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ABSTRACT 

Organic solar cells based on P3HT: PCBM bulk heterojunctions show promise for high 

power conversion efficiencies. The properties of composite donor polymers and acceptor 

materials play a significant role; hence the need for optimised bulk heterojunctions active 

layer morphologies is critical for efficient devices.  

To achieve optimised bulk heterojunctions, compositional factors and processing conditions 

are two primary aspects to focus on. Thermal annealing has been demonstrated to be one of 

the most successful processing techniques for morphology optimisation in P3HT – based 

organic solar cells. However the crucial correlation between composite composition and 

thermal annealing in P3HT – based devices is not fully understood yet.  

Combining optical absorption spectroscopy, structural and electrical methods; the properties 

of P3HT: PCBM blend thin films, with different PCBM percentage weight ratios were 

studied in this work. Optical absorption spectra results for all three blend ratios, i.e., 1:1, 

1:0.8, and 1:0.6, showed that the peak absorption intensity associated with PCBM reduced 

the most for the 1:1 ratio, after thermal annealing at 175°C. The impact of the correlation 

between PCBM composition and thermal annealing on photovoltaic performance parameters 

was demonstrated. For the three different PCBM compositions, the optimum power 

conversion efficiencies were determined at different optimum thermal annealing conditions. 

Optimum power conversion efficiency of 3.38% (1:1) was obtained at 175°C, whilst 2.27% 

(1:0.8) and 1.44% (1:0.6) were demonstrated at 125°C respectively. 

To further probe the influence of thermally induced PCBM molecular segregation and 

aggregations, three different thermal annealing strategies were employed; namely, annealing 

(i) gradually from 50°C – 175°C, in steps of 25°C, 10 minutes each (ii) at high temperature 

175°C, for 10 minutes once, and (iii) at 175°C for a longer time, i.e., 60 minutes . Optical 

absorption spectroscopy results reveal the dependence of PCBM aggregation on different 

thermal annealing strategies. Employing Raman spectroscopy mapping methods, the surface 

of thin films were mapped revealing and confirming PCBM rich regions upon thermal 

annealing. Furthermore exciton generation rate studies proved useful in establishing a good 

correlation between the estimated excitons generated, with short circuit current densities. The 

observed increase in excitons generated was also consistent with the photoluminescence 

spectra results which showed an enhancement in intensities upon thermal annealing. 
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Importantly, this work has shown the significance of employing different thermal annealing 

strategies in nanomorphology control of the bulk of active layers of organic photovoltaic 

devices. Importantly, it has also been demonstrated in the work of this thesis that gradual 

thermal annealing, in a controlled manner revealed a more stable and efficient control in 

tuning the nanomorphologies of P3HT – based solar cells. 

In addition, impedance spectroscopy and capacitance – voltage measurement techniques have 

been shown to be very useful tools for characterising organic photovoltaic devices. Herein, it 

was shown that after thermal annealing at the optimum temperature of 150°C, impedance 

spectroscopy characterisation revealed extended charge carrier lifetimes in devices. This 

highlights the significance of having an optimised interpenetrating network within active 

layers of organic solar cells, as this have a critical impact on charge carrier lifetimes. 

Capacitance – voltage measurements was used to demonstrate the thermally induced vertical 

segregation of PCBM molecular aggregates also. The decrease in measured built – on 

potential from 0.68V (at film/cathode interface) from as cast device to about 0.35V after 

thermal annealing at 150°C, was shown to be indicative of vertical segregation. 
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NOMENCLATURE 

The following is a list of the main abbreviations used throughout the text. Any abbreviation 

not included here is properly defined in the text. 
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CO2 

 

Carbon dioxide 

Si-based 

 

Silicon based 
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Organic light emitting diodes 

Eg 

 

Energy band gap 
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Chapter 1 

Introduction 

 

“I’d put my money on the sun and solar energy. What a source of power! I hope we don’t have to wait 

until oil and coal run out before we tackle that.”  

– Thomas Edison, 1931 

 

 

1.1 Overview 

Energy from fossil fuels mostly includes coal, crude oil or natural gas. These are natural 

resources that the earth is endowed with. Fossil fuels supply nearly 90 percent of the energy 

consumed globally, according to the U.S. Department of Energy. Of this amount, oil accounts 

for about 41%, coal 24% and natural gas provides about 22%. It is also expected that global 

energy consumption will increase by 50% over the current rate by the year 2020. One of the 

problems with fossil fuels is that they are limited. According to international organisations, 

the estimated length of time left for fossil fuels are: oil (50 years), natural gas (70 years), and 

coal (250 years). The probable consequence of this fact could be a sudden rise in energy 

prices in the long run. Another identified problem however is concerned with the 

environment; release of greenhouse emissions, resulting in global warming, which is 

hazardous for the planet. On an average, it is estimated that the quantity of carbon dioxide 

(CO2) emitted per mega joule of energy produced from burning fossil fuels are as follows 

(Metz et al. 2007): 92.0g (coal), 76.3g (conventional oil), and 52.4g (conventional gas).  

On the other hand however, there are the energy income sources (Neville, 1978, Lynn, 2010), 

or renewable energy sources. These unlike fossil fuels are considered to be in limitless 

supply, as they quickly replenish themselves and can be used again and again. Examples of 

renewable energy sources include hydropower, wind and solar energy. These renewable 
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forms of energy in contrast to fossil fuels do not pose any threat to the environment, thus 

making them suitable alternatives. Available technologies for harnessing such renewable 

energy sources include dams for hydropower, wind turbines for wind energy, and 

photovoltaic (PV) technologies for solar energy.  

It is interesting to note that solar energy offers a wide range of benefits; such as its regular 

availability, and it can be harnessed without sacrificing valuable land space. In addition, 

unlike other renewable energy technologies, PVs employing photovoltaic devices not possess 

moving parts. Hence they do not require regular maintenance. This makes the PV technology 

an attractive renewable energy technology.  

In less than an hour, the surface of the earth receives on average, about 1.2 ×10
17

 W of solar 

power (Chen, 2011). This is more than enough to meet the global demand for an entire year. 

Assuming 30% of the Sun’s energy is lost in the atmosphere, and that there is appreciable 

sunshine for an average of 6 hours a day, it is estimated that 2.88 kWh/day per unit area of 

power is delivered to the earth from the Sun. If for one hour, this energy arriving at just a 

single square meter area can be captured and reused, it is enough to run a number of house-

hold electrical appliances for a day. 

As a renewable distributed resource, PVs could in the long run make a major contribution to 

national energy security and carbon dioxide reduction. In the UK, for example, each kWp 

(kilo peak watts) of PV installed avoids the emission of about 1 tonne CO2 per year (Nelson 

et al. 2014). 

Today, for a growing number of power needs, solar cell electricity stands out as the cheapest, 

cleanest and best way to generate electricity. As the saying goes, not all that glitters is gold. 

So in the same vein, PVs particularly Silicon-based PV cells are not without disadvantages. 

Among some of the major disadvantages, cost ranks high in the list; for the cost associated 

with their processing and manufacturing technologies (high-temperature requirement for 

processing the semiconductor in a high vacuum environment) are still very high (Perlin, 

2004; Wenham et al. 2007). An alternative approach is needed, one that will address the 

issues of cost associated with Si-based PVs. Such an alternative will involve the use of 

organic semiconducting materials, which can be processed at relatively low temperatures, 

such as by vacuum deposition, or, preferably from solution. Ease of processing, together with 

facile material synthesis, flexibility, and low cost fabrication, are the various attributes that 

make the organic solar cells attractive and a potentially suitable alternative to the Si-based 
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PVs. In the next section, a brief history and description of organic solar cells will be 

presented. 

1.2 Organic Solar Cells (OSCs) 

Although inorganic based PVs as earlier mentioned have demonstrated relatively high power 

conversion efficiencies (Green et al. 2011), organic based solar cells have in recent years 

attracted great attention. In the last few years, organic solar cell technologies have received a 

growing interest amongst university research groups, and industries alike. This is owing to 

their potential for low-cost production, flexible device applications, and facile fabrication 

from materials that are easily synthesized (Brabec, 2004; Shaheen et al. 2005). The 

characteristic low cost production technology of OSCs allows for high throughput of devices 

on flexible substrates for example. It has been shown that this can be achieved by 

implementing processes like reel-to-reel, ink-jet printing or spray deposition techniques 

(Nelson 2002; Günes et al. 2007). All of these attributes are at the heart of the organic solar 

cell technology advantage.  

The study of organic solar cells dates back to the late 1950s albeit at a low level until 

recently. Interestingly in the years leading up to the 1970s, the field received a boost as a 

result of realizing conductivity in the polymer polyacetylene (Chiang et al.1977). Following 

this breakthrough, Chiang and co - workers were awarded a Nobel Prize in Chemistry, in 

2000. On the basis of their work at the time, the so – called homojunction devices were 

successfully fabricated (Nelson, 2002). These devices were fabricated using a single organic 

material sandwiched between two electrodes, with an efficiency yield of less than 0.1%. The 

asymmetry in the metal electrode work functions provided an electric field which drives 

separated charges towards the respective electrodes. The challenge with this device structure 

however, was that the electric field was insufficient to dissociate photo generated excitons 

(Nelson, 2002). Due to the very nature of their low power conversion efficiencies, they are 

considered unsuitable for application.  

A major advancement was introduced by Tang (1986), which utilized an electron donating 

material in conjunction with an electron accepting material, sandwiched between electrodes. 

The electron donating material has a high tendency to lose electrons (i.e., high ionization 

potential), whilst the electron accepting material on the other hand has a characteristic high 

electron affinity. The interface between these two materials is referred to as a donor – 

acceptor (D/A) heterojunction (bilayer junction). At this junction a chemical potential offset 
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is created. This chemical potential, due to the differences in electron affinity and ionisation 

potentials of the two materials, facilitates the dissociation of excitons generated near them 

(Tang, 1986). This photovoltaic device at the time showed limited power conversion 

efficiency (PCE) of only ~1%, under simulated AM2 illumination. The bottleneck with the 

device structure however, is with the exciton diffusion lengths. This is the distance an exciton 

can travel before it decays radiatively and/or non-radiatively (Bradley, 1993; Pacios & 

Bradley, 2002; Günes et al. 2007), thus failing to yield free charges. Unlike Silicon, excitons 

in organic semiconductors are tightly bound by Columbic forces (Bradley, 1991). In order to 

generate photocurrent in these devices, excitons must be created within a few nanometers of a 

D/A interface. At the interface, charge transfer occurs, with electrons to the material of higher 

electron affinity, and holes retained in that with higher ionisation potential. The typical 

exciton diffusion lengths in organic semiconductor materials are generally small, in the range 

of 5-10 nm (Hoppe & Sariciftci, 2004). Therefore it is expected that they should be formed 

within their exciton diffusion length of the interface, in order to generate photocurrent 

efficiently (Blom et al. 2007; Nicholson & Castro, 2010). Unfortunately this was the case 

observed in the bilayer device structure. Since it consisted a single interface (at the planar 

junction), only the excitons created very close to the interface are dissociated. Additionally, it 

was also noted that the diffusion lengths of organic materials are much shorter than the 

absorption depth of the film, which is roughly about two orders of magnitude smaller (Pacios 

& Bradley, 2002). This was found to place a limitation on the thickness of the light absorbing 

layer, and hence optical absorption of the device. 

Following the development of bulk heterojunction (BHJ) structure (Yu et al. 1995), a much 

more significant advancement came about in the mid 1990s. As a result of this, a dramatic 

improvement in the efficiency of organic solar cells was demonstrated. In contrast to bilayer 

heterojunction device architecture, the BHJ consists of dispersed D/A interfaces on a 

nanostructured scale throughout the bulk of the active layer. This structure was achieved by 

blending the electron donating and accepting materials in suitable organic solvents. Therefore 

in such structures, excitons are more likely to be created within a few nanometers of D/A 

interfaces, and then dissociated before decaying (Pacios & Bradley, 2002; Nicholson & 

Castro, 2010). This significantly increases the chance of dissociating a majority of created 

excitons efficiently. The BHJ architecture happens to be one of the most important advances 

in the field of OSCs.  
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In their work, Heeger and co-workers (1995) reported a monochromatic PCE of 2.9%, based 

on the BHJ device structure, by blending a polymer with buckminsterfullerene. The class of 

materials employed as the photoactive layer in their work are semiconducting conjugated 

polymers and small molecules (Yu et al. 1995; Blom et al. 2007). These classes of materials 

have received widespread attention over the recent years. The polythiophenes are amongst 

the most popular electron donating semiconducting materials investigated in BHJ OSCs 

(McCullough, 1998). Their applications have been demonstrated to extend even beyond 

OSCs. Such applications include light emitting diodes (Bradley, 1991; Bradley et al. 1998), 

and organic thin film transistors (Kim & Bradley, 2005). On the other hand, fullerenes are by 

far the most successfully implemented acceptor materials in BHJ OSCs (Shaheen et al. 2001; 

Hoppe & Sariciftci, 2004). In particular, due to their limited solubility, other derivatives of 

the fullerene, C60 have been synthesised (eds. Rand & Richter, 2014), and as a result the ease 

of processing BHJ OSCs from solution is improved. Figure 1.1 shows a 3D schematic 

illustration of a bilayer and BHJ device structure. 

     

Figure 1.1: 3D schematic design of (a) Bilayer heterojunction OSC, and (b) BHJ OSC. The 

photoactive layer is sandwiched between a cathode and hole extracting anode. 

1.3 Working Principles of Organic Solar Cells 

The basic principles of operation of the organic solar cell are as follows: 

i. Photon absorption, which leads to the formation of coulombically bound electron-

hole pairs (excitons),  

ii. Exciton generation and diffusion to a D/A interface, followed by  

(b) 
(a) 
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iii. Charge separation (preceded by an initial charge transfer) and  

iv. Charge transport to and collection at the electrode contacts (anode-holes and 

cathode-electrons), yielding direct current to an external circuit. 

The fundamental mechanisms of operation of the BHJ organic solar cell, from photon 

absorption to the generation of photocurrent in devices are illustrated in Figure 1.2. Each 

process outlined above leading up to charge generation, contributes to the external quantum 

efficiency (Forrest, 2005). The efficiency of each of these processes together contributes 

towards the useful electric current that the organic solar cell can yield. In other words, the 

photoelectric current delivered by the device depends on efficiency of (Hoppe & Sariciftci, 

2004): photon absorption ( A ), electron – hole pair dissociated ( ED ), charge transport ( CT

), and charges that are collected at the electrodes ( CC ). The product of these efficiencies 

together defines the external quantum efficiency, i.e. CCCTEDAEQE   .  

 

Figure 1.2: (a) A schematic of the BHJ OSC, illustrating the significant processes within the 

photoactive layer of the device, following photo excitation. (b) Energy band diagram 

representation of the process of operation in an OSC.  
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As indicated in Figure 1.2, the efficiencies of photon absorption, exciton diffusion to the 

nearest D/A interface, charge separation (following initial charge transfer), and charge 

transport to and collection at respective electrodes are represented as 
1ηA, 

2ηED, 
3ηCT→CD, and 

4ηCC. The efficiencies of these processes are crucial to device parameters such as current 

densities, open circuit voltage, and the fill factor (which shall be discussed in the next 

chapter). These in turn directly influence the power conversion efficiencies (PCEs) of the 

OSC devices. 

1.4 Challenges 

From reports, OSC devices have achieved at best PCEs in the range of 3.5 – 9.5% with the 

single junction BHJ device architectures (Liang & Yu, 2010; Green et al. 2011; Liao et al. 

2013). Despite the progress made so far in improving PCEs, OSCs are generally still not as 

widely commercially viable as their Si-based PV counterparts. To achieve commercial 

viability however, it is generally accepted that OSCs exhibit a PCE yield of  more than 10%, 

in addition to demonstrating long – term stability as well (Brabec et al. 2010). The PCE of 

OSCs is mainly a function of the devices’ photogenerated current density, open circuit 

voltage and fill factor (Nelson, 2002). These together are regarded as the PV performance 

parameters. Improvement of these parameters is necessary for maximizing PCEs. To do so 

however, there are a number of significant challenges OSCs are faced with, that needs to be 

addressed. Addressing these has been the major driving force behind current research in this 

field. Some of these challenges are briefly discussed further in the following sections. 

1.4.1 Increasing the Absorption range of the photoactive layer 

By increasing the absorption spectrum of the device’s photoactive layer materials, the 

potential for harvesting useful incident solar radiation increases (Nelson, 2002). 

Consequently this contributes to improvement in photogenerated charges. Unlike their 

inorganic counterparts, most organic semiconductors are known to have wide band gaps, 

(1.9-2.2eV) (Liang et al 2009). Such wide band gaps translate to absorbing small fractions of 

the solar spectrum. Therefore resulting in limited absorption efficiencies ( A )   and ultimately 

limiting the device’s photocurrents. Having band gaps which corresponds to an extended 

absorption spectrum, preferably towards the infra-red region is desirable. It has been 

suggested that utilizing low band-gap organic semiconductors (band gaps preferably <1.8eV) 

is beneficial, as the absorption spectra of photoactive layers will increases respectively. 
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Consequently, the spectral photon harvesting efficiencies of devices is enhanced (Brabec et 

al. 2001; Wen et al. 2008). The development of new classes of semiconductors with low band 

gaps is therefore essential. Recently, OSCs based on newly developed low band polymers 

have demonstrated efficiencies of well over 4-5% (Peet et al. 2007). This was not however 

without extensive device engineering efforts. It is also important to note that the structure and 

synthesis of these materials does require judicious design, and the cost of doing so should be 

taken into consideration. 

1.4.2 Enhancing the Efficiency of Exciton Dissociation 

In addition to wide band gaps, which are material dependent, the other issue is system 

dependent. The system here refers to the nanoscale configuration formed by the donor and 

acceptor materials within the bulk of the photoactive layer following fabrication. To ensure 

that majority of (if not all) generated excitons in the absorbing material are dissociated 

effectively (see steps 2 and 3 in Figure 1.2), there must exists D/A interfaces in the region 

within the exciton diffusion lengths. For the OSCs, this is not entirely the case, as reports 

have suggested that not all generated excitons are successfully dissociated (Li et al. 2005; 

Mihailetchi et al. 2006). Having well defined nanostructured D/A interfaces uniformly 

distributed throughout the bulk of the photoactive layer is desirable and crucial for efficient 

exciton dissociation. The well defined nanostructure will not only ensure efficient exciton 

dissociation, but will also have an impact on the transport and collection of charges (Moule & 

Meerholz, 2009; Chen et al. 2009). Figure 1.3 illustrates an ideal nanostructured photoactive 

layer (morphology) for an OSC. This structure is characterised by a bi-continuous networks 

of D/A phases spanning between the two electrodes. This should almost guarantee 100% 

efficient exciton dissociation and subsequent transport and collection of separated charges. 

 

Figure 1.3: Schematic illustration of an ideal structure of a bulk heterojunction organic solar 

cell (Adapted from: Hoppe & Sariciftci, 2004). 

Additionally, the photoactive layer thickness must be optimised for maximum absorption of 

useful photons. The bi-continuous pore radius is within exciton diffusion lengths, ensuring 
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maximum exciton harvesting. The same pores which are straight, also provides uninterrupted 

pathways for charge transport to the respective electrodes (Mayer et al. 2007). Although the 

current state of OSCs is far from this ideal, a number of methods have been developed for 

nanostructuring photoactive layers. One of these includes thermal annealing, which involves 

subjecting OSC devices to heat treatment, at a particular temperature and duration (Padinger 

et al. 2003; Kim et al. 2004). Others include exposing thin films to solvent vapour annealing 

(Li et al. 2007), exploiting the differential solubilities of donor and acceptor materials in 

various organic solvents for fabricating photoactive layers (Park et al. 2009; Dang et al. 

2011). These methods have been shown to induce morphology variations to various extents.  

Most morphology studies have shown that nanostructuring remains a challenge because a fine 

balance between exciton dissociation and charge transport properties is needed within the 

photoactive layers, for efficient devices. This is crucial as the balance, however largely 

depends on how precise and effective these methods are in tuning nanoscale morphologies to 

achieve an optimum phase separation, with respect to the processing conditions. Such 

conditions include donor – acceptor compositions, type of solvents and/or fabrication 

procedures, etc. Besides having optimum D/A phase separations, there also remains the 

question on how stable they are against aging effects (Hermans et al. 2009; Mayer et al. 

2007). This is an important issue that requires addressing as OSCs operate under conditions 

where elevated temperatures must be expected (Hoppe & Sariciftci, 2004). Figure 1.4 

summarizes the relationship between molecular structures (as it pertains to band gap), 

morphology (nanoscale structuring of D/A domains) and device properties. This suggests that 

the concurrent optimisation of these closely interconnected parameters is necessary for the 

design of highly efficient OSCs.  

 

Figure 1.4: An illustration of the interrelationship between the molecular structure, nanoscale 

morphology and the device properties. 
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1.4.3 Charge Transport 

Charge transport properties can also be indirectly influenced by the nanostructuring of 

photoactive layers as highlighted in the previous section. However, for most organic 

semiconductors, their charge - carrier mobilities are inherently low, with typical values < 10
-2

 

cm
2
/Vs, in contrast to their inorganic counterparts (e.g., 0.1 – 1 cm

2
/V.s, for amorphous 

silicon) (Coropceanu et al. 2007). For the majority of donor – acceptor combinations in the 

BHJ OSCs, carrier mobilities are not similar, since hole mobilities in the donor phase are 

often lower than that of electrons in the acceptor phase (Milhailetchi et al 2005). This leads to 

unbalanced carrier mobilities in the systems, consequently creating the problem of charge 

build – up (mostly holes). This is a phenomenon known as space charge limited conductivity 

which shall be further discussed in chapter 2. Studies have indicated that one of the ways of 

addressing this problem is to have a preferred interpenetrating network of crystalline 

domains, with increased connections between them. Therefore the active layer will comprise 

a network of uninterrupted percolating pathways for efficient charge transport (Moulé & 

Meerholz, 2008). This will not only benefit efficient charge transport, but will also contribute 

to reducing series resistance, hence improving charge collection (Li et al. 2005). This 

approach is particularly associated with the nanostructuring of most existing donor – acceptor 

combinations in the bulk photoactive layer of the device. The development of newer 

materials can provide an alternate route for also addressing the problems of low charge – 

carrier mobilities. However, in developing new classes of polymers as suggested in section 

1.4.1, it is imperative not only to develop new materials with optimum band gaps, but also 

with improved charge – carrier transport properties concurrently. This is a task that is in itself 

rigorous and challenging. 

1.5 Research Motivation and Objectives 

The need for optimised BHJ active layers, characterised by a preferred nanoscale 

interpenetrating and percolating system for efficient exciton dissociation, charge transport 

and collection, is critical for efficient devices. P3HT: PCBM BHJ OSCs have been reported 

to demonstrate efficiencies in the region of 3 – 6% (Reyes-Reyes et al. 2005, Kim et al. 2005; 

Li et al. 2005). A number of investigations utilizing a range of morphology tuning methods to 

achieve this have been reported (Li et al 2005; Shrotriya et al. 2006; Li et al. 2007; Huang et 

al. 2009; Pivrikas et al. 2011). Among these methods, thermal annealing is one of the most 

successful processing techniques for optimizing morphologies of P3HT – based solar cells. 
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The effectiveness of the induced morphology is primarily a function of the method and 

processing conditions employed (Roman, 2005). Other than the processing methods, PCBM 

composition also plays a significant role in influencing PV performance properties. The 

interplay of composition and thermal annealing in optimising active layer morphologies in 

P3HT: PCBM solar cell is an area that has not been fully understood yet. Understanding the 

impact of the correlation between PCBM composition and thermal annealing on PV 

performance parameters is crucial for optimising the OSC. To achieve this, it is necessary to 

provide a qualitative and quantitative evaluation of thermally induced PCBM aggregation 

within P3HT: PCBM blend thin films (for varying PCBM compositions).  

Optical absorption spectroscopic characterisation of P3HT: PCBM thin films have mostly 

been reported only in the visible range and near infra-red (i.e., 400 – 700 nm), neglecting in 

most part the significant ultra-violet (UV) range where PCBM absorption is prominent (Jeong 

et al. 2011; Jamieson et al. 2012). By observing the UV region of the spectra of P3HT: 

PCBM thin films; it is possible to evaluate donor/acceptor phase separations as a function of 

thermal annealing.  

Since donor/acceptor phase separation has a significant impact on how efficient excitons are 

dissociated, engineering the formation of PCBM molecular aggregates within the active layer 

in a controlled and systematic manner is a necessary prerequisite for maximising PCEs. Most 

studies have reported the variation of PV properties with temperature (Ma et al. 2005; Li et 

al. 2005) or with differing thermal annealing times (Huang et al. 2009; Jo et al. 2009). These 

conditions, (either optimum annealing temperature or time), all constitute different strategies 

which is expected to induce different morphologies of the active layer. By employing three 

different thermal annealing strategies, this work will seek to provide a comprehensive set of 

morphology engineering protocols significant for the optimisation of PV performance 

properties. Other factors such as charge transport pathways, and loss mechanisms via 

recombination, which have a significant impact on device PCEs (Koster et al. 2006; Kim et 

al. 2007; Pivrikas et al. 2011), will also be probed.  

Reports have suggested that a relationship may exist between charge carrier mobilities with 

exciton dissociation and recombination processes (Clarke & Durrant, 2010). The latter 

process is believed to be a function of trap centres within the active layer, which may be 

created during thermal induced nanostructuring (Milhailetchi et al. 2006). In the P3HT: 

PCBM systems, most discussions on thermal annealing have been centred on the significance 
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of the glass transition temperature of P3HT. The induced donor/acceptor phase separations 

around the polymer glass transition temperature is considered to be at a critical point, beyond 

which deterioration possibly occurs. Of particular interest however in this work, is to probe 

and address the impact of created trap centres on charge carrier mobility over a range of 

thermal annealing temperatures above the polymer glass transition temperature. Since at 

elevated temperatures, phase separations will be expected to be much pronounced. 

Furthermore, by employing impedance spectroscopy measurements complimented with 

capacitance – voltage measurements, thermally induced vertical segregation mechanisms in 

P3HT: PCBM OSCs will be probed. The use of these techniques is not common, but has the 

potential for providing useful insight into the mechanism of vertical segregation. This is 

significant, as compositional gradient is expected to enhance contact selectivity towards one 

type of charge, thus reducing leakage currents (Campoy-Quiles et al. 2008). 

It is expected that this work will provide a comprehensive understanding of key factors 

related to improving the efficiencies of P3HT: PCBM – based OSCs. The thesis will also be 

providing a framework relevant for designing high performance OSCs. 

1.6 Thesis Organization 

A brief review of organic semiconductors and concepts related to organic solar cells in 

particular are presented in Chapter 2. It includes discussions on the energy band model, and 

the physics contacts in semiconductor devices. Charge transport in organic semiconductors, 

in view of understanding current limiting characteristics is briefly described. In addition, the 

working principles of organic solar cells are further discussed in detail.  

In Chapter 3, a brief outline of conjugated polymers employed in OSC devices is given. The 

conjugated polymer, P3HT and its properties will be described. Additionally, the properties 

of the fullerene acceptor material, used in conjunction with P3HT and other key OSC 

materials in this thesis are briefly discussed.    

The list of materials used in the work of this thesis is presented in Chapter 4. Also in this 

chapter, details of characterisation methods and respective instrumentations are presented. 

This included discussions on the background approach of the experimental techniques 

employed in the work of thesis. The results obtained following the various measurements 

described in chapter 4, are presented in Chapter 5 and 6.  
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Chapter 5 is detailed discussion on optical and structural characteristics of thin films of 

P3HT, PCBM and P3HT: PCBM blend, whilst in chapter 6, the corresponding electrical and 

PV properties of thin films for an OSC application are presented.  

Chapter 7 summarises the thesis, and provides an outlook on future works. 
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Chapter 2 

Theory of Organic Semiconductors  

 

“Even if there is only one possible unified theory, it is just a set of rules and equations...” 

 ― Stephen Hawking, Astrophysicist. 

 

 

2.1 Introduction 

Solid materials are generally classified into three main categories, namely; conductors, 

insulators and, semiconductors. Conductors are commonly described as materials that permit 

current conduction, while an insulator does not. The semiconductor on the other hand is often 

defined rather loosely as a material, whose electrical resistivity lies in the range between 

typical conductors and insulators, i.e., 10
-2

 – 10
9
 Ωcm

-1
 (Bar-Lev, 1993; Yacobi, 2002). Due 

to this range of resistivity exhibited by semiconductors, they have been known to typically 

demonstrate a negative temperature coefficient of resistance and variable electrical 

conductivity. These unique properties of semiconductors make them suitable for a wide range 

of applications in electronic devices. Additionally, another class of materials referred to as 

organic semiconductors have now been recognized as the bedrock of organic electronics. 

These are organic materials in contrast to inorganic materials, such as silicon, which exhibit 

semiconducting properties. Following the works of Shirakawa and co-workers (Nunzi, 2003), 

where they reported electrical conduction in polyacetylene, extensive researches have been 

motivated in the area of organic semiconductors. Today organic semiconductors are 

increasingly employed as active materials in electronic devices such as organic light emitting 

diodes (OLEDs), organic field effect transistor or thin film transistors (OFET, or OTFT), and 

organic solar cells (OSCs) (eds. Brütting & Adachi, 2012). In this chapter, the physical 
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principles underlying the electrical conductivity processes in organic semiconductors are 

reviewed. In addition, the review encompasses a number of properties of organic 

semiconductors for photovoltaic applications. 

2.2 Organic Semiconductors 

Organic semiconductors in contrast to inorganic semiconductors (for example Si) are 

generally considered as semiconductors with ‘intrinsic wide band gaps’ in the order of 2 – 3 

eV, exceeding typical semiconductor band gaps (e.g., 1.12 eV  for Si) (Peter, 2009). The 

extent to which organic semiconductors have been applied in electronic devices is limited in 

comparison to its inorganic counterpart. The reason for this limited application of the organic 

semiconductor has been pinned down to their characteristic carrier trapping and relative low 

charge – carrier mobility (Yacobi, 2002). However, organic semiconductors posses relatively 

high absorption coefficients (typically ≥ 10
5 

cm
-1

), meaning even thin films (< 100 nm) of 

such material can give rise to relatively high absorption of photons, this in a way partly 

compensates for its low mobilities (Hoppe & Sariciftci, 2004). An interesting property of the 

organic semiconductor is its unique advantage of diversity (i.e., flexible chemical structure) 

and relative simplicity with which their properties can be tuned to specific applications 

(Yacobi, 2002; Hoppe & Sariciftci, 2004). Another important difference between the organic 

and inorganic semiconductor is that the former has a relatively small exciton diffusion length 

(in the range of ~ 10 nm) (Halls et al, 1996; Haugeneder et al, 1999; Stübinger et al, 2001). 

An example of an organic semiconductor material is the conjugated polymer which has over 

the years also received widespread attention, particularly following the award of the Nobel 

Prize in Chemistry in the year 2000, for the discovery and development of electrically 

conductive polymers (Peter, 2009). The basic feature of conjugated polymers is that they are 

made of alternating single and double bonds between carbon atoms, i.e., – C = C – C = C –. 

This is referred to as conjugation, hence conjugated polymer semiconductors. In the next 

section, the theory explaining the resulting formation of a band gap and energy levels due to 

the conjugation process in polymeric semiconductors is discussed. 

2.2.1 Energy Band Theory 

Originally developed on the basis of inorganic semiconductors, the energy band theory can be 

extended to encompass organic semiconductors, which are generally less ordered compared 

to their inorganic counterparts (Petty, 2007). The theory will help to provide an 

understanding of the underlying electronic structure of organic semiconductors. This is 
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achieved, in light of the unique bonding and molecular structures present in organic 

molecules. As previously mentioned, the essential ingredient of organic semiconductors is 

conjugation, i.e., a chain of alternating single and double bonds between carbon atoms. 

Conjugation produces two important changes in the organic molecule, namely; the splitting 

of discrete energy levels into nearly continuous bands of energy, and the characteristic 

delocalisation of charges in these levels (Peter, 2009). Figure 2.1 shows an illustration of the 

principle of conjugation and chemical structure of the simplest organic polymeric 

semiconductor, polyacetylene. 

 

Figure 2.1: (a) Principle of conjugation in organic electronic materials (alternating single and 

double bonds), (b) Polyacetylene, the simplest organic polymeric semiconductor (Peter, 

2009). 

The construction of energy bands in organic semiconductors is interpreted in terms of 

molecular orbital interaction. Four electrons are available in carbon for forming bonds; three 

are considered to occupy the sp
2
 hybridized orbitals and the fourth pz orbital. During the 

process of bonding in organic materials, such as ethylene (C2H4), the three sp
2
 electrons form 

covalent bonds via σ molecular orbitals to the next carbon atom and to the hydrogen atom. 

The remaining pz electron is available to form covalent bond via a π molecular orbital. This is 

illustrated in Figure 2.2. Therefore in organic polymeric materials made of long chains of  

carbon atoms, the result of conjugation is a chain of alternating single (σ only) and double (σ 

and π) bonds. The interaction between neighbouring orbitals (pz atomic orbitals) results in the 

splitting between π and π
*
 molecular orbitals. In additional chains of carbon atoms, this is 

seen as smaller splitting of the levels of discrete bonding π and antibonding π
*
 states. π 

electrons are considered to reside in the π band, whilst the π
*
 is empty at lower energy states 

(Jaiswal & Menon, 2006). These are recognized as the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO). Figure 2.3 shows the process of 

the formation of HOMO and LUMO levels in a typical organic polymeric semiconductor. 

The energy levels HOMO and LUMO are synonymous to the valence and conduction band of 

n
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semiconductor physics respectively. The energy difference between HOMO and LUMO level 

represents the energy band gap (Eg).  

 

Figure 2.2: Model conjugated organic molecule, showing σ and π orbitals. 

 

Figure 2.3: Molecular orbital interaction in the construction of energy bands in 

polyacetylene. 

2.3 Charge Transport in Organic Semiconductors 

In the ground state, the HOMO of the organic molecule is considered to be filled, similar to 

the valence band in inorganic semiconductors, and the LUMO remains empty. For charge 

transport to occur in such organic solids there must be a charge in the LUMO level. This can 
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be achieved by the injection or extraction of an electron at the interface of a metal electrode 

and the molecule (Peter, 2009), or through the dissociation of a neutral excited state in a 

molecule and subsequent charge transfer (Clarke & Durrant, 2010). The latter resulting in the 

generation of bound electron – hole pairs, which is a precursor of free charges in OSCs. The 

electron taken from or added to the π or π
*
 orbitals, result in the excited state of the organic 

molecule. 

Due to weak intermolecular bonds in organic molecules, the delocalization of charges is not 

strong, in contrast to inorganic semiconductors, which possess rigid molecular structures with 

long – range order and periodicity. Furthermore, as a result of excitation or electron injection, 

there is a spatial distribution of electrons in the σ orbital, resulting in changes to the 

molecular geometry. For these reasons, organic semiconductors possess more localised 

charges and their characteristic transport is regarded as hopping from molecule to molecule 

(Lampert & Mark, 1970). 

In the following sections, a review of important physical principles underlying the electrical 

processes in organic semiconductors for electronic devices, are presented. These are outlined 

referencing mainly OSCs. 

2.4 Metal – semiconductor interface 

Understanding the properties of metal – semiconductor interface is significant to the working 

processes in most organic electronic devices, such as an OSC. The organic 

semiconductor/metal electrode contact in organic solar cells is an example of a typical metal 

– semiconductor interface (junction). Such an interface is usually formed by the deposition of 

a metal on to a semiconductor material. Depending on the metal’s work function relative to 

the semiconductor and the semiconductor type (n – or p – type), a rectifying junction or an 

Ohmic contact can be obtained. Figure 2.4 is a schematic representation of a metal – 

semiconductor interface, showing the energy band profiles before and after making contact. 

eɸm and eɸs are the work functions of the metal and the semiconductor respectively. 

The built-in potential, Vbi is the difference between the work functions of metal and 

semiconductor (ɸm – ɸs), whereas the barrier height is expressed as                     

                                                     e B   e   e                                                               (2.1) 
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where  s is the electron affinity of the semiconductor. The depletion width, W as a function of 

applied voltage, is given as 

                                                     W   
2   bi   

e d
 
  2

                                                     (2.2) 

The (±) in equation 2.2 indicates the forward and reverse bias conditions.  Under thermal 

equilibrium, V = 0. 

 

                         

 

Figure 2.4: Schematic illustration of (a) a Schottky barrier junction, and energy band profile 

of a Schottky barrier junction (metal – n – type semiconductor) formation (for ɸm > ɸs) (b) 

before and (c) after contact (Adapted from Singh, 1994). 

From the alignment criterion of Fermi level across a junction, it follows (for an n – type 

semiconductor) that if eɸm > eɸs, electrons flow is from semiconductor to metal. This result 

in the formation of a depletion layer, with a positive space charge on the semiconductor and 

negative on the metal side of the junction, see Figure 2.4(c). 

When a positive voltage is applied to the semiconductor (for an n – type), as in Figure 2.4(c), 

eɸB is increased. This corresponds to a reverse – bias condition, in which electron flow from 

semiconductor to metal is impeded. On the other hand eɸB decreases for a negatively biased 
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semiconductor, electron flows from semiconductor to metal, thus a forward – bias condition. 

In the case of eɸm < eɸs, for the same n – type semiconductor in contact with a metal, an 

Ohmic junction is formed. As is evident in Figure 2.5(b), there is a downward bending (in the 

semiconductor) of the energy band edge upon the junction formation. The absence of a 

potential barrier at the junction means electrons can flow for either applied voltage – bias 

conditions. 

                

Figure 2.5: Schematic representation of the energy band structure of a metal – semiconductor 

junction for the formation of an Ohmic junction; (a) before and (b) after contact (Adapted 

from Bar-Lev, 1993). 

If the semiconductor is a p – type, the considerations outlined previously applies; such that 

the junction is rectifying if eɸ m < eɸs, whereas it is Ohmic if eɸm > eɸs. 

2.5 Bulk Heterojunctions (BHJ) 

When two semiconductor materials with different energy gaps are brought in contact, the 

resulting junction formed is referred as a heterojunction (Yacobi, 2002). Organic 

semiconductor applications in electronic devices such as OSCs, fundamentally incorporates 

heterojunctions. The semiconductor materials are usually termed as donor (electron donating) 

and acceptor (electron accepting) materials. Generally bulk heterojunctions can be achieved 

by co – deposition of the donor and acceptor inks (Geens et al, 2002; Peumans et al, 2003), or 

solution casting of donor – acceptor blend solutions (eds. Krebs, 2008). Donor materials are 

considered as p – type semiconductor (e.g., a conjugated polymer, as the electron donor), 

whereas acceptor materials are n – type semiconductor (e.g., a fullerene, as an acceptor) (Ma 

et al, 2005). Of the three types of OSC architectures discussed in section 1.2, both the bilayer 

and bulk are based on heterojunctions. The significance of the BHJ is have an intimately 

mixed donor and acceptor composition distributed throughout a bulk volume, such that 

donor/acceptor (D/A) interfaces are within the exciton diffusion length at each absorbing site 

≈ ≈

Metal

Semiconductor 

(n-type)

e s
eɸm

EFm

EV

EFs

EC

eɸs

Vacuum Energy

≈

Metal

eɸm

EFm

EV

EFs

EC

Semiconductor 

(n-type)

(a) (b) 



 

21 
 

(Hoppe & Sariciftci, 2004). Figure 2.6 shows a schematic illustration of a heterojunction 

(between a p – type semiconductor, poly (3-hexylthiophene) (P3HT), and an n – type 

semiconductor, C60 (Jiang, 2007). 

 

Figure 2.6: Schematic illustration of the energy band structure of P3HT/C60 heterojunction. 

The schematic energy band diagram of the heterojunction (bilayer and bulk) in a typical OSC 

application is shown in Figure 2.7. 

                

 

Figure 2.7: Energy band diagram of (a) bilayer and (b) bulk heterojunction device structures. 

(Adapted from Yacobi, 2002; Hoppe & Sariciftci, 2004).  

Figure 2.7 represents schematics of the bilayer and bulk heterojunction device structures 

under illumination conditions (applied voltage, V = 0) respectively. It is also important to 

note that the work functions of metal contacts 1 and 2 are asymmetrical (i.e., ɸ1 > ɸ2); as this 

is necessary, to ensure selective collection of holes and electrons respectively. This is 

achieved when there is an electrically stable contact between hole – collecting electrode and 

the donor material, and also between electron – collecting electrode and the acceptor (see 

Figure 2.7).  
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2.6 Capacitance Voltage characteristics 

The charge within the depletion region of the metal – semiconductor junction (see Figure 2.8) 

is proportional to the concentration of ionised donors (Nd) and the depletion width, expressed 

as 

                                                            
d
 e dW                                                               (2.3) 

Substituting for W from equation 2.9, therefore  

                                                 
d
  2e  d  bi     

  2
                                                   (2.4) 

Since C = A (∂Q ∂V), therefore the depletion region capacitance can be expressed as 

                                                             
e  d

2  bi   
 
  2

                                                    (2.5) 

, where A is the device’s cross – section area. Equation 2.14 can also be expressed in the form 

                                                 -2   
   bi   

 2e  d

                                                 (2.6) 

The plot of C
-2

 versus V gives a straight line from which the values of both Vbi and Nd can be 

extracted. The intercept on V axis at C
-2

 = 0, gives the value of Vbi. 

2.7 Ohmic and Space charge limited conductivity in semiconductor thin 

films 

An Ohmic contact between a metal and semiconductor has a negligible contact resistance 

relative to that of the bulk of the semiconductor (Sze, 1985). Ohmic conduction particularly 

in wide band semiconductors is known to be due to thermally generated carriers. For this 

reason, conduction occurs even at low applied voltages, due to the excess thermally generated 

carriers relative to injected ones. The current density at low voltages obeys ohm’s law 

                                                             p
0
μ
p(n)
e
 

d
                                                                (2.7) 

, where p0 is the electron or hole concentration (in either an n – or p – type semiconductor), 

µn(p) is the electron (hole) mobility, e is the electronic charge, V is the DC applied voltage, 

and d is the semiconductor layer thickness. However this condition breaks down in the space 

charge limit, when at high electric fields, the density of injected carriers becomes so high. 

The field due to carriers themselves become dominant over that of applied bias, and the 
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condition becomes space charge limited. This behaviour is characterised by a quadratic 

dependence of current density on applied voltage, also referred to as the Mott and Gurney 

relationship (Mott & Gurney, 1940). 

                                                           
 

 
 μ

p(n)

 2

d
3                                                                 (2.8) 

It is important to note that the above relation does not necessarily imply the absence of traps, 

as in reality semiconductors are imperfect and contain traps, but rather that they are all filled. 

2.8 Characteristics of Photovoltaic cells 

Photovoltaic (PV) cell is a prominent electronic device with increasing application of organic 

semiconductor materials. In terms of semiconductor physics the PV cell is essentially based 

on the p – n junction diode. In principle, the junction formed between two semiconductor 

materials of the same type but of opposite doping type is considered a p – n junction. p – type 

being characteristic of majority of holes, and n – type, rich in negative charge carriers, as a 

result of doping with donor impurities (Sze, 1985; Tyagi, 1988; Singh, 1994). Using the p – n 

junction diode as a reference device, and with equivalent circuits’ theory, the underlying 

working principle of a typical PV cell will be outlined. 

2.8.1 Equivalent circuit model 

In the dark, the current density – voltage characteristics of a solar cell can be described in 

terms of a typical ideal diode (p – n junction), with current density given by the following 

equation (Sze, 1985). 

                                                 S  exp  
q 
kB 
                                                (2.9) 

, where JS is the saturation current under reverse bias, V is the applied bias, q the electronic 

charge, kB the Boltzmann constant, and T the temperature. From equation 2.9, it follows that 

larger currents pass through the device under forward bias (V > 0) compared to reverse bias 

(V < 0). This rectifying behaviour is a typical characteristic of PV cells. On the other hand, if 

the cell is exposed to sunlight, the ideal J – V characteristics is given by 

                                          S  exp  
q 
kB 
      SC                                          (2.10) 

, where JSC is the short circuit current density, at V = 0, and is a function of the illumination 

intensity. When the contacts of the device are isolated (open circuit condition), it yields its 
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maximum voltage (open circuit voltage). At this condition, J = 0, and from equation 2.10, it 

follows that the open circuit voltage, VOC (measured in volts) can be expressed as 

                                                    OC   
kB 

q
ln  

 SC

 S
                                                           (2.11) 

It is obvious from equation 2.11 that VOC increases logarithmically with the short circuit 

current density (which is directly proportional to the illumination intensity). Figure 2.8 shows 

the equivalent circuit model of an ideal diode; J – V curves in the dark and under 

illumination.  

                                

Figure 2.8: (a) Equivalent circuit model of an ideal solar cell (b) J – V characteristics of an 

ideal solar cell in the dark and under illumination. 

2.8.2 Efficiency 

The characteristic J – V curve of a PV cell under illumination is shown in Figure 2.9, 

depicting the major PV parameters. 

 

Figure 2.9: J – V (grey) and power – voltage (black) characteristics of a typical solar cell 

under illumination. 
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In Figure 2.9, Jm and Vm represent the maximum point current density and voltage, for 

maximum power output (PMAX = Jm × Vm). This also corresponds to the shaded area, the 

largest rectangle that can fit under the J – V curve. The power conversion efficiency of the 

cell can be determined from the relationship 

                          C  %  
 out

 in
        

 SC  OC

 in
                                             (2.12) 

From equation 2.12; 

     
 m  m

 SC  OC
              (2.13) 

FF in equation 2.13 is referred to as the fill factor of the device, which essentially defines its 

quality (Mayer et al, 2007). An ideal solar cell will have a FF value of unity. 

The discussion so far is in terms of an ideal solar cell. However, in a non – ideal case, it is 

known that there are power losses present via contact resistances and leakage currents around 

the sides of the device (Nelson, 2003). These effects are equivalent to parasitic resistances 

namely series and shunt resistances (RS and RSH). These are illustrated in Figure 2.10. RS 

originates from the cell’s material resistance to current flow, mostly through the front surface 

to the semiconductor/metal interface, and metallic contacts. In the case of OSCs, the series 

resistance will therefore be a combination of both the bulk of active layer and contact 

resistances. Shunt resistances on the other hand arises from the leakage currents through the 

cell, around the device edges, and between contacts of different polarity.  

 

Figure 2.10: Equivalent circuit of a non – ideal solar cell including parasitic resistances (RS 

and RSH). 

The effect of increasing RS and decreasing RSH on the  V cell’s J – V characteristics is further 

illustrated in Figure 2.11. From equation 2.13 (and with reference to Figure 2.9), it is obvious 

that increasing RS and decreasing RSH will result in a low fill factor.  
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Figure 2.11: Effect of (a) increasing RS and (b) decreasing RSH, on J – V characteristics of the 

solar cell (Adapted from Nelson, 2003). 

To achieve a highly efficient cell (one with reasonably high FF), it is desirable to have a very 

small RS and a large RSH. Taking into account the effects of parasitic resistances in a non – 

ideal cell, equation 2.10 and 2.11 can be rewritten as 

                             SC   S  exp 
q    –   S 

nkB 
     

  –   S

   
                                 (2.14) 

                                        OC   
nkB 

q
ln  

 SC

 S
                                                               (2.15) 

, where n is the ideality factor.  

2.9 Charge Photogeneration in Donor/Acceptor Organic Solar Cells 

The working principles of the solar cell were discussed in section 1.3 briefly. This section 

discusses in detail the processes associated with generation of charges in the BHJ OSC. The 

primary yield of photo excitations in organic semiconductors are bound electron – hole pairs 

(excitons), in contrast to free charge carriers in inorganic semiconductors. This is largely due 

to their low dielectric constants and the presence of significant electron – lattice interactions 

relative to the former (Brédas et al, 1996; Gregg & Hanna, 2003). To achieve the dissociation 

of excitons, a mechanism involving the difference in electronic energy properties of the donor 

– acceptor materials is required. In the absence of this, exciton will undergo radiative and/or 

non – radiative recombination (Clarke & Durrant, 2009). 

Figure 2.12 illustrates a simplified viewpoint of the process of photo excitation and exciton 

dissociation at the donor/acceptor interface in a typical BHJ organic solar cell. In the 

following section, the process of exciton dissociation is discussed in more detail. 
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Figure 2.12: (a) Energy level diagram of D/A interface showing the excitation of an electron 

into the donor LUMO, following photon absorption. (b) Formation of interfacial e-h pairs or 

charge transfer (CT) states (dashed oval). EB
exc

 is the exciton binding energy, corresponding 

to the difference between the optical and electrochemical band gaps, and EB
CT

 is the charge 

transfer state binding energy respectively (Adapted from Muntwiler et al, 2008). 

2.9.1 Exciton dissociation at Donor/Acceptor interface 

The subsequent successful dissociation of photo-generated excitons at the D/A interface to 

free charge carriers is a critical step in the working process of the organic solar cell. At the 

D/A interface, excitons do not immediately dissociate into free charge carriers, as a spatial 

separation of holes and electron occurs first. This spatial separation, an initial electron 

transfer across D/A interface results in a coulombically bound interfacial electron-hole pair 

state (Clarke & Durrant, 2009). A few terminologies have been used in literature to describe 

this electron transfer state, which include germinate pairs, bound polaron pairs, and charge 

transfer states (Tvingstedt, et al., 2009). The most common is the ‘charge transfer’ (CT) state, 

which will be used throughout this work. Essentially, the CT state denotes an intermediate 

state between excitons and fully dissociated charges. Following the formation of CT states, 

their subsequent successful dissociation into free charges is very critical to photocurrent 

generation. The process from CT state to fully dissociated charges is however met by one of 

two competing recombination process; namely germinate or bimolecular recombination. 

Germinate recombination involves the recombination of the CT (germinate) state, whilst the 

latter involves free charges (Clarke & Durrant, 2008). As mentioned earlier, the mechanism 

at D/A interface required for successful exciton dissociation represents the overcoming of the 

Coulomb’s attractive force between holes and electron, expressed as 

                                                     
q2

 π r 0r
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, where q is the electron’s charge, ɛr is the dielectric constant of the conjugated polymer, ɛ0 is 

the permittivity of vacuum, and r is the electron – hole distance of separation. 

To achieve the initial charge separation step (see Figure 2.12 (a)), it is generally accepted that 

there should be a necessary suitable energy difference between the donor and acceptor 

LUMO levels (Muntwiler et al, 2008). This LUMO offset should be just sufficient to 

overcome the exciton binding energy (EB
exc

). This will enable an initial energetically 

downhill transfer step of electrons (Bittner, et al., 2005). Since both donor and acceptor 

molecules at the interface are physically close to each other, this initial electron transfer step 

only results in the spatial separation between the electron and hole (CT state). The distance of 

separation concerned is relatively between 0.5 – 1 nm, typically of the order of magnitude as 

the size of the molecules (Clarke & Durrant, 2008). Applying equation 2.16, the approximate 

Coulomb’s attraction can be estimated to be within the range of 0.1 – 0.5 eV, and this is 

referred to as the CT state binding energy (EB
CT

), as illustrated in Figure 2.12. Comparing the 

magnitude of the Coulomb attraction with that of the thermal energy i.e., kBT (0.025 eV), 

evidently it is significant. Therefore energy that is more than the thermal energy will be 

required to dissociate excitons. In principle this constitutes a barrier to photo-generation of 

charges in organic solar cells. Interestingly, in their estimation of VOC from polymer – 

fullerene BHJ OSCs, Scharber and his group demonstrated that a minimum LUMO offset of 

0.3V is just sufficient for efficient exciton dissociation and charge separation (Scharber et al, 

2006). Any value above this is considered to be wasted energy. The estimation is given by the 

Equation 

                                   OC  
 

q
     Donor      Fullerene  0.3V                              (2.17) 

0.3V in equation 2.17 denotes the minimum LUMO offset. 

The process of exciton dissociation at the D/A interfaces in organic solar cells have 

consistently been described in literature based on the theoretical model of Onsager (Onsager, 

1938). Onsager’s theory provides a quantitative description of the efficiency of dissociation 

of excitons under the influence of an electric field. This is discussed in the following section. 

2.9.1.1 Onsager Theory 

As mentioned previously, exciton dissociation can be difficult primarily due to characteristic 

low dielectric constants of conjugated polymers.  olymer’s low charge carrier mobilities also 

contribute to this difficulty. Failure for CT state to dissociate within its lifetime, will result in 
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recombination (germinate). The quantitative description of germinate recombination was first 

provided by Onsager (Onsager, 1934). Originally designed to describe the probability of 

recombination of ion – pairs, with an initial separation, the theory has provided a classical 

framework which have been successfully applied to several conjugated semiconducting 

systems (Scher & Rachkovsky, 1984; Milhailetchi et al, 2004). For oppositely charge ion – 

pairs in a weak electrolyte, undergoing a Brownian motion, whilst under the combined 

influence of their mutual Coulomb attraction and an external field, Onsager was able to 

calculate the probability of their escape from recombination. The model particularly proposes 

that a localized hole and a hot electron are generated following photon absorption. Due to the 

excess thermal energy it possesses, the electron thermalizes after undergoing a rapid motion. 

This thermalization occurs at a distance a, from the localized hole. This distance of separation 

between the hot electron and the localized hole is referred to as the thermalization length (as 

shown in Figure 2.13). The resultant electron – hole pair, after initial separation by the 

thermlization length (a), is analogous to the CT state. Depending on the magnitude of the 

Coulomb’s attraction within the CT state; it will either dissociate into free charges or 

recombine back to the ground state. In addition, the model also proposes a definition for the 

Coulomb capture radius, alternatively referred to as the Onsager radius, rc, as the distance at 

which the Coulomb attraction energy is equivalent to the thermal energy, kBT. The capture 

radius is given by 

                                                          rc 
q2

 π r 0kB 
                                                              (2.18) 

, where q is the charge of an electron, ɛr is the dielectric constant of the surrounding medium, 

ɛ0 is the permittivity of vacuum, kB the Boltzmann’s constant, and T is temperature. In Figure 

2.13, the green curve represents the potential energy from Coulomb attraction due to electron 

– hole (e – h) separation. 

According to the Onsager model, the CT state is considered to be fully dissociated if a > rc. 

In the case where a < rc, the dissociation of the CT state into free charge carriers occurs with 

an escape probability of P (E). On the other hand germinate recombination occurs with a 

probability of 1 – P (E). P (E) has been demonstrated to depend on the electric field strength, 

E, the distance at which the charged pair are generated, a, and the temperature, T (Tachiya, 

1988). When E = 0, P (E) is proportional to the negative reciprocal of the CT state distance of 

separation, a. The escape probability is given by (Tachiya, 1988) 
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                                                  E    exp  
-rc

a
    

qrc

2kB 
E                                                 (2.19) 

, where a is the initial separation distance between two thermalized ions, rc is the Coulomb 

capture radius, q is the electron charge, kB Boltzmann constant, T the temperature, and E is 

the electric field strength. 

 

Figure 2.13: Potential energy diagram summarizing the probability that Coulombically 

bound ion – pair (electron – hole) in a weak electrolyte will escape its Coulomb’s attraction 

and generate free charges according to Onsager theory (Adapted from Clarke & Durrant, 

2010). 

In     , Onsager’s work was further modified by Braun, who emphasised the fact that the 

CT state has a finite lifetime (Braun, 1984). This modification was prompted by the 

observation that the thermalization lengths, a, obtained, using the Onsager’s conventional 

model, i.e., the electric-field dependence of free charge carriers yield, were in the region of 

2.5 – 3.5 nm. However this is larger than lengths typical for the CT state (less than 1 nm). In 

addition, Onsager’s theory has the boundary condition that recombination occurs if the 

thermalization length approaches zero, and the ion pair irreversibly varnishes. Braun in his 

modification however stated that the condition for the Onsager’s model was inappropriate 

since the generated CT state has a finite lifetime. This means that the CT state formed at the 

interface can either undergo one of two processes, namely; recombination to the ground state 

with a decay constant kF, or an electric-field dependent separation with a rate constant kD(E). 

Once separated, the free charges can again form a bound pair which will eventually 
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recombine with a rate constant kR (Blom, et al., 2007). An interesting implication of this 

(which significantly differentiates Braun’s model from Onsager’s) is that free charge carriers 

which happen to be captured into bound pairs may still be able to dissociate again during 

their lifetime. Therefore Braun’s revised model of the electric-field dependent dissociation 

into free carriers by the rate constant kD(E), and the germinate recombination to ground state 

with kR, at a given electric field E and  temperature T and  is expressed as 

                                                     ,E   
kD(E)

kF kD(E)
 kD E  (E)                                             (2.20) 

Where P (T, E) is the escape probability and   (E) is the lifetime of the CT state. On the basis 

of Onsager’s original model for the relative applied electric field – dependent dissociation in 

a weak electrolyte, kD(E) is defined as  (Braun, 1984)                 

                                kD E  k 
3

 πa3
exp  

 EB

kBT
    b  

b
2

3
 
b
3

  
 

b
 

  0
                         (2.21) 

, where a is the initial distance of separation of the CT state (bound electron-hole, e – h pair) 

at the D/A interface, b = q
3
E  πɛ0ɛrkB

2
T

2
, and EB is the e – h pair’s binding energy, and kR = 

e          , where      is the spatially averaged dielectric constant and     the spatially 

averaged sum of electron and hole mobilities (where the symbol     , denotes the spatial 

average). Figure 2.14 summarises illustratively the processes involved in the Photogeneration 

of charges in polymer/fullerene OSCs. 

From Figure 2.14; hv: Photo excitation leading to the formation of a singlet exciton, S1. kCT: 

initial spatial separation of exciton, i.e., exciton dissociation, yielding hot CT state. kISC: Spin 

mixing of the 
1
CT and 

3
CT states, due to weak electronic coupling. Ktriplet: Germinate 

recombination of 
3
CT state to the triplet exciton, T1. kGR: Germinate recombination of 

1
CT 

state back to the ground state S0. kCS*: Dissociation of hot CT state into a fully charge-

separated (CS) state. kCS: Dissociation of thermally relaxed CT state into the CS state. 

k
CS

therm: Thermal relaxation of the CS state and migration away from D/A interface. k
CT

therm: 

Thermal relaxation of CT state. kBR: Bimolecular recombination of the CS  state. ΔGCS: 

Difference in energy between singlet exciton and the dissociated CS state. ΔGCT: Free energy 

driving the initial separation of exciton to form the CT state. 



 

32 
 

 

Figure 2.14: A schematic illustration of the energy level diagram depicting a summary of the 

processes involved in Photogeneration of charges in a typical organic semiconductor based 

solar cell (Adapted from Clarke & Durrant, 2009). 

2.9.2 Germinate and Bimolecular Recombination 

Two significant processes were mentioned in the previous section, namely; germinate and 

bimolecular (or non-germinate) recombination. Between the generation of excitons and free 

charge carriers, either germinate recombination will occur (i.e., CT state recombining to the 

ground state, soon after exciton dissociation), or bimolecular recombination (i.e., 

recombination of free charge carriers). These processes constitute a significant loss 

mechanism in the BHJ OSC (Koster, et al., 2006). In addition, they are also in competition 

with charge generation or collection (Nelson, 2011), since they are the inverse of current 

generation. Therefore its minimisation is beneficial to optimising PCEs in BHJ OSCs. The 

rate at which bimolecular recombination occurs is given by  

                                                  R    
 
 np  nipi                                                            (2.22) 

, where n and p are the free electron and hole density, nipi = NCV exp[-Egap/kT] = ni
2 , where ni 

denotes the intrinsic concentration in the material, and     is the Langevin recombination 

constant. In the case of pristine materials, the Langevin recombination constant is given by 

(Langevin, 1903) 
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q

ɛ
 μ

e
 μ

h
                                                                (2.23) 

, where q is the elementary charge, ɛ is the dielectric constant, and μe (μh) is the electron 

(hole) mobility. The above Equation consists of the sum of both charge carriers, since they 

are free to move toward each other. This essentially implies that the fastest carrier will 

dominate, and thereby determine the recombination rate. This can be illustrated schematically 

in Figure 2.15. It can be seen that in contrast to the pristine semiconductor, the holes and 

electrons are confined to different phases (donor and acceptor), and recombination occurs 

mainly across the interface between materials (see Figure 2.15(b)). Furthermore to 

compensate for any eventual mobility differences in the blend, Braun adapted Equation 2.23 

as 

                                                    
 
 

e

ɛ
                                                                        (2.24) 

In the case of Equation 2.24, the recombination constant is proportional to the spatial average 

of the sum of hole and electron mobilities. 

 

Figure 2.15: Schematic energy band profiles illustrating bimolecular recombination in (a) 

pristine semiconductor, and (b) donor – acceptor BHJ solar cell (Adapted from Koster et al, 

2006). 

However, in the situation where the electron and hole are confined to the respective materials 

at distances indicated in Figure 2.15(b); the carriers will have to travel this distances, to 

subsequently get to the interface. For example when μe >> μh, it implies that the electron will 

get to the interface faster, and the time taken for both charges to be at the interface will be 

dominated by the hole. Therefore for BHJ solar cells, recombination will be governed by the 

slowest charge carrier. Due to this, it is expected that the recombination constant in Equation 

2.23 should be close to the value expressed in the following equation: 
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ɛ
min μ

e
 μ

h
                                                             (2.25) 

In contrast to the original Langevin results in Equations 2.23 and 2.24, the above Equation 

indicates the recombination constant is governed by the slowest charge carrier (Koster et al, 

2006). 

2.9.2.1 Traps and Recombination centres 

Within the band gap of semiconductors, there maybe one or more localized energy levels due 

to the presence of impurities. Exchange of charges can take place between these levels and 

the valance (or conduction) bands (Petty, 2008). These energy levels can trap electrons (or 

holes) for example from the conduction (or valence) band respectively. This occurs by 

attracting an electron (or hole) first and subsequently a hole (or electron) in that order. These 

levels are considered to act as traps (Sze, 1985). The process of trapping a hole or an electron 

followed by a subsequent attracting of an electron or a hole is referred to as trap – assisted 

recombination (Schokley & Read, 1952). The localized energetic levels (traps) are also 

termed as recombination centres. The presence of defects in semiconductors is often 

characteristics of recombination centres, which can be a limitation to the performance of 

many semiconductor devices. The rate of trap – assisted recombination is dependent on the 

number of sites that act as traps in the material, and how fast the free carrier can find the 

respective trapped carrier. The model designed originally for inorganic semiconductors also 

known as the Shockley – Read – Hall (SRH) recombination (Schokley & Read, 1952), is 

often applied to organic systems, including OSCs (Cowan et al, 2010; Kuik et al, 2011; 

Nalwa et al, 2011). Figure 2.16 is a schematic illustration of the four basic steps involved in 

the process of trap – assisted recombination. EC, EV, and Et are the conduction, valence bands, 

and energy level of the recombination centres. From the illustration in Figure 2.16, we have 

the following scenarios: 

a. An electron can be captured by a neutral centre, and the rate at which this occurs is 

governed by a capture coefficient, denoted by Cn, 

b. The captured electron in (a) can be subsequently excited back to the conduction band, 

OR, 

c. On the other hand, the electron in the trap site can be captured by a hole with a 

capture coefficient, Cp, thus leaving a neutral centre behind. 

d. Electron can be captured from the valence band by a neutral centre. 
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Figure 2.16: Schematic illustration of the basic steps involved in trap – assisted 

recombination: (a) electron capture, (b) electron emission, (c) hole capture, and (d) hole 

emission. 

Assuming thermal equilibrium between the processes a – b, above, trap – assisted 

recombination rate according to SRH is described by  

                                       S H   S H np   nipi)                                                       (2.26) 

, where  S H  
 n p t

  n n ni   p p pi  
 , with Cn denoting the probability per unit time an electron in 

the conduction band will be captured by a neutral centre (i.e., a trap centre that is empty and 

able to capture an electron), Cp denotes the probability per unit time that a hole will be 

captured for the case when a trap is filled with an electron and able to capture the hole, and Nt 

is the density of electron traps. 

An effective method of extracting the SRH capture coefficients (i.e., Cn and Cp) has been 

reported in the work of Kuik et al (2011). In their work, they employed the light – intensity 

dependence of the open circuit voltage (VOC) of a light – emitting diode. The VOC response to 

light – intensity variation follows the relation (i.e., in the absence of traps, where Langevin 

recombination is considered to be dominant) 

                                     OC  
    

 
 
kT

q
ln  

  -     CV
 

  
                                                         (2.27) 

, where P is the dissociation probability, Egap is the energy gap, NCV the effective density of 

states, BL the bimolecular recombination strength. G is the generation rate of excitons, 

directly proportional to the light – intensity and thus establishing the correlation between VOC 

and light – intensity. 
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When VOC is plotted against the natural logarithm of light – intensity, the expected slope is 

kT/e (see Equation 2.27). This is in the case where Langevin recombination process is 

dominant. However, where trap – assisted recombination process is present, it has been 

established that that the slope exceeds that in Equation 2.27 (Kuik et al, 2011). Consequently 

the relation between VOC and light – intensity can be well described by incorporating the SRH 

recombination strength (BSRH) in Equation 2.27, (i.e., B = BL+BSRH), to account for the trap – 

assisted recombination processes (Nalwa et al, 2011). 

2.10 Summary 

In this chapter, an overview of the basic theory and current understanding underpinning 

organic semiconductor materials and their application in OSCs was presented. These include 

brief descriptions of the formation of energy bands in organic semiconductor materials on the 

basis of the interaction of molecular orbitals. The energy bands are associated with the π – π* 

molecular orbitals. These are the highest occupied and lowest unoccupied molecular orbitals 

(HOMO and LUMO) in terms of molecular physics. They are also synonymous to the 

valence and conduction bands respectively in semiconductor physics. Charge carrier transport 

in organic semiconductor materials is via hopping mechanism, primarily due to the 

delocalisation of π – orbitals. This is in contrast to highly localized bands in inorganic 

semiconductors, wherein charge transport is via band transition. 

Descriptions of the metal – semiconductor junction was also presented, as this was significant 

in explaining the electrical processes in a complete OSC device. The underlying theoretical 

understanding of experimental methods for determining significant device parameters such as 

series and shunt resistances were also highlighted. Furthermore, the current understanding of 

the working principles of the OSC, from a theoretical standpoint was discussed. These 

include steps in the mechanisms of exciton generation and dissociation, ultimately yielding 

free charge carriers. The so called ‘unwanted’ challenges associated with this process, such as 

recombinations are also discussed. These recombination processes (either bimolecular or 

germinate) are crucial as they constitute the unwanted source of power loss in OSC devices. 

The significance of understanding and minimising these processes is critical to improved 

OSCs.   
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Chapter 3 

Organic solar cell materials 

“Especially, OPVs (organic photovoltaics) have recently made rapid progress for recent years, and 

they are definitely one of the most promising technologies in the field of next-generation 

photovoltaics”.  

― Researchandmarkets.com 

 

3.1 Introduction 

Their advantage of ease of fabrication is one of the reasons for the growing attractiveness of 

the BHJ organic solar cell. The active layer of devices is mostly fabricated from solution – 

processable materials. These mostly include conjugated polymers and fullerene derivatives in 

a blend. Amongst materials used today, electron donating poly (3-hexylthiophene) (P3HT), 

and electron – accepting [6, 6] phenyl-C61-butyric acid methyl ester, (PCBM) have proven to 

be promising materials. This chapter provides a review of these materials and others in light 

of their applications in solar cells. 

3.2 Conjugated Polymers 

Conjugated polymers are organic materials consisting of alternating single and double bonds. 

In general they are often regarded as “intrinsic wide band gap organic semiconductors”, with 

energy gaps typically above 1.4 eV (Günes et al, 2007). In 1977, it was found out by 

Shirakawa and co – workers that by doping polyacetylene (simplest form of conjugated 

polymer), the conductivity was observed to increase by several orders of magnitude 

(Shirakawa et al, 1997). Following their work, researches in organic electronics have rapidly 

been expanding. Examples of some of the conjugated polymers that are widely used in 

photovoltaic applications include; derivatives of poly(phenylenevinylene), PPVs, 

polyanilines (PANIs), and polythiophenes (PTs) (Mao et al. 1993; McCullough et al. 1993; 
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Tan et al. 2004; Krebs, 2008). The chemical structures of some of these conjugated polymers 

are shown in Figure 3.1. 

 

MEH-PPV                          MDMO-PPV 

 

Polyaniline 

 

P3BT                                   P3OT                                    P3HT 

 

Figure 3.1: Chemical structures of a range of conjugated polymers (a) PPVs, (b) PANIs, and 

(c) PTs, and (d) a schematic illustration of a typical conjugated polymer, depicting repeating 

units of thiophene units (backbone), and hexyl side chains, CH2(CH2)4CH3 (Zhou et al, 

2012). 

Previous studies focused on PPV – based BHJ solar cells, such as MEH-PPV and MDMO-

PPV with fullerenes, demonstrated efficiencies of 1.5 – 3.3% (Yu et al. 1995; Brabec et al. 

(a)  

(b)  

(c)  

(d)  

http://www.sigmaaldrich.com/catalog/product/aldrich/541443?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/aldrich/546461?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/aldrich/556459?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/aldrich/495336?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/aldrich/445711?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/aldrich/669067?lang=en&region=GB
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2002). However it was shown that due to large band gaps (>2 eV), current was significantly 

limited in devices based on PPV polymers (Brabec et al. 2002). The PT derivative, P3HT on 

the other hand with a narrower band gap (1.9 eV), has the potential of higher achievable 

current densities.  In Figure 3.1 (d), it can be seen that the backbone and side chains, are 

features that characterises a typical conjugated polymer. The backbone is a repeating unit 

(hence conjugated), forming the polymer chain. The side chain on the other hand is 

responsible for imparting solubility to the polymer (eds. Brabec et al. 2008). In addition, it 

also plays a significant role in improving the molecular weight and processability of the 

conjugated polymer. The following sections review some important properties of conjugated 

polymers (particularly PTs), and their influence in solar cells. 

3.3 Properties of Conjugated Polymers for Solar Cells Applications 

Thiophene – based conjugated polymers were typically designed to be efficient photon 

absorbers, electron donors, and hole – transporting materials in solar cell applications. The 

electronic properties of conjugated polymers can be described generally in terms of 

semiconductor physics, particularly discussed in section 2.1.1. Typically electron rich, PT 

polymer chains are lamellar microstructures, exhibiting closely packed π – stacked 

backbones. Such molecular conformation is advantageous for charge transport, as 

intermolecular interaction increases, thereby improving charge hopping processes. For the 

purposes of this work, the polymer P3HT, a good example of PTs will be discussed in this 

review. Widely available, and easy to process from solution; P3HT exhibits good crystalline 

microstructures in thin films. These attribute contributes to its promising electrical properties. 

To further understand this, first it is important to consider the molecular properties of PTs. 

These include their degree of regioregularity, and molecular weights in general. Significant 

attributes such as charge transport, and optical absorption have been shown to have their 

origins in the nature of these properties. 

3.3.1 Regioregularity and Molecular weights in polymers 

Regioregularity simply refers to the regular structuring of head – head, head – tail, and tail – 

tail isomers in the polymer chain (Mao et al.    3). The ‘head’ and ‘tail’ are usually 

designated by the alphabets ‘H’ and ‘T’. The property of regioregularity in conjugated 

polymers has a significant influence on the behaviour of the polymer. Depending on the 

percentage of regioregularity or the lack thereof in the material, a variation in a number of its 

characteristics will be evidenced (McCullough et al. 1993). Conjugated polymers are 
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essentially obtained from the polymerisation of their monomer units, for example, the 

polymerisation of 3-substituted thiophene units, with three possible couplings via the 2- and 

5- positions (Barbarella et al. 1994). These couplings, notably; head-to-head (HH), head-to-

tail (HT), and tail-to-tail (TT) have formations, which are responsible for the different 

degrees of regioregularity of the polymer. Figure 3.2 shows an illustration of the three 

possible couplings (or diads). In view of the regiochemistry of PTs, two main classifications 

are commonly presented in literature, namely; regioregular and regioirregular (or 

regiorandom), with prefixes “rr” or “r ” and “rI ” or “ran” (eds. Brabec et al. 200 ). This 

classification primarily arises from the percentage of the proportion of coupling sequences in 

the polymer chain (Chen et al. 1995; eds. Brabec et al. 2008). For example, a PT, following 

synthesis, with a >90% HT dimmer (or coupling) content is regarded as regioregular. The 

regioregularity obviously increases as the percentage value increases, whilst with <90% it is 

regiorandom. The impact of regioregularity on molecular structure and hence overall material 

characteristics shall be briefly discussed in the next section.  

 

 

 

HT-HT 

 

HT-HH 

 

TT-HH 

 

TT-HT 

 

Figure 3.2: (a) 3-subtituted thiophene, where the 2- and 5- positions are designated as the 

head and tail (eds. Brabec et al. 2008); (b) three possible couplings formed between two 3-

substituted monomer thiophene unit, and (c) the four distinct configurational triads that can 

be formed from coupling 3-substituted thiophene units. 

The molecular weights and processing conditions both have a significant influence on optical 

properties, film morphologies, energy levels, and charge carrier mobility (Wang et al, 2010). 
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It has been shown that for different molecular weights of a conjugated polymer (e.g. P3HT), 

the measured charge carrier mobility differs (Ballantyne et al, 2008). Mobility can be 

improved by orders of magnitude as the molecular packing is optimised. In their work, 

Ballantyne and co – workers showed decreased mobility in P3HT: PCBM solar cells, for 

polymer with molecular weights > 30kDa (kilodaltons, molecular weight). A possible 

explanation given for this is that the polymer chains tend to tangle for higher molecular 

weights, thereby distorting the polymer backbone, decreasing intra-chain transport, and/or 

also reducing inter-chain charge hopping due to less overlap of conjugated segments. 

Owing to these molecular attributes found particularly in P3HT, they are increasingly been 

employed for studying a range of optoelectronic devices such as organic light emitting diodes 

(OLEDs) (Li et al. 2002; Shrotriya & Yang, 2005; Perepichka et al. 2005), thin film field-

effect transistors (TFT’s) (Sirringhaus et al.    9; Zen et al. 2004), and even more so in 

OSCs (Kim et al. 2007; Oklobia & Shafai, 2013). 

3.3.1.1 Properties of P3HT 

UV-visible spectroscopic studies of rrP3HT thin film show maximum absorption occurring at 

~ 550 nm (Chen et al, 1995). Additionally, there are other well resolved features present. 

Two peaks at around 525 and 595 nm, and a well – defined shoulder – like feature at ~610 

nm. The distinct shoulder on the long – wavelength of the absorption spectrum is generally 

accepted to be indicative of inter-chain interaction. A more pronounced shoulder is indicative 

of improved inter-chain interaction, as opposed to a weak or missing one. Contrastingly, 

these notable features are blue shifted in ranP3HT, since they differ in their molecular 

conformation owing to different regiochemistry. Barbarella et al (1994) in their report 

showed that P3HT with different percentages of regiochemistry displayed different optical 

and electrical properties. A maximised regioregularity eliminates out – of – plane twists along 

the backbone of the polymer, otherwise the planarity of the molecule is disrupted, decreasing 

its effective conjugation. This is reflected by the shifts in the optical absorption spectrum as 

the regioregularity decreases. Kim et al (2006) demonstrated the correlation between polymer 

regioregularity and device performance. In their work, they reported a strong influence of 

regioregularity on solar cell performance. This was attributed to enhanced optical absorption 

and charge transport for maximised regioregular P3HT polymer chains and crystalline 

domains. It is evident from several studies that the degree of regioregularity of the polymer is 

critical in view of device applications (Kim et al. 2006; Woo et al. 2008).  
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Charge carrier mobility on the other hand can be systematically improved by maximising the 

regioregularity and molecular weight of the polymer (Hagen, 2012). Achieving highly 

ordered polymer chains within the BHJ structure is therefore desirable, as it promises 

efficient absorption and charge transport properties. 

Furthermore photoluminescence (PL) spectra studies have also shown that higher rrP3HT 

tend to exhibit an increase in PL intensity, suggesting that in the more ordered polymer, non – 

radiative quenching pathways are reduced (Kim et al, 2006). This information is significant 

in light of recombination processes, discussed in section 2.6.2. 

Diffraction techniques such as grazing-incidence X-ray diffraction (GIXRD) have revealed 

that the structure of regioregular polymer films consists of microcrystalline domains in an 

amorphous matrix (Mao et al. 1993). The XRD data show peaks interpreted as polymer chain 

stacking in a particular orientation, forming a lamella structure (Mao et al. 1993; Sirringhaus 

et al. 1999, Brown et al. 2003). These reflection peaks in the case of a regiorandom polymer, 

are absent. In P3HT thin films, three significant reflection peaks associated with highly 

regioregular polymer has been reported in literature (Mao et al. 1993, Chen et al. 1995). 

These are termed 1
st
, 2

nd
 and 3

rd
 order reflections. They are associated with in-plane stacking 

of polymer chains, with an interlayer d-spacing of ~ 6.  Å. The orientation of the π – stacked 

polymer chains have been reported to have a significant impact on the electrical properties of 

corresponding polymer – based devices (Sirringhaus et al. 1999; Kim et al, 2006). Employing 

thin film field effect transistor structures, Sirringhaus and co – workers (1999) were able to 

probe the dependence of transport properties on molecular orientations of P3HT polymer 

chains. It was found that depending on processing conditions, the polymer chain can adopt 

two different orientations, namely edge – on or face – on with respect to the substrate. It was 

also shown that their mobilities differ by more than a factor of 100. 

An enhanced intraplane chain, stacking perpendicular to the substrate (edge – on) is 

favourable for improved electrical properties of solar cells. This is because the edge – on 

orientation in OSC architectures is beneficial for inter – chain transport by hopping (Kim et 

al, 2006). 

Complimentary structural studies, employing atomic force microscopy (AFM), have also 

been performed to probe the surface structures of the polymer thin film (Shrotriya et al. 2006; 

Ayzner et al. 2009). These revealed regular “spaghetti-like” structures in an amorphous 

matrix (Shrotriya et al. 2006). Such studies have shown that it is possible to estimate the 
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polymer mean crystal size using AFM. This was found to be approximately between 10-50 

nm (Shrotriya et al. 2006), which is comparable to that from reported X-ray diffraction data 

(Erb et al. 2005). 

Figure 3.3 is an illustration of the edge – on orientation exhibited in polymer P3HT thin film. 

In the Figure, a, denotes the lamella spacing (separated by alkyl side chain) indicated by the 

(100) reflection, whereas b, indicated by the (010) reflection denotes the polymer chain 

length-independent spacing, perpendicular to the thiophene ring plane. 

 

Figure 3.3: Schematic illustration of the molecular orientation of microcrystalline 

regioregular P3HT with respect to the substrate (Adapted from Sirringhaus et al. 1999). 

Raman spectroscopy studies also show the characteristic semi crystalline structures in 

regioregular P3HT polymer (Nalwa et al. 2011). The Raman spectra of rrP3HT thin film 

consists of peaks at around 1440-1450 and another at 1380 cm
-1

. These have been associated 

with the crystallinity of the polymer. These peaks are attributed to the –C=C– stretching 

vibrations of the 3-substituted thiophene ring and the C–C skeletal stretching, respectively 

(Baibarac et al. 1998). Furthermore, Klimov et al. (2006) has shown from their Raman 

spectroscopy studies that the polymer (i.e., P3HT) is more crystalline when the thiophene 

rings are averagely more closely stacked. This information on crystallinity can be deduced 

from the full width half maximum (FWHM) of the Raman spectra peaks. A decrease in this 

value after the film has been subjected to any particular treatment (e.g. thermal annealing), 

suggests an improvement in crystallinity.  

In the next section, a brief overview of the characteristics of acceptor materials used in 

conjunction with polymers in OSC applications is presented. 
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3.4 Acceptor Materials 

The efficiency of an organic solar cell employing the conjugated polymer (in a 

homojunction) is significantly improved when the polymer is used in a blend with another 

nano-material in a heterojunction. The heterojunction concept (previously discussed in 

section 1.2) produced a 15% improvement in the external quantum efficiency over a bilayer 

heterojunction device (Tang, 1985).  The improvement was interpreted to have originated 

from exciton dissociation at the interface of the organic semiconductors. These investigations 

are evidences that support the beneficial need for an interface between the conjugated 

polymer and the acceptor material, necessitating efficient exciton dissociation. The 

conjugated polymer is blended with a solubilized form of buckminsterfullerene (C60) in the 

BHJ structure (Yu et al. 1995). This has resulted in dramatic improvements in OSC 

efficiencies, as previously discussed. The use of the conjugated polymer-fullerene derivative 

based BHJ is currently considered the most efficient conjugated polymer-based PV device. 

Generally, in OSCs, the C60 or its derivative (PCBM) has been mostly used as the electron 

accepting material. This is mostly because fullerenes have a high electron affinity, making 

them suitable materials utilised in conjunction with polymers. In the next section, a brief 

overview is presented on what have now become the most successfully used acceptor 

material in OSCs, namely [6, 6] phenyl-C60-butyric acid methyl ester, PCBM. 

3.4.1 [6, 6] phenyl-C61-butyric acid methyl ester, [60] PCBM 

In addition to having high electron affinities, organic materials mostly used as electron 

acceptors typically provide a transport medium for electrons within the active layer of OSCs. 

One of such material, as mentioned earlier is the fullerene, C60 and its derivative, [60] PCBM. 

Figure 3.4 shows the chemical structure of the fullerene (which resembles that of a soccer 

ball, hence also referred to as ‘bucky-ball’), and its derivative.  

(a)  (b)  (c)  

 

Figure 3.4: (a) 3-D illustration of the Buckminsterfullerene (b) Buckminsterfullerene, C60, 

(c) [6, 6]-phenyl butyric acid methyl ester. 
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The Buckminsterfullerene is a molecule consisting of 60 carbon atoms, arranged into twelve 

pentagons and twenty hexagons (Yadav & Kumar, 2008). First reported in 1985 by Kroto and 

co – workers, it is in itself not readily soluble in solvents used for dissolving most conjugated 

polymers. It was successfully employed in the development of the bilayer heterojunction 

together with a p – type semiconducting material (Sariciftci et al, 1993; Roman et al, 1998). 

By adding a functional group to the C60 molecule (see Figure 3.4 (c)), Hummelen et al (1995) 

were able to demonstrate a solubilized derivative of the Buckminsterfullerene, [6, 6] phenyl-

C61-butyric acid methyl ester, [60] PCBM.  

3.4.1.1 Properties of [60] PCBM 

In BHJ OSC, [60] PCBM does not usually absorb photons significantly in visible region of 

the solar spectrum. Rather it mainly facilitates exciton dissociation, charge separation and 

subsequently transport of electrons to the electrode respectively (Tvingstedt et al. 2009). The 

pristine [60] PCBM thin film shows a strong characteristic absorption in the ultraviolet 

region, mostly in the wavelength range of 200 – 400 nm (ed. Choy, 2013). This is a relatively 

low-optical absorption in the solar spectral range.  

Optical microscopy studies (Jo et al. 2009), have shown that within the bulk heterojunction 

blend, [60] PCBM molecules exhibit the unique property of self assembly and crystallization. 

This typically occurs as a function of processing conditions. This phenomenon has been 

demonstrated to occur strongly following thermal annealing (Swinnen et al. 2006). In OSC 

applications, the crystallization of [60] PCBM molecules has significant implications on 

charge carrier mobility (eds. Brabec et al, 2008). Analogues to conjugated polymers, it is 

known that charge carrier mobility also exhibits a dependence on the crystallinity of the 

acceptor molecules. This was demonstrated when the crystal structures of [60] PCBM was 

crystallized from chlorobenzene by Rispen et al. (2003); it was found to have a ball-to-ball 

(i.e., fullerene-fullerene centre-to-centre) distance of ~0.1 nm. This configuration happens to 

be similar to that in C60 as well. The study provided an indication of the sensitivity of charge 

carrier mobility to the slight variation in ball-to-ball distances in view of different organic 

solvents used in crystallizing different [60] PCBM crystal structures. Additionally, it also 

implies that in the BHJ thin film, different structures are precipitated due to different 

solvents. This will ultimately yield varying molecular configurations and nanomorphological 

structures. For an optimised BHJ nanomorphology, one with favourable D/A interfaces, 
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percolating pathways for charge transport, the controlled aggregation and crystallisation of 

acceptor molecules is critical (Chirvase et al. 2004; Jamieson et al. 2012). 

Other properties such as the dielectric constant of [60] PCBM is somewhat similar to that of 

C60, which is essentially at the core of the derivatized fullerene (Mihailetchi et al. 2003). 

Having a value of 3.9, is a relatively high dielectric constant, which has a positive implication 

on charge carrier formation in blends with donor polymers in OSCs. 

3.5 ITO – coated substrates and Buffer layer materials 

OSCs are fabricated starting with the substrate, which is typically a glass slide coated with a 

thin layer of electrically conductive and optically transparent indium tin oxide (ITO) (Krebs, 

2008). ITO – coated substrates also have been and are still extensively employed in a variety 

of applications beside OSCs. Such applications include: organic light emitting diodes 

(OLEDs), and liquid crystal displays (LCDs), due to their good transmittance in the visible 

region of the solar spectrum and low electrical resistivity (Breen et al, 2002; Minami, 2008; 

Tan et al, 2014; Alvarez-Fraga et al, 2015). In a typical OSC application, the ITO – coated 

substrate used, serves as the anode of the device, usually needs to be patterned to avoid short 

circuiting in the completed device. When making connections to the evaporated metal 

electrode (e.g. Al) of the OSC device, there is the risk of short – circuiting the device. 

Patterning of the ITO – coated substrate thus prevents this from happening. This is achieved 

by etching and will be discussed further in the next chapter.  

Other materials also used in the fabrication of OSCs include what are generally referred to as 

electrode interfacial of buffer layer materials (Yin et al, 2016). One of such materials is poly 

(3, 4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT: PSS; which is available in an 

aqueous dispersion (eds. Sun & Sariciftci, 2005). It became prominent when the stability and 

performance of polymer LED was found to improve as a result of using it as a buffer layer 

between ITO and the polymer active layer (Cao et al, 1997; Carter et al, 1997). Figure 3.5 

shows the molecular structure of PEDOT: PSS. In the fabrication of OSCs, a thin transparent 

layer of PEDOT: PSS is formed on a pre-cleaned ITO – coated substrate by spin coating. The 

important properties of PEDOT: PSS thin films in OSC applications are high electrical 

conductivity and a smooth surface (eds. Sun & Sariciftci, 2005). A hole conducting layer, it 

improves the surface roughness of ITO – coated substrate, and stabilizes the electrical contact 

between the anode and the active layer (Krebs, 2008). This stabilization is achieved due to its 
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desirable work function, as it decreases the energy barrier at the interface between the anode 

and the active, and ensuring effective collection of holes (eds. Sun & Sariciftci, 2005). 

 

Figure 3.5: Molecular structure of PEDOT: PSS (eds. Sun & Sariciftci, 2005). 

Since they are hole conducting, the PEDOT: PSS is between the active layer and the anode 

(the hole collecting anode), as such they are also considered as anode interfacial layers. 

Similarly, at the cathode, where electrons are collected, they are materials that can be used as 

buffer or interfacial layers. Examples of these include calcium (Ca) (Li et al, 2007), lithium 

fluoride (LiF) (Wang et al, 2013). Due to their low work function, they similarly provide 

stable electrical contact between the cathode and the active layer. Both Ca and LiF are 

deposited by thermal deposition.  

For single – charge carrier devices (in a diode configuration) used for experimental 

measurement of charge carrier mobilities, it is necessary for the device to conduct only one 

type of charge (holes or electrons) (Coropceanu et al, 2007). To fabricate such a device, the 

active layer is sandwiched between buffer layer materials which will block one type of 

charge. For example, PEDOT: PSS a hole conducting material cannot be employed in an 

electron-only device, thus it is replaced with another material. Caesium carbonate (Cs2CO3) is 

a good replacement material (Shrotriya et al, 2006); as its work function low compared to 

PEDOT: PSS, thus increasing the energy barrier, which will block the injection of holes. This 

will be discussed later in chapter 5. 
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3.6 Summary 

In this chapter, a brief overview of the constituent materials for an OSC device was 

presented. Particularly with respect to the work of this thesis, only the materials used in 

fabricating OSCs investigated here, were considered in detail. P3HT and PCBM are available 

from a number of suppliers. They are weighed and dissolved in solvents such as 

dichlorobenzene or chlorobenzene in the required ratio to form a blend solution. The active 

layer of the OSC is applied to the substrate by spin coating, which will be discussed in detail 

in the next chapter. Important material properties were highlighted as they pertain to their 

application in OSCs. One of which is the compatibility of donor and acceptor materials; the 

difference between the LUMO levels of the two materials should be sufficient to overcome 

the exciton binding energy. This is to ensure that exciton created is subsequently dissociated 

successfully. The importance of other properties such as solubility of the materials in 

solvents, charge carrier mobility, to OSCs, was also highlighted. The role and importance of 

OSC components other than the active layer composite materials such as ITO – coated 

substrates and buffer layer materials were discussed. 
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Chapter 4 

Methods and Background of 

Experimental Approach  

“... The scientific method itself would not have led anywhere; it would not even have been born 

without a passionate striving for clear understanding.”  

― Albert Einstein 

 

4.1 Introduction 

Details of materials and methods, including the respective instrumentations employed for this 

thesis is presented in this chapter. In addition, discussions on the background of the 

experimental approaches taken are also outlined. These include measurement principles 

underlying thin film characterisation techniques employed. Table 4.1 summarises the list of 

materials used in this thesis. 

Table 4.1: Summary of materials used in this work 

Active layer materials 

Poly(3-hexylthiophene), P3HT (96.6% RR), and acceptor 

material, [6, 6] phenyl-C61-butyric methyl ester, PC61BM 

Buffer layer materials 

Poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) 

(PEDOT: PSS), Calcium (Ca), Lithium fluoride (LiF), 

Caesium carbonate (CsCO3) 

Electrode contact material 
Aluminium, Al (cathode), Indium tin oxide, ITO (anode), Gold 

(Au) 

Substrates ITO – coated, and quartz glass substrates  

Solvents Dichlorobenzene, chlorobenzene, acetone, isopropyl 
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4.2 Thin Film Deposition and Device Fabrication 

Thin films of materials can be obtained by a number of techniques. Some of these include, 

spin coating, doctor blading, spray coating, printing, thermal deposition, etc. (Krebs, 2009). 

Depending on which technique is employed, thin films of materials are either fabricated from 

their solutions or their solid forms respectively. Spin coating and thermal deposition are the 

two techniques used in this thesis. Prior to thin film deposition and device fabrication, all 

substrates (ITO – coated or quartz) were first prepared according to the procedures outlined 

in the following sections. 

4.2.1 Quartz glass substrates  

All the quartz glass substrates used in this work were cleaned in three sequential steps, using 

an ultrasonic bath. Three different solvents are used in each step, namely; deionised water, 

acetone, and isopropyl alcohol (IPA). First the substrates were immersed in a beaker of 

deionised water and then placed in an ultrasonic bath for ten minutes. The same procedure 

was repeated, this time with acetone and subsequently IPA. The substrates were subsequently 

dried, kept in a Petri dish, and transferred to nitrogen – filled glove box (< 1 ppm of O2 and 

H2O).  

Quartz glass substrates here are mainly used for fabricating thin films of a pristine P3HT, 

PCBM or their blend for absorption, Raman, photoluminescence spectroscopy, AFM, and x-

ray diffraction studies. However, where they are used for fabricating devices with a diode 

configuration, metal/thin film/metal, the cleaned quartz glass was first coated with a thin film 

of metal electrode (Al). 

4.2.2 ITO-coated glass substrates  

The procedure for cleaning ITO-coated substrate is the same as that outlined in section 4.2.1. 

Before cleaning however, the substrates were pre-patterned. Patterning of the substrates by 

etching was important in order to avoid short circuits when making connections to the 

completed OSC device. By etching, a region of the ITO-coated substrate is stripped of ITO 

coating. Etching methods that can be utilized to pattern ITO – coated substrates include 

sputter etching, and acid etching. Sputter etching process involves bombarding the ITO – 

coated substrate with argon ions, resulting in a controlled removal of the ITO coating. In this 

thesis, all ITO – coated substrates were patterned using the acid etching process. The process 

involves the use of an acid solution (concentrated hydrochloric acid, HCL) to strip away the 
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ITO coating from the substrate. First the portion on the substrate that does not require etching 

is taped over with a masking tape. The substrate is then immersed in a solution of HCl in a 

beaker, and left for 20 minutes. Following successful etching, the substrates (without the 

masking tape) are subsequently cleaned, following the procedure described in section 4.2.1. 

Figure 4.1 schematically summarises the procedure from substrate patterning to fabrication of 

the completed organic solar cell device. 

  

Figure 4.1: (a) A flow diagram illustrating the procedure from ITO – coated patterning, 

through depositing the buffer layer (PEDOT: PSS) and active layer to the completed organic 

solar cell device (b) 3-dimensional view of a completed organic solar cell. 
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All thin film depositions, were performed in nitrogen – filled glovebox. The vacuum 

deposition chamber wherein electrode contacts were deposited is housed in the glovebox. 

Thus samples are not exposed to the ambient at any time during the device fabricating 

process. The device’s active area is defined by a shadow mask, and the overlap of the top and 

back electrodes (see Figure 4.1).  

4.2.3 Spin casting method 

Spin casting is a widely used method for depositing thin films from solution. This is 

performed by employing a spin coater. In this thesis, the KW – 4A spin coater (Chemat 

Technologies Inc) was used. The process of spin casting typically involves dispensing a 

solution on to the surface of the substrate. This substrate, firmly fixed on the spin coater’s 

stage, will be subsequently spun at a speed and duration, set by an operator. Due to the effect 

of the centripetal force associated with the spinning action, the solution will evenly spread 

over the surface of the substrate.  Figure 4.2 depicts a summary of the spin casting procedure, 

including an illustrative example of a typical spin curve. 

 

 

Figure 4.2: (a) Dispensing the solution on to the substrate, (b) Solution thin out, as substrate 

spins, (c) Film formed at end of spin, residual solvent evaporates, (d) Typical spin curve for a 

P3HT: PCBM blend solution of 2 wt %. 
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At the end of the spin, the solution would have undergone a shear thinning out. This is 

accompanied with the evaporation of the solvent, leaving an almost homogeneous film on the 

substrate. It should be noted that the thickness of the deposited film varies with spin speeds 

and concentration of solution. It has been shown that the film thickness is proportional to the 

rotational speed (Norman et al, 2005), according to relation d  k  .  d is film thickness,   is 

the angular velocity, and k and α, are empirical constants, which are related to the physical 

properties of the solution (e.g. viscosity) and substrate (e.g. surface energy). In the case 

where low boiling solvents, such as chlorobenzene is used, the resulting thin film is usually 

dried at the end of the spinning process. On the other hand, depending on spin duration, the 

films may still be wet in the case of high boiling point solvents (e.g. 1, 2 – dichlorobenzene). 

4.2.4 Thermal Deposition method 

Thermal deposition is also another commonly used method for thin film deposition in the 

field of organic solar cells. For the deposition of metal electrodes, buffer layers (such as Ca, 

LiF), the Auto 500 vacuum deposition system (HHV Ltd) was employed in this work. Figure 

4.3 is a schematic illustration of a vacuum deposition system for thin film fabrication 

employing the thermal deposition method. 

 

Figure 4.3: (a) A schematic illustration of the thermal evaporation method of thin film 

deposition, (b) Pictures of evaporation sources; a tungsten filament and a molybdenum boat. 

The process of thermal deposition requires that the source material to be deposited is heated 

to high temperatures under vacuum (~10
-6

 mbar). Consequently it evaporates, with its vapour 

transported to and deposited on the surface of the substrate. On the substrate surface, located 

Shadow mask

Vacuum 

pump

Power

supply

Vacuum chamber

Tungsten filament/

molybdenum boat

Al wires

Metal vapour

Substrate holder

Substrate

(a) 

(b) 



 

54 
 

at a distance from the source material, the evaporant vapour condenses, forming a thin film. 

To evaporate Al and Ca, tungsten filament was used as the evaporation source, whilst 

molybdenum boats were employed for depositing LiF and Au. To ensure that deposition is 

generally consistent, producing uniform films, it was imperative that the deposition process 

was performed at base pressures aforementioned (i.e. ~ 10
-6

 mbar or less).  

4.3 Thin Film property characterisation methods 

The methods used in studying the spectroscopic, structural and electrical properties of thin 

films fabricated in this thesis are presented in this section. All spectroscopy characterisation 

techniques are on the basis of measuring processes associated with the interaction of 

electromagnetic radiation with the respective thin film material (Yacobi, 2002). These 

processes include (not limited to) ultraviolet-visible (UV-Vis) absorption, reflection, 

transmission, scattering (Raman) or emission (Photoluminescence) of light of a particular 

wavelength range by the material medium. These processes are summarised illustratively in 

Figure 4.4. 

 

Figure 4.4: Schematic representation of the various optical processes as a result of 

interaction between electromagnetic radiation and material medium. 

Structural methods involve measurements which provide useful information regarding the 

orientation of nanodomains of composites within and on surfaces of thin films. From these 

measurements, it is possible to elucidate the impact of processing parameters on the nano – 

morphology of pristine, and BHJ thin films. In this work, X-ray diffraction (XRD) and 

atomic force microscopy (AFM) were used for the structural characterisation of thin films. 

These methods have been demonstrated to be very useful in thin film characterisation in 

organic solar cells (Erb et al. 2006; Shrotriya et al. 2006; Nguyen et al. 2007). In the 
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following sections, the aforementioned methods as employed in this work shall be presented 

in detail. 

4.3.1 UV-Vis absorption spectra measurement 

UV-Vis absorption spectra measurements of thin films have been extensively used as a 

spectroscopic technique for the characterisation of materials and thin films for OSC 

applications (Oklobia & Shafai, 2013; Erb et al. 2006; Shrotriya et al. 2005). The measured 

UV-Vis spectrum of thin films can also be used to extract significant physical information on 

the composite material in the film. This information includes the optical and electronic 

properties of the thin film material(s). The optical band gap is a good example of an 

electronic property that can be extracted from thin film absorption spectra. This is because 

the absorption of light of particular wavelength range by materials is attributed to electronic 

transitions (Zhong, 200 ). According to Beer’s law, the characteristic absorption, A is a 

function of incident light, I0 and transmitted light, I, intensities, as expressed in Equation 4.1. 

                                                  
I 
I
                                                                (4.1) 

,where T is the transmittance (I I0 ). The plot of A as a function of light wavelength represents 

the absorption spectrum. Varian Cary 50 UV – Vis spectrophotometer was used to obtain all 

the absorption spectra of thin films in this thesis. This mainly consists of a light source, and 

detector optics. Figure 4.5 is a schematic illustration of the key components and set – up of 

the instrument. 

 

Figure 4.5: Schematic illustration of the main instrumentation components of a typical UV-

Vis spectrophotometer. 
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Additionally UV-Vis absorption spectra measurements can also probe the nanoscale 

structural properties in thin films, such as polymer conjugation and interchain interaction (Li 

et al, 2006). As well as being a spectroscopic technique, it can also to an extent be applied for 

probing the nature of phase separations in composite thin films (Oklobia & Shafai, 2013). 

4.3.2 Raman and Photoluminescence spectra measurement 

The other spectroscopic techniques for thin film characterisation are Raman and 

Photoluminescence (PL) spectroscopy. These methods are effective and widely used as non-

destructive techniques for the characterisation of thin films and nanoscale structures in the 

field of OSCs (Guo et al. 2008; Campoy-Quiles et al. 2008, Nalwa et al. 2011). Raman 

spectroscopy is discussed first, followed by PL spectra measurements. 

The principle of operation of Raman spectroscopy is based on the measurement of the shift in 

frequency (or energy) of the scattered light following its incidence on a sample (thin film) 

under investigation (Yacobi, 2002; Ferraro et al. 2003). As illustrated in Figure 4.4, scattering 

is one of the processes that results from the interaction of electromagnetic waves (usually 

monochromatic light) with the molecules of the sample material. The frequency of most of 

the scattered light is similar to that of the incident light. But a fraction of the scattered light is 

at a different frequency. This shift in frequency gives rise to the effect referred to as Raman 

scattering (Mayo et al. 2003). The difference in frequency between the incident and scattered 

light is termed Raman shift. This corresponds to the energy of vibration of the scattering 

molecule (Yacobi, 2002). The Raman spectra from a sample under investigation are 

commonly regarded as both unique spectral and molecular “fingerprints”. A number of 

significant information can be obtained from the Raman spectra, which are both qualitative 

and quantitative in nature. In examining composite materials commonly used in organic 

electronics, for example blends of polymers/polymers or polymers/fullerenes for light 

emitting diodes (LEDs) or solar cells, their identification and characterisation are important. 

The qualitative analysis of Raman spectra can also be used to map composite materials. The 

intensities of peaks (or bands) observed in P3HT thin films, for example, have been shown to 

correlate with the concentrations of the functional groups yielding them, therefore allowing 

for quantitative analysis (Socrates, 2001; Klimov et al, 2006). Probing the nature of 

conformation of nanodomains of composite materials within thin films can also be achieved 

using Raman spectroscopy. Such knowledge is useful for understanding the impact of thin 

film nanodomains on the performance of OSCs. Raman spectra analysis of thin films have 
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been reported, correlating the full width at half maximum (FWHM) of Raman peaks with 

polymer self – organisation and crystallinity respectively (Nalwa et al. 2011). 

Raman spectra of thin films studied in this thesis were all obtained using the InVia Raman 

microscope (Renishaw Inc.). The instrument consists of an optical microscope coupled to a 

Raman system. Thin film samples are illuminated through the microscope coupled with a 

monochromator. The instrument set – up is illustrated in Figure 4.6. It should be noted that 

one of the advantages of this set – up is that it allows for obtaining spatially resolved Raman 

spectra with about a 1 µm resolution (Yacobi, 200). Laser with an excitation wavelength of 

514 nm was employed. 

 

Figure 4.6: Principle of a conventional micro Raman spectrometer (Adapted from Gouadec 

& Colomban, 2007). 

PL spectroscopy on the other hand can also be a useful technique. It is often used to 

compliment Raman and UV – Vis spectra measurements. Photoluminescence is the 

spontaneous emission of light following the photo excitation of a material. Analysis of PL 

spectra involves comparing the emission counts from a pristine polymer thin film and that 

from a thin film comprising a blend of the pristine and a small molecule for example.  An 

observed quenching of the spectra in the case of the blend of donor/acceptor materials is 

indicative of charge transfer from polymer to the small molecule. For an efficient OSC, 

complete PL quenching is ideal. In addition to probing charge transfer dynamics in blend thin 

film, the method can be used to evaluate how well composite materials in thin films are 

intermixed (phase separation) (Chirvase et al. 2003; Tsoi et al. 2011). The typical 

experimental set-up for PL measurements include a laser with a specified wavelength 
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(excitation wavelength), which is used to excite the sample surface. The sample emits its 

characteristic photoluminescence, which, through a lens is measured by a spectrometer. The 

InVia Raman microscope used for obtaining Raman spectra was also used in PL mode to 

measure all PL spectra of thin films studied in this work. In the PL mode however, a different 

laser power density is employed and sample exposure times are longer in contrast to Raman 

spectra measurements. In addition to charge transfer dynamics, PL spectroscopy can also 

provide important information relating to recombination processes in active layer of OSCs 

(Campoy-quiles et al. 2008; Tvingstedt et al. 2009).  Figure 4.7 shows a typical experimental 

set-up for PL spectrum measurements. 

 

Figure 4.7: A typical experimental set-up for PL spectrum measurements. 

4.3.3 Atomic Force Microscopy 

Active layer/cathode interfaces play a significant role in influencing the electrical properties 

of BHJ solar cells (Li et al. 2005). For this reason, it is significant to probe the surface 

topographies of thin films which form interfaces with the cathode. Scanning probe 

microscopy (SPM) is generally the technique employed for imaging thin film surfaces. An 

example of SPM is the atomic force microscopy (AFM), which is capable of probing surface 

topographies down to the nanometre scale. AFM have been demonstrated to be invaluable in 

the investigation of thin film surfaces and how they correlate with PV performances of 

polymer – based solar cells respectively (Li et al. 2007; Ma et al. 2005; Karagiannidis et al. 

2011). In principle, the surface probing technique images the topography and surface 

composition by observing changes in the dynamic properties of a vibrating cantilevered tip 

interacting with the surface (García & Pérez, 2002). This interaction is characterised by 

interatomic forces between the tip and sample surface (Petty, 2008). Figure 4.8 shows the 
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basic principle of an AFM. A schematic illustration of three distance – dependent regimes 

describing the interaction between oscillating cantilever/tip and a sample surface (Haugstad 

& Jones, 1999) is also included in Figure 4.8.  

 

Figure 4.8: (a) AFM cantilever/tip interaction with sample surface, (b) Schematic 

representation of three distance-dependent regimes of oscillating cantilever/tip and a sample 

surface interaction. Dashed horizontal line segments indicate distance intervals between tip 

and sample surface at three mean distances (vertical dashed lines). These are labelled (1) 

intermittent contact (repulsion dominant), (2) non – contact (attraction dominant), and (3) 

free oscillation (no interaction) (Adapted from Haugstad & Jones, 1999). 

The AFM essentially consists of a tip attached to a cantilever (AFM probe), which can 

operate in two modes, namely: contact, and tapping mode. All the AFM images presented in 

this work were obtained in the tapping mode (TM), using an Agilent 5500 surface probing 

microscope AFM. Tapping mode was employed because AFM imaging in contact mode can 

modify or damage most organic samples, as they are soft. In the tapping mode the cantilever 

is oscillated at a frequency in the range of 100-400 kHz by a piezoelectric transducer, with 

amplitude of ~20 nm. In this mode, the tip is just touching (tapping) the surface of the 

sample, which essentially acts a damper. The operating principle of the AFM in the tapping 

mode uses a feedback system to control and maintain constant amplitude of the cantilever. A 

change in the oscillation of the cantilever as a result of its interaction with the sample surface 

is sensed by a four – position – sensitive photodiode. The photodiode monitors this change by 

means of a reflected laser beam from the back of the cantilever head. The resulting signal 

from the detector is the ‘Deflection’ measured in volts. The difference between the 
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‘Deflection’ and a user-specified set point is referred to as the “error signal”. This “error 

signal” is fed back via the feedback electronics to correct the difference. Figure 4.9 shows a 

schematic illustration of the principle of operation of the AFM. 

 

 

Figure 4.9: (a) A schematic representation of an AFM’s principle of operation in tapping 

mode, (b) free amplitude before contact (c) and amplitude damping arising from tip-surface 

interaction. 

The topographic variation of a sample surface is mapped from the analysis of the feedback 

signal. In addition to topography (height) images, the phase image of the sample can also be 

obtained. This is particularly useful for differentiating between composite materials in a thin 

film sample. The phase image in AFM is obtained from monitoring the phase lag of the 

cantilever oscillation due to amplitude damping, relative to the piezoelectric transducer signal 

(Haugstad, 2012). Since the measured phase lag is sensitive to varying material properties 

such as adhesion and viscoelasticity, it can be used to perform a compositional mapping of a 

sample. Figure 4.10 illustrates this principle. 
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Figure 4.10: Schematic diagram illustrating the principle of phase imaging. 

4.3.4 X-ray Diffraction (XRD) measurement 

The performance of organic electronic materials is closely related to their thin film 

morphology and molecular conformation (DeLongchamp et al. 2011). For example, a highly 

improved crystalline polymer implies a regular structural order. This means an improved 

creation of regular overlap of π orbitals (ed. Klauk, 20 2). These overlaps of π orbitals are 

involved in the transport of charges (holes and electrons). Therefore their regularity is 

desirable as it ensures efficient charge transport throughout the materials (as previously 

discussed in Chapter 3). To characterise details of the crystallographic structure and 

microstructure in thin films, XRD is a widely used method. In thin films nanotechnologies, 

particularly for BHJ OSC applications, XRD methods have been extensively employed for 

structural characterisations (Li et al. 2007; Guo et al. 2008). In contrast to AFM, the XRD 

technique has a unique advantage of probing the molecular or crystalline structures of 

materials (e.g., semiconducting polymers) in a thin film. The AFM surface probing technique 

is mechanical and confined only to the surface of the material, whilst with an XRD; further 

insight can be gained into the structure and orientation of molecules in thin film composites.  

In XRD, a collimated X-ray beam directed from a source is incident on the plane of a sample 

such as a thin film at an angle of θ, which is reflected specularly (i.e., angle of reflected beam 

is equal to the angle of incidence). In addition, the incident beam also undergoes diffraction 

by the crystalline or microcrystalline phases within the sample. This condition occurs 

according to Bragg’s law (Cutility,   56) 

                                                   n  2d sin θ                                                                         (4.2) 

,where   is the incident X-ray wavelength, d is the interplanar spacing (i.e., spacing between 

layers), θ the angle of incidence, and the integer n is the interference order (1, 2, 3, ...). The 

intensity of the measured X-rays is a function of the diffraction angle 2θ and 
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crystalline/microcrystalline phase orientation (Guozhong, 2004). For polymers such as P3HT, 

thin film XRD has shown that there are three possible orientations: a- (100), b- (010) and c- 

(001) axis orientations, with their respective d-spacing (Erb et al. 2005; Kim et al. 2006). 

Figure 4.11 shows a representation of the three possible orientations found in P3HT thin film. 

 

Figure 4.11: Possible crystalline orientations of P3HT crystallites with respect to the 

substrate: (a) a-axis (100), due to lamella layer structure, i.e., stacks of planar thiophene 

chains uniformly spaced by the alkyl side chains (b) b-axis (0 0), due to π – π interchain 

stacking, i.e., with spacing independent of alkyl side-chain length (c) c-axis (001), due to 

thiophene chains oriented normal to the substrate, and with alkyl side chain parallel to the 

substrate (Adapted from Adapted from Erb et al. 2005; Sirringhaus et al. 1999; Chen et al. 

1995). 

Figure 4.12 is a schematic representation of the geometry of a thin film XRD set up, where k 

and k’ are the incident and diffracted wave vectors. 

 

Figure 4.12: Thin film XRD geometry. 

In addition, the sizes, L, of crystals or grains can be estimated using the Scherrer’s relation 

(Scherrer, 1918). 
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,where  2  is the full width at half maximum (FWHM) of the diffraction peak. All XRD 

spectra in this work were measured using D8 ADVANCE with DAVINCI (BRUKER, 

Germany), with LYNEYE detector (2 theta = 3 – 40°). The instrument was operated at a 

generating power of 1600 W (40kV and 40 mA tube voltage and current).  

4.3.5 Thin film thickness measurement 

In characterising thin films for organic solar cell application, the knowledge of the thickness 

of such films is important. The thicknesses of thin films in this work were measured using 

two types of techniques; stylus surface Profilometry and microbalance quartz crystal 

monitoring techniques. 

4.3.5.1 Stylus Surface Profilometry technique 

The DektakXT stylus surface profiler (BRUKER, Germany) is used in measuring the 

thicknesses of thin film samples. The instrument simply measures the thickness of thin films 

by a stylus tip in contact with the sample film surface. The stylus tip-surface contact force is 

as low as 30 nN, and this is required to access a film edge as it is traced across the sample 

surface. Figure 4.13 is a screen shot of a step height profile obtained using the DektakXT. As 

the tip makes its motion across the sample surface, a trace is collected, and converted by the 

analogue/digital converter electronics to a step profile shown in the Figure. 

 

Figure 4.13: A measured step height profile of a thin film based on polymer/fullerene blend 

(Inset: schematic illustration of stylus tip motion). 

The DektakXT surface profiler is capable of providing a step height repeatability of < 0.6 nm. 
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4.3.5.2 Microbalance Quartz Crystal monitoring 

For thin films fabricated via spin coating, the surface profilometer can be easily employed to 

determine the film thickness. However for physical vapour-deposited thin films, particularly 

for systems under vacuum conditions, it is necessary to monitor the growth of films on the 

substrate during deposition. By monitoring the growth of films on the substrate, the desired 

thickness can be readily obtained. To achieve this, a microbalance quartz crystal monitor, 

IL150 thickness monitor (Intellemetrics) was used to control the thickness of thermally 

deposited thin films. It is useful for in situ monitoring of deposition rates and film thickness, 

during deposition under vacuum. In principle, the quartz crystal monitor operates by setting a 

quartz crystal oscillator (a homogeneous elastic plate) into mechanical vibration (Milton, 

2001). The resonant frequency of the quartz crystal oscillator is a function of its dimension, 

elastic modulus and density. The crystal’s properties vary as a result of the presence of 

additional mass in the form of deposited material during the deposition process (Milton, 

2001). The change in the resonant frequency noted to vary linearly with the change in mass 

of deposited thin film.  Using both the IL150 thickness monitor and the DektakXT, 

deposition rates were calibrated between 0.1-0.2Å/s for ultra thin films (e.g., LiF as buffer 

layers) and 2-10Å/s for the other film deposition (i.e., aluminium or gold for electrode 

contacts). 

4.4 Electrical Characterisation Methods 

The main electrical characterisation methods performed in this work include direct current 

(DC) current – voltage (I – V), capacitance – voltage (C – V), and alternating voltage (AC) 

impedance measurements. Details of these measurements are discussed in the following 

sections, highlighting the respective parameters that are readily studied. 

4.4.1 DC Current – voltage (I–V) measurements 

I–V measurements are the most commonly used method for characterising the photovoltaic 

performance of OSCs (ed. Krebs, 2008). From such method, key photovoltaic parameters can 

be evaluated. These include; the device’s short circuit current density, JSC, open circuit 

voltage, VOC, current density and voltage at maximum power point (JM and VM). The power 

conversion efficiency is subsequently determined from Equation 2.21.  

All I–V characteristics of fabricated devices in this work were obtained using a Keithley 2400 

source measure unit. For photocurrent measurements, a 150 – W Xenon lamp solar simulator 
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(L.O.T – Oriel) was used to provide illumination (AM 1.5G, 100 mW/cm
2
). The intensity of 

the solar simulator was determined and calibrated using a silicon (Si) reference solar cell 

(Newport Spectra Physics). Fabricated OSC devices were mounted in a custom built device 

holder shown in Figure 4.14. 

 

Figure 4.14: A picture of a custom built device holder for measurement of I–V 

characteristics. 

Other important device parameters such as the series and shunt resistances are also 

determined from the obtained I–V characteristics (under illumination and in the dark). The 

calculated series resistances include the contact and bulk resistance. The series resistance can 

be extracted from the slope of I–V curve at higher voltages (Chirvase et al. 2004). From the 

measured current density – voltage curves of devices under light; it is also possible to obtain 

values of the series resistances from a linear fit around the point where current density is zero 

(Aernouts et al. 2002). To extract values of shunt resistances, similar fittings (as in the case 

for series resistance) were performed at approximately V = 0V. These are illustrated in figure 

4.15. 

Similarly the series resistance in the dark were extracted from I–V characteristics measured in 

the dark. As previously discussed, typically the current – voltage characteristics of solar cells 

can be described by Equation 2.22. In the dark, JSC = 0 and it is assumed that shunt resistance 

is sufficiently high such that Equation 2.22 can be expressed as: 

                                   S  exp  
q    –   S 
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                                                        (4.5) 
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Expressing voltage, V (expressed in volts) as a function of current, Equation 4.5 can be 

expressed as follows 

                                              
nkB 

q
ln  

 

 S
      S                                                               (4.6) 

Differentiating V with respect to current density, J, Equation 4.6 can be expressed as 
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In the region of high current, the total current is higher than the reverse saturation current 

(i.e., J >> JS). Equation 4.7 then becomes 

                                                 
d 

d 
   

nkB 

q
   S                                                                     (4.8) 

From Equation 4.8, it follows that  
d 

d 
 is linearly dependent on J. As such the series 

resistance can be easily extracted from the slope by a linear fit in the high current region. A 

typical J –  
d 

d 
 characteristic plot is shown in Figure 4.15 (a). RS and RSH are both expressed 

in Ohms - square centimetre (Ωcm
2
). 

 

Figure 4.15: (a) J –  
d 

d 
 characteristic plot of a typical OSC. (b) How to determine series and 

shunt resistances from the I–V curve under illumination. 
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4.4.1.1 Charge carrier mobility measurements 

In polymer/fullerene BHJ solar cells an important factor in determining the efficiency of 

charge collection is the carrier transport in the active layer (Shrotriya et al. 2006). As 

previously discussed in section 1.3.3 and 2.6.2, improvement of transport properties implies 

increased crystalline domains, and optimised percolation pathways in the active layer. This 

will particularly have a positive impact on minimising losses due to bimolecular 

recombination. Techniques employed for studying transport properties of materials include; 

Time of Flight (TOF) (Li et al. 2005; Kokil et al. 2012), Photo induced charge extraction by 

linearly increasing voltage (Photo-CELIV) (Sariciftci et al. 2005), and space charge limited 

current (SCLC) model fitting (Shrotriya et al. 2006; Mihailetchi et al. 2006; Kim et al. 2011). 

In this work, charge carrier mobilities were determined by fitting the current density – 

voltage characteristics (in the dark) to the SCLC model (see Equation 2.17). This method 

requires that devices are single charge carrier devices (either electrons or holes). As such hole 

– or electron – only devices are fabricated in a simple diode structure (e.g., anode/organic 

layer/cathode). Figure 4.16 is an illustration of the device architecture of single charge carrier 

devices from which charge carrier mobilities were determined. 

 

Figure 4.16: Device architecture of electron – only (a), and hole – only (b) devices, used for 

charge carrier mobility measurements. 

To make electron – only devices, caesium carbonate (Cs2CO3) layer was spin casted on ITO – 

coated substrate instead of PEDOT: PSS. Due to its work function, Cs2CO3 serves as a hole 

blocking layer. In the case of hole – only devices, the Al and Ca back electrodes in an OSC 

device is replaced with Au (an electron blocking contact). The electronic structure of these 

single charge carrier devices in terms of their energy bands will be discussed further in 

Chapter 5. 
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4.4.2 Capacitance – Voltage (C – V) Measurements 

C –V measurement is a useful technique that can be used to further provide interpretation of 

the fundamental transport and recombination mechanisms in OSC devices (Garcia et al. 

2008). In addition, other valuable information on metal/organic interface properties can be 

gained from C–V measurements. They have been employed in semiconductor device analysis 

involving diode structures such as: p-n junctions, Schottky barrier or metal – insulator – 

semiconductor diodes. Such analysis includes the determination of charge distributions 

within the depletion region of the semiconductor (Yacobi, 2002). It is known that the width 

of the depletion region varies with applied voltage (Garcia et al. 2008). Hence measuring 

capacitance as a function of applied voltage is useful for determining doping concentration 

levels in semiconductors. This relationship is expressed in the Mott – Schottky relation 

(Equation 2.15), previously discussed in section 2.3. In this work, values of built – in 

potential (Vbi) in fabricated devices were numerically extracted from the fit to C
-2

 – V plots. 

Impurity concentration (NA) can be measured from the slope of the straight line fit. Figure 

4.17 is a typical C
-2

 – V plot, showing the intercept (Vbi) of a straight line fit. 

 

Figure 4.17: A typical plot of the dependence of C
-2

 on applied voltage. 

All C–V measurements in this in work were performed using a Hewlett Packard 4284A 

Precision LCR meter (impedance analyser). The measurements were obtained at a fixed 

frequency of 1 kHz, with AC oscillating amplitude of 50 mV. 

4.4.3 AC Impedance spectroscopy measurements 

AC impedance spectroscopy is a non-destructive technique commonly employed for the 

analysis of a wide range of electrical devices. Over recent years, it has become an established 

method for determining charge carrier lifetimes in dye sensitized solar cells (DSSC) (Longo 
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et al. 2002; Wang et al. 2005; Bisquert et al. 2009). In addition to previously mentioned 

methods, impedance spectroscopy can also be useful in providing insights to improving the 

performance of organic electronic devices (Jaiswal et al. 2006; Hsiao et al. 2008). Although 

not widespread, it is used for probing the electric properties of interfaces and the bulk of 

devices, which cannot be observed by DC measurement methods alone (Garcia-Belmonte et 

al. 2008; Kuwabara et al. 2009; Garcia-Belmonte et al. 2010; Zhang et al. 2013). Numerous 

reports have shown that impedance spectroscopy measurements can also be applied reliably 

to OSCs for their characterisation. In principle, impedance spectroscopy measurements 

involves applying an electrical stimuli (usually an ac signal), to an electronic material via 

electrodes and observe the response accordingly (Barsoukov & Macdonald, 2005). Its 

working principle is based on the variation of a measured alternating current as a function of 

frequency. In principle, the impedance (Z) is the overall opposition a circuit offers to the flow 

of an alternating current at a given frequency (Petty, 2008). It is made up of two components; 

a real and an imaginary component, expressed as: 

                                                      s j                                                                          (4.9) 

,where Rs, is the series resistance in Ohms, X, is the reactance (j denoting the imaginary 

component of the impedance) in Ohms,     is the impedance magnitude in Ohms, and    the 

phase angle in degrees or radians. Figure 4.18 is an illustration of a typical impedance plot (in 

vector representation) on an Argand diagram, and the instrumentation set – up. 

 

Figure 4.18: (a) Vector representation of impedance, (b) Instrumentation set – up for 

impedance spectroscopy measurement. 

On the LCR meter, the measurements were performed in the frequency range of 20 Hz to 1 

MHz, with an oscillation voltage between 20 – 50 mV. The parameters obtained are   , the 

impedance magnitude in Ohms, and    the phase angle in degrees. The calculated 
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parameters Im Z, and Re Z are subsequently presented in a Cole – Cole plot. Real 

impedances, Re Z (Ω) =        , and Imaginary impedances, –Im Z (Ω) =         . 

Figure 4.19 shows an example of a typical Cole – Cole plot for impedance data obtained in a 

frequency range of 20 Hz – 1MHz. 

Impedance spectra and C–V data were all acquired by using a LABVIEW® program, used to 

control the LCR meter via GPIB interface. 

 

Figure 4.19: A typical Cole – Cole plot of an impedance spectroscopy data. 

4.4.4 Cyclic Voltammetery Measurements 

Cyclic Voltammetery (CV) measurements were performed in this work to determine the 

energy levels corresponding to the HOMO and LUMO levels of P3HT and PCBM. It has 

been previously used to provide direct information on the electrochemical p – and n – doping 

potentials (ɸp and ɸn) of organic materials (Li et al. 1999). ɸp and ɸn are also regarded as the 

reduction and oxidation potentials of the material. The CV measurement is based on an 

electrochemical process. This encompasses both charge – transfer and transport processes 

between an electrode and the material under investigation. It is therefore a suitable method 

for studying electroactive materials (Kissinger & Heineman, 1983). Since most organic 

materials are recognised as electroactive, CV measurements have been shown to be an 

effective approach in evaluating their energy levels (Holt et al. 2005; Dissanayake et al. 2008; 

Hou et al. 2009; Yoo et al. 2011). In electrochemical terms, p-doping corresponds to the 

removal of electrons from the HOMO energy level. On the other hand n-doping corresponds 

to the addition of electrons to the LUMO energy level of the organic material (Misra et al. 
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2005). The HOMO and LUMO energy levels of the organic materials were evaluated from 

the onset potential of the p-doping (
ons

p ), and the onset potential of the n-doping (
ons

n ), 

respectively, according to the method reported by Li et al. (1999). The potential difference, 

i.e., ∆ = 
ons

p – 
ons

n , can be used to estimate the electrochemical energy gap of the material. 

According to Leeuw et al. (1997), the HOMO and LUMO energy levels (in electron volts, 

eV), can be calculated using the formulae: 

                                        )4.4(  ons

pHOMO eE                                                               (4.10a) 

                                         )4.4(  ons

nLUMO eE                                                               (4.10b) 

All electrode potential values are vs. saturated calomel electrode (SCE) a reference electrode. 

This is the case, since CV measurement involves controlling the potential at a working 

electrode with respect to a reference electrode. Controlling the potential at a working 

electrode involves performing forward and reverse voltage scans. The value 4.4 in Equation 

4.10 is a scale factor in volts relating SCE to vacuum level (Brédas et al. 1983). Figure 4.20 is 

an illustration of a typical electrochemistry setup, consisting of three electrodes, in an 

electrolytic medium. 

 

Figure 4.20: Schematic of the electrochemistry experiment set – up: working electrode (1), 

reference electrode (2), counter electrode (3), and electrolyte (4). 

In this work, silver (Ag) wire was employed as a quasi – reference electrode. Adopting a 

similar method as Leeuw et al. (1999), Ag was calibrated to be – 0.01 vs. SCE. Therefore 

Equation 4.10 (a) and (b) can be expressed as follows: 

                                         )39.4(  ons

pHOMO eE                                                            (4.11a) 

                                        )39.4(  ons

nLUMO eE                                                             (4.11b) 

A platinum wire was used as the counter electrode, and polymer or fullerene/ITO as the 

working electrode. The electrolyte used in this work consisted of salts of lithium 
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trifluormethanesulfonate (Li trifilate), tetrabutylammonium tetrafluoroborate  (TBA BF4), in 

acetonitrile at 0.01M. 

All CV measurements were performed on an Agilent 5500 AFM, equipped with an 

electrochemistry work station. The measurements were obtained at a scan rate of 50 mV/s. 

Also included in the Agilent 5500 AFM is a potentiostat and a galvanostat. Both are for the 

control of voltage and measurement of the corresponding current arising from the electron 

transfer processes. The set – up of the Agilent 5500 AFM electrochemistry work station is 

shown in Figure 4.21.  

 

Figure 4.21: Agilent 5500 AFM electrochemistry workstation set – up. 

4.5 Locations of Measurement Instrumentations  

D8 ADVANCE XRD is located at the X-Ray Diffraction laboratory (R026). InVia Raman 

microscope at Forensic and Criminalistic Methods laboratory (R328). The rest of 

instrumentations used for this work are located at the Thin Film Technology Laboratory 

(R117). All the laboratories are at the Science Centre, Staffordshire University, where this 

work was carried out. 

4.6 Summary 

The various experimental methods (including appropriate instrumentations) employed in the 

work of this thesis has been reviewed and presented in this chapter. This mainly involved 

their use for the characterisation of thin films for OSC applications and the corresponding 

device characterisation. Additionally, the discussions of the underlying working principles of 

the aforementioned methods were also presented respectively.    
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Chapter 5 

Material and Thin Film 

Characterisation 

“Anybody who has been seriously engaged in scientific work of any kind realizes that over the 

entrance to the gates of the temple of science are written these words: ‘Ye must have faith’.”  

― Max Planck 

 

5.1 Introduction 

The importance of thin film characterisation for OSC application is well established in 

literature. In the field of thin film technologies, the main constituents in electronic devices 

(particularly OSCs) are thin films of organic semiconductor materials. Understanding the 

various properties of these thin films is crucial to the optimisation of devices based on them. 

An important aspect of characterising thin films for devices is the determination of their 

optical spectroscopic properties. Most organic semiconducting materials are often referred to 

as “intrinsic wide band gap” semiconductors. This means their absorption band tends to be 

relatively narrow (Nicholson & Castro, 2010). The measurement of their absorption spectra 

properties is important as this can provide useful information regarding the materials, such as 

structure, and electronic energy levels. In this chapter, the results of absorption spectra 

characterisation of thin films in the work of this thesis are presented. In addition, structural 

characterisations of thin films were undertaken and the corresponding findings are presented 

and discussed respectively. 

It is important to point out that details of the experimental methods have been covered in 

Chapter 4. However, in some occasions, where it is deemed necessary additional information 

are provided for purposes of clarity. 
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5.2 Absorption Spectra of Thin Films 

Optical absorption spectroscopy measurements have been shown to be an effective technique 

for providing insight into the structural characteristics of thin films of organic materials (Kim 

et al. 2005; Erb et al. 2006). In this section, the impact on the optical absorption of thin films 

due to the structural changes in pristine PH3T, PCBM and P3HT: PCBM blends upon 

thermal annealing are investigated. Optical absorption spectroscopy is used to identify the 

nature of molecular ordering of P3HT or PCBM within fabricated thin films. The absorption 

spectra of pristine P3HT and PCBM are shown in Figure 5.1.  

 

 

Figure 5.1: UV-visible absorption spectra of pristine (a) P3HT and (b) PCBM. 
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In Figure 5.1, the insets are plots of absorption vs. photon energy in electron volts (eV). The 

values of the photon energy were determined from the inverse relationship between energy 

(in electron volts) and wavelength of the UV-visible spectrum, as follows: 

                                                         E  
hc

q 
                                                                           (5.1) 

Where h is the  lanck’s constant (6.626× 0
-34

 J.s), c is the speed of light (2.998×10
8
),   is the 

wavelength in nanometres, q is the electronic charge (1.6×10
-19

 C), and E is the energy in 

electron volt. 1 electron volt is the energy gained by an electron moving through a potential 

difference of 1 volt (i.e., 1 eV = 1.6×10
-19

 J). The value on the photon energy axis, indicated 

by the arrows in the insets of Figure 5.1 is an estimate of the optical band gap (Eg) of P3HT 

and PCBM respectively. This corresponds to the wavelength of the onset of absorption of the 

materials, which is the photon energy required to excite an electron from the HOMO of the 

materials (Peter, 2009). For the P3HT and PCBM used in this work, the determined values of 

Eg from the insets of Figure 5.1 are ~1.9 eV and ~2.8 eV. It will be shown later in this chapter 

that band gap values determined from other methods such cyclic voltammetery differ from 

the optical band gap. 

5.2.1 Thermal Annealing Effects 

The thermal annealing effects on the optical absorption properties of polymers and fullerenes 

for OSCs have been reasonably documented (Chirvase et al. 2004; Erb et al. 2006; 

Zhokhavets et al. 2006). In most of these reports, the interpretation of the optical absorption 

properties of the polymer/fullerene system (P3HT/PCBM in particular) have mostly focused 

on the wavelength region (450 – 650 nm) associated particularly with P3HT absorption (Li et 

al. 2005; Chen et al. 2010). The observations and discussions reported have mostly included 

improvements in the crystallinity of P3HT molecules, ordering, conjugation length in the 

polymer chain, etc, deduced from P3HT absorption maximum, vibronic features (at around 

620-650 nm), and shift in its absorption spectra (Li et al. 2007). It is recognised however, that 

there has been somewhat less attention paid to the region of spectrum associated with PCBM, 

and its interpretation in light of morphological variation due to thermal annealing.  It is 

against this backdrop, that this section will seek to demonstrate optical absorption spectra 

measurements as a simple yet effective tool for controlling, as well as monitoring the 

morphology evolution in P3HT/PCBM blend thin films. 
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Solutions of pristine P3HT, and PCBM were prepared separately, from 1, 2-dichlorobenzene 

(DCB), with total concentration of 25 mg/L. Three different compositional ratios were 

prepared for composite P3HT: PCBM blend solutions; i.e., 1: 1, 1: 0.8, and 1: 0.6. Following 

their dissolution in DCB, solutions (pristine and blend) were left to stir overnight at room 

temperature. All films were spun cast on to quartz glass substrates (Knight Optical), having a 

characteristic transmission in the range of 200 – 2500 nm. Spin casting of all thin films were 

performed in ambient air. Details of UV-Vis absorption spectra measurement method and 

instrument used can be found in section 4.3.1. 

First, optical absorption spectroscopy of pristine thin films are considered. Figure 5.2 

represents the UV-Vis absorption spectra of as casted and thermally annealed thin film of 

pristine PCBM.  

 

Figure 5.2: UV-Vis absorption spectra for pristine PCBM film, as casted and annealed at 

various temperatures. 
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Three distinct absorption peaks are observed at 216.5, 267, and 337 nm. These have been 

identified as corresponding to electronic transitions from singlet ground state to higher 

excited states (Harris & Bertolucci, 1978; Karagiannidis et al. 2011). A weak absorption 

detected in the range of 400 to 550 nm is associated with intermolecular interactions between 

fullerenes (Cook et al. 2007).  Upon thermal annealing there are no noticeable shifts in 

wavelengths and only slight reduction in peak absorption intensity is observed. It is believed 

that this may be attributed to the diffusion of PCBM and the gradual formation of nano 

crystals, which subsequently forms aggregates at higher temperatures (Karagiannidis et al. 

2011). At wavelengths above 350 nm this role is however reversed and the absorption 

intensity slightly increases with annealing temperatures. The region of this observation is 

indicated by an arrow in Figure 5.2. One possible explanation could be the effect of 

temperature on interactions between fullerenes, resulting in charge transfer transitions of 

intermolecular excitons (Karagiannidis et al. 2011). Figure 5.3 shows the comparison of the 

spectra on either side of 350 nm, showing the reversal of trends upon thermal annealing. 

Figure 5.4 shows the UV – Vis absorption spectra of pristine P3HT films; as casted and 

thermally annealed at several temperatures. Two distinct peak intensities at 521 and 553 nm 

corresponds to the electronic transitions in P3HT polymer chains, and associated with the 

generation of excitons (Karagiannidis et al. 2011). Furthermore a shoulder at 602 nm 

corresponds to what is referred to as vibronic feature (Li et al. 2007), indicative of orderly 

P3HT polymer chains stacking. As is evident in Figure 5.4 only a slight increase in peak 

intensities is observed. Using dichlorobenzene with a relatively higher boiling point as the 

casting solvent allows favourable crystal growth during slow drying and therefore no further 

significant crystal growth was observed upon subsequent thermal annealing. This is in 

contrast to chlorobenzene-casted films for which absorption improves with annealing 

temperatures (Dang et al. 2011). This suggests that depending on processing conditions, i.e., 

casting solvents, the morphology evolution trends are expected to vary. 

The UV-Vis absorption spectra for the blend of P3HT: PCBM with three different PCBM 

percentage loadings were also measured. This is shown in Figure 5.5. As can be seen, the 

peak absorption associated with PCBM decreases with reduced percentage loadings. Upon 

thermally annealing at 175°C, it is noted that the blend with the highest concentration of 

PCBM (50% weight ratio 1:1) showed the greater reduction in intensity. Other annealing 

temperatures are not shown here for the purpose of clarity. 
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Figure 5.3: Comparison between the spectra below (a) and above (b) 350 nm for PCBM 

absorption spectra. 
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Figure 5.4: UV-Vis absorption spectra of pristine P3HT film; as casted and thermally 

annealed at various temperatures.      

The percentage change (%∆) of the peak intensities in the 250 – 350 nm wavelength range 

after thermal annealing was determined and are presented in Table 5.1. From Table 5.1, it can 

be noted that the quantity, %∆ is greatest for the  :   3HT:  CBM ratio, and reduces as the 

PCBM content reduces. This is likely to be an indication of the degree of vertical segregation 

events within the bulk of the film, where it is more pronounced in the case of 1:1. This is 

consistent with the work of Kokubu and Yang (2012), which demonstrated that the increased 

PCBM – rich region at the surface of the film may contribute to light reflection, hence a 

reduction in absorption. Seeing that the spectrometer only measures transmitted light, the 

reflection from PCBM – rich regions in the 1:1 ratio is expected to be more in contrast to that 

of 1: 0.6. This is suggested to be evidenced in the reduced absorption spectra (indicated by 

the corresponding arrows in the insert of Figure 5.5).  
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Figure 5.5: UV-Vis absorption spectra of P3HT: PCBM films, with three PCBM wt% 

loadings (1:1, 1:0.8, and 1:0.6), as casted and annealed at 175°C. 

Table 5.1: Variation in the peak intensities of PCBM associated spectra after thermal 

annealing. 
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320-350 nm 

1:1 0.57 0.33 42.1 

1:0.8 0.54 0.36 33.3 
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In addition, the peak intensities corresponding to P3HT show a small but noticeable increase 

and shift towards lower wavelength.  The vibronic shoulders also appear to be more 

pronounced for as casted films. However at higher annealing temperatures this shoulder tends 

to smooth out. This is believed to be indicative of a disruption in interaction of P3HT 

polymer chains by the segregated PCBM molecules (Huang et al. 2009). 

5.2.1.1 Thermal Annealing Impact on PCBM cluster formation 

Numerous studies on the effects of thermal annealing on the nanomorphology of blended 

polymer/fullerene thin films have been reported (Chirvase et al. 2004; Kim et al. 2005; Li et 

al. 2005; Karagiannidis et al. 2011). It has also been shown that besides thermal annealing, 

other processing conditions such as solvent choice (Park et al. 2009; Dang et al. 2011), 

solvent vapour annealing or spin coating parameters (Zhao et al. 2007; Li et al. 2007), can 

significantly influence the nanomorphology of blended thin films. The influences of 

modifying processes are evidenced in the optical absorption properties of thin films (Kim et 

al. 2005), and photovoltaic properties (Ma et al. 2005). Swinnen and co – workers (2006), in 

their work, found that different thin films structures can be obtained as a function of varying 

thermal annealing conditions and composition ratios. In a similar vein, Huang et al (2009) 

reported the growth of PCBM aggregates or clusters in the P3HT: PCBM blend with 

annealing time. It was suggested that depending on aggregates sizes, the bi-continuous 

network within the thin film can be disrupted, leading to poor solar cell efficiencies. It has 

been noted that for example, some of these previous reports have indicated that there are no 

significant changes to the PCBM part of the optical absorption spectrum upon thermal 

annealing at around 120C-140C (Shrotriya et al. 2005; Heejoo et al. 2006; Jung et al. 

2010). By employing different thermal annealing strategies (annealing temperatures and 

times were varied accordingly), for a blend ratio of 1:1 (P3HT: PCBM), interesting structural 

changes have been observed. The impact of these structural changes as revealed in optical 

absorption spectra properties are discussed here. Their corresponding photovoltaic properties 

will also be discussed the next chapter. 

The details of the method of preparation of blend solution and fabrication of thin films has 

been discussed in section 5.2.1. All thin films in this section however were fabricated in 

nitrogen – filled glovebox.   

Figure 5.6 shows the UV-Vis absorption spectra for thin films of P3HT: PCBM blend of ratio 

1:1, and approximately 150 nm thick.  
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Figure 5.6: UV-Vis absorption spectra of P3HT: PCBM (1:1) thin films of thickness ~150 nm 

(a) as-cast and after gradual thermal annealing from 50°C to 175°C in intervals of 25°C, for 

10 minutes, (b) as-cast and after thermal annealing at a constant temperature of 175°C, for 10 

minutes, (c) as-cast and after thermal annealing at a constant temperature of 175°C, for 60 

minutes. 
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Three different thermal annealing strategies have been employed for the structural 

characterization in this study, namely: (i) annealing at temperatures of 50 - 175°C, in 

intervals of 25°C, for 10 minutes, (ii) annealing at 175°C for 10 minutes, and (iii) annealing 

at 175°C for 60 minutes. 

As can be seen, the peak absorption intensity of P3HT (~500-600 nm) increases upon thermal 

annealing. This increase in peak intensity is attributed to the orderly stacking of the polymer 

chains upon gradual increase in annealing temperature as previously reported (Kim et al. 

2005). Therefore an increase in peak optical absorption intensity of P3HT with annealing 

temperature may initiate an increase in short circuit current density. This would be discussed 

later in the next chapter. Observations of the PCBM part of the spectrum (~200-350nm) 

reveals some interesting features. Contrary to P3HT, the peak absorption intensity of PCBM 

reduces upon thermal annealing. As is evident in Figure 5.6, interestingly the level of this 

reduction depends on the strategies employed. Thin film annealed at temperatures of 50 to 

175°C, in intervals of 25°C, for a period of 10 minutes, revealed highest peak intensity 

reduction in comparison to the film annealed at a temperature of 175°C for 60 minutes, and at 

175°C for 10 minutes respectively (see Figures 5.6 (c) and (b)). Upon thermal annealing, 

diffusion of PCBM molecules is believed to result in segregation of PCBM clusters. 

Additionally, due to the differences in the surface energies of the components of the BHJ 

blend, and the interaction between the organic materials and substrate, the direction of 

vertical segregation is expected to be strongly affected. For example, the surface energy 

associated with PCBM, P3HT, quartz substrate, PEDOT: PSS and Al are given as 37.8, 26.9, 

11.5, 45.7, and 42.9 mN/m
2
 (Germack et al. 2009; Orimo et al. 2010). Having used quartz 

glass substrates for absorption measurements, the minimum free energy requires that P3HT to 

reside at the glass/film boundary and PCBM at the film/air boundary (Germack et al. 2009). 

However, when considering an actual completed organic solar cell device, i.e., one having 

aluminium as top electrode; the minimum free energy will in this case require that a PCBM-

rich region be formed at the cathode/film boundary owing to its higher surface energy 

compared to the organic material (Orimo et al. 2010). This type of distribution between 

electrodes is favourable for electrode selectivity, and should result in improved short current 

densities upon thermal annealing, as shall be observed later in chapter 6, where detailed 

discussions on the photovoltaic properties are presented. Optical microscopy images were 

obtained of surfaces of the thin films subjected to the three different thermal annealing 

strategies. These are summarised in Figure 5.8.  
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Figure 5.7: Optical microscopy images of P3HT: PCBM blend thin films: (a) as cast, (b) 

after thermal annealing at temperatures; of 50 - 150°C, in intervals of 25°C, (c) 50 - 175°C, in 

intervals of 25°C, (d) 175°C for 10 minutes, and (e) 175°C for 60 minutes. 

As is evident in Figures 5.7 (b) and (c), there is a large distribution of networks of PCBM 

aggregates formed as a result of gradual thermal annealing, this is in contrast to Figures 5.7 

(d) and (e) having needle – shaped PCBM clusters formed as result of high temperature-

induced diffusion of PCBM aggregates.  

By using the relation given in equation 5.2 (Jang et al. 2009), the density (dPCBM) of PCBM 

clusters in the area of optical micrographs (see Figure 5.7) were estimated. 

                                               d CBM %  
  CBM  00

  total

                                                           (5.2) 

In equation 5.2, NPCBM denotes the number of pixels occupied by PCBM clusters, and NPtotal 

is the total number of pixels in the image. The PCBM cluster density measured was found to 

be 21.35% for P3HT: PCBM blend films annealed gradually (i.e., 50 - 175C, in intervals of 

25C). Similar calculations for fast thermal annealing i.e. 175C for 10 and 60 minutes 

revealed a PCBM cluster density of 2.4% and 3.78% respectively. 

Figure 5.8 is a graphical summary illustrating the influence of the different thermal annealing 

strategies, outlined in the work of this thesis. 

(a) (b) (c)

(d) (e)



 

85 
 

Annealing gradually from 50°C to 

175°C in steps of 25°C
Annealing at 175°C for 10 

minutes

Annealing at 175°C for 60 

minutes

0

1

2

200 400 600

A
b

s
o

rp
ti

o
n
 (

a
.u

)

Wavelength (nm)

As-cast

Annealed

0

1

2

200 400 600

A
b

s
o

rp
ti

o
n
 (

a
.u

)

Wavelength (nm)

As-cast
Annealed

0

1

2

200 300 400 500 600 700

A
b

s
o

rp
ti

o
n
 (

a
.u

)

Wavelength (nm)

As-cast

Annealed

As cast

(a)

(b)

(c)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Illustration of the three different thermal annealing strategies with optical 

microscopy images and optical absorption properties respectively: (a) 50 - 175°C, in intervals 

of 25°C, (b) 175°C, for 10 minutes and (c) 175°C, for 60 minutes. 

2D line profiles of the surface morphologies of these P3HT: PCBM blend thin films after 

thermal annealing (for the three different strategies) were also obtained. This was achieved 
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using the DektakXT stylus profiler. Details of the use of the stylus profiler can also be found 

in section 4.3.5.1. These are presented in Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: 2-D profile of PCBM clusters or needles of thin films annealed (a) gradually 

from 50°C - 175°C in intervals of 25°C, for 10 minutes, (b) at 175°C for 10 minutes, and (c) 

at 175°C for 60 minutes. 

In Figure 5.9 (b) and (c), the regions indicated by the arrows were observed to be depleted, 

around the aggregated PCBM clusters. 

5.2.2 Raman and PL spectroscopy of Thin Films 

The underlying measurement principles in both Raman and PL spectroscopy for thin film 

characterisations have been previously discussed in detail in section 4.3.2. Figure 5.10 (a) 

shows a typical Raman spectrum of pristine P3HT thin film excited at 514 nm.  
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Figure 5.10: Raman spectrum of pristine (a) P3HT and (b) PCBM under 514 nm excitation. 

In Figure 5.10 (a), various Raman modes can be observed between 900 – 1600 cm
-1

 

(Baibarac et al. 1998; Campoy – Quiles et al. 2008; Ballantyne et al. 2010; Tsoi et al. 2011): 

with main vibrational modes at 1450 cm
-1 

and 1380 cm
-1

 corresponding to symmetric –C=C–, 

and –C–C– stretching modes. These two stretch modes are of significance as they are 

believed to be sensitive to the conjugation length of P3HT molecules (Gao & Gery, 2009). It 

should be noted however, that –C=C– stretch mode at 1450 cm
-1

 may differ from other 

reported values in literature, depending on the  excitation wavelength under which the Raman 

spectra is obtained (Tsoi et al. 2011). Note in the case of pristine PCBM, the Raman spectrum 
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is not as well defined as in the case of pristine P3HT. This is attributed to the wavelength of 

excitation used (514 nm). Because the excitation wavelength is within the maximum 

absorption wavelength range of pristine P3HT in contrast to PCBM (compare Figure 5.2 and 

5.4), Raman signals obtained from pristine P3HT will be more pronounced (Campoy-Quiles 

et al. 2008). When a 325 nm excitation was employed, Campoy-Quiles and co-workers 

(2008) reported Raman spectrum of pristine PCBM with well defined peaks. 

Raman spectroscopy was employed in this section to probe the influence of the different 

thermal annealing strategies on the crystallization of P3HT polymer chains within blend 

films. Raman spectra measurements were taken of P3HT: PCBM blend films as a function of 

thermal annealing. It is known that thermal annealing induces crystallization in P3HT 

polymer chains within the blend thin film (Li et al. 2005). This crystallization however has 

been shown in many cases to have an impact on the short circuit current densities, for organic 

PV devices (Li et al. 2005; Gong et al. 2010). The measured Raman spectra of P3HT: PCBM 

blend thin films; as cast and after thermal annealing are presented in Figure 5.11.  

The Raman peak of the P3HT –C=C– mode can be observed in P3HT: PCBM blend film at 

the same position (1450 cm
-1

) as in pristine P3HT (compare with Figure 5.10). In addition to 

P3HT conjugation length, the –C=C– peak is also sensitive to the degree of molecular order 

of P3HT (Tsoi et al. 2011). It should be noted that no Raman modes of PCBM molecules 

were observed under the 514 nm excitation. 

The narrowing of this Raman band associated with –C=C– symmetric stretching mode of 

P3HT molecules is related to an enhancement in the crystallinity of the P3HT polymer chains 

(Nalwa et al. 2011). From the Raman spectra in Figure 5.11, with particular focus on the 

nature of the width of the –C=C– peak, the molecular order of P3HT induced by thermal 

annealing can be understood. To do so, the values of the full width half maximum (FWHM) 

were determined from performing fits to the measured Raman spectra. These are summarized 

in Table 5.2. FWHM refers to the measured average width of the Raman band of the –C=C– 

peak. The observed reduction in the FWHM after thermally annealing at 50 - 150°C, in 

intervals of 25°C, and 175°C for 60 minutes, both suggest a better self-organized and 

crystalline structure of P3HT within the blend. Although the FWHM measured from the 

Raman spectra of films from these two thermal annealing strategies are reduced, the degree 

of crystallinity indicated in the latter is very small. However, after thermal annealing at 
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175°C for 10 minutes, the FWHM measured from the Raman spectra of the films did not 

indicate an improvement in the crystallinity of P3HT.  

 

Figure 5.11: Raman spectra of P3HT: PCBM blend thin film; as-cast and gradually annealed 

from 50°C to 150°C in intervals of 25°C, for 10 minutes. 

Table 5.2: Summary of FWHM of the –C=C– mode for P3HT: PCBM blend thin films; as 

cast, and as a function of the three different thermal annealing strategies. 
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¹) 
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P3HT: PCBM 30.00 28.40 31.40 29.60 

 

Nevertheless, the results in Table 5.2 implies that thermal annealing at 175°C (10 min.) 

yielded a less crystalline and disordered P3HT phase, compared to the other two strategies. 

These results are in agreement with the optical absorption spectra results, discussed 

previously in section 5.2.1.1 (see Figure 5.6). A reduction in the Raman intensity signal for 

thermally annealed blend films can be observed in Figure 5.11. A possible explanation for 

this is that the region from which the Raman spectrum was taken has a slight depletion of 
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P3HT. This observation is consistent with previously reported Raman spectroscopy studies 

(Campoy-Quiles et al.  2011). 

Previously in section 5.2.1.1, optical microscopy images of blended film from various 

thermal annealing strategies were presented (see Figure 5.7). In order to confirm that the 

clusters, as seen in the images are rich in PCBM aggregates, a Raman spectroscopy mapping 

technique was employed. As previously highlighted, a laser source with excitation 

wavelength of 514 nm will be more suitable for observing P3HT rather than PCBM Raman 

signal. Therefore it is expected that a reduction in signal intensity associated with P3HT will 

be indicative of P3HT – depleted regions. P3HT: PCBM blend film was therefore imaged 

using micro – Raman spectroscopy mapping, in order to probe the microstructure and phase 

separation. Figure 5.12 shows the Raman spectra map for P3HT: PCBM blend thin film 

thermally annealed gradually from 50 C to 175 C in intervals of 25 C for 10 minutes. 

 

 

Figure 5.12: Raman spectra map for a thermally annealed thin film (P3HT: PCBM, 1:1). 

This was taken from two points; (1) at a point containing PCBM aggregates, showing a weak 

Raman signal for P3HT (a), (2) at a uniform region, showing strong Raman signal for P3HT 

(b), indicating a P3HT-rich region. 
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In Figure 5.12, the circle indicated (1) identifies PCBM cluster region, where as the circle (2) 

identifies P3HT rich region. This is evidenced by the reduction in Raman signal intensity for 

P3HT (about 400 to 130 counts). This is consistent with observations made by Campoy-

Quiles et al. (2008). 

Furthermore, PL spectroscopic studies were also undertaken, in order to elucidate the nature 

of charge transfer processes taking place within the P3HT: PCBM blend film. Details of the 

mechanism of charge transfer processes have been previously discussed in section 2.9. This is 

with particular focus on the impact of the different thermal annealing strategies. 

Figure 5.13 shows the PL spectra of thin films (pristine P3HT and P3HT: PCBM blend). In 

all cases, a reduction in the PL intensity is observed (comparing pristine P3HT and the blend 

film). This PL quenching is interpreted as originating from charge transfer processes between 

P3HT and PCBM phases in the blend film (Tvingstedt et al. 2009; van Bavel et al. 2010). 

However, upon thermal annealing the PL intensity increases indicating less efficient charge 

transfer processes. This effect is also supported by the segregation of ordered P3HT domains, 

and change in phase separation initiated by the clustering of PCBM molecules. This is 

consistent with optical microscopy images in Figure 5.7. Although the exciton generation 

rates are expected to increase with thermal annealing, their dissociation may be hindered by 

the diffusion of PCBM molecules (Mihailetchi et al. 2006). Therefore this results in creating 

a nano-structure with phase separations exceeding typical exciton diffusion lengths (10 – 20 

nm). It is also important to remark, that this increase in PL intensities may also be as a result 

of the removal of non-radiative recombination centres upon thermal annealing, in light of the 

work of Kim and co-workers (2006). Thus its influence should not be completely ruled out. It 

can also be deduced that all three thermal annealing strategies have different impacts on the 

charge transfer events within the bulk of the film. This is attributed to the fact that the 

annealing strategies induce different nanostructuring of blend film morphologies. This 

consequently has an impact on the nature of donor/acceptor interfaces in the different blend 

films. From previous reports, it is known that depending on donor/acceptor interface 

separation, the efficiency of charge transfer events will be affected (Tvingstedt et al. 2009). 

To further explore the nature of morphologies in P3HT: PCBM blend film, after thermal 

annealing, X-ray diffraction is employed. X-ray diffraction studies on thin films are able to 

provide insight in to the molecular conformation of thin film composite materials (Erb et al. 

2006; Kim et al. 2006). These are discussed in the following section. 
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Figure 5.13: PL spectra of pristine P3HT, P3HT: PCBM (1:1) thin films; as-cast and (a) after 

gradually annealing from 50°C to 175°C in steps of 25°C, for 10 minutes, (b) after annealing 

at 175°C for 10 minutes, (c) after annealing at 175°C for 60 minutes. Thickness of film is 

~150 nm. 
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5.3 X-ray Diffraction Studies of Thin Films 

In probing the structural ordering of thin films of semiconducting material, Grazing Incidence 

X-ray Diffraction (GIXRD) has been shown to be an effective tool (Li et al, 2007). 

Particularly for applications in OSCs, information regarding factors such as crystallinity, 

grain sizes, d-spacing, etc. are relevant, as these pertain to carrier mobility, the degree of 

intermolecular interactions and preferential orientations (Erb et al, 2005; Kim et al, 2006). 

Figure 5.14 shows the GIXRD of P3HT: PCBM thin films; as cast and after thermal 

annealing.  

 

Figure 5.14: GIXRD (with incident X-ray angle = 0.3°) of P3HT: PCBM blend thin films; as 

cast and after thermal annealing.  

As is evident, the GIXRD data of P3HT: PCBM blend film shows a diffraction peak at 2θ = 

5.41°, corresponding to a d – spacing value of 1.635 nm. Using equation 4.3, the crystal or 

grain size was calculated to be 7.36 nm. Upon thermal annealing it slightly increased to 8.55 

and 8.83 nm (145°C and 175°C). This trend in crystal growth is consistent with the 

absorption spectroscopy results (see section 5.2.1.1).  It was noted that upon thermal 

annealing, the absorption spectra in the wavelength region of 500 – 600 nm increased. This is 

indicative of increased conjugation and stacking of polymer chains. Consequently it is 

believed to be correlated to the increase of the grain size of polymer molecules within the 

blend film.  
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As have been suggested from the previous discussions, i.e., in section 5.2.1.1, supported by 

optical microscopy images (Figure 5.7) and 2-D height profiles (Figure 5.9); that thermal 

annealing of thin films possibly induces a vertical segregation, one with PCBM molecules 

segregated towards the film/air boundary. To shed more light on this morphological evolution 

upon thermal annealing, GIXRD spectra was measured for the structural characterisation of 

P3HT: PCBM thin film at the near surface. This was achieved by adapting the method 

reported in literature (Chabinyc, 2008) of obtaining X-ray diffractograms with varying 

incident angles on either side of the critical angle. The following equation summarises the 

method employed.  

                                                   αi  
Intensity  3HT 

Intensity  CBM 

                                                           (5.3) 

The empirical quantity, R is the ratio of the diffraction peak intensities of P3HT to PCBM, 

assuming they are arising distinctly from P3HT and PCBM molecular phases within the 

blend film. It is also assumed that these intensities are proportional to the amounts of P3HT 

or PCBM crystals. From equation 5.3, αi denotes the angle of incidence of the incident X-ray 

beam.  

By varying the X-ray beam incident angles in the range below and above the critical angle (αc 

≈ 0.12°). That is, αi < αc, the X-rays can just probe the top surface properties of the thin film 

(~ 10 nm), and higher incidence angles above the critical angle i.e., αi > αc, probes within the 

film’s bulk (Agostinelli et al, 20  ; Karagiannidis et al, 20  ; Chabinyc, 200 ). Another 

important relationship used for this evaluation is given in equation 

                                          r  
 (bulkαi 0.2, 0.3, 0. , 0.5°)

 (surfaceαi 0.05°)
                                                           (5.4) 

The quantity, r in equation 5.4, is the ratio of R (for αi > αc, i.e., bulk of the film) to R (for αi 

< αc, i.e., probing the near surface of the film). By monitoring this quantity as a function of 

thermal annealing some useful insight can be gained into the vertical segregation of PCBM 

molecules in the blend film. It can be observed from Figure 5.14, that the diffraction peak 

intensities arising from P3HT is very obvious in contrast to that from PCBM molecular 

phase. Reports in literature have indicated that typical peak intensities arising from PCBM in 

a P3HT: PCBM blend thin film can be found around 2θ ≈ 20° (Agostinelli et al, 2011; 

Karagiannidis et al, 2011). In the case of this study, peak intensities associated with PCBM 
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were able to be resolved when thicker blend films were employed. This is clearly illustrated 

in Figure 5.15. 

 

Figure 5.15: GIXRD of very thick P3HT: PCBM blend film, after annealing at 150°C (X-ray 

incident angle = 0.3°). Inset showing peak arising from PCBM molecular phase. 

To confirm that the observed diffraction peak noted in Figure 5.15, at 2θ = 20° really arises 

from PCBM; a GIXRD of pristine PCBM was obtained. Figure 5.16 shows the GIXRD of 

pristine PCBM spin casted on quartz substrate. As can be observed the characteristics peak 

intensity found at 2θ = 20° is similar to that in Figure 5.15 above, confirming that the peak is 

associated with PCBM molecules in blend thin film. 

 

Figure 5.16: GIXRD of pristine PCBM thin film. X-ray incident angle of 0.12°. 
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Figure 5.17 shows a plot of r as a function of thermal annealing. It is evident that upon 

thermal annealing, r increases steadily and significantly at higher annealing temperatures 

(above 125°C). This observation is similar to that reported by Agostinelli and co-workers 

(2011), and is believed to be indicative of vertical segregation of PCBM molecules in the 

blend thin film. Together with the optical microscopy images obtained (see Figure 5.7), this 

strongly suggests that vertical segregation of PCBM molecules occurs as a result of thermal 

annealing. Since after annealing at 150°C, the surface of thin film samples in this work 

revealed an increased presence of PCBM clusters. 

 

Figure 5.17: A plot of the measured quantity r (as determined from equation 5.3) as a 

function of thermal annealing. 

Table 5.3 shows a summary of the percentage changes in r for the various depth probed (i.e., 

for different αi) as a function of thermal annealing. These follow the logical path that for X-
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suggests that the change in PCBM concentration as evaluated by the quantity, r, is confined 

only to the depth probed as a result of the incident angles. Upon thermal annealing at 150°C, 
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was increased to 0.5°, as such the X-rays probing a deeper depth of the film, a lower value of 

%∆ was measured (suggesting the percentage change at that depth is relatively less). A 

possible reason for this observation could be that as a majority of PCBM molecules residing 

at the glass surface boundary make an upward migration, the measure of the percentage 

change at this depth will be less compared to the case of the depth probed by an X-ray with 

an incident angle of 0.2°. 

Table 5.3: Estimated values of r and the corresponding percentage changes as a result of 

thermal annealing, for different probing depths. 

P3HT:PCBM 

0.2°/0.05° 0.3°/0.05° 0.4°/0.05° 0.5°/0.05° 

r  %∆ r  %∆ r  %∆ r  %∆ 

As cast 0.70 0.00 0.70 0.00 0.66 0.00 0.65 0.00 

50°C 0.71 0.79 0.68 -2.56 0.67 0.99 0.63 -2.96 

75°C 0.72 2.42 0.70 0.65 0.67 1.20 0.65 -0.73 

100°C 0.73 4.29 0.72 3.49 0.70 5.48 0.66 0.97 

125°C 0.76 8.60 0.73 5.19 0.70 5.81 0.66 1.78 

150°C 0.89 26.60 0.84 21.38 0.81 22.54 0.77 17.20 

175°C 0.95 34.92 0.90 28.97 0.86 29.55 0.80 22.48 

 

5.4 HOMO and LUMO Energy Levels of P3HT and PCBM  

The HOMO and LUMO energy levels of P3HT and PCBM, in this work were estimated from 

electrochemistry methods. An Agilent 5500 SPM, equipped with an electrochemistry work 

station was used to perform the measurements in this section. Details of the electrochemistry 

experimental method, cyclic voltammetery measurements, instruments and setup used have 

been previously discussed in section 4.4.4. It was necessary that the energy levels of these 

materials were determined in the laboratory, as they were purchased without this information. 

Nevertheless, the knowledge of the HOMO and LUMO would be required for an accurate 

evaluation of mobility measurements based on the SCLC method, which shall be discussed 

later. The following section will be looking at the cyclic voltammetery method employed for 

the determination of the HOMO and LUMO energy levels of P3HT and PCBM materials 

respectively. 
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5.4.1 Reduction – oxidation potentials of P3HT and PCBM 

The electrochemical reduction-oxidation potentials of both P3HT polymer and fullerene, 

PCBM were measured by cyclic voltammetery. The cyclic voltammograms for these 

materials are presented in Figure 5.18. 

 

Figure 5.18: Cyclic voltammograms of pristine P3HT and PCBM; oxidation and reduction 

potentials of pristine P3HT (a) and (b), and pristine PCBM (c) and (d). 

Details of how to calculate the HOMO and LUMO energy levels respectively have also been 

covered in section 4.4.4. The estimated HOMO and LUMO energy levels for pristine P3HT 

and PCBM are presented in Table 5.4.  

Table 5.4: Doping (reduction and oxidation) onset potentials, and calculated HOMO and 

LUMO levels for pristine P3HT and PCBM. 

 

Doping potentials (V) Energy levels (eV) 

  
ons

n  
ons

p  LUMO  HOMO  

P3HT -1.25 0.45 -3.14 -4.84 

PCBM -0.56 1.70 -3.83 -6.09 
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From the discussions in section 4.4.4, the electrochemical energy band gap for P3HT and 

PCBM are ~ 1.7 eV and ~2.26 eV. These values indicate that values for energy band gap 

determined using electrochemical methods are different from the optical band gap (in section 

5.2). 

Using the onset potentials of n-doping ( ons

n ), and p-doping ( ons

p ), from the cyclic 

voltammograms in Figure 5.18, in Equation 4.10 (a) and (b) (see section 4.4.4), HOMO and 

LUMO energy levels have been estimated. The onset potentials (i.e., either n- or p-doping) 

were determined from the intersection of the two tangents drawn at the rising current 

(oxidation or reduction) and background current in the cyclic voltammograms (Li et al. 

1999). The energy levels obtained in this work, summarised in Table 5.4, all fall within the 

range of previously reported values, determined by other techniques (Lof et al. 1992).  

5.5 Morphological Properties of Thin Films 

The nanoscale morphology of pristine P3HT and P3HT: PCBM blend films in this work were 

studied with AFM. The AFM surface topography images were obtained using the Agilent 

5500 SPM, in tapping mode, in ambient air. Details of method and the working principle of 

the AFM for this work have already been discussed under section 4.3.3. Figure 5.19 shows 

the AFM topography images of pristine P3HT and P3HT: PCBM (in 1:1, 1:0.8 and 1:0.6 

blend ratios). The image of the surface of a film of pristine P3HT shown in Figure 5.19 (a) 

seem to be composed of spaghetti – like nanoscale crystallites. These distinct features are 

believed to be self-organised P3HT polymer chains within the film, and will be further 

discussed later. Similar observations have been previously reported in literature (Shrotriya et 

al. 2006). Note that on the other hand, these features are not readily obvious in the case of the 

1:1 blend ratio, and similarly for 1:0.8 P3HT: PCBM blend. As is evident from Figure 5.19 

(d), i.e., topography for 1:0.6 blend ratio film; these features become more prominent.  

Because the PCBM weight content is less in the case of Figure 5.19 (d), there would be some 

relatively P3HT – rich regions. However, this will be less in comparison to the case of 

pristine P3HT film. Consequently, in view of a completed OSC based on a 1:0.6 blend ratio, 

there is expected to be an undesired distribution of P3HT at the active layer/cathode interface. 

This configuration may not offer the advantages for efficient charge transport and electrode 

selectivity (Campoy-Quiles et al, 2008). This could possibly be one of the reasons why PV 

devices based on 1:0.6 ratio, have been reported to exhibit low current densities as will be 

discussed later, compared to the other two ratios. This is expected to result in unfavourable 
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D/A distributions within the bulk, which in turn would be detrimental to the efficiency of 

exciton dissociations (Kim et al. 2005). 

 

Figure 5.19: AFM topography images of (a) pristine P3HT film, and P3HT: PCBM blend 

thin films, in weight ratios of; (b) 1:1, (c) 1:0.8, and (d) 1:0.6. 

Figure 5.20 shows the AFM phase image of pristine P3HT thin film. In the AFM phase 

image, the crystalline domains can be clearly observed. From the AFM phase image, a 2-D 

line profile analysis can be performed between two points (B and A), as shown in Figure 5.20 

(b). By employing the horizontal distance function in the surface analysis software (Pico 

Image Basic, v. 6.0) (see Figure 5.20 (c)), the thickness of what appears to be grains of 

crystalline P3HT chains can be estimated. The value estimated from this method was in the 

range of 18 – 35 nm, which is consistent with values reported in literature (Shrotriya et al. 

2006).  

5.5.1 Evolution of Morphology with Thermal Annealing 

Figure 5.21 shows the AFM topography images of as cast thin films of P3HT: PCBM and 

after they have been thermally annealed according to the three different strategies outlined in 

section 5.2.1.1, namely: 50 - 175°C (in steps of 25°C for 10 min each), 175°C for 10 min and 

0.5 µm

(a) (b)

(c) (d)
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60 min. These measurements were performed in order to probe the impact of different 

thermal annealing approaches on the surface morphologies of the blend film. 

It has been found that the surface topography of thin films thermally annealed at 175°C (10 

min.) appears much smoother in comparison to blend films annealed at the same temperature 

but for a longer time (i.e., 60 min.). By comparing these with the optical microscopy images 

presented in Figure 5.7, it is interesting to note that the films annealed for the shortest time 

(i.e., 175°C for 10 min), showed the lowest reduction in absorption intensity associated with 

PCBM. This also supports the quantitative analysis results of PCBM cluster densities, 

discussed in the section 5.2.1.1: which showed that a cluster density of only 2.4% resulted 

from annealing at 175°C for 10 min. compared to the other two annealing approaches. Sq is 

the estimated root mean square (rms) surface roughness. 

 

              

 

 

Figure 5.20: AFM phase image of pristine (a) P3HT film (b) 2-D line profile, (c) Horizontal 

distance measurement profile. 
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Figure 5.21: AFM topography images (5 µm x 5 µm) of thin films (P3HT: PCBM) of weight 

ratio 1:1, and thickness ~150 nm; (a) as-cast, Sq = 4.64 nm, and after annealing at (b) 50°C to 

175°C, in steps of 25°C; Sq = 9.5 nm, for 10 minutes each, (c) 175°C for 10 minutes; Sq = 

3.76 nm, and (d) 175°C for 60 minutes; Sq = 6.16 nm. 

5.6 Summary 

In this chapter, the results of employing a number of characterisation methods to investigate 

significant properties of organic semiconductor materials and thin films were presented. A 

correlation between thermally induced morphological variations in P3HT: PCBM blend thin 

films and their corresponding optical absorption spectra properties were demonstrated. The 

method of UV-visible absorption spectroscopy can be effectively used as a tool for evaluating 

PCBM aggregation in P3HT: PCBM blend thin films. The importance of including the far 

UV region of the spectrum for analysis of P3HT: PCBM blend thin films were clearly 

highlighted. Depending on the thermal annealing strategy employed, PCBM aggregate 

dimension tuning differs accordingly. Proof of PCBM cluster formation was presented with 

optical micrographs. Furthermore, the underlying mechanism of the process of aggregation 

and P3HT polymer crystallization as a result of thermal annealing were probed using Raman 

(a) (b)

(c) (d)
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and PL spectroscopy, X-ray diffraction and atomic force microscopy methods. From the 

foregoing, it has been demonstrated that the gradual thermal annealing strategy (i.e., 50 - 

175°C, in steps of 25°C) exhibited a more stable and controlled tuning of thin film 

morphology.  

In the following chapter, the various impacts of processing conditions such as composition, 

and thermal annealing, on PV properties will be presented with detailed discussions.  
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Chapter 6 

Photovoltaic Properties of OSCs 

“Efficiency is the essential parameter for solar cells with respect to energy production and cost.”  

― Christoph J. Brabec 

 

6.1 Introduction 

The results from the electrical characterisation of devices based on P3HT: PCBM blend films 

(current-voltage properties, both in the dark and under illumination) are presented and 

discussed here. Details of the experimental methods and instrumentation with respect to the 

measurements of current – voltage characteristics of devices have been previously discussed 

in section 4.4. 

6.2 Dependence of Dark J – V properties of P3HT: PCBM Blend Thin 

Films 

To determine the dependence of dark current – voltage characteristics on thermal annealing, 

solar cells with the structure ITO/PEDOT: PSS/Blend film/Al was investigated. Three 

different P3HT: PCBM blend ratios, with 50, 44.4, and 37.5% of PCBM, were used 

respectively. Figure 6.1 shows the dark current – voltage characteristics of the fabricated 

devices. 

Comparing the dark J – V characteristics of the three blend ratios in Figure 6.1 (a), the 

leakage current (current measured at -1V) was observed to be highest for 1:0.6 blend. It is 

expected that such a high leakage will have a negative impact on solar cell performance 

based on 1:0.6, compared to the other two ratios. The comparison between the solar cell 

performances for these blends will be further explored later on. When these BHJ devices 

where thermally annealed, it was observed that the measured leakage currents for all three 
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blends increased respectively. In addition, the leakage currents are comparable between the 

three blends. 

 

 

Figure 6.1: Dark J – V plots of P3HT: PCBM BHJ solar cells: (a) as cast and (b) annealed. 

Between blend films as cast and thermally annealed; 1:1 and 1:0.8 blend ratios increased by 

two orders of magnitude, whilst 1:0.6 blend by only one order of magnitude. Recalling the 

observed change in peak absorption intensities associated with PCBM absorption in section 

5.2.1., between the three blend ratios, 1:0.6 had the lowest percentage change in absorption 

intensities after thermal annealing at 175°C. Exactly how this is related to the dark J – V 

characteristics is not very clear. However what is interesting though is that the two trends 
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(i.e., leakage currents and absorption intensities) seem to follow the same direction. It could 

be that the compositional ratios together with their corresponding morphology evolution 

following thermal annealing (as revealed in their impact upon optical absorption), may also 

be connected to the leakage current trend observed here.  

Another interesting point is with respect to the comparable leakage currents mention above 

for all three blends after thermal annealing. This trend, as will be seen in following sections, 

may likely be related to the VOC of devices, seeing that this was observed to be similarly 

comparable after thermal annealing. Therefore it can be suggested that the nature of leakage 

currents following thermal annealing is related to the measured VOCs of devices under 

illumination. In other words both parameters might have their origins in the same mechanism. 

6.3 Photovoltaic (PV) Performance Measurements 

In this section, the results and discussions of PV measurements obtained from fabricated 

P3HT: PCBM BHJ solar cells are presented. To measure the PV performance of the devices 

discussed in the previous section (6.2), current – voltage characteristics were obtained under 

illumination provided by a solar simulator. The details of the method for device 

characterisation under illumination have been covered in section 4.4.1. PV properties 

discussed in this section with respect to composition and thermal annealing impact are based 

on devices fabricated in ambient air, with an active area of 0.14 cm
2
. J – V characteristics of 

P3HT: PCBM BHJ solar cells based on blend ratios of 1:1, 1:0.8 and 1:0.6 respectively are 

shown in Figure 6.2. 

The short circuit current density JSC is observed to increase with increasing PCBM 

percentage weight ratio. To explain this increase in current density, Figure 5.5 is referred to 

with particular focus on only as cast devices. It can be observed from the absorption 

spectroscopy results that the absorption spectrum peak intensity for P3HT is reduced upon 

increasing PCBM percentage weight ratio while PCBM absorption followed the opposite 

trend. It is believed that increasing the PCBM content, as in the blend of 1:1 ratio, the 

interfaces between donor and acceptor material within the bulk are enhanced (Kim et al. 

2005). Consequently this results in better exciton dissociation which is critical to 

photocurrent generation. Therefore it can be argued that the donor/acceptor (D/A) interface 

distribution within the active layer based on 1:1 is more favourable, but decreases in 1:0.8, 

and 1:0.6 respectively. Furthermore the PCBM content in the P3HT: PCBM blend ratio of 1:1 

supports better charge transport pathways to the respective electrodes. The increased leakage 
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current previously highlighted in the case of 1:0.6 could also be a contributing factor to the 

low current density measured in devices based on this ratio.  

 

Figure 6.2: J-V curves under illumination for devices based on P3HT: PCBM blend films: 

P3HT: PCBM (weight ratio; = 1:1, 1:0.8, and 1:0.6). 

6.3.1 Thermal Annealing Effects on D/A interfaces in P3HT: PCBM solar 

cells 

P3HT: PCBM BHJ solar cells discussed in the previous section were subsequently thermally 

annealed. Current – voltage characteristics under illumination were measured for these 

annealed devices in ambient air. The PV performance parameters of these devices were 

studied in light of the impact of thermal annealing on D/A interfaces within the active layer. 

Thermal annealing was performed on a hotplate at 50, 75, 100, 125, 150, and 175°C (for 10 

minutes each). It is important to remark here that the current – voltage characteristics 

obtained under illumination, were done without applying a spectral mismatch correction 

factor.  

Figure 6.3 shows the J – V characteristics under illumination of the three OSC devices (i.e., 
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several temperatures. Table 6.1 is a summary of the experimental PV parameters measured 

for all devices from the J – V curves in Figure 6.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: J – V characteristics of P3HT: PCBM BHJ solar cells based on (a) 1:1, (b) 1:0.8, 

and (c) 1:0.6 blend ratios; as – cast and after thermal annealing. 
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Table 6.1: Summary of PV performance parameters for devices based on P3HT: PCBM (1:1, 1:0.8, and 1:0.6).  

  
1:1 

  
1:0.8 

  
1:0.6 

 

Annealing 

temperatures 

Jsc 

(mA/cm²) 
Voc   

(V) 

FF    

(%) 

PCE 

(%) 

Jsc 

(mA/cm²) 
Voc   

(V) 

FF   

(%) 

PCE 

(%) 

Jsc 

(mA/cm²) 
Voc   

(V) 

FF   

(%) 

PCE 

(%) 

As casted 9.12 0.40 56.34 2.06 7.74 0.41 56.63 1.79 6.18 0.38 56.49 1.33 

50°C 9.62 0.41 55.95 2.22 8.12 0.41 56.39 1.87 6.17 0.36 56.02 1.26 

75°C 10.09 0.38 56.24 2.13 7.99 0.36 55.87 1.59 6.05 0.33 53.04 1.06 

100°C 9.99 0.38 56.80 2.14 7.88 0.36 55.67 1.56 6.14 0.34 52.17 1.08 

125°C 10.49 0.42 56.00 2.45 7.54 0.41 55.82 1.74 5.66 0.41 52.51 1.21 

150°C 10.06 0.55 56.97 3.17 7.69 0.55 53.97 2.27 5.51 0.53 48.79 1.44 

175°C 9.25 0.62 58.76 3.38 7.08 0.62 51.59 2.26 4.96 0.61 47.20 1.43 
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It is evident from Table 6.1, that for OSC devices with higher PCBM loadings, JSC improves 

with annealing temperatures. For example, in device based on 1:1 blend ratio, JSC peaks at 

125°C, whilst the same trend occurs at 50°C for 1:0.8. For the device based on the blend ratio 

of 1:0.6 on the other hand, the parameter JSC deteriorates with annealing temperatures. 

Previous publications on the influence of thermal annealing have also reported such 

deterioration in JSC after annealing at certain temperatures (Chirvase et al. 2004; Parlak, 

2012). In addition, it is clear from Table 6.1 that devices with PCBM content of 50 and 

44.4% exhibited a relative thermal stability by utilizing the optimisation procedure. The 

experimental PV performance results also suggest that the nature of PCBM molecular 

clustering is sensitive to the PCBM content, diffusion time and temperatures (Erb et al. 2005; 

Jo et al. 2009). The resulting nanostructure within the active layer is a D/A interpenetrating 

network which will support better charge transport as seen in the case of P3HT: PCBM (1:1) 

blend ratio. However for PCBM content of 37.5% or less, the thermal anneal induced 

clustering may result in disrupted pathways for electron transport. The implication of this will 

be a lower current density upon thermal annealing. 

Figure 6.4 summarises the variation in short circuit current density and open circuit voltage 

with annealing temperatures. The open circuit voltage VOC remains almost constant up to 

around 100C and upon further increase in annealing temperature (upper limit of temperature 

used, 175C) increases to around 0.62V. This increase in VOC is believed to be due to vertical 

segregation of PCBM, disrupting shunt paths between the two electrodes (Sirringhaus et al. 

1999). Table 6.2 summarises the values of series and shunt resistances (RS and RSH), 

extracted from the J – V curves in Figure 6.3. 

Table 6.2: Summary of measured RS and RSH as a function of PCBM loadings and thermal 

annealing (values determined using the method outlined in section 4.4.1) 

Annealing             

Temperatures (°C) 

RS (Ω.cm
2
) RSH (Ω.cm

2
) 

1:1 1:0.8 1:0.6 1:1 1:0.8 1:0.6 

As casted 4.9 4.9 4.6 498.0 449.8 588.7 

50 4.7 4.6 4.6 507.0 320.2 519.9 

75 4.6 4.9 6.7 483.8 283.6 507.2 

100 4.6 5.0 6.9 505.2 299.6 475.3 

125 5.0 5.2 5.9 492.2 483.4 580.9 

150 4.6 5.3 5.5 456.0 415.0 459.7 

175 4.2 5.2 5.4 355.7 314.1 379.9 
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This may be attributed to the observed decrease in the calculated shunt resistances RSH, for all 

three different blend ratios. RSH decreased from 498 Ω.cm
2
 to ~356 Ω.cm

2
 after thermal 

annealing at 175°C, for devices based on 1:1 blend ratio. This downward trend was similarly 

observed for the other two blend ratios, i.e., ~450 Ω.cm
2
 to ~314 Ω.cm

2
 (1:0.8) and ~589 

Ω.cm
2
 to ~380 Ω.cm

2
 (1:0.6). This is also consistent with the optical absorption data 

presented in Figure 5.5, with emphasis on the PCBM associated absorption spectra, i.e., 250 – 

350 nm wavelength range.  

 

Figure 6.4: JSC (a) and VOC (b) as a function of thermal annealing temperatures for P3HT: 

PCBM solar cell devices. 
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It is clear that the devices with highest PCBM content i.e., 1:1 ratio upon thermal annealing 

show greatest peak optical absorption intensity reduction. This is due to the segregation of the 

PCBM aggregates to the film air boundary and hence reduction in optical absorption 

(Campoy-Quiles et al. 2008). Other possible reasons for this observed increase in VOC could 

be associated with increase in built in potential at higher temperatures resulting from traps 

generated within the bulk of the active layer. The device power conversion efficiency tends to 

increase with PCBM loading. This is attributed to higher short circuit currents resulting from 

efficient charge transfer. Also it is noted that the devices annealed at temperatures of above 

125C shows improved power conversion efficiencies with highest PCE of 3.38% recorded 

for 1:1 ratio at 175C. On the other hand, for blend ratios of 1:0.8, and 1:0.6, the best PCE 

was determined to be 2.27% and 1.44% at 150°C. In all cases, the improved PCEs are 

considered to be due to the improved VOC at these temperatures respectively. As far as the fill 

factor is concerned there is no significant variation for this parameter at room temperature 

upon variation of PCBM loading. However above 125C it has been observed that the fill 

factor increases with PCBM loading. The mechanism responsible for this is likely to be the 

same resulting in the increase in open circuit voltage with temperature rather than improved 

short circuit current density. 

6.3.2 Influence of PCBM cluster dimension tuning on the Photovoltaic 

properties of P3HT: PCBM solar cells 

In section 5.2.1.1, the discussions on the influence of thermally induced PCBM cluster 

dimension tuning, on the optical properties of P3HT: PCBM blend thin films were presented. 

This section however, focuses on the PV characteristics of P3HT: PCBM BHJ solar cells, as 

a function thermal annealing strategies and how it influences the dimension tuning of PCBM 

clusters. The controlled formation of PCBM aggregates within the blend structure, 

undoubtedly affects charge transport to respective electrodes (Jo et al. 2009). In addition, the 

balancing of electron/hole mobilities to avoid space charges are all significant parameters in 

maximizing PCEs (Mihailetchi et al. 2006). Previous works on thermal annealing of bulk 

heterojunction solar cells mainly focus on analysis of as cast, post-processed devices at 

optimum temperatures and its implications on device physical parameters such as VOC, JSC 

and subsequently PCEs (Mihailetchi et al. 2006; Jeong et al. 2011). However it is of interest 

to study the effect of higher annealing temperatures on device performance. It is herein 

suggested that, only at such high thermal annealing temperatures, significant structural 

changes taking place can be observed. The case study at this point, in this section is such that 
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under different thermal annealing strategies (outlined previously in section 5.2.1.1), and at 

temperatures above 150C the aforementioned observations were being investigated. To gain 

insight in to the properties of the D/A phase separations due to PCBM dimension tuning, 

particular emphasis is placed on the photocurrent generation measurements. Photocurrent 

generation measurement is a very useful tool for studying the effects of thermal annealing 

processes on device performance (Mihailetchi et al. 2006). This is particularly the case in 

terms of physical parameters such as PCBM molecular aggregation, for example. It is in view 

of this that the measurement is being employed herein to quantify PCBM dimension tuning as 

a function of thermal annealing processes. The implications of the thermal annealing 

processes on D/A phase separations and in particular photocurrent generation, can shed light 

on the solar cell device performance characteristics. 

To study this effect within the active layer on the photocurrent generation in the P3HT: 

PCBM BHJ device, J – V properties were measured in reverse bias under 100 mW/cm
2
 

simulated AM 1.5 conditions. The structure of fabricated devices is the same as those 

described previously in section 6.2. In this section, all device fabrication and 

characterisations were done in nitrogen – filled glovebox.  

The J – V curves under illumination of P3HT: PCBM BHJ solar cells, with an active layer 

thickness of ~150 nm, are presented in Figure 6.5. The summary of PV performance 

parameters, exciton generation rates, Gmax, and exciton dissociation probability, P (E, T), are 

presented in Table 6.3. Details of how Gmax and P (E, T) were determined will be discussed in 

subsequent sections.  

It is important to note at this point that the summary of data in Table 6.3 included annealing 

temperatures between 120 - 145°C (in steps of 5°C). Thermal annealing at this temperature 

ranges was necessitated in order to carefully probe gradual changes leading to the optimised 

condition (i.e. 150°C). These data were however not included in Figure 6.5 (a) for purposes 

of clarity.  

Focusing particularly on devices thermally annealed at 50 - 175°C (in intervals of 25°C), it is 

evident from Table 6.3, that the short circuit current density JSC improves with annealing 

temperature up to around 150C after which deterioration in JSC is observed. In contrast, the 

VOC tends to reduce upon thermal annealing up to 100C and remains almost constant up to 

around 130C, there after it increases with further thermal annealing.  
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Figure 6.5: J – V characteristics of P3HT: PCBM – based BHJ devices: (a) as cast and after 

thermal annealing from 50 - 175°C (in steps of 25°C, 10 min.) (b) After thermal annealing at 

175°C for 10 and 60 min. 
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Table 6.3: Summary of PV parameters: short circuit current density (JSC), open circuit 

voltage (VOC), fill factor (FF), power conversion efficiency (PCE), and exciton generation 

rate (Gmax), and probability of exciton dissociation (P(T, E)), all as a function of thermal 

annealing (50 - 175°C). 

  Jsc (mA/cm²) Voc (V) FF PCE (%) Gmax (m
-
³s

-
¹) P (T,E) 

As-cast 6.51 0.60 0.58 2.26 3.37×10
27

 0.80 

50°C 6.87 0.58 0.61 2.42 3.66×10
27

 0.78 

75°C 8.14 0.52 0.61 2.60 4.21×10
27

 0.81 

100°C 9.70 0.49 0.60 2.84 4.75×10
27

 0.85 

120°C 10.20 0.48 0.59 2.90 4.79×10
27

 0.89 

125°C 10.67 0.48 0.59 3.00 5.00×10
27

 0.89 

130°C 10.04 0.48 0.58 2.79 4.67×10
27

 0.89 

135°C 10.90 0.49 0.58 3.07 5.04×10
27

 0.90 

140°C 11.21 0.52 0.57 3.31 5.08×10
27

 0.93 

145°C 11.33 0.53 0.57 3.39 5.21×10
27

 0.90 

150°C 11.62 0.57 0.58 3.84 5.78×10
27

 0.90 

175°C 10.46 0.62 0.55 3.56 5.33×10
27

 0.82 

 

In all cases the power conversion efficiencies tend to follow the same trend as the short 

circuit current density, with the highest PCE recorded at 150 C. A possible reason for this 

observed trend in JSC as a function of the thermal annealing processes was briefly highlighted 

in sections 5.2.1.1, and 5.2.2, which has to do with improved crystallinity, and favourable 

D/A separation. Another explanation is associated with a number of factors, namely: better 

exciton generation rates, improved exciton dissociation, improved charge carrier mobilities 

and transport of charges to the respective electrodes.  

Details of the relationship of D/A interfaces within the active layer of BHJ solar cells and 

efficient exciton dissociation have been previously discussed in 2.9.1. Improved crystallinity 

in the donor phase would ensure efficient exciton generation (Milhailetchi et al. 2006). D/A 

phase separations have a significant impact on exciton dissociations and subsequently charge 

carrier generations (Tvingstedt et al. 2009; Guo et al. 2010). Whilst the peak optical 
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absorption intensity of the PCBM has little to do with the current density, its cluster 

formation i.e. size, distribution, orientations, etc., may or may not result in more efficient 

exciton dissociation. Therefore exciton generation rate and dissociation probability at D/A 

interfaces as a function of thermal annealing must be investigated to support this idea.  

6.3.2.1 Analysis of Gmax and P (T, E) 

A double logarithmic plot of photocurrent (Jph = Jlight - Jdark) versus the effective applied 

voltage (V0-V) is presented in Figure 6.6, where V0 is the bias at Jlight = Jdark.   

The maximum generation rates, Gmax is given as Jsat = qGmaxd, where Jsat is the saturation 

current density, q is the electronic charge and d is the device active layer thickness. In the low 

effective field region (V0-V < 0.1V), Jph is observed to increase linearly with voltage (see 

Figure 6.6). A similar behaviour has also been previously reported (Milhailetchi et al. 2006). 

It is also evident that at a higher reverse electric field (V0-V >1V), Jph saturates. This is 

indicated as the saturation region in Figure 6.6. Assuming at this region, all the excitons 

(electron – hole pairs) have dissociated to the respective electronic charges and taking the 

active layer device thickness as 150nm, Gmax was deduced for as casted and after gradual 

thermal annealing up to 175C. Only a certain fraction of photogenerated excitons will 

dissociate into free charges with the probability, P (T, E), at any given electric field 

(Shrotriya et al. 2006). Generation of free charge carriers G (T, E) is very much dependent on 

both temperature and electric field (Mihailetchi et al. 2006) and is given by 

                                                   ),(),( max ETPGETG                                                       (6.1) 

The probability of exciton dissociation can also be obtained given that: 

                                                     ph  e max   ,E d                                                         (6.2) 

Using equations 6.1 and 6.2, Gmax and P(T, E) were determined from experimental results. 

The summary of the exciton generation rates, probability of exciton dissociation at V = V0 as 

a function of thermal annealing are included in Table 6.3. As can be seen the exciton 

generation rate increases with annealing temperatures up to 150C. It follows the same trend 

as JSC and furthermore the onset of its deterioration correlates well with the observed 

reduction in short circuit current density. The increase in exciton generation rates presented in 

Table 5.6 further verifies the interpretation of the increase in optical absorption of P3HT as a 

result of recrystallization (see Figure 5.5). It is also important to point out that the probability 



 

117 
 

of exciton dissociation at V = V0 remains almost constant at ~ 80% in response to increasing 

annealing temperatures of up to 75C.  

 

Figure 6.6: Double logarithmic plot of photocurrent (Jph = Jlight – Jdark) versus effective 

applied voltage (V0-V) for P3HT: PCBM devices (active layer thickness ~ 150 nm) gradually 

annealed from 50°C to 175°C in steps of 25°C, for 10 min each. 

This is in contrast to the observed increase in short circuit current density with thermal 

annealing. Above 100C dissociation probability increases to 93% at 140C, above which 

both Voc and JSC increases with thermal annealing, whilst exciton probability reduces, 

indicating that not all the excitons dissociated have successfully been collected. 

Figure 6.7 summarises the correlation of the short circuit current density and maximum 

exciton generation rates of the BHJ device, as a function of thermal annealing. 

6.3.3 Influence of nanomorphology and charge carrier mobility in P3HT: 

PCBM BHJ solar cell 

Whilst there have been extensive research based on the P3HT: PCBM BHJ solar cell 

(Campoy-Quiles et al. 2008; Chen et al. 2010; Kalita et al. 2010; Nalwa et al. 2011), no 

breakthrough in PCEs above 10% has yet been realised. As previously highlighted in Chapter 

1, the external quantum efficiency, given by CCCTDA   (Forrest, 2005), is a product of 
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associated with exciton dissociation, CT efficiency associated with charge transfer and CC  

that associated with charge collections at respective electrodes. Enhancing A is significantly 

material – dependent (Forrest, 2005).  

 

Figure 6.7: Short circuit current density, JSC, and the maximum exciton generation rate 

(Gmax) of P3HT: PCBM device, as-cast and as a function of thermal annealing temperature. 

P3HT is known to have a relatively high degree of crystallinity and absorption extending in 

the region of 650 nm of the solar spectrum (Shrotriya et al, 2005; Erb et al, 2006). In 

addition, it also possesses suitable electronic band gap favouring efficient charge transfer 

(Scharber & Sariciftci, 2013). When considering D  and CC , again material choice is a 

significant factor, as the difference in their LUMOs is somewhat critical to efficient exciton 

dissociation and also charge transport properties of the blended materials. Furthermore D/A 

interfaces, transport pathways (within the bulk of the active layer) to the respective 

electrodes, charge carrier mobilities, loss mechanisms via recombination etc. all have an 
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2006; Kim et al, 2007; Pivrikas et al, 2011). Owing to the influence of the bulk morphology 

of these blends, PCEs can remarkably improve upon subjecting the device to various physical 

and chemical processes (Peet et al, 2007; Miller et al, 2008; Zhuo et al, 2011; Sun et al, 

2013). In the previous section, investigations on PCBM cluster formation resulting from 

different thermal annealing strategies and its impact on photocurrent generation were 

discussed. Nano-structuring of the photo active layer (due to PCBM cluster formation) 

significantly influences charge carrier mobilities, charge separation and recombination 

processes, all of which have a direct impact on PCEs. It is known that the charge carrier 

mobilities enhances exciton dissociations and charge carrier recombination which are both 

believed to be a competing process (Clarke & Durrant, 2010). This parameter can improve or 

deteriorate upon thermal annealing. To also address the influence of trap density on charge 

carrier mobility, this case study was designed with a suggested range of thermal annealing 

temperatures above the glass transition temperature of P3HT, for which this phenomenon was 

studied. It is widely suggested that the best device efficiency reported for P3HT: PCBM 

blend is at the annealing temperature in the range of ~140 – 150C (Kim et al, 2005); which 

is consistent with results reported here in the previous sections. However, thermal annealing 

at this temperature results in restructuring of nanodomains which consequently has a direct 

impact on exciton dissociation as well as recombination processes, as a consequence of 

overall changes in the polymer/fullerene interfaces. The case study herein therefore is 

focused on the effects of thermal annealing on transport properties of solar cell devices based 

on blended materials (P3HT: PCBM) as well as probing and establishing the processes that 

impact recombination mechanisms. In the following subsections, the nanomorphology-bulk 

transport property relationship and impact of thermal annealing will be discussed in details. 

6.3.3.1 Implications of thermal annealing on the bulk network transport 

properties 

The materials and methods for the fabrication of OSC are the same as outlined previously in 

section 6.3.2. In addition, single charge carrier devices, i.e., hole – and electron – only 

devices were fabricated, following a similar procedure for OSCs (although using charge 

blocking layers accordingly). Details of the fabrication of these devices can be found in 

section 4.4.1.1, where the corresponding device structures are depicted in Figure 4.16. In 

addition the energy band diagram representations of these devices are shown in Figure 6.8. 

The measured dark current density – voltage characteristics of the hole – and electron – only 

devices are shown in Figure 6.9. 



 

120 
 

 

Figure 6.8: Energy band diagrams of (a) electron – only device, (b) hole – only device. (c) 

Energy band diagram of hole – only device in reverse bias showing hole injection. 

Upon positively biasing Au contact with respect to PEDOT: PSS, there is no potential barrier 

and holes are injected from Au into the highest occupied molecular orbital (HOMO) of P3HT 

(reverse bias condition) (see Figure 6.8 (c)). In the voltage range of 0.2V <Veff < 0.7V (Veff 

being the applied bias corrected for the built-in potential arising from the difference between 

the work-function of contacts).  

It was found that the current density–voltage property obeys Ohm’s law (see equation 2.7). 

At higher effective applied field 3.5V < Veff < 4.4V the current density – voltage relationship 

was observed to depart from Ohmic behaviour and followed the space charge limited current 

(SCLC) behaviour (see equation 2.8). For P3HT: PCBM blend film, the dielectric constant 

was assumed to ~3.4 in equation 2.8, and thickness of the active was measured to be ~150 

nm. Using the slope corresponding to the square law in Figure 6.9 (a) and appropriate 

parameters, equation 2.8 yields a value of the hole mobility for as cast device as μh = 

91015.1  m
2
 V

-1
 s

-1
. This is in close agreement with reported data for this parameter 

(Shrotriya et al, 2006; Nalwa et al, 2011).  
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Figure 6.9: Dark J – V plots of P3HT: PCBM based single charge carrier devices; (a) hole – 

only (reverse biased) and (b) electron – only. The insets show the best fits (solid lines) of the 

experimental data to the SCLC model. 
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Similarly the Ohmic region of Figure 6.9 (a) together with appropriate parameters in equation 

2.7 leads to a hole carrier concentration of 221049.1  m
-3

 which is of the same order of 

magnitude reported in the literature (Nalwa et al, 2011).  

It was noted that at higher applied field Veff > 5V, the current density-voltage relationship is 

indicative of trap-filling states associated with exponent greater than 2 namely power law 

(Lampert & Mark, 1970), which is given by: 

                                           J   
μe h  CV

q
  

   r

  e h 

 

l  
 

l

 
2l  

l  
 
l   l  

d
2l                                            (6.3) 

where NCV is the effective density of states in the conduction or valence band, 
)( heTN is the trap 

density for electrons (holes). Employing equation 6.3 yields 
hTN of 251098.2  m

-3
, for as cast 

device. 

Similarly, for electron mobility measurements, the range corresponding to the trap filled 

SCLC regime (0.842V<Veff <1.43V) yields a value of electron mobility, μe =1.1x10
-8

 m
2
V

-1
s

-

1
. For the sake of clarity the voltage regions for which the parameters are extracted have been 

included in Table 6.4. It is worth noting that the Ohmic region for both electron – and hole –

only devices are in the range 0-1 V whereas for space charge limited conductivity the range 

varies, suggesting the influence of associated deep or shallow trap levels within the bulk 

material (Nam et al, 2009). The region associated with higher exponents is analysed using 

equation 6.3 for exponential trap distribution. Initially the hole mobility reduces upon thermal 

annealing as is evident from Table 6.4. However above 50C it is observed that it begins to 

increase, with its maximum value measured at 175C. Mihailetchi et al (2006) have 

previously reported a similar observation of an increase in the hole mobility in the P3HT 

phase upon thermal annealing, with mobility values consistent with values measured in 

pristine P3HT (~10
-8

 m
2
V

-1
s

-1
), i.e., in the absence of PCBM molecules. According to the 

work of Yang and co-workers (2005), it can suggested that at such high temperatures as 

shown here, the crystallization of P3HT would have occurred thus resulting in the measured 

enhanced transport of holes. However in the case of the electron mobility, a reduction in this 

property at annealing temperature above 150°C was measured. The reason for this is 

somewhat unclear at this stage, although it maybe suggested that this might be due to the 

increased formation of PCBM aggregates, and also the extensive depletion regions around 

them, previously shown in Figure 5.7 (c).  
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Table 6.4: Summary of parameters determined from experimental data. 

 

Voltage ranges: * Hole – only devices, †  lectron – only devices. 

In other words, at very high annealing temperatures (i.e., above 150°C), the resulting change 

in morphology, with its corresponding phase separation characterised by highly isolated 

PCBM aggregates (in this study) was noted to have not facilitated electron transport. 

It is known that the charge transport in organic semiconductors is mainly due to hopping 

mechanism from site to site (Peter, 2009). The increased separation between isolated clusters 

as shown in Figure 5.7 (c) may impede the hopping mechanism. Therefore this probably 

could explain the reduction in the electron mobility as measured in this study.  In addition, 

 

 
As cast 50°C 100°C 125°C 150°C 175°C 

μh (m
2
V

-1
s

-1
) 1.15x10

-9
 6.68x10

-10
 8.53x10

-10
 2.14x10

-9
 2.30x10

-9
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-8
 

μe (m
2
V

-1
s

-1
) 1.1x10

-8
 5.93x10

-9
 8.51x10

-9
 1.31x10

-8
 1.1x10

-8
 3.78x10

-9
 

μe/μh 9.56 8.88 9.98 6.12 4.78 0.357 

n (m
-3

) 4.9x10
21

 4.74x10
21

 7.09x10
22

 6.37x10
22

 6.05x10
22

 2.65x10
21

 

p (m
-3

) 1.49 x10
22

 1.06x10
22

 9.68x10
21

 1.08x10
22

 1.17x10
22

 6.22x10
22

 

NTh ( m
-3

) 2.98x10
25

 6.79x10
24

 2.22x10
24

 7.72x10
24

 1.36x10
23

 1.14x10
26

 

NTe  (m
-3

) 2.51x10
24

 6.76x10
24

 2.54x10
26

 3.79x10
26

 1.14x10
26

 4.30x10
24

 

Ohmic 

region* (V) 
0.20-0.70 0.25-0.60 0.35-0.80 0.45-0.95 0.45-0.95 0.50-1.00 

SCLC region* 

(V) 
3.45-4.35 1.85-3.00 1.25-2.20 1.45-2.45 1.70-2.40 2.30-3.15 

Trap-limited 

region* (V) 
5.25-6.75 5.00-6.15 4.50-5.95 3.00-6.45 4.60-6.90 3.50-6.45 

Ohmic region
†
 

(V) 
0.10-0.43 0.1-0.39 0.15-0.38 0.10-0.70 0.15-0.65 0.10-0.55 

SCLC region
†
 

(V) 
0.84-1.43 0.78-1.21 2.00-2.48 2.80-3.90 4.80-5.95 1.88-2.72 

Trap-limited 

region
†
 (V) 

1.51-2.22 1.76-2.21 2.48-2.73 3.85-4.45 5.80-6.45 3.13-4.13 
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the maximum PCE for devices in this study was measured after thermal annealing at 150C 

and upon increasing the annealing temperature to 175C, a reduction in this parameter is 

observed (see Table 6.3).  

At 150C where the maximum PCE was measured, the ratio of electron to hole mobility 

(μe/μh) was determined to be 4.78 (see Table 6.4). This observed trend where μe/μh reduces 

with thermal annealing is consistent with previous works (Li et al. 2005; Shrotriya et al. 

2006), suggesting an improved balance in carrier transport is advantageous for PCE 

improvement. However, after thermal annealing at 175C, a lesser than unity for this ratio 

(μe/μh ~ 0.357) was measured. It is suspected here that the reason for this may be due to the 

disruption of electron transport pathways to the respective electrode as a result of an 

undesirable clustering of PCBM molecule, leading to lower electron mobility. 

Exciton dissociation and recombination (either bimolecular or germinate), are competing 

processes which increases as a result of improved charge carrier mobilities (Clarke & 

Durrant, 2010). Due to the nature of fast charge transfer, which is prior to exciton 

dissociation, it was found that the PL measurements (section 5.2.2) are unable to adequately 

probe recombination processes. Because of this the nature of the relationship between exciton 

dissociation and recombination processes will be further explored in the following section. 

6.3.4 Exciton Dissociation and Recombination Mechanisms 

Excitons created as a result of absorption of photons by polymer phase, may or may not result 

in dissociation of free charge carriers depending on the probability that these bound electron 

– hole pairs overcome their columbic attraction given by the capture radius proposed by 

Onsager (Onsager, 1938). The expression for the capture radius is given in equation 2.18. 

Due to low values of  r associated with organic semiconductors; the capture radius is 

relatively larger than their inorganic counterparts. Furthermore this model suggests that a hot 

electron will impart its thermal energy by rapid motion settling at a distance a, from the hole, 

known as the thermalization length. The values of a calculated on the basis of Onsager model 

is around 2.5 – 3.5 nm which is larger than expected for nearest neighbouring charge transfer 

states (1nm) (Clarke & Durrant, 2010). Taking into account the relatively larger values of 

thermalization lengths, Braun (1983) modified the Onsager’s model with the view that charge 

transfer states have a finite life time  CT which depends on the two competing mechanisms of 

dissociation and recombination as given by equation 2.20. The details of the modification of 

Onsager’s model have been discussed in section 2. . . . It follows that the probability of 
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exciton dissociation is dependent on the dissociation rate constant kd and the rate constant kf 

associated with geminate recombination rate back to the ground state.  

It is important to note that when kd ˃˃ kf , the probability approaches unity and the charge 

transfer state life time is described by the dissociation rate, while on the other hand when kf 

˃˃ kd  the probability approaches zero and the charge transfer states life time will approach 

the geminate recombination life time back to the ground state. The dissociation rate kd can be 

evaluated from the expression given in equation 2.21. kr in equation 2.21 is the recombination 

constant. This could either be equivalent to Langevin recombination (discussed in section 

2.9.2) or trap assisted recombination (Schokley & Read, 1952).  

To investigate the impact of recombination mechanisms, first the Braun’s modified model is 

estimated on the basis of Langevin recombination (BL). BL can be expressed as (Kuik et al. 

2011); 
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q
B                                                              (6.4) 

,where   is the average sum of the electron and hole mobilities.  

Using the calculated values of electron and hole mobilities in section 6.3.3.1, the rate 

constant, kf associated with germinate recombination to the ground state was found to be

14100.1  s , with BL = 1318 sm1011.6   respectively. These results are consistent with the 

report of Koster and co-workers (2006). Following the thermal annealing at 150°C however, 

kf increases to 14100.2  s (BL = 1317 sm1022.1  ). This parameter continued to increase 

(i.e., kf = 14100.8  s , where BL = 1317 sm1064.5  ), after thermal annealing at 175°C. It is 

suggested here that this measured increase in the decay rate is attributed to the increase in 

hole carrier mobility, resulting in a higher value of Langevin constant BL and faster geminate 

recombination back to the ground state. This will therefore be reflected in a shorter charge 

transfer state life time. 

On the other hand, if one assumes only bimolecular recombination mechanism, on the basis 

of trap –assisted (or Shockley Read Hall) recombination model, expressed as 
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where Cn is defined as the probability per unit time that an electron in PCBM phase is 

captured by an empty trap. Similarly Cp is defined as the probability per unit time that a hole 

is captured by an electron – occupied trap site,   e is the density of the electron traps, n and p 

are the electron and hole density in the conduction and valence band respectively, and 

n1p1=ni
2
 the intrinsic carrier concentrations. Since intrinsic carrier concentrations are much 

lower than electron and hole densities, equation 6.5 can therefore be reduced to 
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Assuming Cn = Cp, equation 6.6 can be further simplified as 
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Figure 6.10 shows the plot of experimental photocurrent versus the effective reverse applied 

voltage; for as cast and after thermal annealing at 150°C. Included in these plots are 

calculated photocurrents incorporating either Langevin (BL) or SRH (BSRH) recombination 

models. The data in Table 6.4 were used, and the value of Cn was assumed to be

1318 sm106.1  . Equation 6.7 yields a BSRH value of 1316 sm100.2  , with a computed kf of 

15103.2  s  for as cast device. Whereas after thermal annealing at 150°C, BSRH was 

calculated to be 1315 sm105.2  , with a corresponding kf = 16100.2  s respectively. 

The higher recombination constant BSRH in comparison to BL is an indication that the trap 

assisted recombination is dominant in comparison to its Langevin counterpart. The highest 

PCEs measured in the present work correspond to a thermal annealing at 150C. Therefore on 

the basis of this, a lower recombination rate should be expected. On the contrary this is not 

so, as the results indicates higher recombination constant with higher geminate recombination 

rate back to the ground state kf. Referring again to Table 6.4 it is noticed that the trap 

concentration has increased by almost 2 orders of magnitude which resulted in a higher value 

of BSRH. However, the improved μe/μh ratio upon thermal annealing plays an important role in 

charge transport to the respective electrodes, hence improving PCE. In order to further verify 

the dominant process considered above, the relationship between light intensity and open 

circuit voltage (VOC) given by Koster et al. (2006), is explored.  
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Figure 6.10: Photocurrent density (Jph) as a function of effective reverse applied voltage (V0-

V) for P3HT: PCBM based solar cell device; (a) as-cast and (b) after thermal annealing at 

150°C. The solid lines represent numerical calculations based on Shockley-Read-Hall (blue), 

and Langevin (broken, red) recombination. 

Refer to 2.9.2.1 for details of discussions on the relation between VOC and light intensity. 
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HOMO levels of PCBM and P3HT. In the event were traps are absent in the bulk of the 

active layer, equation 2.27 holds with a slope, S, equalling kBT/q (eV), when VOC is plotted as 

a function of the logarithm of light intensity. It has been shown that values of S higher than 

kBT/q is indicative of a trap-assisted recombination mechanism (Kwuik et al. 2011). Thus a 

measured increase in this quantity is considered to be evidence of an increase in the strength 

of the trap-assisted recombination. To perform the voltage dependence on light intensity 

measurements, illumination intensity of the solar simulator was varied by varying the power 

output of the lamp's power supply. The intensity of the illumination was checked every time 

before each measurement with a calibrated Si reference solar cell and meter (Newport and 

Oriel Instruments). Figure 6.11 shows a semi log plot of VOC versus the light intensity. 

 

Figure 6.11: VOC as a function of light intensity for P3HT: PCBM based solar cell device; as-

cast and annealed at 150°C, solid lines are linear fits used to determine the slopes. 

As is evident, the slope of 1.12 (kBT/q) is indicative of trap assisted recombination. Upon 

thermal annealing at 150C the value of this slope increased to 1.46 (kBT/q) indicating an 

increase in the strength of the trap assisted recombination. This is consistent with the 

calculated increase in trap density presented in see Table 6.4. 
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6.3.5 Recombination Losses: Impact of PCBM weight ratio 

In section 5.2.1, the compositional studies of BHJ active layers based on P3HT: PCBM for 

organic solar cells were presented. In that section, optical absorption spectroscopy was 

employed to elucidate the nature the PCBM molecular clustering as a function of both 

composition and thermal annealing. 

Herein in this section, for didactic purposes, 50 and 37.5 wt% PCBM content in the blend 

film are being considered. Single charge carrier devices, i.e., hole – and electron – only, were 

employed in order to measure their respective charge carrier mobilities. The impact of 

composition on bimolecular recombination for the two different percentage weights of 

PCBM has been investigated and is presented here. 

The comparison between these two systems mentioned above under thermal annealing 

conditions is also of interest. It has already been established from the foregoing that thermal 

annealing induces a nano-restructuring of the morphology of the active layer bulk. This 

restructuring in turn have an effect on the D/A interface separation, which also influences the 

efficiencies of exciton dissociation. Depending on whether an optimised network within the 

bulk is achieved as a result of thermal annealing, charge transport and collection at the 

respective electrodes are influenced. It has been shown that the charge carriers’ mobility is a 

significant factor in the estimation of bimolecular recombination (Koster et al, 2006, Oklobia 

& Shafai, 2014). The desired highly efficient organic solar cell would be one with 

recombination at the very minimum, therefore allowing for efficient and maximum collection 

of charges at the respective electrodes. The investigations presented in this section seek to 

probe the effect of PCBM content on charge carrier mobilities and its impact on bimolecular 

recombination and PCEs as well. All fabrications of thin films and devices for direct current 

measurements were done following the same methods described previously in section 4.2.2. 

The structure of the fabricated single charge carrier devices are as illustrated in Figure 4.17. 

Referring again to the optical absorption spectroscopy results in Figure 5.5, to provide a 

backdrop for the ongoing discussion, with emphasis on 1:1 and 1:0.6 ratios, for: as cast and 

after thermal annealing at 175°C. 175°C in particular was chosen for the purposes of clarity. 

As previously highlighted, the increase in peak absorption intensity (see Figure 5.5) may 

translate to an improvement in the current density. The trend showed by the absorption 

spectra associated with PCBM is also believed to have some bearing on the nature of the 

internal nanostructuring within the photoactive layer bulk. Both of these were regarded as a 
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function of PCBM content and thermal annealing approaches. These observations together 

with the optical microscopy images (Figure 5.7) strongly support this idea.  

The variation in the bulk re-structuring evidenced in optical absorption spectroscopy results is 

expected to have some degree of impact on charge carrier mobility in devices based on the 

two blend ratios. In addition, it is also of interest to investigate the nature of losses via 

recombination in these two systems. Firstly, to study the impact of recombination losses in 

these systems, the method of measuring the photocurrent generation as was employed in 

section 6.3.2.1 is similarly adapted here. Shown in Figure 6.12 are the photocurrents (Jph) as a 

function of the effective applied bias (Veff) under illumination, for P3HT: PCBM (1:1 and 

1:0.6) blend ratios (after thermal annealing at 175°C). Using Jsat = eGmaxd also, the maximum 

generation rates were found to be 271033.5  m
-3

s
-1

 and 271054.4   m
-3

s
-1

, for 1:1 and 1:0.6 

P3HT: PCBM blend ratios respectively.  

 

Figure 6.12: Measured photocurrents as a function of effective applied voltage bias for 1:1 

(black open circles) and 1:0.6 (red open triangles), after thermal annealing at 175°C. 

When the PCBM content was increased from 37.4% (in 1:0.6) to 50% (in 1:1), the maximum 

generation rates was determined to increase by 15%. A somewhat similar observation was 
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made by Shrotriya and co-workers (2006). In their work, they compared maximum 

generation rates between ‘fast’ and ‘slow’ grown films. It was reported that the slow grown 

films which had an increased absorption in the active layer yielded a much higher maximum 

generation rate. By comparing the probabilities of excitons dissociated at short circuit 

conditions (Veff = V0), and at the maximum power output point (at Veff = Vmax), it is possible to 

gain some qualitative insight into the role of recombination. At Veff = V0, about 82% of the 

total photogenerated e-h pairs dissociate to free charges in the case of 1:1. This was further 

reduced to 75.4% at the maximum power output point (V = 0.44V). Similarly for the blend 

ratio of 1:0.6, about 78% of the total photogenerated e-h pair dissociate to free charges. This 

however was significantly reduced to 23% at maximum power point (V = 0.25V). According 

to the work of Shrotriya et al. (2006), these values suggest that there is a higher loss due to 

recombination in the devices based on 1:0.6 ratio, since more than half of the photogenerated 

e-h pairs are lost. This could probably be the reason for the reduction in short circuit current 

density measured in this device after thermal annealing at 175°C (see Table 6.1). 

6.3.5.1 Investigation of Recombination rates 

Figure 6.13 shows the dark current density – voltage characteristics for both an electron – and 

hole – only device, based on P3HT: PCBM bulk heterojunction with blend ratios of 1:1 and 

1:0.6. 

At low applied effective voltage, the current density – voltage (J – V) relations similarly 

obeyed the Ohm’s law, following the relationship given by equation 2.7. According to the 

same procedure as previously described, at higher effective applied voltage J – V relationship 

departs from Ohmic behaviour and is consistent with the SCLC behaviour (equation 2.8). By 

fitting the dark J – V curves to SCLC model for single charge carrier devices, the electron and 

hole mobilities were measured for P3HT: PCBM (1:1 and 1:0.6). The results, including 

calculated bimolecular recombination constants and recombination rates respectively are 

summarised in Table 6.5.  

Having calculated the charge carrier mobilities, the electron and hole density can be 

determined using the slope of the Ohmic region together with values of the parameters in 

equation 2.7. BL was similarly calculated according to previously discussed method, using 

equation 6.4. The recombination rates, RL in Table 6.5 were calculated using the relationship 

expressed in the following equation. 
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                                                              ne.nh                                                              (6.8) 

Where ne and nh are the electron and hole charge carrier densities, and BL is the Langevin 

(bimolecular) recombination, determined from equation 6.4. 

 

 

Figure 6.13: Dark J – V characteristics for (a) electron – only and (b) hole – only devices 

based on P3HT: PCBM blend of ratios, 1:1 and 1:0.6; as cast and after annealing at 175°C. 

Up to a thermal annealing temperature of 150C a continuous improvement in electron 
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deterioration of this parameter was measured. In the case of the blend ratio 1:1, for hole - 

only device, the hole mobility tend to remain almost constant up to a temperature of 150C 

after which a sharp increase above this temperature is recorded. 

Table 6.5: Summary of charge carrier mobilities (μe: electron mobility, and  μh: hole 

mobility), electron (ne) and hole (nh) density, bimolecular recombination constant, BL, and 

recombination rate, RL for P3HT: PCBM solar cells of ratios; (a) 1:1, and (a)1:0.6, as a 

function of thermal annealing. 

(a) 1:1 

Temperature μe μh ne nh BL RL 

As cast 1.46x10
-9

 1.54x10
-9

 1.30x10
21

 3.22 x10
22

 7.77 x10
-18

 3.25 x 10
26

 

50°C 4.31 x10
-9

 1.33x10
-9

 4.92x10
21

 3.12 x10
22

 7.08 x10
-18

 1.09 x 10
27

 

75°C 3.06x10
-8

 1.27x10
-9

 4.38x10
21

 2.70 x10
22

 6.76 x10
-18

 7.99 x 10
26

 

100°C 8.96x10
-8

 1.56 x10
-9

 4.22x10
21

 2.16 x10
22

 8.30 x10
-18

 7.57 x 10
26

 

125°C 5.39 x10
-8

 2.59 x10
-9

 2.82x10
21

 1.69 x10
22

 1.37 x10
-17

 6.53 x 10
26

 

150°C 5.71x10
-8

 2.57 x10
-9

 1.42x10
21

 1.46 x10
22

 1.37 x10
-17

 2.84 x 10
26

 

175°C 3.98x10
-8

 9.10 x10
-9

 7.24x10
20

 1.66 x10
22

 4.84 x10
-17

 5.82 x 10
26

 

 

(b) 1:0.6 

Temperature μe μh ne nh BL RL 

As cast 8.39x10
-10

 4.8 x10
-10

 4.76x10
21

 1.17 x10
22

 2.55 x10
-18

 1.42 x 10
26

 

50°C 1.84x10
-9

 5.31 x10
-10

 6.55x10
21

 1.15 x10
22

 2.82 x10
-18

 2.12 x 10
26

 

75°C 1.61x10
-8

 5.00 x10
-10

 8.56x10
21

 4.93 x10
22

 2.66 x10
-18

 1.12 x 10
27

 

100°C 4.38x10
-8

 6.75 x10
-10

 2.08x10
22

 7.52 x10
21

 3.59 x10
-18

 5.62 x 10
26

 

125°C 5.00x10
-8

 1.72 x10
-9

 7.27x10
21

 1.07 x10
22

 9.15 x10
-18

 7.12 x 10
26

 

150°C 3.87x10
-8

 1.95 x10
-9

 5.29x10
21

 1.21 x10
22

 1.04 x10
-17

 6.66 x 10
26

 

175°C 2.96x10
-8

 3.19 x10
-9

 1.90x10
21

 1.22 x10
22

 1.70 x10
-17

 3.94 x 10
26

 

 

A similar observation for devices based on the blend ratio of 1:0.6 is also observed, although 

with the onset of this increase being at the lower annealing temperature of 125C.  
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As is evident, for devices based on the blend ratio of 1:1 the recombination rates decreases 

with increasing thermal annealing temperatures up to 150°C. This supports the notion that 

bimolecular recombination may not have a dominant role to play as compared to the trap 

assisted recombination, as have been previously shown. In contrast to the device based on 1:1 

blend ratio, no noticeable correlation has been observed for that of 1:0.6, between thermal 

annealing and recombination rates. 

6.4 AC Measurements: Impedance spectroscopy and Capacitance – voltage 

measurements as a tool for characterizing P3HT: PCBM – based OSCs 

In the following sections, studies involving the use of impedance spectroscopy and also 

capacitance – voltage measurements for the characterization of OSCs are presented. 

In section 4.4.2, and 4.4.3, a brief overview of the methods of CV and impedance 

spectroscopy (IS) was presented. From the foregoing discussions, it has been shown in this 

work so far that a number of experimental techniques have been useful in characterising thin 

films and OSCs based on P3HT: PCBM. These include the combination of both UV-Vis 

absorption spectroscopy and optical microscopy in elucidating information on the molecular 

segregation and D/A phase separation within the photoactive bulk. Charge transfer dynamics 

as revealed by PL studies. Current – voltage measurements as well, which is a frequently 

used technique in evaluating significant PV parameters and most importantly device PCEs. In 

probing the impact of thermal annealing on the nanoscale morphology of BHJ OSC, these 

aforementioned tools have undoubtedly provided useful insights in better understanding 

correlations between significant parameters. These include morphological variations and 

photon absorption, exciton generation and dissociations, charge generation and their 

subsequent collection. However, as much as these tools have been proven to be informative it 

is important to note that they are not exhaustive in themselves. For this reason, it can be 

argued that the relationships between nanoscale morphology, underlying electrical properties, 

and device performance have not been fully exhausted yet. 

6.4.1 Impedance Spectroscopy measurements studies of P3HT: PCBM – 

based devices 

Impedance spectroscopy is known to be an effective tool in characterising the electrical 

properties of electronic devices (Mora-Seró et al, 2008; Kuwabara et al, 2009; Leever et al, 

2012). It is primarily based on the measurement of the current response to an AC voltage 
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applied as a function of frequency. Unlike DC methods, with IS measurements, it is possible 

to evaluate the roles of interfaces within the bulk of the photoactive layer of OSCs (Leever et 

al, 2011). The method has been proven to be effective in characterising a variety of electrical 

devices such as the dye sensitized solar cells (DSSC). OSC parameters such as charge carrier 

lifetimes have been successfully determined under a range of operating biases and 

illumination intensities (Bisquert, 2003; Wang et al, 2005; Bisquert et al, 2009). Wu  and co-

workers (2010) in their report have shown that the analysis framework established for DSSC 

can be extended to the BHJ OSC in order to evaluate average charge carrier lifetimes as a 

function of the device’s processing history (for example, thermal annealing). Similarly in this 

section, a study of the impedance responses of BHJ OSC based on P3HT: PCBM, are 

presented. It investigates the impact of thermal annealing on nanomorphology evolution in 

typical BHJ blend film for OSC applications. From the analysis of the impedance responses 

of devices and their dependence on illumination intensity, bias conditions, and thermal 

annealing conditions, discussions on the characteristics of P3HT: PCBM – based devices 

studied here are presented. 

The IS responses for BHJ devices with the structure ITO/PEDOT: PSS/Active layer (P3HT: 

PCBM)/Al are summarised in Figure 6.14. The ratio P3HT: PCBM in the blend used is 1:1. 

Leever and co-workers (2011) demonstrated that the larger response of the semi-circle of the 

Cole-Cole plots (Figure 6.14) for a P3HT: PCBM device compared to that of a P3HT – only 

device was mainly due to charge transfer processes at D/A interfaces in the bulk active layer. 

In Figure 6.14 (b), the AC response of the device was found to be approaching the shunt 

resistance extracted from the J – V curve of as cast device under 1 sun illumination (2500 Ω). 

This observation is consistent with other reported studies (Leever et al, 2011). Among the 

number of equivalent circuit models employed for modelling impedance responses, the one 

used by Yoon et al (2014) has been applied here. This is represented in Figure 6.15, where RS 

corresponds to the intersection of the impedance spectra with the real axis on the Cole – Cole 

plot, indicated by Re Z (in Ohms) at high frequencies. This has been attributed to the resistive 

losses at the ITO/PEDOT: PSS interface. As is evident, it is almost constant under varied 

illumination and sample bias. Two semicircular arcs can almost be seen from the AC 

impedance response (see inset of Figure 6.14 (b)). These are accounted for in the equivalent 

circuit as; a high frequency arc, represented by the R1||C1 combination, whereas the low 

frequency arc is represented by the R2||CPE. The R1||C1 is associated with the bulk resistance 

and capacitance (Leever et al, 2011; Yoon et al, 2014). 



 

136 
 

 

 

Figure 6.14: Impedance spectra of P3HT: PCBM (1:1) solar cell (as cast): (a) at 0.0 V and 

under varied illumination intensities, (b) under 1 sun (100%) illumination intensity and varied 

bias. 
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Figure 6.15 shows the equivalent circuit representing P3HT: PCBM BHJ solar cell. 

 

Figure 6.15: Equivalent circuit representing P3HT: PCBM BHJ solar cell. 

Whilst in the R2||CPE combination, R2 corresponds to a recombination resistance and CPE 

(constant phase element) a chemical capacitance, having an equivalent capacitance, Ceq; both 

of which are believed to be associated with charge transfer processes at D/A interfaces 

(Leever et al, 2011). 

The impedance responses of devices as a function of thermal annealing are shown in Figure 

6.16. 

 

Figure 6.16: Impedance response of P3HT: PCBM solar cell; as cast and thermally annealed 

a various temperatures, at a sample bias of 0.5V (i.e., around Voc) and 1 sun illumination.  

CPE

R2

R1

RS

C1

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

40 90 140 190 240 290 

-I
m

 Z
 (

Ω
) 

Re Z (Ω) 

As cast 

100°C 

125°C 

150°C 

175°C 



 

138 
 

From the fits to the impedance data, respective values of R1, R2, C1, and Ceq were determined. 

The average charge carrier lifetimes ( avg ) were calculated using the following equation: 

                                                          avg   2Ceq                                                      (6.9) 

The solid lines represent the fits to equivalent circuit model. The equivalent circuit model fit 

was performed using the EIS Spectrum Analyser software (Bondarenko & Ragoisha, 2011). 

Figure 6.17 shows the relationship between the carrier lifetimes and the annealing 

temperatures.  

 

Figure 6.17: A plot of carrier lifetimes as a function of thermal annealing temperatures. 

The extracted parameters from the equivalent circuit model fit are summarised in Table 6.6. 

Table 6.6: A summary of the equivalent circuit parameters, extracted from the model fit to 

AC IS response. 

1 sun (0.5V) R1 (Ω) R2 (Ω) C1 Ceq 

As cast 56.532 71.132 1.25 810  3.54 810  

100°C 51.87 48.041 1.22 810  6.10 810  

125°C 67.87 60.041 1.18 810  7.10 810  

150°C 85.88 75.2 1.01 810  8.29 810  

175°C 97.87 120.741 6.30 910  3.40 810  
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It is interesting to note from Figure 6.17 that as thermal annealing temperature was increased, 

the charge carrier lifetimes improved, having a highest value at 150°C, after which it 

deteriorates. Recall from previous section that it is at this temperature that the best PCE was 

measured. With such an improved lifetime for charge carriers, it is expected that the charge 

collection will become more efficient, hence more than likely resulting in improved current 

densities in the device. This together with improved short circuit current density after thermal 

annealing at 150°C reported previously strongly suggest that the induced morphology at this 

temperature is one with an optimised D/A interface and efficient transport pathways to 

respective electrodes (Leever et al. 2011). 

6.4.2 Capacitance – voltage (C – V) measurements of P3HT: PCBM – based 

devices 

In addition to IS measurements, C – V measurements were performed to characterise the 

P3HT: PCBM PV device. With this technique, the nature of the interfacial interaction 

between the back electrode and P3HT: PCBM blend can be investigated. Recently it has been 

reported that with the use of C – V measurements techniques, the degree of fullerene 

coverage (or concentration) on or towards the film surface of active layers for OSCs can be 

probed (Guerrero et al. 2013). In their work, Guerrero and co-workers (2013) showed that the 

degree of the accumulation of particular specie of the composite blend material (either 

electron donor or acceptor material) plays a significant role in carrier selectivity at respective 

electrodes. In this chapter 5, the explanation for the probable vertical segregation of PCBM 

molecular aggregates towards the film surface as result of thermal annealing was presented in 

view of the optical absorption spectra, microscopy image, and GIXRD results. To further 

provide additional experimental evidence on this nanomorphology evolution, C – V 

measurements have been performed. It is known that C – V measurements is somewhat 

sensitive to interfacial materials, and their relative concentration, at interfaces such as in 

OSCs (Zhao et al. 2013). 

The C – V characteristics of P3HT: PCBM device was obtained at 1 kHz, and an AC 

oscillating amplitude of 50 mV; for as cast and after thermal annealing at several 

temperatures. The active layer thickness of the device is ~ 150 nm. A brief overview of the 

characterisation method and the instrumentation employed has been provided in section 4.4.2. 

From the C – V characteristics of the devices under this study, the Mott-Schottky plot (i.e., C
-

2
 vs. applied bias voltage, V) was obtained.  Figure 6.18 shows the Mott-Schottky curve of 
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P3HT: PCBM BHJ solar cell: as cast and after annealing at 150°C. These two are shown here 

for the purposes of clarity.  

 

Figure 6.18: Mott-Schottky curve of ITO/PEDOT: PSS/P3HT: PCBM/Al device; as cast and 

after thermal annealing at 150°C. 

Table 6.7: Summary of parameters extracted from the Mott-Schottky curve (shown in Figure 

5.38). 

  Vbi (V) NA (cm
-
³) 

As cast 0.68 3.05 1510  

100°C 0.50 5.33 1410  

125°C 0.39 2.31 1410  

150°C 0.34 1.18 1410  

175°C 0.35 1.02 1410  
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over a wide applied voltage range. The built – in potential, Vbi, can be extracted from the 

intercept in the linear region, shown in Figure 6.18. The extracted Vbi and estimated NA for 

devices: as cast and after thermal annealing at different temperatures are summarised in Table 

6.7. 

The estimated values of NA here are within the range of reported values in literature (Li et al. 

2011; Wang et al. 2013). It is interesting to also note that the built – in potential reduces as 

annealing temperature increases, which then seem to become steady at 150°C.  In their work, 

Guerrero et al (2013) and Kovalenko et al (2014) demonstrated the use of C – V measurement 

techniques in establishing a correlation between the built – in potential and concentration of 

acceptor material at the interface of the back electrode (i.e., Al). It was demonstrated that 

devices with higher concentration of the acceptor material, in this case PCBM, at the cathode, 

showed a lower built – in potential, compared to a device without PCBM. In view of this, the 

observed trend in this study can be explained in the light of vertical segregation. Since these 

observations are consistent with other reports in literature, it can be suggested that thermal 

annealing of the P3HT: PCBM device, particularly above temperatures of 100°C, induces the 

vertical segregation of PCBM molecular aggregates. This yields a bulk morphology that 

consists of a higher concentration of the acceptor material at the cathode interface, hence the 

observed reduced Vbi. This process is summarised graphically in the schematic shown in 

Figure 6.19. 

 

Figure 6.19: A graphical schematic illustrating vertical segregation process following 

thermal annealing of P3HT: PCBM bulk heterojunction solar cell. 
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6.5 Summary 

In view of the results and discussions on the characteristics of P3HT, PCBM and P3HT: 

PCBM thin films, presented previously in chapter 5, this chapter has considered the 

photovoltaic properties of OSCs based on thin films of P3HT: PCBM. The discussions herein 

were presented in view of the impact of thermal annealing on thin film properties in their 

application in P3HT – based solar cell.  

A direct correlation was demonstrated between absorption spectra properties of PCBM – 

compositionally different thin films, thermal annealing procedure and photovoltaic properties 

of P3HT: PCBM bulk heterojunction devices. A number of significant factors were revealed 

from the electrical characterisation of fabricated OSC devices in the work of this thesis. One 

of which is the dependence of the device’s short circuit current density and open circuit on 

the thermal annealing strategy adopted. This was shown to be a useful method that can be 

used to control PCBM molecular cluster arrangements within the active layer structures of 

devices.  

Furthermore, with the use of impedance spectroscopy, complemented with capacitance – 

voltage measurements, the impact of thermal annealing on charge carrier lifetimes, and 

vertical segregation of PCBM aggregates in P3HT:PCBM bulk heterojunction solar cells was 

shown. 
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Chapter 7 

Conclusions and Future Work 

Recommendations 

“ he science of today is the technology of tomorrow.” 

― Edward Teller 

 

7.1 Introduction 

In this chapter, the conclusions drawn from the experimental results and discussions, 

summarising key points of this work are presented. Following the conclusions, a brief 

outlook is provided. This will be an outlined recommendation of future works in a number of 

areas significant for the improvement of the performance of OSC. 

7.2 PCBM aggregation: A key driver of morphology evolution 

The effect of PCBM percentage loading on optical absorption, structural and electrical 

properties has shown several interesting features. These are believed to be instrumental for 

better designing highly optimised photovoltaic devices with corresponding improved PCEs. It 

is clearly evident that the dissociation of excitons is very much dependent on the nature of 

interfaces between P3HT – PCBM. The nature of the interfaces between P3HT – PCBM 

donor – acceptor material within the thin film is very much a function of the weight ratio of 

the composite materials. The loading of the acceptor material, PCBM, in the blend is critical 

to the resulting P3HT – PCBM phase segregation which in turn influences the exciton 

dissociation efficiency. Therefore a very important factor in designing devices for optimized 

performance is demonstrated on account of these observations. It was deduced that the largest 

reduction in peak absorption intensity of PCBM upon annealing at 175C is associated with 
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the highest concentration of PCBM loading. It can be concluded that this reduction is 

attributed to the diffusion and aggregation of PCBM molecules towards the film air 

boundary. This explanation was strongly supported by the evidence provided from the 

capacitance – voltage characterisations of P3HT: PCBM – based photovoltaic devices. 

Analysis of C – V measurement revealed that the measured built – in potential reduced from 

0.68V to 0.35V, with a corresponding reduction noted in the concentration of impurities. This 

was interpreted as indicative of having an increased concentration of the acceptor material 

(i.e., PCBM), segregated towards the cathode interface. This is believed to be evidence of 

vertical segregation induced by thermal annealing, which becomes more prominent at 

temperatures above 125°C. In view of the morphology evolution and subsequent device 

performance, it is significant for there to be a preferred segregation direction for typical OSC. 

This is to ensure the selectivity of electrodes towards one type of charge carrier. Based on the 

range of PCBM loading used in this investigation the largest PCBM ratio resulted in higher 

current density (50 wt%).  This is attributed to the optimised interfaces between electron 

donor and acceptor materials and better charge transfer and their subsequent transport to the 

respective electrodes. The effect of PCBM loading is not as significant on open circuit 

voltage VOC as in the case for short current density. Furthermore VOC was noted to remain 

constant upon thermal annealing, till at the annealing temperature of around 100C after 

which a significant increase was observed resulting from further annealing temperatures. It is 

believed however that this is possibly connected to the vertical segregation of PCBM, 

disrupting shunt paths between the two electrodes. This trend also noticed in VOCs for all the 

different PCBM weight percentage could be associated with the dark saturation currents 

observed in the device’s respective diodes characteristics.  

Furthermore the electrical characterisation for thin film blends of P3HT: PCBM revealed 

some important factors. The short circuit current density and open circuit voltage dependence 

on thermal annealing strategies could be used as the controlling factor in PCBM cluster 

arrangements or tuning within the active layer structures. Optical absorption spectroscopy 

together with microscopic images presented in Figures 5.4 and 5.6 supports the view that the 

nature of PCBM cluster formation varies as a result of thermal annealing strategies. In other 

words, depending on which thermal annealing approach undertaken (be it gradually, or to 

subjecting the film to a ‘shock’ annealing treatment), the resulting outcome of aggregated 

PCBM cluster will differ. Due to its higher surface energy, PCBM cluster nucleation starts at 

the glass/film boundary. In order to have more efficient charge transport process, PCBM is 
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required to reside at the boundary with aluminium metal electrode. Additional evidence 

supporting vertical segregations of PCBM upon thermal annealing was also provided by the 

2-D surface profiles (see Figure 5.8), which interestingly correlates with Raman mapping 

image of the PCBM rich cluster region. From this study it was also deduced that the exciton 

generation rate is very much dependent on annealing temperatures as indicated in the results. 

7.3 Optical absorption spectroscopy 

A system consisting of P3HT: PCBM with different percentage weigh ratios showing 

differing nanomorphology restructuring in response to thermal annealing was also 

investigated. In this study, a quantitative estimation of the optical absorption and optical 

images obtained from thin film surfaces, established that cluster formation increases with 

thermal annealing. Furthermore it was also established that the optical absorption intensity 

for the PCBM part of the spectrum reduces with annealing temperatures and the absorption 

intensity reduction is highest for blend thin films with the largest PCBM percentage weight 

ratio (i.e., 1:1). This can be utilised as a simple yet effective method for evaluating the 

formation of PCBM aggregates within composite thin films. In addition, phase separation is 

not only governed by PCBM concentration itself, but is also strongly influenced by thermal 

annealing too. Absorption of light by P3HT: PCBM blend film, followed by exciton 

generation, charge transfer and their subsequent transport within the bulk heterojunction is 

sensitive to the amount and size of PCBM clusters. A low PCBM concentration (37.5%) does 

not enable the formation of the required percolating pathways for efficient transport of free 

charge carriers within the photoactive layer of devices.  

7.4 Charge carrier recombination in P3HT: PCBM BHJ organic solar cells 

Previously it was reported that a system consisting of a highly intermixed blend of P3HT: 

PCBM could result in additional disorder and formations of traps. The results presented in 

this work support this view in the light of high trap densities measured. Furthermore the 

increase in electron trap density upon thermal annealing correlates with temperatures above 

the glass transition temperature for P3HT phase initiating traps formation in the 

heterojunction device. From the charge carrier mobility studies in this work, it was found that 

the ratio of electron to hole mobility improves with annealing temperature up to 150C above 

which the hole mobility overtakes electron mobility. This is believed to be most likely as a 

result of molecular segregation of PCBM and formation of clusters, thereby leading to the 

disruption of transport pathways for electrons and subsequently the deterioration of device 
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PCEs. The higher recombination constant BSRH measured in this investigation in comparison 

to BL is an indication that the trap assisted recombination is dominant in comparison to its 

Langevin counterpart. The presence of high density of traps in the blended material further 

supports the Shockley-Read-Hall trap assisted recombination with further evidence of the 

dependence of open circuit voltage on light intensity also demonstrated. To further highlight 

the significance of recombination in the P3HT: PCBM BHJ organic solar cells, it was also 

demonstrated from photocurrent generation studies that the extent to which free charge 

carriers are lost due to recombination is very much dependent on the PCBM weight 

percentage in the blend. The study in this work showed that a high percentage of photo 

generated charge carriers were lost because of the low PCBM content in the devices based on 

the ratio of 1:1.6, as compared to that based on 1:1. This also suggests that recombination 

mechanisms are likely related to the PCBM loading within the bulk of the active layer. 

Measurements for charge carriers’ mobility with thermal annealing temperatures in this work, 

proved instrumental in establishing the dependence of bimolecular recombination rate on 

thermal annealing. Whilst a direct correlation between bimolecular recombination and short 

circuit current density is observed for 1:1 device, it was rather unclear at this stage at to how 

the trend applies to the 1:0.6 percentage weight ratios.  

With the use of impedance spectroscopy, it was possible to also provide an in – depth 

understanding into recombination events at donor – acceptor interfaces for photovoltaic 

devices. These studies revealed that one of the mechanisms contributing the best device PCEs 

recorded at the optimum thermal annealing temperature of about 150°C could be the 

measured extended lifetime of charges after thermal annealing at the said temperature. This is 

in addition to all the other aforementioned factors. These show that to have a system with 

efficient charge collection, extending lifetimes of free charges is critical to optimum device 

performance. 

The best power conversion efficiency measured for the P3HT: PCBM organic solar cells in 

this study, was 3.84%, obtained from the blend ratio of 1:1, and at an optimum thermal 

annealing temperature of 150C. 

7.5 Future Work Recommendations 

Thermal annealing amongst other morphology controlling techniques (such as solvent vapour 

annealing) is considered and as being employed here in this work, a very effective method for 
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morphology optimisation in P3HT – based OSCs. Application of the established protocols 

here in this work, for effective nanostructuring in P3HT: PCBM OSCs should be further 

explored in newly developed low band gap polymers. The impact of thermal annealing on the 

variation of the open circuit voltage parameter of OSC devices is not fully understood. 

Although generally considered to be influenced by the physical properties of the active layer, 

its dependence on the electronic energy levels of materials, as shown by Scharber and co – 

workers (2006) in view of thermal annealing has not been studied yet. This will require 

further work to understand the impact of thermal annealing on the HOMO and LUMO of the 

donor and acceptor material (in this case, P3HT and PCBM).   

The thermally induced vertical segregation of PCBM clusters, as revealed by capacitance – 

voltage measurements, demonstrated the significance of having a gradient active layer 

distribution. This means having higher concentration of materials at the respective electrodes, 

favouring selective transport and collection of charge carriers. Hence to manually fabricate 

such an active layer with favourable electrode selectivity would be ideal, however this is 

difficult, as the active layer is processed from solution. There is therefore the need to 

investigate novel, yet low cost fabrication techniques to achieve such an active layer 

structure.  

It is moreover evident that there is the need for research investigation and development of 

novel concepts for further improvement of efficiencies of organic solar cells, bringing it close 

to achieving its potential for low-cost energy conversion. In as much as this is significant, it is 

also important to note that, it is not only about having favourable nanoscale morphology 

control for improved efficiencies, but also for devices that are stable in time and temperature, 

thus it will be interesting to study this, and to also understand the influence of a strategy of 

nanomorphology control on efficiency and stability of large area devices too. 
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