maximum FDR.
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leading to a higher proteome coverage (i.e., identification
of more proteins) [5]. This is quite obvious, as proteins
are inferred from peptide identifications. Thus, we limit
our analysis to the peptide level, i.e., the amount of cor-
rect PSMs our method could separate for a predefined
maximum FDR. The experiments below demonstrate the
superior performance of MUMAL regarding the main
tools currently used for PSM validation: MUDE, Peptide-
Prophet, and BIDE (using AC, and Xcorr or AM and
Xcorr). See the work of Cerqueira et al. [5] for details on
how these previous methods were applied to generate the
curves shown next.

Figure 8 depicts comparisons made for non-phospho-
data. The figure is composed of plots for number of
assignments vs. FDRs. Here, we used all available tools,
including MUMAL, to generate solutions for ¢ varying
from O to 0.05. In this way, it is possible to compare the
number of assignments that each tool could retrieve for
the same error rates. It can be noticed from the plots that
MUMAL curves show a clearly superior performance
over the other curves, i.e., a higher sensitivity could be
achieved when considering the same error. The increase
of sensitivity provided by our method regarding MUDE
values was 26% on average.

For phosphodata, we also included a BIDE analysis
using Xcorr and AM. According to Beausoleil et al. [10]
and Jiang et al. [11], AC,, scores are normally suppressed
when a phosphopetide has more than one potential phos-
phorylation site. Therefore, the use of AC,, may be inap-
propriate for phosphodata. As can be seen in Figure 9,
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the scenario has not changed much. MUMAL curves
show once more its superior performance, demonstrating
an improvement in sensitivity of 24% on average compar-
ing with MUDE results. It is also worth noting that Pepti-
deProphet performance is inferior compared with the
other procedures, confirming that the former is indeed
not appropriate to phosphodata.

Another comparative analysis was performed between
MUMAL and MUDE by means of Venn diagrams. In this
experiment, we compared the number of exclusive iden-
tifications that each method could deliver for a 1% FDR.
Figures 10(a) and 10(b) demonstrate that our method
could in most cases find a significantly higher number of
exclusive hits. This is an important fact, since exclusive
findings might refer to exclusive proteins or, at least,
represent a higher coverage (more distinct peptides) or a
higher number of matches (more peptides with same
sequence) for proteins detected in both cases.

Finally, Figure 11 depicts an example of a spectrum
detected by MUMAL in dataset S2_PH_CH2. The same
spectrum was disregarded by MUDE. A manual inspec-
tion reveals that this interpretation is probably correct.
First, the spectrum has a typical prominent central peak
(m/z = 568.1) representing neutral loss of two H3PO,
groups undergone by the doubly-charged precursor ion
(666.33 - 568.1 = 49 + 49). Second, the b/y series are
mostly suppressed, which is also a strong characteristic
of phosphopeptide spectra. Finally, the protein that origi-
nated the assigned peptide is SENP1 (sentrin/SUMO-
specific protease 1), for which phosphorylation site SER
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Figure 8 Plots of number of assignments vs. FDRs for non-phosphodata. (a) S1_NPH_CH2. (b) S2_NPH_CH2. (c) S3_NPH_CH?2. (d)
S1_NPH_CH3. (e) S2_NPH_CH3. MUMAL curves clearly show the superior performance compared with other procedures.
A\




Cerqueira et al. BMIC Genomics 2012, 13(Suppl 5):54
http://www.biomedcentral.com/1471-2164/13/S5/54

Page 11 of 13

N
=i Keoer & aM
=g= ot & Al
—4— PehdeProph et
=g LI[E
e MLBAAL
[FH] A {eh
250 - 250 £}
[ I L
00 4 ] } | 200 4 f_a_,_.,___.a—ﬂ'_ 00 -] ).(/.- . —|
B "L ]
L - A6 - = =
150 e —_I.F'H.-.‘--’-f_*_ 150 3 | | | :i_._,_n-—'—'_ e _‘:_
e i .——*—_d__“.::r;—'-ﬁ—_"" 0 | _A_,f""'t-
_F--I T T— -
100 4 100 lr_—_'—L' 1 | -.-.--""_.
et ’ I— e, > g
50 = 50 ot T Il
F il 1.-'-"'- ¥
o .= ] g 2] | ——— 1
0 0o ooz o o0 0.0 2] am 002 o003 o4 ons [ oos ooz 003 004 05
el L] in
350 - 380 00 -
450
300 2 300 i 1
o — e a4 — -
250 4 _,_.-ll—"_'_ﬂr 250 _,_,-o-""'--v I - 'i T —_':".__'_'_*
o R il | et oy a0 =t i
200 o = = | 200 "],r R = | | —
L el e 50 ‘II-—""' ﬂ__._&_..—n———ﬁ_ 1
" i | " { aan | - i —
130 — B 150 4 | —p— et ﬂ:l:]-l “':_ _.._.—-—‘_"__ |
0o S S S— 10 .7.%55"—'_—# i | 150 4 m i et
—t W4t
50 1= 50 1~ & |
) . ; . . 0 : ! ! ! ! 04 ; : . .
0 oo o ooy oy 008 2] afeb] 0o2 [ufie] 004 =l 1] o alier] 003 004 05

Figure 9 Plots of number of assignments vs. FDRs for phosphodata. (a) S1_PH_CH2. (b) S2_PH_CH2. (c) S3_PH_CH2. (d) S1_PH_CH3.
(e) S2_PH_CHS3. (f) S3_PH_CH3. The MUMAL method demonstrates again the superior performance over MUDE, BIDE, and PeptideProphet.

N

SINPH.CH?2

82 NPH_CH2

SaNPHLCH2

SINPH_CH=3

82 NPH_CH3

(k)

S1.PH.CH2 S1_PH_CHa

)9 (0>

52 PH . CH2 &2 PH_CHa

DD

S3.PH.CHz2 S3.PH.CHz

Figure 10 Venn diagrams of MUMAL x MUDE for a 1% FDR. (a) Non-phosphodata. (b
assignments retrieved by the MUMAL approach, whereas the right set indicates identifications found by MUDE. The diagrams demonstrate that,

in general, our method reported many more exclusive identifications than MUDE.

) Phosphodata. In each diagram, the left set represents




Cerqueira et al. BMIC Genomics 2012, 13(Suppl 5):54
http://www.biomedcentral.com/1471-2164/13/S5/S4

Page 12 of 13

5631

Feelative Abundance

200 300 400 S00 GO0

Tan aoa ann

Figure 11 Example of a spectrum in S2_PH_CH2 detected exclusively by MUMAL. The assigned peptide sequence is shown at the top
together with precursor m/z value and charge. Phosphorylated amino acids are highlighted with underscores.

SLLSPKKTGR
1666.33. 24)

noopy V7
¥ 7
?%33 B354

1000 1100 1200

miz

170 is already reported in the literature [34]. Notice that
various large-scale gene expression studies demonstrate
important variations in the level of SENP1 in many dif-
ferent types of cancer [35,36]. Bawa-Khalfe et al. [36], for
instance, demonstrate that changes in the SENP1 expres-
sion induce prostatic intraepithelial neoplasia. Note yet
that the datasets used here were originated from the
work of Morandell et al. [15]. In this work, a novel
screening platform termed QIKS is proposed to identify
kinase substrates. Particularly, the authors aimed at find-
ing substrates of mitogen-activated protein kinase/Erk
kinase (Mek1). They have listed hundreds of phosphory-
lated proteins using their platform. However, after
inspecting their report, we could not find SENP1. This
means that our method could detect a substrate they
were not able to find using standard spectrum evaluation
tools. Considering that the protein SENP1 plays a role in
cancer, its phosphorylation sites might be an important
information, since malfunction of phosphorylation is
known to be related to various serious diseases, including
cancer [37,38].

Conclusion

It has been largely demonstrated that the target-decoy
search strategy is a powerful tool for evaluating PSMs of
MS/MS runs. Nonetheless, the potential of this method
has not been fully explored as sensitivity maximization is
not taken into account in typical experiments. The
MUDE approach treats the decoy analysis as an optimi-
zation problem, enabling a significant improvement in
sensitivity. In this work, we present MUMAL, a PSM eva-
luation pipeline that uses machine learning methods,
namely neural networks and ROC curve analysis, to pro-
mote an even higher increase of sensitivity, i.e., the retrie-
val of as many PSMs as possible for a fixed error rate.

Experiments demonstrate that our approach can establish
better decision boundaries, embracing a higher number
of true positives than MUDE and other standard
methods.

The next step is to perform new experiments with
alternative machine learning algorithms and, if they
show promising results, to optimize their models to
reach higher sensitivities. Another future effort will
focus on extending the method to cope also with MAS-
COT results.

With the new proposed strategy, experiments on MS-
based proteomics will gain in performance with respect
to both time and proteome coverage, so that a better
understanding of cellular activities can be achieved,
advancing ultimately the utility of proteomics in the
process of discovery and development of new drugs.

Addendum: URL for software download
The software is open-source and is available under the
URL: http://sourceforge.net/projects/mumal/

Acknowledgements

This work is supported by FAPEMIG, CNPg, and CAPES.

This article has been published as part of BMC Genomics Volume 13
Supplement 5, 2012: Proceedings of the International Conference of the
Brazilian Association for Bioinformatics and Computational Biology (X-
meeting 2011). The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcgenomics/supplements/13/S5.

Author details

'Department of Informatics, Federal University of Vicosa (UFV), 36570-000,
Minas Geras, Brazil. “Department of Medicine and Nursing, Federal University
of Vigosa (UFV), 36570-000, Minas Geras, Brazil. 3Departmem of Biochemistry
and Molecular Biology, Federal University of Vicosa (UFV), 36570-000, Minas
Geras, Brazil. “Research and Innovation, Molecular Diagnostics, Novartis
Pharmaceuticals Corporation, East Hanover, NJ 07936, USA; Institute for
Bioinformatics and Translational Research, UMIT, A-6060 Hall in Tirol, Austria.
®Research Group for Clinical Bioinformatics, Institute of Electrical, Electronic
and Bioengineering, UMIT, A-6060 Hall in Tirol, Austria.


http://sourceforge.net/projects/mumal/
http://www.biomedcentral.com/bmcgenomics/supplements/13/S5

Cerqueira et al. BMIC Genomics 2012, 13(Suppl 5):54
http://www.biomedcentral.com/1471-2164/13/S5/S4

Authors’ contributions

FRC, AG, and CB designed all analyses; FRC, RSF, APO, APG, and HJOR were
responsible for carrying out the analyses; FRC, AG, and CB wrote the initial
draft of the manuscript; all other authors contributed to posterior revisions
to the final draft. All authors read and approved the final paper.

Competing interests
The authors declare that they have no competing interests.

Published: 19 October 2012

References

1.

2.

Wu CC, MacCoss MJ: Shotgun proteomics: Tools for the analysis of
complex biological systems. Curr Opin Mol Ther 2002, 4(3):242-250.
Nesvizhskii Al, Aebersold R: Interpretation of shotgun proteomic data.
Mol Cell Proteomics 2005, 10(4):1419-1440.

Marcotte EM: How do shotgun proteomics algorithms identify proteins?
Nat Biotechnol 2007, 25(7):755-757.

Cerqueira FR, Morandell S, Ascher S, Mechtler K, Huber LA, Pfeifer B,

Graber A, Tilg B, Baumgartner C: Improving Phosphopeptide/protein
Identification using a New Data Mining Framework for MS/MS Spectra
Preprocessing. J Proteomics Bioinform 2009, 2:150-164.

Cerqueira FR, Graber A, Schwikowski B, Baumgartner C: MUDE: A New
Approach for Optimizing Sensitivity in the Target-Decoy Search Strategy
for Large-Scale Peptide/Protein Identification. J Proteome Res 2010,
9(5):2265-2277.

Perkins DN, Pappin DJC, Creasy DM, Cottrell JS: Probability-based protein
identification by searching sequence databases using mass
spectrometry data. Electrophoresis 1999, 20(18):3551-3567.

Eng JK, McCormack AL, Yates JR: An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein
database. J Am Soc Mass Spectrom 1994, 5:976-989.

Keller A, Nesvizhskii Al, Kolker E, Aebersold R: Empirical statistical model to
estimate the accuracy of peptide identifications made by MS/MS and
database search. Anal Chem 2002, 74(20):5383-5392.

Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP: Evaluation of
multidimensional chromatography coupled with tandem mass
spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the Yeast
proteome. J Proteome Res 2003, 2:43-50.

Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP: A probability-based
approach for high-throughput protein phosphorylation analysis and site
localization. Nat Biotechnol 2006, 24:1285-1292.

Jiang X, Han G, Feng S, Jiang X, Ye M, Yao X, Zou H: Automatic Validation
of Phosphopeptide Identifications by the MS2/MS3 Target-Decoy Search
Strategy. J Proteome Res 2008, 7:1640-1649.

Lu B, Ruse C, Xu T, Park SK, Yates J: Automatic validation of
phosphopeptide identifications from tandem mass spectra. Anal Chem
2007, 4(79):1301-1310.

Bianco L, Mead JA, Bessant C: Comparison of Novel Decoy Database
Designs for Optimizing Protein Identification Searches Using ABRF
sPRG2006 Standard MS/MS Data Sets. J Proteome Res 2009,
8(4):1782-1791.

Imanishi SY, Kochin V, Ferraris SE, Thonel A, Pallari HM, Corthals GL,
Eriksson JE: Reference-facilitated phosphoproteomics: Fast and reliable
phosphopeptide validation by uLC-ESI-Q-TOF MS/MS. Mol Cell Proteomics
2007, 6:1380-1391.

Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D,
Wrulich OA, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber LA: QIKS -
Quantitative identification of kinase substrates. Proteomics 2010,
10(10):2015-2025.

Dworzanski JP, Snyder AP, Chen R, Zhang H, Wishart D, Li L: Identification
of Bacteria Using Tandem Mass Spectrometry Combined with a
Proteome Database and Statistical Scoring. Anal Chem 2004,
76(8):2355-2366.

Keller A, Eng J, Zhang N, Li X, Aebersold R: A uniform proteomics MS/MS
analysis platform utilizing open XML file formats. Mol Syst Biol 2005, 1-8.
Pfeifer N, Leinenbach A, Huber CG, Kohlbacher O: Statistical learning of
peptide retention behavior in chromatographic separations: a new
kernel-based approach for computational proteomics. BMC Bioinformatics
2007, 8:468.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

Page 13 of 13

Elias JE, Gygi SP: Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry. Nat Methods
2007, 4(3):207-214.

Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R: The
international protein index: An integrated database for proteomics
experiments. Proteomics 2004, 4(7):1985-1988.

Washburn MP, Wolters D, Yates Ill JR: Large-scale analysis of the yeast
proteome by multidimensional protein identification technology. Nat
Biotechnol 2001, 19(3):242-247.

Baumgartner C, Rejtar T, Kullolli M, Akella LM, Karger BL: SeMoP: A New
Computational Strategy for the Unrestricted Search for Modified
Peptides Using LC-MS/MS Data. J Proteome Res 2008, 7(9):4199-4208.
Bianco L, Mead JA, Bessant C: Comparison of Novel Decoy Database
Designs for Optimizing Protein Identification Searches Using ABRF
sPRG2006 Standard MS/MS Data Sets. J Proteome Res 2009,
8(4):1782-1791.

Balgley BM, Laudeman T, Yang L, Song T, Lee CS: Comparative evaluation
of tandem MS search algorithms using a target-decoy search strategy.
Mol Cell Proteomics 2007, 6:1599-1608.

Elias JE, Gibbons FD, King OD, Roth FP, Gygi SP: Intensity-based protein
identification by machine learning from a library of tandem mass
spectra. Nat Biotechnol 2004, 22:214-219.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH: The
WEKA Data Mining Software: An Update. SIGKDD Explorations, Volume 11
2009.

Platt JC: Advances in kernel methods: support vector learning Cambridge, MA,
USA: MIT Press 1999 chap. Fast training of support vector machines using
sequential minimal optimization;185-208.

Fan R, Chen P, Lin C: Working set selection using second order
information for training support vector machines. J Machine Learning
Research 2005, 6:1889-1918.

Tan PN, Steinbach M, Kumar V: Introduction to data mining Boston:
Addison-Wesley; 2006.

Mitchell TM: Machine Learning Singapore: McGraw-Hill; 1997.

Baldi P, Brunak S: Bioinformatics: The machine learning approach. 2 edition.
Massachusetts: The MIT Press; 2001.

Witten IH, Frank E: Data mining: Practical machine learning tools and
techniques. 2 edition. San Francisco: Morgan Kaufmann; 2005.

Rosenblatt F: The perceptron, a perceiving and recognizing automaton Project
Para Cornell Aeronautical Laboratory report, Cornell Aeronautical
Laboratory; 1957.

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ,

Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative
Phosphoproteomics Reveals Widespread Full Phosphorylation Site
Occupancy During Mitosis. Sci Signal 2010, 3(104):ra3.

Brems-Eskildsen A, Zieger K, Toldbod H, Holcomb C, Higuchi R, Mansilla F,
Munksgaard P, Borre M, Omtoft T, Dyrskjot L: Prediction and diagnosis of
bladder cancer recurrence based on urinary content of hTERT, SENP1,
PPP1CA, and MCM5 transcripts. BMC Cancer 2010, 10:646.

Bawa-Khalfe T, Cheng J, Lin S, Ittmann MM, Yeh ETH: SENP1 Induces
Prostatic Intraepithelial Neoplasia through Multiple Mechanisms. J Biol
Chem 2010, 285(33):25859-25866.

Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK,
Huber LA: Phosphoproteomics strategies for the functional analysis of
signal transduction. Proteomics 2006, 6:4047-4056.

Kocher T, Savitski MM, Nielsen ML, Zubarev RA: PhosTShunter: A fast and
reliable tool to detect phosphorylated peptides in liquid
chromatography fourier transform tandem mass spectrometry data sets.
J Proteome Res 2006, 5:659-668.

doi:10.1186/1471-2164-13-55-54

Cite this article as: Cerqueira et al: MUMAL: Multivariate analysis in
shotgun proteomics using machine learning techniques. BMC Genomics
2012 13(Suppl 5):54.



http://www.ncbi.nlm.nih.gov/pubmed/12139310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12139310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17621303?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20199108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20199108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20199108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12403597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12403597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12403597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12643542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12643542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12643542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12643542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18314942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18314942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18314942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17510049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17510049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20217869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20217869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15080748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15080748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15080748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18053132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18053132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18053132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17327847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17327847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15221759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15221759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15221759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11231557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11231557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18686985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19714810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17533222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17533222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14730315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20068231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20068231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20068231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20551310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20551310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16791829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16791829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16512682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16512682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16512682?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	MS/MS data
	Database search details
	Shotgun proteomics and decoy DB analysis
	Multivariate analysis in the target-decoy DB strategy
	Deciding the learning algorithm
	Neural networks
	Varying the discriminant probability to achieve a desired FDR
	Framework for identification assessment

	Results and discussion
	Conclusion
	Addendum: URL for software download
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


