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Using Alloy to model-check visual design notations

Anthony J. H. Simons, Carlos Alberto Fernandez y Fernandez
Department of Computer Science, University of Sheffield
{A.Simons, C.Fernandez} @dcs.shef.ac.uk

Abstract PROMELA model checker [7]. The USE tool (UML-
based Specification Environment) [8] allows UML

This paper explores the process of validation for the diagrams to be annotatewith constraints written in
abstract syntax of a graphical notation. We define a OCL (the Object Constraint Language [9]), after which
unified specification for five of the UML diagrams the validity of models may be checked, using
used by the Discovery Method and, in this document,Predicates also written in OCL. The tool verifies
we illustrate how diagrams can be represented in Alloy model instances against dixfi predicates and also
and checked against our specification in order to know Implicitly against the invariants defined in the model.

if these are valid under the Discovery notation. A prerequisite to developing high-quality model
checkers is the ability to encode model diagrams in a
K eywor ds suitable abstract syntax, and from this to develop an
Formal specificationmodel checking, Alloyvisual abstract semantics [10]. This paper reports on a series
modelling, UML of initial experiments conducted into converting a

small object-oriented design notation into an abstract
syntax, which was then submitted to the model checker
Alloy [11, 12], to verify the correctness of models
against the abstract syntaXhe design notation is a
subset of UML used by the Discovery Method [13,
14]. We demonstrate that it is possible to validate
model instances of differertypes against an abstract
syntax specification. We & show how a combination

1. Introduction

The Unified Modeling Language (UML) [1] is an
eclectic set of notations for modelling object-oriented
designs. Under the supervision of the Object
Management Group (OMG), the notation set has
grown larger, to acpomquate the.concerns c.)fof consistent model instances vyields a single,
different stakeholders in business and industry. Th'sconsistent abstract syntax; and the converse, that

has Ied. to some criticisms .reggrding the. open en_deqnconsistent models are eefed against the abstract

semantics and the lack of direction given in modelling syntax specification. The Aljoanalyzer proves to be a

[21. . . . tricky tool to use well in this context, and we report
Various attempts to formalise parts of UML include o " o1 various different approaches to encoding

thﬁ. \r/]vork of thle _Pre;]:ise UM.L grfb?wfpw\é”‘) (31, diagram information and the tactics adopted to focus
which aims to clarify theemantics o and create " ork of the model checker.

tools to support the rigorous analysis of UML models. The rest of this paper is organized as follows:

\IJ:ointIy Witrll HI?AI\ICA’FDUL\AL Sl;\%gnl\izzd a Meta-l_\/lodelli?]g section 2 discusses the relationship between UML and
rfir.ne\IN(JME ) [ ](;colt o failan opEon ot E the notation of the Discovery Method; section 3 gives
ongina metamodel. Out of this work came the e explanation of thélloy analyzer; section 4

Qesire to create an Unambiggous UML, an idea partly yoqcrines  the research methodology; section 5

'SSp'rebq by JK]AEL ZCUat?:IyS'S _methgd rE5]h The introduces the abstract ragx model for encoding
namolguous ( ) Consortium [6], which grew Discovery Method notations in Alloy; section 6 gives

out of pUML, submitted a full proposal for UML2.0 . example of usage amdodel-checking; section 7

based on a set of architectural principles. gives an initial evaluation of Alloy and its usefulness

Related work on the developmer_]t of model for modelling diagram syntax constraints; and finally
checkers and tools for UML has been quite slow. Somegg inn g presents our cdasions. A graph depicting

examples inglude t.he Hugo tool, which compiles UML the Alloy abstract syntaxmetamodel for Discovery
state machines into a rfoat processed by the Method notations is also included in an appendix.



In Jackson’s words [24}Alloy is an attempt to
2. UML and the Discovery Method combine the best features of Z and the Object
Constraint Language of UML in a lightweight

Supporters of UML argue that designers benefit notation. It takes UML's emphasis on binary relations,
from being able to choose whatever diagram elementsand the expression of constraints with sets of objects
they need, with some latitude to interpret the diagramsformed by 'navigations’, but with Z's much simpler
as they see fit. Others argue that this freedom issemantics.”
undesirable, resulting from the lack of any unified  The essential idea about Alloy can be summarized
semantics in UML [15]. In fact, Booch [16] has stated as follows. We can build a micro-model with Alloy
that the current UML spefication does not restrict  using signatures and formula paragraphs (i.e.
graphical formats antthere really is no ‘illegal’ UML predicates, functions, or assertions). Once the model is
graphical syntax”(sic). compiled, we can check ery assertion with the

Notwithstanding, we believe that UML should be a intention of finding a counterexample. In other words,
more precise language. In fact, UML’s “semantics” are the Alloy analyzer looks for some instance of our
not really formal semantics at all, but a metamodel micro-model that could be generated in violation of the
describing how syntactically well-formed UML assertions. Itis for this reason that Jackson says in [25]
diagrams should be constructed; which is not the samghat Alloy follows a refutation approach. If a
as giving the meaning of the UML notation [17-19]. counterexample is found, this means that the model is

The Discovery Method for developing object- invalid. If no counterexample is found, the model may
oriented systems was first proposed in 1998 by Simonsbe valid, but this is not guaranteed. Alloy searches
[13, 14] and revised in 2002. The method uses a simpleexhaustively, creating theomplete state space, but
and semantically clarified notation, based on UML, but within a limited scope, bounded by fixed numbers of
substitutes original diagrams where this is consideredelement instances in the model [26]. If Alloy cannot
necessary. The method concentrates on the technicdind a counterexample in the scope specified, one may
process of analysis and design [20]. It deploys manystill exist in a larger scope. The effectiveness of this
existing analysis and design techniques selectively,method is based on themall scope hypothesid?2]
restricting them to their original context and purpose, that states that a high proportion of specification errors
and emphasises the benefits of formal model tend to be found in a small scope. Alloy can also be
transformations [13]. The method is consistent with the used to search for positive instances of a model, a
process model of OPEN [21], and has been tested in deature used in the work reported here.
number of industrial projects by MSc students in the
University of Sheffield. 4. Methodology

3. Alloy analyzer The abstract syntax watetermined by examining
each design model used in the Discovery Method in
Formal methods provide a syntactic domain (i.e. the turn, then describing eacmodel element and the
notation or set of symbols of the method), a semanticconstraints upon that elemeittitially, there was some
domain (like its universe of objects), and a set of freedom to develop eithersingle abstract syntax, or a
precise rules defining how an object can satisfy a collection of syntaxes, orfer each type of model.
specification [22]. Most formal methods are supported  Alloy contains certain built-in predicates that were
by one or more tools. These, based on theuseful when checking properi®f the abstract syntax.
characteristics of each formal method, can be For example, some models had the property of being
categorized as theorem provers and model checkers. directed acyclic graphs (DAGs). Provided that a
There is a slightly different category of tools such relation could be constructed to generate the transitive
as the Alloy analyzer whicls sometimes defined as a graph, the built-irdag() constraint could be applied to
model finder. This kind of tool works by finding this expression.
models that form counterexamples to assertions made Successive versions ofthe abstract syntax
by the user‘lts engine takes a formula and attempts Sspecification were tested by propostitgeckassertions
to find a model of it’[11]. Alloy by Jackson and in Alloy, counterexamples which encoded violations of
Paradox by Claessen et al. [23] are examples of adesired properties of the abstract syntax, for example
program that implements techniques for finding finite that anObjectis a composition (exclusive aggregation)
models based on first order logic, whilst model of itself, recursively. When these werkecked Alloy
checking is based on temporal logic. would sometimes find counterexamples, indicating that



the abstract syntax dichot yet encode sufficient
invariant properties to rule out malformed diagrams.
Later, when checking diagm instances against the
abstract syntax, we switched from the refutation
approach to a predicatetiséaction approach, whereby
diagram instances were @aled as predicates and the
Alloy analyzer had to $@sfy one instance of each
predicate, to indicate # a diagram was valid.

5. Abstract syntax

Our research is gearedatard the use of Discovery
(a semi-formal lightweight object-oriented method)
and Alloy, used as a supporting formal method, with
the aim of defining the formal representation for

actually propose two abstract syntaxes to support all
the concrete syntax of UML [29], separating the
abstract syntax descrily structure from that
describing behaviour. Figure 2 shows our chosen
abstract syntax architecyr with four layers: the
System view, the Model &iv, the Diagram view, and
the base level for the elements of Discovery notation.
The System view gives a complete representation of
a specification, formed by @llection of models in the
Discovery Method. This view includes at most one
model of each kind and maintains the relationships
between the different models. The Model view is used
to define the different models supported by Discovery.
At this level, each model has diagrams and the
Model view maintains the consistency between these

Discovery. In the longer term, we aim to develop a tool different diagrams.

to support these definition® check the consistency

and completeness of our Discovery models. Figure [ System view
depicts the projected architecture of our model.
Model view
.. .. - Task Task Flow Object State Collaboratio
Task Task Data State Collabor Structure Model Model Model n Model
Structure Flow Model Model -ation Model
Model Model Model
Concrete Syntax : -
Diagram view
Task Task Flow Object State Collaboratio
Structure diagrams Model model n diagrams
diagrams diagrams diagrams
Figure 1. Abstract syntax for the Discovery Method Model elements

The abstract syntax rfothe notations of the
Discovery Method has been coded in Alloy with the
aim of facilitating the mapping between the notation
and the semantic domain [10]Our abstract syntax

without concern for their interrelation,

Figure 2. General structure of the abstract syntax

The Diagram view spefiés single diagrams
since the

model also includes well-formedness rules or static purpose at this level is to ensure that diagrams use the

semantics[27], which govern the correctness of gppropriate elements of Discovery’s notation.

Discovery models. Cheaky for well-formedness is

The
lowest level is used to specify all the relevant elements

traditionally made at a diagrammatical level using a of the Discovery notation and their basic relationships.

BNF specification, but we work in Alloy, trying to

With this layering of models and diagrams, it is

define the whole abstract syntax and looking for an possible to check, at different levels of detail:

appropriate representation of the model instances of .

Discovery and experimenting with the model checking
supported by Alloy.

At present, we have a uréfi abstract syntax for the
five principal Discovery models (Task Structure, Task
Flow, Object, State and Collaboration models), which
includes well-formedness rdelerived naturally from
the diagram notations. Weombined the abstract
syntaxes for each model tave single definitions of
the common elements withated properties. A similar

Each diagram separately
e Each model independently
e The whole system specification

6. Checking visual models

The abstract syntax modalipports the definition of
generic syntax constraintsggether with the specific
constraints relating to a particular diagram, model or
system. While we may chetke Alloy representation

strategy for UML has been recommended by the 2U

group in their UML 2.0 proposal [28]. Evans et al. for all three views shown in Figure 2, we must always



include the Diagram viewsince this declares the constraint is created to define the participation linking
relevant primitive elements. The strategy followed is the actor and the top level task.

to encode the general constraints for each type of
diagram in one Alloy signature, and then to encode @sig sCirculationTS extends
specific diagram as a subtypignature in Alloy. The TaskStDiagramView {

reasons for this are discussed below in section 7. part circulationTask, overdueTask,
loanTransactionTask: task,

readerServicesActor: actor,
part p: parti,

circAgg: agg

{

sig TaskStDiagramView
extends DiagramView{
task: set Task,
goal: set Goal,
gen: set Generalisation,
real: set Realisation,
agg: set Aggregation — Composition,
comp: set Composition,
actor: set Actor,
obj: set Object - AssociationClass,
parti: set Participation

/I Aggregation

circulationTask in circAgg.head and
overdueTask + loanTransactionTask
in circAgg.tail

#circAgg.tail=2

/I participation

circulationTask in p.tact and

readerServicesActor in p.user

Fi 3. Task Structuredi el t . . . :
'gure ructurediagram eiements Figure5. Encoding the Circulation Task Structure

Figure 3 shows the signatuieaskStDiagramView diagram
defining the general properties of a Task Structure
diagram in Alloy. This basically declares the sets of
elements that can possibly part of the diagram. The
relationships among these elements are defined at th
lowest level of the abstct syntax graph (see the
metamodel in Appendix A).

Reader Services M'

(e > Come D

Figure4. Circulation Task Structure diagram

Given the above, we may encode a specific Task Figure 6. Loan Transaction Task Structure
Structure diagram, such alse sketch of a Library’'s diagram
circulation system in Figure 4. The corresponding
Alloy signature €irculationTS which represents the
diagram instance, is given in Figure 5. This signature' w e g
extends the basidaskStDiagramVievsignature. In N & Similar way as before, but this time describes a
the upper declaration area, the particular elements ofdeneralisation instead of an aggregation relationship.
the diagram are declaredrThese are all expressed in _ With these two definitions we have enough
terms of diagram element types inherited from the Information to check eacldiagram separately, to
generic signature. In the lower predicate area, demonstrate that they eachnéorm to the legal syntax

constraints are defined onetideclared elements. One ©f @ Task Structure diagram. However, it is more
constraint is used tospecify the aggregation interesting to treat them as part of the same Task
relationship, linking tasks to their corresponding Structure model and checketin together. To achieve

source or target tasks ithe structure. A similar S, we must construct a new Alloy specification,
representing the Model view, within which we merge

We may specify the abstract syntax for further Task
Structure diagrams. Figure 6, for example, shows a
iagram that represents asxtension of the Task
tructure diagram given in Figure 4. Eventually, the
two independently-created diagrams should be made

consistent within the same Task Structure model.

—A

Borrower

The corresponding signaturg_oanTransactionTS
is shown in Figure 7. The specification is constructed



the two diagrams on their common element (tban
Transactiontask).

sig sLoanTransactionTS extends
TaskStDiagramView {

part loanTransactionTask, issueTask,
dischargeTask: task,

borrowerActor: actor,

p: parti,

loanGener: gen

K

/I generalisation

loanTransactionTask in loanGener.head
and issueTask + dischargeTask in
loanGener.tall

#loanGener.tail=2

/I participation

loanTransactionTask in p.tact and
borrowerActor in p.user

}

rules of the abstract syntax. If Alloy cannot find a valid
instance, this will mean that our model does not
conform to all the syntax constraints defined for the
Discovery notation. Figure 9 illustrates the Alloy code
that is executed to validate our model. This consists of
a dummy predicateirculationModel()which is run for

an exactly-specified scope, within which Alloy must
find all the elements of thewodel. The scope is an
enumeration of each element and relationship used in
the model under test. In a smaller scope Alloy cannot
generate a valid instance, whilst in a larger scope Alloy
will create additional elements, making the instance
valid with the whole abstrastyntax, but not equivalent

to our model. Indicating the exact scope is necessary if
satisfaction is to be interpreted as validating the model.
But this also has the useful effect of limiting the state
space searched by Alldgr a valid instance.

Figure 7. Encoding the L oan Transaction Task
Structure diagram

Figure 8 shows the signatusCirculationModel
representing a particular Task Structure model for th
whole circulation subsystem, which merges the abov

diagrams consistently. The signature extends a generic

TaskStModesignature (whose detail is not given here
and specifies that the diagrams€irculationTS and

sLoanTransactionTQre part of the model. All the
information pertaining to the Model view is inherited
from TaskStModeklnd the individual diagrams were
specified above in the Diagram view, so apart fron
linking the diagrams to the model, we only need tq
assert which elements are common to both diagrams.

sig sCirculationModel
extends TaskStModel {

K

sCirculationTS in tm

sLoanTransactionTS in tm

D D

pred circulationModel(){}
run circulationModel
for 1 but
exactly 1 Model,
exactly 1 TaskStModel,
exactly 1 sCirculationModel,
exactly 2 DiagramView,
exactly 2 TaskStDiagramView,
exactly 1 sLoanTransactionTsS,
exactly 1 sCirculationTS,
exactly 4 Relationship,
exactly 2 Structure,
exactly 1 Generalisation,
exactly 1 Aggregation,
exactly 2 Participation,
exactly 7 Node,
exactly 5 StateAndTask,
exactly 5 TaskActivity,
exactly 5 Task,
exactly 2 Actor,
0 Transition,
0 TaskFlowElement,
0 Member

sCirculationTS.loanTransactionTask
LoanTransactionTS.loanTransactionTask

sCirculationTS.task
& slLoanTransactionTS.task

sLoanTransactionTS. loanTransactionTask

}

Figure 8. Encoding the Task Structure model

Having defined a particular Task Structure model
consisting of two Task Structure diagrams, it is
possible to check the consisty of these against the

Figure 9. Empty predicate and exact scope specified
for therun command

When the aboveun command is executed, Alloy
finds the unique instance, indicating that our example
is in fact consistent with the Discovery abstract syntax.
What Alloy does is to satisfy the empty predicate (a
trivial task in itself) in conjunction with making the
particular diagram and model specifications consistent
with the general syntax specifications, within a scope
that only has one possible solution, if any. Alloy
presents its result either as a graph of linked signature
instances (similar to the metamodel graph in Appendix
A), or as a browseable tree (as shown in Figure 10).
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Figure 10. Solution generated by Alloy

Figure 10 shows the tree view generated by Alloy

Model in the Model view, Alloy cannot find a valid
instance. This is because the Z class is defined as a
component of two different classes in the same model,
something which violatethe specification for a UML
composition which requires the composed elements to
be uniquely-owned parts of the whole.

7. Evaluating Alloy

While Alloy is very effective in modelling and
analysing simple, lightweight formal specifications
written in a Z-like style, we found that it is more
difficult to use as the Is&s for model checking the
syntax and static semantics of a design notation. At
various times, we found we were forced into work-
arounds to constrain the searching behaviour of the
analyzer. The following gives a flavour of some of our
unexpected discoveries while modelling in Alloy.

Initially, we developed a separate abstract syntax
for each type of model used in the Discovery Method.
So, for example, the Taskr8¢ture Model had distinct
generalisation and aggmipn relationships from
those in the Data Model, although in the Discovery
Method these are each single kinds of relationship,
with a uniform semantics across all model types. This
meant that the Alloy signatures f@eneralisationand
Aggregationwere short and the scopes, within which
model instances were checked, were quite small.

for the example presented above, whose structure weHowever, when models of different types were

can inspect interactively ifve want to examine the
result. The fact that Allp finds an instance at all

demonstrates that the example is valid. If no result is

returned, this means that the tested model is invalid.

X Y
z z
@) (b)

Figure 11. Two diagrams creating an inconsistent
Data Model

Figure 11 illustrates a second interesting example
for which we would expect no consistent solution to be
found by Alloy. It is possible to verify that the
individual exemplar diagrams (a) and (b) are
syntactically correct in # Diagram view, but when

both diagrams are included within the same Data

combined, this required a set of translations from one
abstract model syntax to another.

In the second version, we unified all the abstract
syntaxes for the differentnodel types, such that a
single Aggregationrelationship existed for all types of
model. This was more in keeping with the philosophy
of the Discovery Method. However, the Alloy
signature forAggregationwas made more complicated
by the need to assert extconstraints that it either
related twoTasks or two Objectsand not one of each.
Alloy lends itself to creating hierarchies of disjoint
subtypes in its abstract syntax, using thetends
notation. This initially fostered a meta-modelling style
of construction, whergb all syntax elements
descended from a comm&fodelElementoot, similar
to the MMF [4]. However, this had the unexpected
consequence of requiring vastly larger scopes within
which to search for modenstances, since Alloy

"interprets all scope instructions as relating to the base
instances in any tree. As necessity, the syntax tree
was broken down into a series of shorter trees (see
Appendix A), losing the abstraction over all model

elements.



Once the abstract syntdvad been fully validated the abstract syntax specifiaati, since this gave rise to
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