
This is a repository copy of Using Alloy to model-check visual design notations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98344/

Version: Accepted Version

Proceedings Paper:
Simons, A.J.H. and Fernandez, C.A.F.Y. (2005) Using Alloy to model-check visual design
notations. In: EstivillCastro, V. and Sanchez, J.A., (eds.) Proceeding ENC '05 Proceedings
of the Sixth Mexican International Conference on Computer Science. Sixth Mexican
International Conference on Computer Science, Sep 26-30, 2005, Puebla, Mexico. ACM ,
pp. 121-128. ISBN 0-7695-2454-0

https://doi.org/10.1109/ENC.2005.52

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Using Alloy to model-check visual design notations

Anthony J. H. Simons, Carlos Alberto Fernández y Fernández
Department of Computer Science, University of Sheffield

{A.Simons, C.Fernandez} @dcs.shef.ac.uk

Abstract

This paper explores the process of validation for the

abstract syntax of a graphical notation. We define a
unified specification for five of the UML diagrams
used by the Discovery Method and, in this document,
we illustrate how diagrams can be represented in Alloy
and checked against our specification in order to know
if these are valid under the Discovery notation.

Keywords

Formal specification, model checking, Alloy, visual
modelling, UML

1. Introduction

The Unified Modeling Language (UML) [1] is an
eclectic set of notations for modelling object-oriented
designs. Under the supervision of the Object
Management Group (OMG), the notation set has
grown larger, to accommodate the concerns of
different stakeholders in business and industry. This
has led to some criticisms regarding the open ended
semantics and the lack of direction given in modelling
[2].

Various attempts to formalise parts of UML include
the work of the Precise UML group (pUML) [3],
which aims to clarify the semantics of UML and create
tools to support the rigorous analysis of UML models.
Jointly with IBM, pUML submitted a Meta-Modelling
Framework (MMF) [4] to the OMG as an option to the
original UML metamodel. Out of this work came the
desire to create an Unambiguous UML, an idea partly
inspired by the Catalysis method [5]. The
Unambiguous UML (2U) Consortium [6], which grew
out of pUML, submitted a full proposal for UML2.0
based on a set of architectural principles.

Related work on the development of model
checkers and tools for UML has been quite slow. Some
examples include the Hugo tool, which compiles UML
state machines into a format processed by the

PROMELA model checker [7]. The USE tool (UML-
based Specification Environment) [8] allows UML
diagrams to be annotated with constraints written in
OCL (the Object Constraint Language [9]), after which
the validity of models may be checked, using
predicates also written in OCL. The tool verifies
model instances against explicit predicates and also
implicitly against the invariants defined in the model.

A prerequisite to developing high-quality model
checkers is the ability to encode model diagrams in a
suitable abstract syntax, and from this to develop an
abstract semantics [10]. This paper reports on a series
of initial experiments conducted into converting a
small object-oriented design notation into an abstract
syntax, which was then submitted to the model checker
Alloy [11, 12], to verify the correctness of models
against the abstract syntax. The design notation is a
subset of UML used by the Discovery Method [13,
14]. We demonstrate that it is possible to validate
model instances of different types against an abstract
syntax specification. We also show how a combination
of consistent model instances yields a single,
consistent abstract syntax; and the converse, that
inconsistent models are rejected against the abstract
syntax specification. The Alloy analyzer proves to be a
tricky tool to use well in this context, and we report
also on various different approaches to encoding
diagram information and the tactics adopted to focus
the work of the model checker.

The rest of this paper is organized as follows:
section 2 discusses the relationship between UML and
the notation of the Discovery Method; section 3 gives
a brief explanation of the Alloy analyzer; section 4
describes the research methodology; section 5
introduces the abstract syntax model for encoding
Discovery Method notations in Alloy; section 6 gives
an example of usage and model-checking; section 7
gives an initial evaluation of Alloy and its usefulness
for modelling diagram syntax constraints; and finally
section 8 presents our conclusions. A graph depicting
the Alloy abstract syntax metamodel for Discovery
Method notations is also included in an appendix.

2. UML and the Discovery Method

Supporters of UML argue that designers benefit
from being able to choose whatever diagram elements
they need, with some latitude to interpret the diagrams
as they see fit. Others argue that this freedom is
undesirable, resulting from the lack of any unified
semantics in UML [15]. In fact, Booch [16] has stated
that the current UML specification does not restrict
graphical formats and “there really is no ‘illegal’ UML
graphical syntax” (sic).

Notwithstanding, we believe that UML should be a
more precise language. In fact, UML’s “semantics” are
not really formal semantics at all, but a metamodel
describing how syntactically well-formed UML
diagrams should be constructed; which is not the same
as giving the meaning of the UML notation [17-19].

The Discovery Method for developing object-
oriented systems was first proposed in 1998 by Simons
[13, 14] and revised in 2002. The method uses a simple
and semantically clarified notation, based on UML, but
substitutes original diagrams where this is considered
necessary. The method concentrates on the technical
process of analysis and design [20]. It deploys many
existing analysis and design techniques selectively,
restricting them to their original context and purpose,
and emphasises the benefits of formal model
transformations [13]. The method is consistent with the
process model of OPEN [21], and has been tested in a
number of industrial projects by MSc students in the
University of Sheffield.

3. Alloy analyzer

Formal methods provide a syntactic domain (i.e. the

notation or set of symbols of the method), a semantic
domain (like its universe of objects), and a set of
precise rules defining how an object can satisfy a
specification [22]. Most formal methods are supported
by one or more tools. These, based on the
characteristics of each formal method, can be
categorized as theorem provers and model checkers.

There is a slightly different category of tools such
as the Alloy analyzer which is sometimes defined as a
model finder. This kind of tool works by finding
models that form counterexamples to assertions made
by the user: “Its engine takes a formula and attempts
to find a model of it” [11]. Alloy by Jackson and
Paradox by Claessen et al. [23] are examples of a
program that implements techniques for finding finite
models based on first order logic, whilst model
checking is based on temporal logic.

In Jackson’s words [24] “Alloy is an attempt to
combine the best features of Z and the Object
Constraint Language of UML in a lightweight
notation. It takes UML's emphasis on binary relations,
and the expression of constraints with sets of objects
formed by 'navigations', but with Z's much simpler
semantics.”

The essential idea about Alloy can be summarized
as follows. We can build a micro-model with Alloy
using signatures and formula paragraphs (i.e.
predicates, functions, or assertions). Once the model is
compiled, we can check every assertion with the
intention of finding a counterexample. In other words,
the Alloy analyzer looks for some instance of our
micro-model that could be generated in violation of the
assertions. It is for this reason that Jackson says in [25]
that Alloy follows a refutation approach. If a
counterexample is found, this means that the model is
invalid. If no counterexample is found, the model may
be valid, but this is not guaranteed. Alloy searches
exhaustively, creating the complete state space, but
within a limited scope, bounded by fixed numbers of
element instances in the model [26]. If Alloy cannot
find a counterexample in the scope specified, one may
still exist in a larger scope. The effectiveness of this
method is based on the small scope hypothesis [12]
that states that a high proportion of specification errors
tend to be found in a small scope. Alloy can also be
used to search for positive instances of a model, a
feature used in the work reported here.

4. Methodology

The abstract syntax was determined by examining
each design model used in the Discovery Method in
turn, then describing each model element and the
constraints upon that element. Initially, there was some
freedom to develop either a single abstract syntax, or a
collection of syntaxes, one for each type of model.

Alloy contains certain built-in predicates that were
useful when checking properties of the abstract syntax.
For example, some models had the property of being
directed acyclic graphs (DAGs). Provided that a
relation could be constructed to generate the transitive
graph, the built-in dag() constraint could be applied to
this expression.

Successive versions of the abstract syntax
specification were tested by proposing check assertions
in Alloy, counterexamples which encoded violations of
desired properties of the abstract syntax, for example
that an Object is a composition (exclusive aggregation)
of itself, recursively. When these were checked, Alloy
would sometimes find counterexamples, indicating that

the abstract syntax did not yet encode sufficient
invariant properties to rule out malformed diagrams.

Later, when checking diagram instances against the
abstract syntax, we switched from the refutation
approach to a predicate satisfaction approach, whereby
diagram instances were encoded as predicates and the
Alloy analyzer had to satisfy one instance of each
predicate, to indicate that a diagram was valid.

5. Abstract syntax

Our research is geared toward the use of Discovery

(a semi-formal lightweight object-oriented method)
and Alloy, used as a supporting formal method, with
the aim of defining the formal representation for
Discovery. In the longer term, we aim to develop a tool
to support these definitions to check the consistency
and completeness of our Discovery models. Figure 1
depicts the projected architecture of our model.

Figure 1. Abstract syntax for the Discovery Method

The abstract syntax for the notations of the
Discovery Method has been coded in Alloy with the
aim of facilitating the mapping between the notation
and the semantic domain [10]. Our abstract syntax
model also includes well-formedness rules or static
semantics[27], which govern the correctness of
Discovery models. Checking for well-formedness is
traditionally made at a diagrammatical level using a
BNF specification, but we work in Alloy, trying to
define the whole abstract syntax and looking for an
appropriate representation of the model instances of
Discovery and experimenting with the model checking
supported by Alloy.

At present, we have a unified abstract syntax for the
five principal Discovery models (Task Structure, Task
Flow, Object, State and Collaboration models), which
includes well-formedness rules derived naturally from
the diagram notations. We combined the abstract
syntaxes for each model to have single definitions of
the common elements with shared properties. A similar
strategy for UML has been recommended by the 2U
group in their UML 2.0 proposal [28]. Evans et al.

actually propose two abstract syntaxes to support all
the concrete syntax of UML [29], separating the
abstract syntax describing structure from that
describing behaviour. Figure 2 shows our chosen
abstract syntax architecture, with four layers: the
System view, the Model view, the Diagram view, and
the base level for the elements of Discovery notation.

The System view gives a complete representation of
a specification, formed by a collection of models in the
Discovery Method. This view includes at most one
model of each kind and maintains the relationships
between the different models. The Model view is used
to define the different models supported by Discovery.
At this level, each model has n diagrams and the
Model view maintains the consistency between these
different diagrams.

System view

Model view

Task

Structure
Model

Task Flow
Model

Object
Model

State
Model

Collaboratio
n Model

Diagram view

Task
Structure
diagrams

Task Flow
diagrams

Object
Model

diagrams

State
model

diagrams

Collaboratio
n diagrams

Model elements

Figure 2. General structure of the abstract syntax

The Diagram view specifies single diagrams
without concern for their interrelation, since the
purpose at this level is to ensure that diagrams use the
appropriate elements of Discovery’s notation. The
lowest level is used to specify all the relevant elements
of the Discovery notation and their basic relationships.

With this layering of models and diagrams, it is
possible to check, at different levels of detail:

• Each diagram separately
• Each model independently
• The whole system specification

6. Checking visual models

The abstract syntax model supports the definition of
generic syntax constraints, together with the specific
constraints relating to a particular diagram, model or
system. While we may check the Alloy representation
for all three views shown in Figure 2, we must always

Semantics

Abstract Syntax

Task
Structure
Model

Task
Flow

Model

Data
Model

State
Model

Collabor
-ation
Model

Concrete Syntax

include the Diagram view, since this declares the
relevant primitive elements. The strategy followed is
to encode the general constraints for each type of
diagram in one Alloy signature, and then to encode a
specific diagram as a subtype signature in Alloy. The
reasons for this are discussed below in section 7.

sig TaskStDiagramView
 extends DiagramView{
 task: set Task,
 goal: set Goal,
 gen: set Generalisation,
 real: set Realisation,
 agg: set Aggregation – Composition,
 comp: set Composition,
 actor: set Actor,
 obj: set Object - AssociationClass,
 parti: set Participation
}

Figure 3. Task Structure diagram elements

Figure 3 shows the signature TaskStDiagramView,
defining the general properties of a Task Structure
diagram in Alloy. This basically declares the sets of
elements that can possibly be part of the diagram. The
relationships among these elements are defined at the
lowest level of the abstract syntax graph (see the
metamodel in Appendix A).

Circulation

Overdue Loan Transaction

Reader Services

Figure 4. Circulation Task Structure diagram

Given the above, we may encode a specific Task
Structure diagram, such as the sketch of a Library’s
circulation system in Figure 4. The corresponding
Alloy signature sCirculationTS, which represents the
diagram instance, is given in Figure 5. This signature
extends the basic TaskStDiagramView signature. In
the upper declaration area, the particular elements of
the diagram are declared. These are all expressed in
terms of diagram element types inherited from the
generic signature. In the lower predicate area,
constraints are defined on the declared elements. One
constraint is used to specify the aggregation
relationship, linking tasks to their corresponding
source or target tasks in the structure. A similar

constraint is created to define the participation linking
the actor and the top level task.

sig sCirculationTS extends
 TaskStDiagramView {
 part circulationTask, overdueTask,
 loanTransactionTask: task,
 readerServicesActor: actor,
 part p: parti,
 circAgg: agg
}{
 // Aggregation
 circulationTask in circAgg.head and
 overdueTask + loanTransactionTask
 in circAgg.tail
 #circAgg.tail=2
 // participation
 circulationTask in p.tact and
 readerServicesActor in p.user
}

Figure 5. Encoding the Circulation Task Structure
diagram

We may specify the abstract syntax for further Task
Structure diagrams. Figure 6, for example, shows a
diagram that represents an extension of the Task
Structure diagram given in Figure 4. Eventually, the
two independently-created diagrams should be made
consistent within the same Task Structure model.

e Loan Transaction

Issue Discharge

Borrower

Figure 6. Loan Transaction Task Structure

diagram

The corresponding signature sLoanTransactionTS
is shown in Figure 7. The specification is constructed
in a similar way as before, but this time describes a
generalisation instead of an aggregation relationship.

With these two definitions we have enough
information to check each diagram separately, to
demonstrate that they each conform to the legal syntax
of a Task Structure diagram. However, it is more
interesting to treat them as part of the same Task
Structure model and check them together. To achieve
this, we must construct a new Alloy specification,
representing the Model view, within which we merge

the two diagrams on their common element (the Loan
Transaction task).

sig sLoanTransactionTS extends
 TaskStDiagramView {
 part loanTransactionTask, issueTask,
 dischargeTask: task,
 borrowerActor: actor,
 p: parti,
 loanGener: gen
}{
// generalisation
loanTransactionTask in loanGener.head
 and issueTask + dischargeTask in
 loanGener.tail
#loanGener.tail=2
// participation
loanTransactionTask in p.tact and
 borrowerActor in p.user
}

Figure 7. Encoding the Loan Transaction Task
Structure diagram

Figure 8 shows the signature sCirculationModel,
representing a particular Task Structure model for the
whole circulation subsystem, which merges the above
diagrams consistently. The signature extends a generic
TaskStModel signature (whose detail is not given here)
and specifies that the diagrams sCirculationTS and
sLoanTransactionTS are part of the model. All the
information pertaining to the Model view is inherited
from TaskStModel and the individual diagrams were
specified above in the Diagram view, so apart from
linking the diagrams to the model, we only need to
assert which elements are common to both diagrams.

sig sCirculationModel
 extends TaskStModel {
}{
sCirculationTS in tm
sLoanTransactionTS in tm

sCirculationTS.loanTransactionTask
=
LoanTransactionTS.loanTransactionTask

sCirculationTS.task
& sLoanTransactionTS.task
=
sLoanTransactionTS. loanTransactionTask
}

Figure 8. Encoding the Task Structure model

Having defined a particular Task Structure model
consisting of two Task Structure diagrams, it is
possible to check the consistency of these against the

rules of the abstract syntax. If Alloy cannot find a valid
instance, this will mean that our model does not
conform to all the syntax constraints defined for the
Discovery notation. Figure 9 illustrates the Alloy code
that is executed to validate our model. This consists of
a dummy predicate circulationModel() which is run for
an exactly-specified scope, within which Alloy must
find all the elements of the model. The scope is an
enumeration of each element and relationship used in
the model under test. In a smaller scope Alloy cannot
generate a valid instance, whilst in a larger scope Alloy
will create additional elements, making the instance
valid with the whole abstract syntax, but not equivalent
to our model. Indicating the exact scope is necessary if
satisfaction is to be interpreted as validating the model.
But this also has the useful effect of limiting the state
space searched by Alloy for a valid instance.

pred circulationModel(){}
run circulationModel
 for 1 but
 exactly 1 Model,
 exactly 1 TaskStModel,
 exactly 1 sCirculationModel,
 exactly 2 DiagramView,
 exactly 2 TaskStDiagramView,
 exactly 1 sLoanTransactionTS,
 exactly 1 sCirculationTS,
 exactly 4 Relationship,
 exactly 2 Structure,
 exactly 1 Generalisation,
 exactly 1 Aggregation,
 exactly 2 Participation,
 exactly 7 Node,
 exactly 5 StateAndTask,
 exactly 5 TaskActivity,
 exactly 5 Task,
 exactly 2 Actor,
 0 Transition,
 0 TaskFlowElement,
 0 Member

Figure 9. Empty predicate and exact scope specified
for the run command

When the above run command is executed, Alloy
finds the unique instance, indicating that our example
is in fact consistent with the Discovery abstract syntax.
What Alloy does is to satisfy the empty predicate (a
trivial task in itself) in conjunction with making the
particular diagram and model specifications consistent
with the general syntax specifications, within a scope
that only has one possible solution, if any. Alloy
presents its result either as a graph of linked signature
instances (similar to the metamodel graph in Appendix
A), or as a browseable tree (as shown in Figure 10).

Figure 10. Solution generated by Alloy

Figure 10 shows the tree view generated by Alloy
for the example presented above, whose structure we
can inspect interactively if we want to examine the
result. The fact that Alloy finds an instance at all
demonstrates that the example is valid. If no result is
returned, this means that the tested model is invalid.

Figure 11. Two diagrams creating an inconsistent
Data Model

Figure 11 illustrates a second interesting example,
for which we would expect no consistent solution to be
found by Alloy. It is possible to verify that the
individual exemplar diagrams (a) and (b) are
syntactically correct in the Diagram view, but when
both diagrams are included within the same Data

Model in the Model view, Alloy cannot find a valid
instance. This is because the Z class is defined as a
component of two different classes in the same model,
something which violates the specification for a UML
composition, which requires the composed elements to
be uniquely-owned parts of the whole.

7. Evaluating Alloy

While Alloy is very effective in modelling and

analysing simple, lightweight formal specifications
written in a Z-like style, we found that it is more
difficult to use as the basis for model checking the
syntax and static semantics of a design notation. At
various times, we found we were forced into work-
arounds to constrain the searching behaviour of the
analyzer. The following gives a flavour of some of our
unexpected discoveries while modelling in Alloy.

Initially, we developed a separate abstract syntax
for each type of model used in the Discovery Method.
So, for example, the Task Structure Model had distinct
generalisation and aggregation relationships from
those in the Data Model, although in the Discovery
Method these are each single kinds of relationship,
with a uniform semantics across all model types. This
meant that the Alloy signatures for Generalisation and
Aggregation were short and the scopes, within which
model instances were checked, were quite small.
However, when models of different types were
combined, this required a set of translations from one
abstract model syntax to another.

In the second version, we unified all the abstract
syntaxes for the different model types, such that a
single Aggregation relationship existed for all types of
model. This was more in keeping with the philosophy
of the Discovery Method. However, the Alloy
signature for Aggregation was made more complicated
by the need to assert extra constraints that it either
related two Tasks, or two Objects and not one of each.
Alloy lends itself to creating hierarchies of disjoint
subtypes in its abstract syntax, using the extends
notation. This initially fostered a meta-modelling style
of construction, whereby all syntax elements
descended from a common ModelElement root, similar
to the MMF [4]. However, this had the unexpected
consequence of requiring vastly larger scopes within
which to search for model instances, since Alloy
interprets all scope instructions as relating to the base
instances in any tree. As a necessity, the syntax tree
was broken down into a series of shorter trees (see
Appendix A), losing the abstraction over all model
elements.

X

Z

Y

Z

(a) (b)

Once the abstract syntax had been fully validated
using check assertions, we developed Alloy
representations of diagram instances. Initially, a
diagram instance was represented as an Alloy
predicate, to be evaluated against generated instances
of the abstract syntax. Eventually, this proved to be
unwieldy, requiring the repetition of constraints
whenever a part of the predicate referenced the same
sub-elements in the diagram. In the second version,
diagram instances were constructed as subtypes of the
canonical abstract syntax types, a strange but
economical encoding, which avoided such repetition of
constraints. The eventual predicate to check was then
trivial (empty), since all the analyser had to do was
find one instance of the diagram itself. To control this,
we set the scope to generate exactly one instance of
each model element present in the diagram, a brute
force approach to ensure that Alloy did not over-
generate elements of the diagram. If the search to
satisfy the trivial predicate generated a single matching
instance of the diagram, then this represented success
in satisfying the abstract syntax. We were able to find
single instances of consistently-merged diagrams. The
attempt to find an instance of mutually inconsistent
diagrams failed, as expected, although no useful
information could be reported about the detected
inconsistency.

8. Conclusions

In this paper we have presented our experiences

using the Alloy analyzer to check an abstract syntax
for the notation of the Discovery Method. We
described how we used different approaches to design
the abstract syntax and to represent the diagram
instances in Alloy, commenting on the naturalness, or
otherwise, of the chosen encodings.

We illustrated a complete example of a valid model
for Discovery (a Task Structure Model) and the result
generated by Alloy, showing that the basic approach is
feasible. The time taken to validate larger models with
an exact scope is in the order of minutes. We also
illustrated a counter-example of an invalid model (a
Data Model), for which Alloy correctly found no
instance.

Additionally, we gave our impressions of Alloy as a
candidate tool for checking the consistency of multiple
diagrams in software engineering notations. We feel
that this is perhaps not an ideal deployment of Alloy.
The searching behaviour of the constraint solver had to
be carefully controlled. We were forced to abandon
the notion of a single hierarchy of model elements in

the abstract syntax specification, since this gave rise to
underconstrained instance generation.
References

[1] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, 1 ed: Addison Wesley,
1998.
[2] A. J. H. Simons and I. Graham, "30 things that go wrong
in Object Modelling With UML 1.3," in Behavioral
Specifications of Businesses and Systems, H. Kilov, B.
Rumpe, and I. Simmonds, Eds.: Kluwer Academic
Publishers, 1999, pp. 237-257.
[3] J.-M. Bruel and R.B.France, "Transforming UML models
to formal specifications," presented at UML'98 - Beyond the
notation, 1998.
[4] S. Brodsky, T. Clark, S. Cook, A. S. Evans, and S. Kent,
Feasibility Study in Rearchitecting UML as a Family of
Languages using a Precise OO Meta-Modeling Approach,
Technical Report of pUML Group, 2000,
http://www.puml.org/mmf/mmf.pdf
[5] D. F. D'Souza and A. C. Wills, Objects, Components, and
Frameworks. The Catalysis Approach, 1 ed: Addison-
Wesley, 1999.
[6] 2U Consortium, 2U Consortium, Unambiguous UML,
2001, http://www.2uworks.org/
[7] M. d. M. Gallardo, P. Merino, and E. Pimentel,
"Debugging UML designs with model checking," Journal of
Object Technology, vol. 1, pp. 101-117, 2002.
[8] M. Richters, "A Precise Approach to Validating UML
Models and OCL Constraints." Berlin: Universitaet Bremen,
2002, pp. 218.
[9] OMG, "Object Constraint Language Specification," in
OMG Unified Modeling Language Specification: OMG,
2003.
[10] B. Rumpe, "A Note on Semantics (with Emphasis on
UML)," presented at Second ECOOP Workshop on Precise
Behavioral Semantics, Brussels, 1998.
[11] D. Jackson, Micromodels of Software: Lightweight
Modelling and Analysis with Alloy, MIT Lab for Computer
Science, 2002, http://alloy.mit.edu/reference-manual.pdf
[12] D. Jackson and M. Vaziri, "Finding bugs with a
constraint solver," presented at the 2000 ACM SIGSOFT
international symposium on Software testing and analysis,
Portland, Oregon, USA, 2000.
[13] A. J. H. Simons, "Object Discovery - A process for
developing medium-sized applications," presented at
ECOOP, Brussels, 1998.
[14] A. J. H. Simons, "Object Discovery - A process for
developing applications," presented at Object Technology,
Oxford, 1998.
[15] J. Derrick, D. Akehurst, and E. Boiten, "A framework
for UML consistency," presented at Workshop on
Consistency Problems in UML-based Software
Development, Dresden, Germany, 2002.
[16] G. Booch, Microsoft and Domain Specific Languages
Handbook of Software Architecture, 2004,
http://www.booch.com/architecture/blog.jsp?archive=2004-
12.html

http://www.puml.org/mmf/mmf.pdf
http://www.2uworks.org/
http://alloy.mit.edu/reference-manual.pdf
http://www.booch.com/architecture/blog.jsp?archive=2004-12.html
http://www.booch.com/architecture/blog.jsp?archive=2004-12.html

[17] A. J. H. Simons and I. Graham, "37 Things that Don't
Work in Object-Oriented Modelling with UML," presented
at Second ECOOP Workshop on Precise Behavioural
Semantics, Brussels, 1998.
[18] A. Evans, R. France, K. Lano, and B. Rumpe,
"Developing the UML as a formal modelling notation,"
presented at UML'98 Beyond the notation. International
Workshop Mulhouse France, Mulhouse, France, Ecole
Superieure Mulhouse, Universite de Haute-Alsace, 1998.
[19] R. France, A. Evans, K. Lano, and B. Rumpe, "The
UML as a Formal Modeling Notation," presented at
Proceedings OOPSLA'97 Workshop on Object-oriented
Behavioral Semantics, 1997.
[20] A. J. H. Simons, The Discovery EBook, The
Department of Computer Science, University of Sheffield,
Sheffield, 2000,
http://www.dcs.shef.ac.uk/~ajhs/discovery/ebook/
[21] B. Henderson-Sellers, D. G. Firesmith, I. Graham, and
A. J. H. Simons, "Instanting the process metamodel," Journal
of Object-Oriented Programming (ROAD), vol. 12, pp. 51-
57, 1999.
[22] J. M. Wing, "A Specifier's Introduction to Formal
Methods," IEEE Computer, vol. 23, pp. 8-24, 1990.
[23] K. Claessen and N. Sorensson, "New techniques that
improve MACE-style finite model finding," presented at

CADE-19, Workshop W4. Model Computation - Principles,
Algorithms, Applications, Miami, USA, 2003.
[24] D. Jackson, "Automating First-Order Relational Logic,"
presented at ACM SIGSOFT Conf. of Software Engineering,
2000.
[25] D. Jackson and M. Rinard, "Software Analysis: a
Roadmap," presented at The Future of Software Engineering,
Limerick, Irland, 2000.
[26] G. Dennis, R. Seater, D. Rayside, and D. Jackson,
Lightweight formal methods applied to a radiotherapy
machine component, 2004,
http://sdg.lcs.mit.edu/publications.html
[27] P. D. Mosses, "The Varieties of Programming Language
Semantics and their Uses," presented at Perspectives of
System Informatics : 4th International Andrei Ershov
Memorial Conference, PSI 2001, Akademgorodok,
Novosibirsk, Russia, 2001.
[28] 2U Consortium, Unambiguous UML (2U) 3rd Revised
Submission to UML 2 Superstructure RFP, 2003,
http://www.2uworks.org/uml2submission/super0.2/uml2Supe
rSubmission02.pdf
[29] A. Evans, P. Sammut, J. S. Willans, A. Moore, and G.
Maskeri, "A unified superstructure for UML," Journal of
Object Technology, vol. 4, pp. 165-181, 2005.

Appendix A. Abstract syntax metamodel

http://www.dcs.shef.ac.uk/~ajhs/discovery/ebook/
http://sdg.lcs.mit.edu/publications.html
http://www.2uworks.org/uml2submission/super0.2/uml2SuperSubmission02.pdf
http://www.2uworks.org/uml2submission/super0.2/uml2SuperSubmission02.pdf

	Keywords
	1. Introduction
	2. UML and the Discovery Method

	3. Alloy analyzer
	4. Methodology
	5. Abstract syntax
	6. Checking visual models
	7. Evaluating Alloy
	8. Conclusions
	References
	Appendix A. Abstract syntax metamodel

