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Abstract

Turbulent duct flows are investigated using large eddy simulation at bulk Reynolds

numbers, from 4410 to 250000. Mean secondary flow are found to reveal the existence

of two steamwise counterrotating vortices in each corner of the duct. Turbulence-driven

secondary motions that arise in duct flows act to transfer fluid momentum from the centre

of the duct to its corners, thereby causing a bulging of the streamwise velocity contours

towards the corners. As Reynolds number increases, the ratio of centerline streamwise

velocity to the bulk velocity decreases and all turbulent components increase. In addition,

the core of the secondary vortex in the lower corner-bisector tends to approach the wall

and the corner with increasing Reynolds number. The turbulence intensity profiles for the

low Reynolds number flows are quite different from those for the high Reynolds number

flows.Typical turbulence structures in duct flows are found to be responsible for the

interactions between ejections from wall and this interaction results in the bending of the

ejection stems, which indicates that the existence of streaky wall structures is much like

in a channel flow.

Keywords: Duct flow; Secondary flow; Reynolds number; Turbulence; Large Eddy

Simulation
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1 Introduction

A greater understanding the mechanisms of liquid or solid-phases behave within fluid

flows, and of their either impact on walls or dispersion and depositon, is important in

many industrial environmental, and energy-related processes. Examples include the

erosion of pipes [1,2], the cleaning of electronic chips, the handling of powders, the

transmission of diseases and the transport of pesticides. Knowledge of liquid or solid-

phases turbulent behaviour in ducts is more specifically of relevance both

environmentally and industrially to flows in, for example, ventilations systems, heat

exchangers and gas turbine cooling systems, and the ability to predict such behaviour is

of value in more effective system design and operation. Of particular interest is the

processing and transportation of nuclear waste, which is stored as a liquid-solid sludge,

and its behaviour in terms of the steeling or nonsettling characteristics of particles, their

propensity to form solid beds, and the deposition characteristics of particles in a bed. The

formation of particle beds can result in blockages to pipes and equipment and lead to

difficulties in obtaining dispersed particle flows from storage equipment for subsequent

processing. The pumping of waste along pipes or ducts also gives rise to highly complex

flows, where secondary flows caused , for example, by pipe bends can induce particle

deposition. An understanding of how these flows behave during transportation is of clear

benefit to more cost-effective process design, continued operation, and accelerated

waste clean-up. The safer and more efficient processing of liquid or solid-phase, in

particular, provides the motivation for the current work.

Many industrial applications of duct could be found in heat exchanger, chemical

reactor, burner and so on. Jin et al. [1] first applied direct numerical simulation (DNS)

method to study tubes located in the middle of duct with row of a 10x10 aligned tube

bank together with considering coal ash particles collision and erosion. Yao et al.[2]

applied experimental method to investigate the erosion of stainless steel by two-phase

impinging jet and indicated that the flow turbulence plays an important role in causing the

amount of erosion. Cheng et al. [3] used numerical simulations to investigate the flow in
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three-dimensional straight square micro-channels containing superhydrophobic surfaces

patterned with square posts, square holes, transverse, or longitudinal grooves. The

effects of pattern width to channel height ratio and the Reynolds number on the effective

slip length are analyzed in detail for different shear-free fractions. Furthermore, Cheng et

al. [4] investigated the frictional and thermal performance for the same structure as a

promising candidate for electric cooling. Al-Bakhit and Fakheri [5] studied a parallel flow

heat exchanger in rectangular ducts to determine the impact of different parameters on

the performance and the accuracy of constant heat transfer coefficient assumption. They

found that the performance of the heat exchanger primarily depends on the flow in the

ducts, i.e. the fluid properties and the mass flow rate and aspect ratios. The importance

of the duct flow necessitates the examination of the impact of developing velocity profiles

on the heat exchanger performance.

It is clear that the turbulent flow inside a duct of square or rectangular cross-section is

of considerable engineering interest. This flow is characterized by the existence of

secondary flows (Prandtl’s flow of the second kind) which are driven by the turbulent

motion. The problem of secondary flows developing under transitional and turbulent

conditions in ducts of triangular or rectangular cross section has also attracted much

attention due to the significance in engineering practice.The secondary flow is a mean

flow perpendicular to the main flow dirction. It is relatively weak (1-3% of the mean

streamwise velocity), but its effect on the transport of momentum is quite significant.

A number of numerical simulations of the turbulent flow in a square duct have been

reported over the last three decades. Many earlier efforts used the Reynolds-avearged

Navier-Stokes (RANS) equations in conjunction with a closure model for the Reynolds

stresses. As expected, those closure models based on assumptions of isotropy, such as

the conventional k-İ and k-Ȧ models failed to predict any turbulence-driven secondary

flow. The earliest successful attempt was probably obtained by Launder and Ying [6]. In

their study, the algebraic Reynolds stress model was used to solve for the cross-stream

flow. Similar studies followed subsequently. The difference in these studies is the forms
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for modeling the various terms in the differential Reynolds stress transport equations,

notably the pressure-strain correlations. Nisizima and Yoshizawa [7] used non-linear

forms of the k-İ equations to account for the aniso-tropy in the Reynolds normal stresses

and were able to predict the existence of secondary flows in square ducts. All these

numerical simulations have been able to capture the existence of secondary flows in

general but the comparison of turbulence quantities with experimental data was not

completely satisfactory. The disagreement is probably due to the empiricism involved in

modeling the various correlations in the transport equations. In recent years, with the

development of computer technology as well as high capability computation methods, it

is possible to investigate single duct flows in smaller turbulent scales using high-quality

modeling methods, for example, direct numerical simulation and large eddy simulation.

Gavrilakis [8] performed a direct numerical simulation (DNS)at a Reynolds number

(based on bulk values)of Reb=4410. A second-order finite volume scheme and a

fractional step method were used with up to 1.6×10
7

grid points. Gavrilakis’ simulations

were in reasonable agreement with the mean flow and turbulence statistics obtained

from experiments of Niederschulte et al. [9]. Such DNS does not need any turbulence

structures. Since DNS resolves all the length scales, the computational demands are

very large and therefore limited to low Reynolds numbers. As a compromise between

RANS and DNS, large eddy simulation (LES) was used to study the flows in a square

duct by Madabhushi and Vanka[10]. Comparison between the LES and DNS results

clearly demonstrate that LES is capable of capturing most of the energy carried by

turbulence eddies and can accurately predict the generally accepted pattern of the

turbulence-driven secondary flow. Although some issues still need to be resolved, such

as subgrid-scale (SGS) modeling and grid resolution for high Reynolds number flows, the

results can be quite accurate if the subgrid scales do not contain much energy. Thus,

LES has the advantage of reducing empiricism ove the Reynolds-averaged approach

and reducing computional burden over the DNS.
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Since the appearance of secondary mean motion of a turbulent flow in a straight duct

flow was first measured indirectly by Nikuradse [11], a large number of experimental

studies have been conducted to elucidate the dynamic response of the mean flow to the

highly anisotropic turbulent field in the vicinity of an internal corner [12]. The importance

of the turbulence anisotropy and the turbulent shear stress component associated with

the secondary mean flow field was early recognized. However, the experimental

uncertainty related to measuring the important secondary shear stress component

prevents firm conclusions to be drawn. Certain issues are not fully addressed owing to

limitations of experimental investigations, for example, the resolution of the flow very

near the free surface. The origin of the inner secondary flow in the context of vorticity

transport, the role played by the diverging surface current found when studying jets,

wakes or boundary layers parallel to a free surface [13], the vortex structures in a

turbulent mixed-boundary corner, are examples of the questions, which are not yet

conclusively investigated. Many of the discrepancies are probably due to the different

set-ups in the different studies, as also mentioned by Grega et al. [14]. High-resolution

DPIV measurements [14] made in the cross-stream plane used the same experimental

apparatus as two earlier works by the authors. It was found that there was an, as yet,

undetermined source of streamwise vorticity particularly in the outer secondary flow

region closed to the free surface.

All above studies have demonstrated that turbulence-driven secondary motions, which

arise in duct flows, act to transfer fluid momentum from the centre of the duct to its

corners, thereby cause a bulging of the streamwise velocity contours towards the

corners. They also established that the Reynolds normal and shear stresses contribute

equally to the production of mean streamwise vorticity. In such flows, therefore, the

directions normal to the streamwise direction are inhomogeneous and wall-bounded,

unlike for the widely studied plane channel flow.

The paper is organized as following. In the next section, the mathematical model and

subgrid-scale model used are briefly described. Then, the results of a closed-duct
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calculation is presented to validate the code. Discussion of the mean flow field includes

mean velocities, streamwise flow, secondary flow and the turbulent flow field, which

includes turbulent intensities and instantaneous flow. Finally, conclusions are drawn in

the last section.

2. MATHEMATICAL MODEL

2.1. Flow configuration

A schematic diagram of the duct geometry and co-ordinate system used is given in

Fig. 1. The flow considered is three-dimensional and described using a Cartesian co-

ordinate system (x, y, z) in which the z axis is aligned with the streamwise direction, the x

axis is in the direction normal to the floor of the duct, and the y axis is in the spanwise

direction. The corresponding velocity components in the (x, y, z) directions are (u, v, w),

respectively. In modelling this flow, the boundary conditions for the momentum

equations were no-slip at the duct walls. The specification of inflow and outflow

conditions at the open boundaries of the duct was avoided by assuming that the

instantaneous flow field was periodic along the streamwise direction, with the pressure

gradient that drove the flow adjusted dynamically to maintain a constant mass flux

through the duct.

The Navier-Stokes equations were solved numerically in a square cross-sectioned

domain of size 2h x 2h x 8ʌh in the x, y and z directions, respectively. The length of the

duct was sufficiently long to accommodate the streamwise-enlongated, near-wall

structures present in wall-bounded shear flows, with such structures rarely expected to

be longer than approximately 1,000 wall units [15].

The physical domain was discretized using between 4.50x10
5

and 1.44x10
6

grid points

in all the Reynolds number flows examined. Compared with the 2.0x10
6

nodes used by

Huser and Biringen [16] in their DNS of the low lowest Reynolds number flow considered,

present LES are therefore relatively highly resolved on the basis of the maximum number

of nodes noted above, and approximately 75% of that number. All discretizations were
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uniform in the streamwise (z) direction, whereas in the vertical and spanwise directions

(x and y, respectively) grid points were clustered towards the walls. In particular, for all

simulations, the point closest to the wall was placed at x
+

or y
+
=0.37-6.39, with on

average 5 nodes in the near-wall region (x
+

or y
+
<10). Other simulations using an

increased total number, and alternative distributions, of non-uniformly distributed nodes

were also used to give better resolution near the walls of the duct, further details of which

could be found in Fairweather and Yao [17] and Yao and Fairweather [18]. These

sensitivity studies did, however, demonstrate that the discretizations noted above

resulted in turbulence statistics, in those regions of the duct of interest herein, that were

independent of grid resolution. The flows investigated had bulk Reynolds numbers,

Reb=wbh/, of 4410 to 250,000, defined using the cross-stream, area-averaged

streamwise velocity, with equivalent friction Reynolds numbers, ReĲ=uĲh/, of 300 to

10550, respectively.

2.2. Large Eddy Simulation

In LES only the large-scale parts of the velocity and scalar fields are computed and

the effects of the subgrid scales are modelled. To achieve thisˈa spatial filter was

applied to the equation of motion: the spatial filter of a function f=f(X, t) was defined as it

convolution with a filter function, G, according to




 '),'())(;(),(
'

dXtXfXXXGtXf  (1)

where the filter function must be positively definited to maintain filtered values of

scalars such as the mass fraction within bound values and the integration was defined

over the entire flow domain ȍ. The filter function had a characteristic width of Ȝ, which, in

general, might vary with the position.

Applying Eq. (1) to the Navier-Stokes equations for an incompressible Newtonian

fluid with constant properties, under the hypotheses that filtering and differentiation in

space commute, gave:
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In Eq. (3), ȡ is the constant fluid density, ui is the velocity component in the xi direction, p

is the pressure and Ȟ is the assumed constant kinematic viscosity and ij i j i ju u u u  

represents the effect of the sub-grid scale motions on the resolved scale motions. This

term, known as the sub-grid scale stress, must be modelled in order to solve the filtered

equations.

The dynamic sub-grid scale stress model [19] was used in this work, implemented

using the approximate localization procedure [20] together with the modification

proposed by di Mare and Jones [21]. This represents the sub-grid scale stresses as the

product of a sub-grid scale viscosity,
sgsv , and the resolved part of the strain tensor, with

sgsv evaluated as the product of the filter length  times an appropriate velocity scale,

taken to be s . The anisotropic part of the sub-grid scale stresses is given by:

 22
a a

ij ij
C s    s ,where the model parameter C must be determined. In the dynamic

model this is achieved by applying a second filtering operation, denoted by, to Eq. (3). In

the test filtered equation the sub-grid scale stresses are:
฀

ij i j i j
T u u u u    , and hence :

฀
ij ij ij i j i jL T u u u u      . This expression is known as Germano’s identity, and involves

only resolved quantities. To evaluate C, some forms of relationship between the model

constant values C and 2
( )C  at the grid- and test-filter levels must be specified. Based

on the hypothesis that the cut-off length falls inside the inertial sub-range, the expression

generally used is:  2 2
C C  .
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Such a sub-range is not, however, guaranteed to occur in wall-bounded or low

Reynolds number flows, with the largest deviations from universality of the sub-grid scale

motions occurring in the regions of weakest resolved strain. Values of the model

parameter at different filter levels are therefore likely to differ, and to account for this di

Mare and Jones [21] proposed that:

 2 2

2
~2

1
2 2

a
C C

s s

 
  
  


 

. (4)

In Eq.(4),  has the dimensions of dissipation and, assuming the flow to have only one

length scale l and velocity scale v : 3
/v l  , with v taken as the bulk velocity and l the

half-width of the square duct.

Eq. (4) assumes that the scale invariance of C can only be invoked if the cut-off falls

inside an inertial sub-range, and when this occurs the modelled dissipation should

represent the entire dissipation in the flow. Conversely, in the high Reynolds number

limit, the dissipation is only determined by v and l , so that the ratio of  to
3~2

s 

measures how far the flow is from scale preserving conditions. This equation is a first-

order expansion of other scale-dependent expressions for C, e.g. Porte-Agel et al.[22],

which also use a single length and velocity scale. ฀
ij ij ij i j i jL T u u u u      and Eq. (4),

with contraction of both sides with the tensor s , then give:

 2 ~
2

*
2

2
~2

2 2

2 2

a a a a

ij ij ij ij

a

C s s L s

C
s s

    
 

s  

 
, (5)

where 2

*
C is a provisional value for 2

C , i.e. its value at the previous time step [20]. Eq.

(4) gives a simple expression for 2
C whose evaluation requires only minor modifications

to the approximate localization procedure. The advantage of the method is that it is well

conditioned and avoids the spiky and irregular behaviour exhibited by some

implementations of the dynamic model. In addition, as the resolved strain tends to zero,
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2
C also tends to zero, whilst 2

( )C  remains bounded. Eq. (5) also yields smooth 2
C

fields without averaging, and the maxima of 2
C are of the same order of magnitude as

Lilly’s [23] estimate for the Smagorinsky model constant. The approach does not,

however, prevent negative values of the model parameter, with such values being set to

zero to prevent instability. Negative values of the sub-grid scale viscosity are similarly set

to zero. Test-filtering was performed in all space directions, without averaging of the

computed model parameter field. The ratio /  was set to 2, and the filter width was

determined from  1/3x y z
     .

Computations were performed using the computer program BOFFIN. The code

implemented an implicit finite-volume incompressible flow solver using a collocated

variable storage arrangement. Because of this arrangement, fourth-order pressure

smoothing, based on the method [15], was applied to prevent oscillations in the pressure

field. Time advancement was performed via an implicit Gear method for all transport

terms, and the overall procedure is second-order accurate in space and time. A constant

time step was chosen, requiring the maximum Courant number to be lied between 0.1

and 0.3, with this enforced for reasons of accuracy. Time-averaged flow field variables

reported later were computed from running averages during the computations.

2.3 Boundary conditions

2.3.1 Inflow conditions

The specification of inflow conditions is straightforward for transitional flows: only the

mean flow and a desired perturbation must be prescribed. The same technique can be

used for fully developed flows, but the length required for the perturbation to develop

completely and the flow to reach the final state can be considerable. A fluctuating signal

can be generated by adding rotating and oscillating helical perturbations to an assigned

mean flow:

(6)
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where the phase Į and frequency of each mode are chosen randomly, the latter on

a spherical shell of radius in wave number space. The coefficients AI and Bi can be

determined by enforcing continuity.

2.3.2 Outflow Conditions

The ideal requirement for the outflow boundary is that disturbances originated at the

domain outlet be converted out of it without being propagated upstream. A common

practice is to assign a zero gradient condition (also referred to as reflective) on the

boundary:

=0 (7)

where n is the outward normal to the boundary surface. For the convective fluxes this

corresponds to a first order upwind approximation. This is generally sufficient to minimise

the effects of the boundary on the solution if the flow can be considered approximately

parabolic in the outlet region.

3 Results analysis

3.1 The mean flow field

3.1.1 Mean velocities

We have verified our numerical procedure through comparisions with the experimental

data on a similar geometry presented by Cheesewright et al [24]. These comparisons are

presented in Figs 2, 3, where the y/h label represents the distance from the wall. In Figs

2,3, the solid lines represent the present LES data and the circles represent the

experimental measurement.

The flow statistics were obtained over a long computation time. Geometrical (and flow)

symmetry and homogeneity along the z-direction were exploited while computing the

quadrant-averaged data. Fig.2 (a) displays the quadrant-averaged profiles of the mean

streamwise velocity components at five locations of the square duct. All of the velocity
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profiles in Fig.2(a) are normalized by the mean value of the streamwise velocity at the

duct centerline, w0. A short experimental study of the turbulent flow through a square

duct was carried out by Cheesewright, McGrath & Petty [24]. Their Reynolds number

based on the centerline velocity and duct side is Re0=2hU0/v= 4900 which is close to that

of the simulation, 4410. The agreement between measurements and simulation for

points in the flow at distances greater than 0.1h from the nearest wall is excellent.

Outside these limits the measured U-values are quite asymmetric with respect to the

corner bisector with velocities differing by as much as 20%. Fig.2(b) displays the mean

spanwise velocity components at five locations, which clearly indicates the presence of

the secondary flows. Their location and magnitude are very well reproduced by our LES.

Note that the mean secondary flow is relatively weak (1-2% of the bulk streamwsie

velocity). Because the simulation results are symmetric to within 4% it is inferred by

comparing the zero crossing of the two sets of data-that the secondary flow cells of the

experiment are also asymmetric about the corner bisector. Due to the smaller magnitude

of spanwise velocity, the agreement of simulation and experimental seems not as well as

that of streamwise velocity.

3.1.2 Streamwise flow

Fig.3 (a) shows a comparison between the present predictions and axial mean velocity

profiles measured along wall of a square duct at five downstream stations. The

predictions are compared mainly with the data of Gessner et al.[25] and Gessner and

Emery[26]. Note that the difference between them is a good measure of the experimental

scatter, since they were obtained in the same expeiemental apparatus and undere

similar conditions. It can be seen that the predicted distributions along the wall are in

good agreement with their experimental counterparts as a whole, particularly when the

data [26] are taken for comparison.

The streamwise development of axial mean velocity in a square duct at Reb=250,000

is shown in Fig.3(b). The distributions apply at eight distances from the wall over the
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interval 0.01≤x/h≤0.5 along the wall bisector (y/h=0.5) of the duct. In reference to Fig.3(b),

it can be seen that present LES performs reasonably well for predicting local flow

development along the wall bisector. The figure indicates that the velocities in the central

region increase first with streamwise distance, reach local peak values, and then

decrease to asymptotic values. The local peak in the central region is not a secondary

flow effect, but the result of shear layer interactions which occur as the boundary layers

on opposite walls of the duct merge. On the contrary, the velocities near the wall directly

decrease to their asymptotic values without increasing, due to the presence of the wall.

In particular, the peak of the centerline velocity occurs downstream of the location where

the boundary layers begin to merge (z/h=32), indicating that further adjustment of the

flow takes place after the core flow becomes nonexistent. This is presumably due to the

shear layer interaction effects which lead to a non-equilbrium condition at about z/h=32

[26].

The effect of Reynolds number on steamwise velocity is shown in Fig.4 where the

velocities normalized with bulk velocity along the lower wall bisector (y/h=1) are plotted.

It can be seen that the ratio of centerline streamwise velocity to the bulk velocity

decreases with increasing Reynolds number. This is because the profiles of streamwise

velocity become flatter and the gradients in the wall region become steeper due to

increased turbulent mixing at higher Reynolds numbers. The calculated profile is

consistent with this trend. Fig.4 also demonstrates the fact that the present LES results

are in reasonable agreement with those of duct flow studies [8,25].

3.1.3 Secondary flow

In addition to the mean velocity and streamwsie velocity, the secondary flow is an

important quantity by which the quality of the simulation can be assessed. The contours

of mean (averaged) streamwise volicity are shown in Fig.5 (a) for Reb =35500. In order

to obtain the best statistical averages, the secondary velocity vectors, averaged over the

four quadrants are shown in Fig.5 (b). In Fig.5(a), the mean streamwise velocity is
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directed away from us. The mean secondary flow vectors (shown in Fig.5(b)) reveal the

existence of two steamwise counterrotating vortices in each corner of the duct. The

distribution of the streamwise velocity contours in the vicinity of the corner is due to the

momentum transfer by the secondary flows from the core of the duct toward the corner.

The predominant effect of the secondary motion is the induced transport of streamwise

momentum towards the corner region; the isolevels of the mean streamwise velocity

nearest the wall become slightly distorted (see Fig.5(a)). The isotachs are bent toward

the corner, indicating a magnitude increase for the mean streamwise velocity. A high

degree of symmetry about the corner bisector can be seen in this Figure. The maximum

secondary velocity in the current simulation is about 2.4% of the bulk velocity while

Brundrett and Baines reported a value of 2.2%.

In present work, the locations of the secondary vortex are found on (2x/h, 2y/h)=(0.20,

0.51) and (0.17,0.44) for ReĲ=300 and 600, respectively. They are in good agreement

with the locations (0.22, 0.52), (0.24, 0.56)and (0.17, 0.44) observed in DNS at ReĲ=300

[8], LES at ReĲ=360 [10], and DNS at ReĲ=600 [16], respectively. Note that the Reynolds

numbers based on the wall-averaged friction velocities are 300, 360 and 600 in the

previous duct flow Gavrilakis [8], Madabhushi and Vanka [10] and Huser and Biringen

[16], repectively. The mid-wall friction velocity based scaling is more appropriate for

comparing the turbulence statistics along the wall-bisector.

The secondary flow velocity vectors and streamwise mean velocity contours given in

one quadrant of the square duct for three Reynolds numbers (Reb= 10320, 83000 and

250000) are ploted in Fig.6. Regardless of Reynolds number effect, the secondary flows

first impinge on the corners along the bisectors and then accelerate along the walls for

some distance before turning away from the walls. At the wall bisector, the present

results exhibit a local maximum for the mean streamwise velocity whereas a local

minimum exists in high-Reynolds-number experiments [12] (Talbe 1) that list the

Reynolds numbers of the computational and experimental studies for duct flows. The

occurance of a local streamwise velocity maximum at the wall bisector is a low-
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Reynolds-number effect [8]. It is clear that the secondary flow consists of a streamwise

counter-rotating vortex pair around the corner of the square duct. The secondary flow

distorts the isovels towards the corner and increases corner bisector momentum transfer.

In comparison with the secondary flows in terms of various Reynolds number, as shown

in Fig. 6 (a)-(c), it is found that as the Reynolds number increases, these secondary

flows penetrate more into the corner region and the region of acceleration along the wall

is closer to the corner. In brief, the core of the secondary vortex in the lower corner-

bisector tends to approach the wall and the corner.

3. 2 The turbulent flow field

3. 2.1 Turbulent intensities

A direct comparison of the intensities along the x direction at five different sections, i.e.

y/h=0.1(0.16), 0.3, 0.5, 0.7, and 1.0(0.8), from simulation and square-duct experiments

[24] is made in Fig.7, where the turbulence intensities are normalized by the mean

streamwise velocity at the center of the duct (W0).

It can be seen in Fig.7 that the turbulence intensities in the present LES agree well

with the results by Cheesewright et al. [24] for all sections. In the middle plane (y/h=1.0),

a strong turbulent activity is observed: the velocity intensities profiles exhibit trends which

are very similar to standard turbulent channel flows or boundary layers. Indeed, the Wrms

component dominates the Vrms component with a very marked peak close to the wall. In

the vicinity of the wall, all velocity intensities values decrease with approaching the

corner and a very low level of turbulent activity reaches. The profiles of Wrms at y/H=0.1

(Fig.7(b)) are different from those at other sections. That is, Wrms becomes a local

minimum near the corner bisector after its peak, which is the effect of the secondary

flows along the corner bisector. Since these secondary flows transport lumps of low

turbulence from the center of the duct towards the corner, Wrms becomes the local

minimum along the corner bisector. For Vrms (Fig.7(a)), the profile of Vrms at y/H=0.16 is

slightly different from those at other sections. It is seen that along y direction with y/h
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increasing (apart from the side wall), a peak value will appear near the duct bottom (low

x/h) and the location of peak increases with y/h, which is due to the secondary effect.

Fig.8 shows three components of turbulence intensity normalized by the local friction

velocity at the wall bisector. The distributions of Wrms and Vrms are similar to those at the

place far from the side wall (y/h>0.5) as seen in Fig.7. In Fig.8, DNS data [8] and

experimental data [24] are provided for comparisons with the present LES data at

Reb=4410. It can be seen in Fig.8 that the turbulence intensities from the present LES

data agree well with DNS data [8] and with measured data [24] except for the peak value.

This discrepancy may be caused by the difficulty in the measurement close to the wall.

The profiles of all components of turbulence intensity from the present LES data at

Reb=250,000 appear to be obviously lager than the profiles from the cases at Reb =4410

either by simulations or by experiment. Therefore, it can be concluded that all

components increase with Reynolds number. Antonia et al [27] indicated that, for the

channel flow, the Reynolds number dependence for z-component turbulent intensity is

significant compared to that for x-component turbulent intensity and y-component

turbulent intensity. In the present results, for the duct flow, not only z-component

turbulent intensity but also x- and y-component turbulent intensity is enhaced with

increasing Reynolds number. Especially, the wall-normal and spanwise components are

enhanced. This is because that increasing Reynolds number, the energy redistribution

increases remarkably for x- and y-component turbulent intensity, the increased turbulent

mixing in the transverse plane resulting in higher fluctuations in the instantaneous

secondary velocities. The difference in the peak comes from the Reynolds number effect

that all components of turbulence intensity increase with Reynolds number in the log

region of wall-bounded turbulent flows [28]. The difference in the other part of the profile

also results from the same effect. Moser et al. [29] observed Reynolds number

dependencde of the turbulence intensity profiles in their DNS of plane channel flows.

That is, Moser et al. [29]
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found that the turbulence intensity profiles for flows at high Reynolds numbers are

extremely similar, however, the turbulence intensity profile for the low Reynolds number

flow, similar to the flow simulated in the present study, is quite different from those for

high Reynolds number flows.

3.2.2 Instantaneous flow

3.2.2.1 Instantaneous velocities

An instantaneous flow field at the z=z0/2 plane is plotted in Fig.9. This result illustrates

that the instantaneous flow field can be significantly different from and stronger than the

averaged field (shown in Fig.5). For the sake of clarity, not all points in the wall region

are plotted in these Figures. Fig.9 presents an illustrative cross-section of the

instantaneous turbulence structures which contribute to the production of shear stresses.

It shows that an ejection, which is not influenced by the sidewalls, appears at x/h=0.5

near the horizontal wall. In addition, the characteristic mushroom-like shape is depicted

in Fig.9 (b) (x/h=0.5) and two counter-rotating vortices exist at the same place in Fig.9(a).

Near the lower left corner, several ejections can be observed. The strongest ejection,

whose mushroom shape is evident in Fig.9(b), starts from the horizontal wall at around

x/h=0.35. The velocity vectors display two counter-rotating vortices, one at left and one

at right of this ejection structure. The right vortex is most pronounce, and it appears that

this vortex interacts with another ejection structure from the horizontal wall. Fig.9 (b)

indictates that an ejection event is starting at around x/h=1.5 from the horizontal wall,

and the stem of this ejection stretches out toward left along the horizontal wall and joins

the right vortex belonging to the stronger ejection from the horizontal wall.

It must be emphasized that these instantaneous figures only serve as an example of

typical turbulence structures in this flow which are responsible for the interactions

between ejections from wall; this interaction results in the bending of the ejection stems.
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3.2.2.2 Instantaneous turbulent fluctuations

Fig.10 shows the contours of the resolved instantaneous flucturating velocities ( ''u ,

''v , ''w ) in the y-z plane at x
+
=8 (x/h=0.4). The solid lines represent positive velocities

(greater than the mean) and the dotted lines represent negative velocities (less than the

mean). Positive ''u and ''v velocities represent fluid moving away from (toward) the

x/h=0 (x/h=2) and y/h=0 (y/h=2) walls, respectively. Negative ''u and ''v velocities

represent fluid moving away from (toward) the x/h=2 (x/h=0) and y/h=2 (y/h=0),

respectively. The current results indicate the existence of streaky wall structures much

like in a channel flow. These streaks represent the impingement of high momentum fluid

on the wall (sweeps, represented by positive ''w and negative ''v at the lower wall) and

the ejection of low momentum fluid from the wall (bursts, represented by negative ''w

and positive ''v ).

4 Conclusions

In this work, turbulent duct flows are investigated using large eddy simulation in a large

range of Reynolds numbers. Conculsions could be obtained as following.

1) Secondary flows were successfully captured in the ducts although they are

relatively weak (1-2% of the bulk streamwise velocity). It is confirmed that

turbulence-driven secondary motions that arise in duct flows act to transfer fluid

momentum from the centre of the duct to its corners, thereby causing a bulging of

the streamwise velocity contours towards the corners. They consist of a

streamwise counter-rotating vortex pair around the corner of the square duct.

2) As the Reynolds number increases, secondary flows penetrate more into the

corner region and the region of acceleration along the wall is closer to the corner.

It can be seen that the ratio of centerline streamwise velocity to the bulk velocity

decreases with increasing Reynolds number.
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3) All components turbulent intensity increases with Reynolds number. Especially,

the wall-normal and spanwise components enhance with it. It is found that the

turbulence intensity profiles for the low Reynolds number flows are quite different

from those for the high Reynolds number flows.

4) Typical turbulence structures in turbulent duct flows are found to be responsible

for the interactions between ejections from wall; this interaction results in the

bending of the ejection stems, which indicates that the existence of streaky wall

structures is much like in a channel flow.
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Nomenclature

Ai coefficient, dimensionless

Bi coefficient, dimensionless

C model parameter, dimensionless

f a spatial filter function, dimensionless

G a filter function, dimensionless

h width of square duct, m

k coefficient, dimensionless

n outward normal to the boundry surface, dimensionless

p pressure, N/m2

Re flow Reynolds number, dimensionless

Reb Reynolds number based on flow bulk velocity, dimensionless
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ReĲ Reynolds number based on flow friction velocity, dimensionless

t time, s

u, v, w velocity components in (x, y, z) directions, m s-1

''u , ''v , ''w instantaneous flucturating velocity components in (x,y,z) directions, m s-1

ui the velocity component in the xi direction, m s-1

Um the mean velocity component in the x direction, m s-1

Urms, Vrms,Wrms turbulence intensities components in (x, y, z) directions, m s-1

uĲ shear velocity, m s-1

V fluid velocity (u,v,w), m s-1

w0 the mean streawise velocity at the center of the duct, m s-1

wb bulk flow velocity in streamwise direction, m s-1

x, y, z Cartesian co-ordinate system, m

x+, y+, z+ Cartesian co-ordinate system in wall units, dimensionless

Greek letters

Į phase coefficient, dimensionless

ȡ fluid density, kg m-3

Ȟ  kinematic viscosity, m2 s-1

ij sub-grid scale stress, dimensionless

sgs
v sub-grid scale viscosity, dimensionless

ȍ. entire flow domain, dimensionless

ʄ a characteristic width of filter function, dimensionless
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Table 1 Works considered for duct flow

Reference Investigation Reb ReĲ

Huser & Biringen [16] duct, DNS 10 320 600

Madabushi & Vanka [10] duct, LES 5810 360

Gavrilakis [8] duct, DNS 4410 300

Gessner et al. [25] duct, experiment 250 000 10550

Brundrett & Bains [12] duct, experiment 83 000 3860

Cheesewright et al.[24] duct, experiment 3700

Fig. 1. Schematic of the computational domain.
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(a)

(b)

Fig. 2. Comparison of the simulated mean velocity profiles with the square-duct

measurements of Cheesewright et al [24] and DNS of Gavrilakis [8]: (a) streamwise

velocity ; (b) spanwise velocity, —, quadrant-averaged simulation data;ż, experiment; 

Ƒ, DNS, Reb = 4410.
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(a)

(b)

Fig. 3 (a) Streamwise mean velocity distributions along the lower wall bisector for five

z-planes (from left to right) z/h=8,16,24,40 and 84. Values are normalized by the bulk

velocity (Wb) for mean steamwise velocity (W). Ɣ Gessner and Emery [26]; ż 

Gessner et al. [25]; — present LES results , Reb=250000. (b) Comparison between

the results of the present LES (—) and measurement of Gessner et al. [25] (ż) for 

eight x-planes (from left to right) x/h=0.01,0.02,0.03,0.05,0.1, 0.2,0.3 and 0.5. Values

are normalized by the bulk velocity (Wb) for mean steamwise velocity (W).

Reb=250000

x/h

w/wb
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Fig. 4 Streamwise mean velocity distribution along the lower wall bisector at different

Reynolds numbers. Brundrett and Baines [12] at Reb=83000; Gessner et al. [25] at

Reb=250000; Launder and Ying [6] at Reb =215000; Madabhushi and Vanka [10] at

Reb =5810 and Gavrilakis [8] at Reb =4410.
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(a)

(b)

Fig. 5 Secondary flow at Reb =35500 (a) contours of mean streamwise velocity; (b)

mean secondary velocity vectors in the cross-sectional plane.

.
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(a)

(b)

(c)

Fig. 6. Secondary velocity vectors for Reb = (a) 10320; (b) 83000; (c) 250000.

x/h

y/h
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(a)

(b)

Fig. 7 Velocity intensities across a duct quadrant: (a) Vrms/W0; (b)Wrms/W0. —,

Quadrant average from duct simulation; ż, Cheesewright et al. [24]; Ƒ, DNS of 

Gavrilakis [8], Reb = 4410.
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(a)

(b)

(c)

Fig. 8 Turbulence intensities at the wall bisector: —, present LES at Reb=4410;----,

present LES at Reb=250000; ż, Gavrilakis[8] DNS at Reb =4410;Ɣ, Cheesewright et 

al.[24] experiment at Reb =4410.
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(a)

(b)

Fig. 9 Instantaneous secondary velocity and streamwise vorticity distribution in the

transverse plane at Reb=35500: (a) secondary velocity vectors; (b) streamwsie

vorticity contous (velocity=0.0016~0.9535, 50 contour levels are given and scaled

linearly between the minimum and maximum levels).
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(a)

(b)

(c)

Fig. 10 Instantaneous turbulent fluctuations at x=8,Reb=35500 : (a) ''u ; (b) ''v , and

(c) ''w . Legend:—, positive values of velocity; …, negative values of velocity ( ''u =-

1.27~1.27; ''v =-1.61~1.61; ''w =-2.24 ~2.24, 100 contour levels are given and scaled

linearly between the minimum and maximum levels).


