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Abstract 

 
This paper explores the process of validation for the 

abstract syntax of a graphical notation. We define a 
unified specification for five of the UML diagrams 
used by the Discovery Method and, in this document, 
we illustrate how diagrams can be represented in Alloy 
and checked against our specification in order to know 
if these are valid under the Discovery notation.  
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1. Introduction 
 

The Unified Modeling Language (UML) [1] is an 
eclectic set of notations for modelling object-oriented 
designs. Under the supervision of the Object 
Management Group (OMG), the notation set has 
grown larger, to accommodate the concerns of 
different stakeholders in business and industry.  This 
has led to some criticisms regarding the open ended 
semantics and the lack of direction given in modelling 
[2].   

Various attempts to formalise parts of UML include 
the work of the Precise UML group (pUML) [3], 
which aims to clarify the semantics of UML and create 
tools to support the rigorous analysis of UML models.  
Jointly with IBM, pUML submitted a Meta-Modelling 
Framework (MMF) [4] to the OMG as an option to the 
original UML metamodel.  Out of this work came the 
desire to create an Unambiguous UML, an idea partly 
inspired by the Catalysis method [5]. The 
Unambiguous UML (2U) Consortium [6], which grew 
out of pUML, submitted a full proposal for UML2.0 
based on a set of architectural principles. 

Related work on the development of model 
checkers and tools for UML has been quite slow. Some 
examples include the Hugo tool, which compiles UML 
state machines into a format processed by the 

PROMELA model checker [7]. The USE tool (UML-
based Specification Environment) [8] allows UML 
diagrams to be annotated with constraints written in 
OCL (the Object Constraint Language [9]), after which 
the validity of models may be checked, using 
predicates also written in OCL.  The tool verifies 
model instances against explicit predicates and also 
implicitly against the invariants defined in the model. 

A prerequisite to developing high-quality model 
checkers is the ability to encode model diagrams in a 
suitable abstract syntax, and from this to develop an 
abstract semantics [10]. This paper reports on a series 
of initial experiments conducted into converting a 
small object-oriented design notation into an abstract 
syntax, which was then submitted to the model checker 
Alloy [11, 12], to verify the correctness of models 
against the abstract syntax. The design notation is a 
subset of UML used by the Discovery Method [13, 
14]. We demonstrate that it is possible to validate 
model instances of different types against an abstract 
syntax specification. We also show how a combination 
of consistent model instances yields a single, 
consistent abstract syntax; and the converse, that 
inconsistent models are rejected against the abstract 
syntax specification. The Alloy analyzer proves to be a 
tricky tool to use well in this context, and we report 
also on various different approaches to encoding 
diagram information and the tactics adopted to focus 
the work of the model checker. 

The rest of this paper is organized as follows:  
section 2 discusses the relationship between UML and 
the notation of the Discovery Method; section 3 gives 
a brief explanation of the Alloy analyzer; section 4 
describes the research methodology; section 5 
introduces the abstract syntax model for encoding 
Discovery Method notations in Alloy; section 6 gives 
an example of usage and model-checking; section 7 
gives an initial evaluation of Alloy and its usefulness 
for modelling diagram syntax constraints; and finally 
section 8 presents our conclusions. A graph depicting 
the Alloy abstract syntax metamodel for Discovery 
Method notations is also included in an appendix. 



 
2. UML and the Discovery Method 
 

Supporters of UML argue that designers benefit 
from being able to choose whatever diagram elements 
they need, with some latitude to interpret the diagrams 
as they see fit. Others argue that this freedom is 
undesirable, resulting from the lack of any unified 
semantics in UML [15]. In fact, Booch [16] has stated 
that the current UML specification does not restrict 
graphical formats and “there really is no ‘illegal’ UML 
graphical syntax” (sic). 

Notwithstanding, we believe that UML should be a 
more precise language. In fact, UML’s “semantics” are 
not really formal semantics at all, but a metamodel 
describing how syntactically well-formed UML 
diagrams should be constructed; which is not the same 
as giving the meaning of the UML notation [17-19]. 

The Discovery Method for developing object-
oriented systems was first proposed in 1998 by Simons 
[13, 14] and revised in 2002. The method uses a simple 
and semantically clarified notation, based on UML, but 
substitutes original diagrams where this is considered 
necessary.  The method concentrates on the technical 
process of analysis and design [20]. It deploys many 
existing analysis and design techniques selectively, 
restricting them to their original context and purpose, 
and emphasises the benefits of formal model 
transformations [13]. The method is consistent with the 
process model of OPEN [21], and has been tested in a 
number of industrial projects by MSc students in the 
University of Sheffield.  

 
3. Alloy analyzer 

 
Formal methods provide a syntactic domain (i.e. the 

notation or set of symbols of the method), a semantic 
domain (like its universe of objects), and a set of 
precise rules defining how an object can satisfy a 
specification [22]. Most formal methods are supported 
by one or more tools. These, based on the 
characteristics of each formal method, can be 
categorized as theorem provers and model checkers.  

There is a slightly different category of tools such 
as the Alloy analyzer which is sometimes defined as a 
model finder. This kind of tool works by finding 
models that form counterexamples to assertions made 
by the user: “Its engine takes a formula and attempts 
to find a model of it” [11].  Alloy by Jackson and 
Paradox by Claessen et al. [23] are examples of a 
program that implements techniques for finding finite 
models based on first order logic, whilst model 
checking is based on temporal logic. 

In Jackson’s words [24] “Alloy is an attempt to 
combine the best features of Z and the Object 
Constraint Language of UML in a lightweight 
notation. It takes UML's emphasis on binary relations, 
and the expression of constraints with sets of objects 
formed by 'navigations', but with Z's much simpler 
semantics.”  

The essential idea about Alloy can be summarized 
as follows. We can build a micro-model with Alloy 
using signatures and formula paragraphs (i.e. 
predicates, functions, or assertions). Once the model is 
compiled, we can check every assertion with the 
intention of finding a counterexample. In other words, 
the Alloy analyzer looks for some instance of our 
micro-model that could be generated in violation of the 
assertions. It is for this reason that Jackson says in [25] 
that Alloy follows a refutation approach. If a 
counterexample is found, this means that the model is 
invalid. If no counterexample is found, the model may 
be valid, but this is not guaranteed.  Alloy searches 
exhaustively, creating the complete state space, but 
within a limited scope, bounded by fixed numbers of 
element instances in the model [26]. If Alloy cannot 
find a counterexample in the scope specified, one may 
still exist in a larger scope. The effectiveness of this 
method is based on the small scope hypothesis [12] 
that states that a high proportion of specification errors 
tend to be found in a small scope. Alloy can also be 
used to search for positive instances of a model, a 
feature used in the work reported here. 

 
4. Methodology 
 

The abstract syntax was determined by examining 
each design model used in the Discovery Method in 
turn, then describing each model element and the 
constraints upon that element. Initially, there was some 
freedom to develop either a single abstract syntax, or a 
collection of syntaxes, one for each type of model. 

Alloy contains certain built-in predicates that were 
useful when checking properties of the abstract syntax.  
For example, some models had the property of being 
directed acyclic graphs (DAGs). Provided that a 
relation could be constructed to generate the transitive 
graph, the built-in dag() constraint could be applied to 
this expression. 

Successive versions of the abstract syntax 
specification were tested by proposing check assertions 
in Alloy, counterexamples which encoded violations of 
desired properties of the abstract syntax, for example 
that an Object is a composition (exclusive aggregation) 
of itself, recursively. When these were checked, Alloy 
would sometimes find counterexamples, indicating that 



the abstract syntax did not yet encode sufficient 
invariant properties to rule out malformed diagrams. 

Later, when checking diagram instances against the 
abstract syntax, we switched from the refutation 
approach to a predicate satisfaction approach, whereby 
diagram instances were encoded as predicates and the 
Alloy analyzer had to satisfy one instance of each 
predicate, to indicate that a diagram was valid. 
 
5. Abstract syntax 

 
Our research is geared toward the use of Discovery 

(a semi-formal lightweight object-oriented method) 
and Alloy, used as a supporting formal method, with 
the aim of defining the formal representation for 
Discovery. In the longer term, we aim to develop a tool 
to support these definitions to check the consistency 
and completeness of our Discovery models. Figure 1 
depicts the projected architecture of our model.  

 

 
Figure 1. Abstract syntax for the Discovery Method 

The abstract syntax for the notations of the 
Discovery Method has been coded in Alloy with the 
aim of facilitating the mapping between the notation 
and the semantic domain [10].  Our abstract syntax 
model also includes well-formedness rules or static 
semantics[27], which govern the correctness of 
Discovery models. Checking for well-formedness is 
traditionally made at a diagrammatical level using a 
BNF specification, but we work in Alloy, trying to 
define the whole abstract syntax and looking for an 
appropriate representation of the model instances of 
Discovery and experimenting with the model checking 
supported by Alloy.  

At present, we have a unified abstract syntax for the 
five principal Discovery models (Task Structure, Task 
Flow, Object, State and Collaboration models), which 
includes well-formedness rules derived naturally from 
the diagram notations. We combined the abstract 
syntaxes for each model to have single definitions of 
the common elements with shared properties. A similar 
strategy for UML has been recommended by the 2U 
group in their UML 2.0 proposal [28]. Evans et al. 

actually propose two abstract syntaxes to support all 
the concrete syntax of UML [29], separating the 
abstract syntax describing structure from that 
describing behaviour. Figure 2 shows our chosen 
abstract syntax architecture, with four layers: the 
System view, the Model view, the Diagram view, and 
the base level for the elements of Discovery notation. 

The System view gives a complete representation of 
a specification, formed by a collection of models in the 
Discovery Method. This view includes at most one 
model of each kind and maintains the relationships 
between the different models.  The Model view is used 
to define the different models supported by Discovery. 
At this level, each model has n diagrams and the 
Model view maintains the consistency between these 
different diagrams. 
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Figure 2. General structure of the abstract syntax 

The Diagram view specifies single diagrams 
without concern for their interrelation, since the 
purpose at this level is to ensure that diagrams use the 
appropriate elements of Discovery’s notation.   The 
lowest level is used to specify all the relevant elements 
of the Discovery notation and their basic relationships.  

With this layering of models and diagrams, it is 
possible to check, at different levels of detail: 

• Each diagram separately 
• Each model independently 
• The whole system specification    

 
6. Checking visual models 
 

The abstract syntax model supports the definition of 
generic syntax constraints, together with the specific 
constraints relating to a particular diagram, model or 
system.  While we may check the Alloy representation 
for all three views shown in Figure 2, we must always 
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include the Diagram view, since this declares the 
relevant primitive elements.  The strategy followed is 
to encode the general constraints for each type of 
diagram in one Alloy signature, and then to encode a 
specific diagram as a subtype signature in Alloy.  The 
reasons  for this are discussed below in section 7. 

 
sig TaskStDiagramView  
   extends DiagramView{ 
 task: set Task, 
 goal: set Goal, 
 gen: set Generalisation, 
 real: set Realisation, 
 agg: set Aggregation – Composition, 
 comp: set Composition, 
 actor: set Actor, 
 obj: set Object - AssociationClass, 
 parti: set Participation 
} 

Figure 3. Task Structure diagram elements 

Figure 3 shows the signature TaskStDiagramView, 
defining the general properties of a Task Structure 
diagram in Alloy. This basically declares the sets of 
elements that can possibly be part of the diagram. The 
relationships among these elements are defined at the 
lowest level of the abstract syntax graph (see the 
metamodel in Appendix A).   
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Figure 4. Circulation Task Structure diagram 

Given the above, we may encode a specific Task 
Structure diagram, such as the sketch of a Library’s 
circulation system in Figure 4. The corresponding 
Alloy signature sCirculationTS, which represents the 
diagram instance, is given in Figure 5.  This signature 
extends the basic TaskStDiagramView signature.  In 
the upper declaration area, the particular elements of 
the diagram are declared.  These are all expressed in 
terms of diagram element types inherited from the 
generic signature.  In the lower predicate area, 
constraints are defined on the declared elements. One 
constraint is used to specify the aggregation 
relationship, linking tasks to their corresponding 
source or target tasks in the structure. A similar 

constraint is created to define the participation linking 
the actor and the top level task. 

 
sig sCirculationTS extends 
   TaskStDiagramView { 
 part circulationTask, overdueTask, 
   loanTransactionTask: task, 
 readerServicesActor: actor, 
 part p: parti, 
 circAgg: agg 
}{ 
 // Aggregation 
 circulationTask in circAgg.head and 
   overdueTask + loanTransactionTask 
   in circAgg.tail  
 #circAgg.tail=2 
 // participation 
 circulationTask in p.tact and 
   readerServicesActor in p.user 
} 

Figure 5. Encoding the Circulation Task Structure 
diagram 

We may specify the abstract syntax for further Task 
Structure diagrams. Figure 6, for example, shows a 
diagram that represents an extension of the Task 
Structure diagram given in Figure 4.  Eventually, the 
two independently-created diagrams should be made 
consistent within the same Task Structure model. 

e Loan Transaction

Issue Discharge

Borrower

 
Figure 6. Loan Transaction Task Structure 

diagram 

The corresponding signature sLoanTransactionTS 
is shown in Figure 7. The specification is constructed 
in a similar way as before, but this time describes a 
generalisation instead of an aggregation relationship. 

With these two definitions we have enough 
information to check each diagram separately, to 
demonstrate that they each conform to the legal syntax 
of a Task Structure diagram. However, it is more 
interesting to treat them as part of the same Task 
Structure model and check them together.  To achieve 
this, we must construct a new Alloy specification, 
representing the Model view, within which we merge 



the two diagrams on their common element (the Loan 
Transaction task). 

 
sig sLoanTransactionTS extends  
   TaskStDiagramView { 
 part loanTransactionTask, issueTask, 
   dischargeTask: task, 
 borrowerActor: actor, 
 p: parti, 
 loanGener: gen 
}{ 
// generalisation 
loanTransactionTask in loanGener.head 
  and issueTask + dischargeTask in 
  loanGener.tail  
#loanGener.tail=2 
// participation 
loanTransactionTask in p.tact and 
  borrowerActor in p.user  
} 

Figure 7. Encoding the Loan Transaction Task 
Structure diagram 

Figure 8 shows the signature sCirculationModel, 
representing a particular Task Structure model for the 
whole circulation subsystem, which merges the above 
diagrams consistently.  The signature extends a generic 
TaskStModel signature (whose detail is not given here) 
and specifies that the diagrams sCirculationTS and 
sLoanTransactionTS are part of the model. All the 
information pertaining to the Model view is inherited 
from TaskStModel and the individual diagrams were 
specified above in the Diagram view, so apart from 
linking the diagrams to the model, we only need to 
assert which elements are common to both diagrams. 

 
sig sCirculationModel  
  extends TaskStModel { 
}{ 
sCirculationTS in tm 
sLoanTransactionTS in tm 
 
sCirculationTS.loanTransactionTask  
= 
LoanTransactionTS.loanTransactionTask 
 
sCirculationTS.task  
&  sLoanTransactionTS.task  
= 
sLoanTransactionTS. loanTransactionTask 
} 

Figure 8. Encoding the Task Structure model 

Having defined a particular Task Structure model 
consisting of two Task Structure diagrams, it is 
possible to check the consistency of these against the  

rules of the abstract syntax. If Alloy cannot find a valid 
instance, this will mean that our model does not 
conform to all the syntax constraints defined for the 
Discovery notation. Figure 9 illustrates the Alloy code 
that is executed to validate our model. This consists of 
a dummy predicate circulationModel() which is run for 
an exactly-specified scope, within which Alloy must 
find all the elements of the model.  The scope is an 
enumeration of each element and relationship used in 
the model under test.  In a smaller scope Alloy cannot 
generate a valid instance, whilst in a larger scope Alloy 
will create additional elements, making the instance 
valid with the whole abstract syntax, but not equivalent 
to our model. Indicating the exact scope is necessary if 
satisfaction is to be interpreted as validating the model.  
But this also has the useful effect of limiting the state 
space searched by Alloy for a valid instance. 

 
pred circulationModel(){} 
run circulationModel  
 for 1 but  
 exactly 1 Model, 
  exactly 1 TaskStModel, 
    exactly 1 sCirculationModel, 
 exactly 2 DiagramView,  
    exactly 2 TaskStDiagramView, 
 exactly 1 sLoanTransactionTS, 
 exactly 1 sCirculationTS, 
 exactly 4 Relationship,  
    exactly 2 Structure,  
      exactly 1 Generalisation, 
 exactly 1 Aggregation,  
    exactly 2 Participation,  
 exactly 7  Node,  
    exactly 5 StateAndTask,  
      exactly 5 TaskActivity,  
   exactly 5 Task,  
    exactly 2 Actor, 
 0 Transition,  
 0 TaskFlowElement,  
 0 Member 

Figure 9. Empty predicate and exact scope specified 
for the run command 

When the above run command is executed, Alloy 
finds the unique instance, indicating that our example 
is in fact consistent with the Discovery abstract syntax.  
What Alloy does is to satisfy the empty predicate (a 
trivial task in itself) in conjunction with making the 
particular diagram and model specifications consistent 
with the general syntax specifications, within a scope 
that only has one possible solution, if any.  Alloy 
presents its result either as a graph of linked signature 
instances (similar to the metamodel graph in Appendix 
A), or as a browseable tree (as shown in Figure 10). 



 

 

Figure 10.  Solution generated by Alloy 

Figure 10 shows the tree view generated by Alloy 
for the example presented above, whose structure we 
can inspect interactively if we want to examine the 
result.  The fact that Alloy finds an instance at all 
demonstrates that the example is valid.  If no result is 
returned, this means that the tested model is invalid.   

 

Figure 11. Two diagrams creating an inconsistent 
Data Model 

Figure 11 illustrates a second interesting example, 
for which we would expect no consistent solution to be 
found by Alloy. It is possible to verify that the 
individual exemplar diagrams (a) and (b) are 
syntactically correct in the Diagram view, but when 
both diagrams are included within the same Data 

Model in the Model view, Alloy cannot find a valid 
instance.  This is because the Z class is defined as a 
component of two different classes in the same model, 
something which violates the specification for a UML 
composition, which requires the composed elements to 
be uniquely-owned parts of the whole.  

 
7. Evaluating Alloy 

  
While Alloy is very effective in modelling and 

analysing simple, lightweight formal specifications 
written in a Z-like style, we found that it is more 
difficult to use as the basis for model checking the 
syntax and static semantics of a design notation. At 
various times, we found we were forced into work-
arounds to constrain the searching behaviour of the 
analyzer. The following gives a flavour of some of our 
unexpected discoveries while modelling in Alloy. 

Initially, we developed a separate abstract syntax 
for each type of model used in the Discovery Method. 
So, for example, the Task Structure Model had distinct 
generalisation and aggregation relationships from 
those in the Data Model, although in the Discovery 
Method these are each single kinds of relationship, 
with a uniform semantics across all model types. This 
meant that the Alloy signatures for Generalisation and 
Aggregation were short and the scopes, within which 
model instances were checked, were quite small. 
However, when models of different types were 
combined, this required a set of translations from one 
abstract model syntax to another. 

In the second version, we unified all the abstract 
syntaxes for the different model types, such that a 
single Aggregation relationship existed for all types of 
model.  This was more in keeping with the philosophy 
of the Discovery Method. However, the Alloy 
signature for Aggregation was made more complicated 
by the need to assert extra constraints that it either 
related two Tasks, or two Objects and not one of each. 
Alloy lends itself to creating hierarchies of disjoint 
subtypes in its abstract syntax, using the extends 
notation. This initially fostered a meta-modelling style 
of construction, whereby all syntax elements 
descended from a common ModelElement root, similar 
to the MMF [4]. However, this had the unexpected 
consequence of requiring vastly larger scopes within 
which to search for model instances, since Alloy 
interprets all scope instructions as relating to the base 
instances in any tree. As a necessity, the syntax tree 
was broken down into a series of shorter trees (see 
Appendix A), losing the abstraction over all model 
elements. 

X

Z 

Y 

Z 

(a) (b) 



Once the abstract syntax had been fully validated 
using check assertions, we developed Alloy 
representations of diagram instances. Initially, a 
diagram instance was represented as an Alloy 
predicate, to be evaluated against generated instances 
of the abstract syntax. Eventually, this proved to be 
unwieldy, requiring the repetition of constraints 
whenever a part of the predicate referenced the same 
sub-elements in the diagram. In the second version, 
diagram instances were constructed as subtypes of the 
canonical abstract syntax types, a strange but 
economical encoding, which avoided such repetition of 
constraints. The eventual predicate to check was then 
trivial (empty), since all the analyser had to do was 
find one instance of the diagram itself.  To control this, 
we set the scope to generate exactly one instance of 
each model element present in the diagram, a brute 
force approach to ensure that Alloy did not over-
generate elements of the diagram. If the search to 
satisfy the trivial predicate generated a single matching 
instance of the diagram, then this represented success 
in satisfying the abstract syntax. We were able to find 
single instances of consistently-merged diagrams. The 
attempt to find an instance of mutually inconsistent 
diagrams failed, as expected, although no useful 
information could be reported about the detected 
inconsistency. 
 
8. Conclusions  

 
In this paper we have presented our experiences 

using the Alloy analyzer to check an abstract syntax 
for the notation of the Discovery Method. We 
described how we used different approaches to design 
the abstract syntax and to represent the diagram 
instances in Alloy, commenting on the naturalness, or 
otherwise, of the chosen encodings. 

We illustrated a complete example of a valid model 
for Discovery (a Task Structure Model) and the result 
generated by Alloy, showing that the basic approach is 
feasible.  The time taken to validate larger models with 
an exact scope is in the order of minutes.  We also 
illustrated a counter-example of an invalid model (a 
Data Model), for which Alloy correctly found no 
instance. 

Additionally, we gave our impressions of Alloy as a 
candidate tool for checking the consistency of multiple 
diagrams in software engineering notations.  We feel 
that this is perhaps not an ideal deployment of Alloy.  
The searching behaviour of the constraint solver had to 
be carefully controlled.  We were forced to abandon 
the notion of a single hierarchy of model elements in 

the abstract syntax specification, since this gave rise to 
underconstrained instance generation. 
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