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Abstract

Background

C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits

and diseases. Yet it is inconclusive whether these associations are causal.

Methods and Findings

We performed Mendelian randomization (MR) analyses using two genetic risk scores

(GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide

polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs

that were significantly associated with CRP levels in the largest genome-wide association

study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from

GWAS consortia and tested the association of these two GRSs with 32 complex somatic

and psychiatric outcomes, with up to 123,865 participants per outcome from populations of

European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect

of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered
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statistically significant. An observed p-value equal to or less than 0.05 was considered nom-

inally significant evidence for a potential causal association, yet to be confirmed.

The strengths (F-statistics) of the IVs were 31.92–3,761.29 and 82.32–9,403.21 for

GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant pro-

tective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia

(odds ratio [OR] 0.86 [95% CI 0.79–0.94]; p < 0.001). We validated this finding with individ-

ual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94–0.98]; p <

1.72 × 10−6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at

p-value thresholds of 1 × 10−4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also

showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of

SNPs with p < 1 × 10−4) showed a statistically significant (p < 2.45 × 10−4) protective effect

with an OR of 0.97 (95% CI 0.95–0.99). The CRP GRSGWAS showed that a 10% increase in

genetically determined CRP level was significantly associated with coronary artery disease

(OR 0.88 [95% CI 0.84–0.94]; p < 2.4 × 10−5) and was nominally associated with the risk of

inflammatory bowel disease (OR 0.85 [95% CI 0.74–0.98]; p < 0.03), Crohn disease (OR

0.81 [95% CI 0.70–0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00–1.84]; p <

0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01–1.36]; p < 0.04), and bipolar disorder

(OR 1.21 [95% CI 1.05–1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11–1.34; p
< 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06–0.84; p < 0.02) mm Hg in dia-

stolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003–0.02; p < 0.005) in estimated glo-

merular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004–0.02; p < 0.04) in

serum albumin level, and 0.03 g/dl (95% CI 0.008–0.05; p < 0.009) in serum protein level.

However, after adjustment for heterogeneity, neither GRS showed a significant effect of

CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor

on the other 20 complex outcomes studied. Our study has two potential limitations: the lim-

ited variance explained by our genetic instruments modeling CRP levels in blood and the

unobserved bias introduced by the use of summary statistics in our MR analyses.

Conclusions

Genetically elevated CRP levels showed a significant potentially protective causal relation-

ship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05

using either GRSCRP or GRSGWAS—with persistence after correction for heterogeneity—for

a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthri-

tis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin,

and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any

causal effect of CRP level on any of the other common somatic and neuropsychiatric out-

comes investigated in the present study. This implies that interventions that lower CRP

level are unlikely to result in decreased risk for the majority of common complex outcomes.

Introduction
Emerging evidence suggests that persistent dysregulation of the inflammatory response is linked
to a plethora of complex somatic and neuropsychiatric disorders [1–18]. Epidemiological
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studies have shown that C-reactive protein (CRP), a well-studied biomarker of inflammation, is
associated with and exhibits reliable predictive value for cardiovascular disease [19,20], type 2
diabetes [21], immunity-related disorders such as inflammatory bowel disease (IBD) [22], rheu-
matoid arthritis [23], and all-cause mortality [20,24]. Nevertheless, the evidence for a causal
involvement of CRP in these outcomes from traditional experimental or observational studies
remains controversial [25,26], fueling the debate surrounding whether CRP contributes to the
chain of causality in disease mechanisms [27]. The use of genetically informed instrumental var-
iables (IVs), termed Mendelian randomization (MR), is a complementary approach to epidemi-
ological observations and allows investigation of whether the effect of an exposure (i.e., CRP
level) on observed outcome phenotypes is likely to be causal [28].

Recent large-scale MR studies, focusing mainly on cardiovascular disease and metabolic
traits, failed to show a causal association between CRP level and these outcomes (S1 Table).
This has led to the notion that elevated CRP levels do not causally contribute to these traits and
disorders. However, these studies used a single CRP-associated single nucleoid polymorphism
(SNP) or a very limited set of CRP-associated SNPs (S1 Table). Common SNPs serving as prox-
ies for CRP level represent only a small effect on CRP level per se and thus require a large
enough sample size to detect causal effects on the outcome. Moreover, most studies have gener-
ally included a limited range of common complex diseases, often not more than two or three
outcomes, or they have been performed in a single or small population, yielding inadequate
study power (S1 Table). In other words, the evidence for a causal relationship between CRP
and a broad range of common traits or diseases remains inconclusive. This is mostly due to the
lack of well-powered MR studies that use optimally informative genetic IVs for CRP. Here, we
sought to comprehensively examine the hypothesis that genetically determined CRP level
directly contributes to common somatic and psychiatric outcomes. To optimize IV power, we
applied a MR approach using summary statistics from large-scale genome-wide association
study (GWAS) consortia of 32 somatic and psychiatric phenotypes for the four CRP variants
representing 98% of the common variation in the CRP gene and for the largest known set of
independent SNPs known to be associated with CRP. We further aimed to confirm the identi-
fied association between CRP and schizophrenia using a CRP polygenic risk score (CRPPRS)
from individual-level genotype data from the largest consortium of schizophrenia to date. We
performed an in silico pathway analysis (see Discussion) to provide insights into the possible
mechanism underlying the observed association of CRP level with schizophrenia.

Methods

Study Design and Rationale
The present MR study consists of two key components. First, we used established gene variants
associated with CRP level and combined them to build two genetic risk scores (GRSs) for CRP.
The first GRS consisted of only four SNPs in the CRP gene (GRSCRP) selected from the largest
recent MR study of CRP [29], and the second consisted of 18 SNPs that were associated with
CRP level at a genome-wide significance level in the largest GWAS for CRP to date (GRSGWAS)
[30]. Second, we obtained summary association statistics from GWAS consortia for a panel of
32 common somatic and psychiatric outcomes (Table 1). BPP and BZA selected the studies,
and contacted each consortium with a standardized request for study data, including the name
of the study or consortium, the number of cases and controls, the number of available CRP
SNPs for GRSCRP and GRSGWAS, and the estimated effect for each SNP (or its proxy) on out-
come, i.e., the per allele regression coefficient with standard error or the odds ratio (OR) and
corresponding 95% confidence interval. Data were available for 32 different outcomes in five
broad disease/trait classes (autoimmune/inflammatory, cardiovascular, metabolic,
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neurodegenerative, and psychiatric), including at least 1,566, and up to 184,305, participants
per outcome from populations of European ancestry (Table 1). These outcomes were selected
based on the following two inclusion criteria: (i) the outcome having been associated with CRP
level in epidemiological studies and (ii) availability of large meta-GWAS analyses for the out-
come (Table 1).

Table 1. Diseases and traits included in this study.

Disease or Trait Cases Controls Total Reference

Autoimmune/inflammatory

Celiac disease 4,533 10,750 15,283 [31]

IBD (all types) 13,020 34,774 47,794 [32,33]

Crohn disease 6,333 15,056 21,389 [32]

Ulcerative colitis 6,687 19,718 26,405 [33]

Psoriasis vulgaris 4,007 4,934 8,941 [34,35]

Psoriatic arthritis 1,946 4,934 6,880 [34,35]

Cutaneous psoriasis 1,363 3,517 4,880 [34,35]

Rheumatoid arthritis 5,538 20,167 25,705 [36]

Systemic lupus erythematous 1,311 3,340 4,651 [37]

Systemic sclerosis 2,356 5,187 7,543 [38]

Type 1 diabetes 9,934 16,956 26,890 [39]

Knee osteoarthritis 5,755 18,505 24,260 [40]

Cardiovascular

Coronary artery disease 60,801 123,504 184,305 [41]

Systolic blood pressure — — 69,368 [42]

Diastolic blood pressure — — 69,372 [42]

Ischemic stroke (all types) 3,548 5,972 9,520 [43]

Ischemic stroke (cardioembolic) 790 5,972 6,762 [43]

Ischemic stroke (large vessel) 844 5,972 6,816 [43]

Ischemic stroke (small vessel) 580 5,972 6,522 [43]

Metabolic

Body mass index — — 123,865 [44]

Type 2 diabetes 6,698 15,872 22,570 [45]

Chronic kidney disease 6,271 68,083 74,354 [46]

eGFRcr — — 74,354 [46]

Serum albumin level — — 53,189 [47]

Serum protein level — — 25,537 [47]

Neurodegenerative

Amyotrophic lateral sclerosis 4,133 8,130 12,663 [48]

Alzheimer disease 4,663 8,357 13,020 [49]

Parkinson disease 5,333 12,019 17,352 [50]

Psychiatric

Autism 90 1,476 1,566 [51]

Bipolar disorder 7,481 9,250 16,731 [52]

Major depressive disorder 9,240 9,519 18,759 [53]

Schizophrenia 34,241 45,604 79,845 [54]

eGFRcr, estimated glomerular filtration rate from serum creatinine.

doi:10.1371/journal.pmed.1001976.t001

Mendelian Randomization of CRP in 32 Somatic and Psychiatric Outcomes

PLOSMedicine | DOI:10.1371/journal.pmed.1001976 June 21, 2016 5 / 29



Genetic Instruments
Weak IVs yielding insufficient statistical power may have hampered estimation of causal effects
of CRP on the outcomes in previous analyses (S1 Table). Our MR approach, by using GWAS
data and combining multiple independent SNPs into a GRS (i.e., IV), has the potential to
greatly increase power. The selected SNPs have been described elsewhere [30,55,56] and are
further detailed in S2–S4 Tables. These IVs were used to test the combined effect of the associa-
tions of CRP-level-influencing alleles with the outcomes. Our approach was implemented in
such a way that the effects of both independent SNPs in the CRP gene (GRSCRP) [55,56] (S1
Methods) and independent SNPs known to be genome-wide significantly associated with CRP
levels (GRSGWAS) [30], as well as pleiotropic effects of SNPs, could be discriminated [57]. Plei-
otropy exists if CRP SNPs influence exposures (risk factors) other than CRP level and therefore
violate one of the key MR assumptions.

Statistical Analysis
All analyses were done using the GRS function implemented in the grs.summary module of the
R package Genetics ToolboX (version 2.15.1 for Windows). The grs.summary module approxi-
mates the regression of an outcome onto an additive GRS, using only single SNP association
summary statistics extracted from GWAS results. The method is described in more detail else-
where [58]. In brief, we performed MR analyses using GRS IVs in two steps. First, we used four
individual CRP gene SNPs (i.e., IVs) associated with CRP level [56,59] (S2 and S3 Tables) to
create a weighted GRS, named GRSCRP, corresponding to the joint effect of the four SNPs
within the CRP gene [55]. We extracted ω (the estimated coefficient, or weight) for individual
SNPs from association results reported by the CRP Coronary Heart Disease Genetics Collabo-
ration (CCGC) [29,55]; ω represents a one-unit (in mg/l) increase of the natural log of CRP
level (lnCRP) per dose of the coded allele. The four tagging SNPs represent 98% of the common
variation in the CRP gene, assuming a minor allele frequency of�0.05 and an r2 threshold of
�0.8, and aggregately explain ~2% of the total variation (i.e., phenotypic variance) in serum
CRP level in populations of European descent [55,59]. Second, we constructed a multilocus
GRS, named GRSGWAS, that combined 18 SNPs associated with serum CRP level at a genome-
wide significance level (p< 5×10−8; S2 and S3 Tables), derived from a large meta-GWAS analy-
sis of CRP conducted by the CHARGE (Cohorts for Heart and Aging Research in Genomic
Epidemiology) Consortium [30]. This multilocus GRS explains approximately ~5% of the total
variation in serum CRP level [30].

We integrated ω for each CRP SNP from the reference data of CCGC [55] or meta-analysis
of GWASs [30] for CRP level with the summary association statistics extracted from the
GWAS consortium data for each outcome (S1 Data; S2 Methods). This MR approach using
meta-GWAS summary statistics data is equivalent to an inverse-variance-weighted meta-anal-
ysis and has previously been validated in comparison to individual-level data [57,60]. To esti-
mate the causal effect of CRP level on an outcome, we obtained the β values (estimated effects
from regression analysis) for the effects of CRP SNPs on the outcome, with standard errors,
seβ, from the corresponding GWAS results. Where no summary statistics for a CRP SNP in the
GRS IVs were available in the look-up dataset, we chose the proxy SNP that had the highest
linkage disequilibrium with the initial SNP (r2 > 0.9 in HapMap release 22; S3 Table). If several
proxy SNPs had the exact same r2 value, we chose the proxy nearest to the original SNP in the
instrument. Separate regressions of outcomes on GRSs were performed to calculate αIV estima-
tors (i.e., causal IV estimators) for each outcome. Correspondingly, the value of a GRS is the
sum of the ω values multiplied by the allele dosage (i.e., 0, 1, or 2) for each CRP SNP in the
CCGC or in the CHARGE Consortium data [30,55]. For uncorrelated SNPs, when maximizing
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the likelihood function, the αIV value and its standard error, seα, can be approximated with the
formula αffi (Sω × β × seβ

−2) /(Sω2 × seβ
−2), with seα ffi

p
1/ Sω2 × seβ

−2. lnCRP was used as
the outcome in reference studies [30,55], so in obtaining the ω values (i.e., effect sizes) for each
of the CRP SNPs, a unit increase in lnCRP equals a 10 symmetric percentage (s%) increase in
CRP level, which corresponds to a unit change in the level of a continuous outcome or logit of
risk estimate (i.e., beta coefficient) for a dichotomous outcome [61]. The αIV value (i.e., causal
estimate) for each CRP SNP is, therefore, presented for each outcome as corresponding to a
10-s% increase in actual CRP level. During the course of this study, an updated, larger GWAS
dataset for coronary artery disease (CAD) became publicly available (CARDIoGRAMplusC4D
Consortium, release 2015 [41]); we therefore redid the analysis for CAD using the release 2015
data.

To assess which SNPs might have violated the key MR assumption regarding pleiotropy, we
performed goodness-of-fit tests to correct both GRSs for the heterogeneity of their correspond-
ing SNPs’ effects on each outcome. Heterogeneity, which indicates the potential presence of
pleiotropy, was measured using the Q statistic and was considered statistically significant at a
conservative uncorrected p-value of<0.05. Although heterogeneity could be an indicator of
pleiotropy, there are other factors that could introduce heterogeneity in the analyses. Even
though the adjustments for heterogeneity that we have made could be overconservative, we
have used this method in order to minimize false positives. After stepwise removal of SNPs
with potential pleiotropic effects, we repeated the analyses until significant heterogeneity was
no longer observed.

To further ensure the strength of these two GRSs as IVs, we generated an F-statistic for each
outcome. We used variance in lnCRP explained by each set of CRP SNPs (2% and 5%, respec-
tively, for GRSCRP and GRSGWAS) to calculate the F-statistic using the formula F-statistic =
[R2 × (n − 1 − K)]/[(1 − R2) × K], where R2 represents the proportion of variability in CRP level
that is explained by the GRS, n represents sample size, and K represents the number of IVs
included in model (i.e., for this study K = 1) [62]. As a rule of thumb, an F-value above ten indi-
cates that a causal estimate is unlikely to be biased due to weak instruments [57].

Multiple Testing
The present study included 32 independent sample sets. For each sample set, we did one statis-
tical test, for which a global nominal significance level of�0.05 was considered as satisfactory
to derive conclusions. The need for correction for multiple testing is debatable. Nevertheless, to
ensure the validity of our conclusions, we took a conservative approach and applied a Bonfer-
roni-corrected significance threshold calculated as 0.05 divided by 32 (i.e., 0.0016). We consid-
ered a statistical test with an observed p-value more than 0.05 as a definitely nonsignificant
result, i.e., no association; an observed p-value equal to or less than 0.05 as nominally signifi-
cant evidence for a potential, but yet to be confirmed, causal association; and an observed p-
value equal to or less than 0.0016 as statistically significant evidence for a causal association.

CRP Polygenic Risk Score and Schizophrenia Using Individual-Level
Data
In an ancillary follow-up study, inspired by comments by the editors and the reviewers, we
aimed further to determine whether GRSGWAS was causally associated with schizophrenia
using individual-level data retrieved from the Psychiatric Genomics Consortium (PGC) schizo-
phrenia dataset (S3 Methods) [54]. This dataset consisted of 36 independent cohorts with a
combined 25,629 cases and 30,976 controls for which we had ethics approval (S4 Methods).
Three family-based samples of European ancestry (1,235 parent–affected offspring trios) were
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excluded from our analysis. To evaluate whether the observed protective causal association
between GRSGWAS and schizophrenia was persistent, we investigated whether the CRPPRS was
also protectively associated with schizophrenia. Briefly, CRPPRS values were calculated for each
individual by summing the total effect of the SNP dosages by their effect size. In addition to the
18 genome-wide significant CRP SNPs, we grouped subthreshold CRP-associated SNPs at the
following p-value thresholds: 1 × 10−4, 0.001, 0.01, 0.05, and 0.1. Standardized CRPPRS values
were tested for association with schizophrenia case status in each cohort with adjustment for
ten principal components (PCs). A fixed effects inverse-variance-weighted meta-analysis was
performed across all 36 cohorts to obtain the overall effect size estimate as explained in S4
Methods and elsewhere [63]. The variance in schizophrenia case status explained by CRPPRS
was estimated using the deviation in Nagelkerke’s pseudo-R2 between a null model (which
included ten PCs) and the full model (which included GRS in addition to the ten PCs), calcu-
lated in R using the Functions for Medical Statistics Book with Some Demographic Data
(fmsb) R package (S3 Methods). Similar to previous studies, the statistical significance of
CRPPRS values was estimated based on their logistic regression coefficient [64], and reported
CRPPRS ORs correspond to a 1-SD increase in CRPPRS [65].

Results
Using GRSCRP, we first tested whether a CRP-gene-determined increase in lnCRP was associ-
ated with each outcome. In Table 2, the causal effects of lnCRP estimated for each outcome are
summarized. We found no heterogeneity in the IV analyses (pheterogeneity � 0.11 for all out-
comes), and GRSCRP was a strong instrument (F� 31). IV analyses provided nominal evidence
for potential causal relationships of lnCRP with risk of Crohn disease (OR 0.78 [95% CI 0.65–
0.94]; p< 0.009), psoriatic arthritis (1.45 [1.04–2.04]; p< 0.03), and schizophrenia (0.90
[0.82–0.99]; p< 0.03), and with an increase in systolic blood pressure (SBP) (mean increase
1.23 mm Hg per 10-s% increase in CRP level [95% CI 0.45–2.01]; p< 0.002) and diastolic
blood pressure (DBP) (0.70 [0.20–1.19]; p< 0.006). GRSCRP showed no significant effect on
any of the other outcomes (Table 2; S1 Fig).

GRSGWAS showed a statistically significant protective effect of lnCRP on the risk of schizo-
phrenia (per 10-s% increase in CRP level, OR 0.86 [95% CI 0.79–0.94]; p< 0.0010) (Figs 1 and
S1; Table 3). In a follow-up analysis using the individual-level PGC data, we found that a GRS
incorporating the same 18 CRP SNPs used to construct the GRSGWAS was again significantly
associated with a lower risk of schizophrenia (OR 0.96 [95% CI 0.94–0.98]; p< 1.72 × 10−6).
This signal persisted when we included all SNPs meeting a less stringent p-value threshold of
1 × 10−4 (OR 0.97 [95% CI 0.95–0.99]; p< 2.45 × 10−4). At less stringent p-value thresholds,
less variance was explained by the logistic model, and the protective effect of CRP risk scores
became less significant, but across all p-value thresholds, the direction of the effect was consis-
tently protective (Figs 2 and 3). To ensure that the association between risk alleles for CRP and
schizophrenia was not driven by a small number of genome-wide significant SNPs, we per-
formed a leave-one-out sensitivity analysis of the 18 genome-wide SNPs. In the 18 sets of 17
SNPs, the variance explained (Nagelkerke’s pseudo-R2) ranged from 0.012% to 0.034%, with p-
values ranging from 9.3 × 10−5 to 1.6 × 10−2, suggesting that the protective effect observed
between risk alleles for CRP and schizophrenia was not driven by a small number of SNPs with
large effects.

GRSGWAS also showed moderate but nominally significant effects of lnCRP on the risk of
IBD (OR 0.85 [95% CI 0.74–0.98]; p< 0.03), Crohn disease (0.81 [0.70–0.94]; p< 0.005), pso-
riatic arthritis (1.36 [1.00–1.84]; p< 0.049), knee osteoarthritis (1.17 [1.01–1.36]; p< 0.04),
and bipolar disorder (1.21 [1.05–1.40]; p< 0.007), while its effect was statistically significant
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Table 2. The effect of the CRP genetic risk score instrument of four SNPs in CRP (GRSCRP) with somatic and neuropsychiatric outcomes.

Disease or Trait M N Effect Size (95% CI)1 Goodness-of-Fit Test p-Value p-Het F-Value

Autoimmune/inflammatory

Celiac disease 3 15,283 0.96 (0.77 to 1.21) 0.750 0.19 311.86

IBD (all types) 3 47,794 0.97 (0.84 to 1.13) 0.700 0.30 975.35

Crohn disease 4 21,389 0.78 (0.65 to 0.94) 0.009 0.25 436.47

Ulcerative colitis 4 26,405 1.10 (0.92 to 1.31) 0.290 0.92 538.84

Psoriasis vulgaris 4 8,941 1.23 (0.96 to 1.57) 0.110 0.95 182.43

Psoriatic arthritis 4 6,880 1.45 (1.04 to 2.04) 0.030 0.92 140.37

Cutaneous psoriasis 4 4,880 1.10 (0.76 to 1.59) 0.620 0.60 99.55

Rheumatoid arthritis 4 25,702 0.94 (0.77 to 1.15) 0.550 0.17 524.55

Systemic lupus erythematous 3 4,651 1.20 (0.80 to 1.81) 0.380 0.19 94.88

Systemic sclerosis 3 7,518 1.07 (0.78 to 1.45) 0.680 0.85 153.90

Type 1 diabetes 2 26,890 1.15 (0.90 to 1.47) 0.260 0.34 548.73

Knee osteoarthritis 4 24,260 0.94 (0.78 to 1.13) 0.500 0.23 495.06

Cardiovascular

CAD 4 184,305 1.00 (0.93 to 1.07) 0.965 0.65 1,775.37

SBP2 4 69,372 1.23 (0.45 to 2.01) 0.002 0.51 1,415.63

DBP2 4 69,368 0.70 (0.2x to 1.19) 0.006 0.68 1,415.71

Ischemic stroke (all types) 4 9,520 1.19 (0.93 to 1.53) 0.160 0.93 194.24

Ischemic stroke (cardioembolic) 4 6,762 1.02 (0.65 to 1.58) 0.940 0.96 137.96

Ischemic stroke (large vessel) 4 6,816 1.44 (0.93 to 2.21) 0.100 0.31 139.06

Ischemic stroke (small vessel) 4 6,552 1.18 (0.71 to 1.95) 0.520 0.36 133.06

Metabolic

Body mass index3 4 123,864 −0.017 (−0.06 to 0.02) 0.410 0.50 2,527.82

Type 2 diabetes 4 22,570 1.11 (0.94 to 1.32) 0.230 0.50 460.57

Chronic kidney disease 4 74,354 1.04 (0.88 to 1.22) 0.670 0.90 1,517.39

eGFRcr
4 4 74,354 0.004 (−0.01 to 0.02) 0.400 0.88 1,517.39

Serum albumin level5 4 53,189 −0.002 (−0.02 to 0.01) 0.770 0.88 1,085.45

Serum protein level5 4 25,537 0.008 (−0.02 to 0.04) 0.640 0.12 521.12

Neurodegenerative

Amyotrophic lateral sclerosis 2 12,263 0.79 (0.60 to 1.04) 0.090 0.23 258.39

Alzheimer disease 2 13,020 1.26 (0.89 to 1.78) 0.200 0.11 265.67

Parkinson disease 3 17,352 1.00 (0.85 to 1.17) 0.960 0.33 354.08

Psychiatric

Autism 3 1,566 1.02 (0.97 to 1.07) 0.380 0.69 31.92

Bipolar disorder 4 16,731 1.17 (0.97 to 1.42) 0.110 0.49 341.41

Major depressive disorder 3 18,759 0.98 (0.81 to 1.18) 0.810 0.86 382.80

Schizophrenia 3 79,845 0.90 (0.82 to 0.99) 0.030 0.79 1,629.45

1Effect size (95% CI) per 1-mg/l increase in lnCRP. For risk of disease, effect size is given as an OR, otherwise given in the specific units in which the

outcome was measured. Derived from the IV causal estimator α.
2Effect size unit is millimeters of mercury per 1-mg/l increase in lnCRP.
3Effect size unit is standard deviations per 1-mg/l increase in lnCRP (the body mass index results were inverse normal transformed to a distribution with μ

= 0 and σ = 1).
4Effect size unit is milliliters/minute/1.73 m2 per 1-mg/l increase in lnCRP.
5Effect size unit is grams/deciliter per 1-mg/l increase in lnCRP.

eGFRcr, estimated glomerular filtration rate from serum creatinine; F-value, F-statistic value for the genetic instrument; M, number of markers used in the

genetic instrument; N, number of samples in the disease/trait meta-analysis; p-het, p-value of heterogeneity of effect test.

doi:10.1371/journal.pmed.1001976.t002
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Fig 1. Genetic risk score GRSGWAS for schizophrenia. The x-axis shows the effect size for the 15 SNPs for which data were available in the PGC
schizophrenia dataset comprising the GRSGWAS influencing levels of CRP, with corresponding standard error bars. The y-axis shows the log OR of the
GRSGWAS SNPs for schizophrenia (SCZ) with corresponding standard error bars. The effect estimate of CRP level on disease risk is represented by the
red solid line, with gradient α. The 95% CI of this α estimate is represented by the grey dashed lines. The included SNPs are shown by Arabic
numbering: #1, rs2847281 (gene: PTPN2; chromosome: 18; basepair position: 12811593); #2, rs340029 (RORA; 15; 58682257); #3, rs6901250
(GPRC6A; 6; 117220718); #4, rs10745954 (ASCL1; 12; 102007224); #5, rs4705952 (IRF1; 5; 131867517); #6, rs12037222 (PABPC4; 1; 39837548);
#7, rs12239046 (NLRP3; 1; 245668218); #8, rs6734238 (IL1F10; 2; 113557501); #9, rs13233571 (BCL7B; 7; 72609167); #11, rs1260326 (GCKR; 2;
27584444); #12, rs4129267 (IL6R; 1; 152692888); #13, rs1800961 (HNF4A; 20; 42475778); #14, rs4420065 (LEPR; 1; 5934049); #15, rs10521222
(SALL1; 16; 49716211); 12; 119905190); #17, rs2794520 (CRP; 1; 157945440). The three SNPs of #10, rs9987289 (PPP1R3B; 8; 9220768); #16,
rs1183910 (HNF1A; and #18, rs4420638 (APOC1; 19; 50114786) were not present in the data of the PGC.

doi:10.1371/journal.pmed.1001976.g001
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Table 3. The effect of the CRP genetic risk score instrument of 18 SNPs associated with CRP (GRSGWAS) on somatic and neuropsychiatric
outcomes.

Disease or Trait M Effect Size (95% CI)1 Goodness-of-Fit Test p-Value p-Het F-Value

Autoimmune/inflammatory

Celiac disease 18 0.99 (0.85 to 1.16) 0.930 7.2 × 10−4 804.26

IBD (all types) 15 0.85 (0.74 to 0.98) 0.030 1.4 × 10−5 2,515.37

Crohn disease 17 0.81 (0.70 to 0.94) 0.005 4.4 × 10−7 1,125.63

Ulcerative colitis 17 1.05 (0.91 to 1.21) 0.490 0.01 1,389.63

Psoriasis vulgaris 17 1.12 (0.90 to 1.40) 0.310 0.19 470.47

Psoriatic arthritis 17 1.36 (1.00 to 1.84) 0.049 0.04 362.00

Cutaneous psoriasis 17 1.00 (0.72 to 1.39) 0.990 0.16 256.74

Rheumatoid arthritis 18 0.93 (0.80 to 1.08) 0.350 1.8 × 10−6 1,352.79

Systemic lupus erythematous 11 1.06 (0.71 to 1.58) 0.780 0.27 244.68

Systemic sclerosis 11 0.84 (0.62 to 1.14) 0.280 0.63 396.89

Type 1 diabetes 15 1.10 (0.92 to 1.31) 0.310 3.47 × 10−3 1,415.16

Knee osteoarthritis 18 1.17 (1.01 to 1.36) 0.040 0.10 1,276.74

Cardiovascular

CAD 18 0.88 (0.84 to 0.94) 2.4 × 10−5 7.5 × 10−12 9,403.21

SBP2 18 0.72 (0.11 to 1.34) 0.020 0.14 3,650.84

DBP2 18 0.45 (0.06 to 0.84) 0.020 0.02 3,651.05

Ischemic stroke (all types) 18 1.06 (0.87 to 1.29) 0.570 0.37 500.95

Ischemic stroke (cardioembolic) 18 0.98 (0.69 to 1.39) 0.920 0.35 355.79

Ischemic stroke (large vessel) 18 1.30 (0.92 to 1.82) 0.140 0.97 358.63

Ischemic stroke (small vessel) 18 0.85 (0.58 to 1.25) 0.420 0.76 343.16

Metabolic

Body mass index3 18 −0.005 (−0.03 to 0.02) 0.740 0.11 6,519.11

Type 2 diabetes 18 1.090 (0.95 to 1.24) 0.210 1.8 × 10−3 1,187.79

Chronic kidney disease 18 0.960 (0.84 to 1.09) 0.500 0.07 3,913.26

eGFRcr
4 18 0.011 (0.003 to 0.02) 0.005 7.2 × 10−9 3,913.26

Serum albumin level5 18 0.011 (0.0004 to 0.02) 0.041 2.3 × 10−18 2,799.32

Serum protein level5 18 0.031 (0.008 to 0.05) 0.009 0.03 1,343.95

Neurodegenerative

Amyotrophic lateral sclerosis 8 1.01 (0.79 to 1.29) 0.960 0.56 666.37

Alzheimer disease 11 1.26 (0.99 to 1.61) 0.060 0.23 685.16

Parkinson disease 10 1.06 (0.90 to 1.25) 0.500 0.50 913.16

Psychiatric

Autism 9 0.89 (0.70 to 1.13) 0.350 0.99 82.32

Bipolar disorder 18 1.21 (1.05 to 1.40) 0.007 0.15 880.47

Major depressive disorder 15 1.14 (0.96 to 1.36) 0.140 0.84 987.21

Schizophrenia 15 0.86 (0.79 to 0.94) 0.001 0.66 4,202.26

1Effect size (95% CI) per 1-mg/l increase in lnCRP. For risk of disease, effect size is given as an OR, otherwise given in the specific units in which the

outcome was measured. Derived from the IV causal estimator α.
2Effect size unit is millimeters of mercury per 1-mg/l increase in lnCRP.
3Effect size unit is standard deviations per 1-mg/l increase in lnCRP (the body mass index results were inverse normal transformed to a distribution with μ

= 0 and σ = 1).
4Effect size unit is milliliters/minute/1.73 m2 per 1-mg/l increase in lnCRP.
5Effect size unit is grams/deciliter per 1-mg/l increase in lnCRP.

eGFRcr, estimated glomerular filtration rate from serum creatinine; F-value, F-statistic value for the genetic instrument; M, number of markers used in the

genetic instrument; p-het, p-value of heterogeneity of effect test.

doi:10.1371/journal.pmed.1001976.t003
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Fig 2. Polygenic risk scores for elevated CRP level and protective effect on schizophrenia, using
individual-level genetic data.

doi:10.1371/journal.pmed.1001976.g002

Fig 3. Polygenic risk scores for elevated CRP level and explained variance of schizophrenia using
individual-level genetic data.

doi:10.1371/journal.pmed.1001976.g003
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for CAD (0.88 [0.84–0.94]; p< 2.4 × 10−5) (Table 3; Figs 4 and S1). GRSGWAS revealed a nomi-
nally significant effect of lnCRP on blood pressure: an increase of 0.72 (95% CI 0.11–1.34; p<
0.02) and 0.45 (0.06–0.84; p< 0.02) mm Hg in SBP and DBP, respectively (Table 3; S1 Fig).
Likewise, a genetically determined 10-s% increase in CRP level was nominally associated with a
0.01 ml/min/1.73 m2 (95% CI 0.003–0.02; p< 0.005) higher estimated glomerular filtration
rate from serum creatinine (eGFRcr), a 0.01 g/dl (0.0004–0.02; p< 0.04) higher serum albumin
level, and a 0.03 g/dl (0.008–0.05; p< 0.009) higher serum protein level. The remaining out-
comes tested for causal associations using GRSGWAS did not reach statistical significance,
though the corresponding GRSGWAS proved to be a strong IV, with F-values� 82 (Table 3; S1
Fig).

Using GRSGWAS, there was no significant evidence of heterogeneity of the effect size for
knee osteoarthritis, bipolar disorder, schizophrenia, or SBP, while the heterogeneity test was
statistically significant for psoriatic arthritis, IBD, Crohn disease, CAD, DBP, eGFRcr, serum
albumin, and serum protein. These heterogeneities in the effects of GRSGWAS may be attribut-
able to pleiotropic effects of the SNPs used to build the GRSGWAS. We subsequently performed
a stepwise removal of SNPs from GRSGWAS until no significant heterogeneity remained
(Table 4). This adjustment in the GRSGWAS resulted in the removal of three SNPs from the
GRSGWAS for IBD (in GCKR, IRF1, and PTPN2), five SNPs from the GRSGWAS for Crohn dis-
ease (in GCKR, IL6R, IRF1, PABPC4, and PTPN2), one SNP from the GRSGWAS for psoriatic
arthritis (in IRF1), three SNPs for CAD (in APOC1,HNF1A, and IL6R), one SNP from the
GRSGWAS for DBP (in PABPC4), two SNPs from the GRSGWAS for eGFRcr (in LEPR and
GCKR), six SNPs from the GRSGWAS for serum albumin level (in APOC1, BCL7B, GCKR,
PPP1R3B, PTPN2, and IRF1), and one SNP from the GRSGWAS for serum protein level (in
GCKR). After removal of these variants from the GRSGWAS, we found no statistically significant
(at p< 0.0016) association between genetically increased lnCRP level and any of these out-
comes (Table 4). However, the effect estimate of CRP on DBP, serum albumin, and psoriatic
arthritis showed nominal association at p< 0.05. For example, for DBP, 17 SNPs remained in
the GRSGWAS and yielded a slightly lower causal estimate (compared to the values before
adjustment) of a 0.39 (95% CI −0.01 to 0.78) mm Hg increase in DBP per 10-s% increase in
lnCRP level, with a nominal significance of p< 0.05.

Likewise, we hypothesized that the fact that GRSGWAS showed a nonsignificant effect of
CRP on celiac disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, and type 2 diabe-
tes can be to some extent explained by the significant heterogeneity observed for these out-
comes (Table 3). The stepwise adjustment in the GRSGWAS resulted in the removal of two SNPs
from the GRSGWAS for celiac disease (in PABPC4 and PTPN2), one SNP from the GRSGWAS for
ulcerative colitis (in GCKR), five SNPS from the GRSGWAS for rheumatoid arthritis (in HNF4A,
IL6R, SALL1, NLRP3, and PTPN2), one SNP from the GRSGWAS for type 1 diabetes (in
PTPN2), and one SNP from the GRSGWAS for type 2 diabetes (in APOC1). After adjusting for
heterogeneity, the association of GRSGWAS with these outcomes remained statistically nonsig-
nificant (Table 4).

Discussion
In this large-scale cross-consortium MR study of 32 complex outcomes, we found evidence for
a potential protective causal relationship between elevated CRP level and schizophrenia in both
genetic IVs (i.e., GRSCRP and GRSGWAS) and confirmed this protective relationship in follow-
up analyses using individual-level genotype data from the schizophrenia GWAS. We also
found a statistically significant association of CRP level with CAD, and nominally significant
evidence for a predisposing causal association of CRP level with IBD, Crohn disease, psoriatic
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Fig 4. Genetic risk score GRSGWAS for bipolar disorder. The x-axis shows the effect size for the 18 SNPs comprising the GRSGWAS influencing
levels of CRP, with corresponding standard error bars. The y-axis shows the log OR of the GRSGWAS SNPs for bipolar disorder (BIP) with
corresponding standard error bars. The effect estimate of CRP level on disease risk is represented by the red solid line, with gradient α. The 95% CI of
this α estimate is represented by the grey dashed lines. The included SNPs are shown by Arabic numbering: #1, rs2847281 (gene: PTPN2;
chromosome: 18; basepair position: 12811593); #2, rs340029 (RORA; 15; 58682257); #3, rs6901250 (GPRC6A; 6; 117220718); #4, rs10745954
(ASCL1; 12; 102007224); #5, rs4705952(IRF1; 5; 131867517); #6, rs12037222 (PABPC4; 1; 39837548); #7, rs12239046 (NLRP3; 1; 245668218);
#8, rs6734238 (IL1F10; 2; 113557501); #9, rs13233571 (BCL7B; 7; 72609167); #10, rs9987289 (PPP1R3B; 8; 9220768); #11, rs1260326 (GCKR; 2;
27584444); #12, rs4129267 (IL6R; 1; 152692888); #13, rs1800961 (HNF4A; 20; 42475778); #14, rs4420065 (LEPR; 1; 5934049); #15, rs10521222
(SALL1; 16; 49716211); #16, rs1183910 (HNF1A; 12; 119905190); #17, rs2794520 (CRP; 1; 157945440); #18, rs4420638 (APOC1; 19; 50114786).

doi:10.1371/journal.pmed.1001976.g004
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arthritis, knee osteoarthritis, SBP, DBP, eGFRcr, serum albumin level, serum protein level, and
bipolar disorder, using GRSGWAS as an IV. However, after adjustment for heterogeneity, nei-
ther GRS showed a significant effect (at p< 0.0016) of CRP level on any of these outcomes,
including CAD, nor on the 20 other common somatic and psychiatric outcomes we investi-
gated, including celiac disease, ulcerative colitis, psoriasis (all types), rheumatoid arthritis, sys-
temic lupus erythematous, systemic sclerosis, type 1 and 2 diabetes, stroke (all types), body
mass index, chronic kidney disease, amyotrophic lateral sclerosis, Alzheimer disease, Parkinson
disease, autism, and major depressive disorder.

CRP Protection against Schizophrenia
Strikingly, as opposed to the current literature and previous inconclusive small-scale studies
[66–68], our findings suggest that genetically elevated levels of CRP are not predisposing but in
fact protective for schizophrenia. The significant causal protective role of CRP for schizophre-
nia was consistent in both IVs using summary statistics, i.e., GRSCRP and GRSGWAS. When
incorporating 18 genome-wide CRP-associated SNPs using individual-level data, we confirmed
a modest, but significant, protective effect of CRP level for schizophrenia. This signal persisted
when we included all SNPs meeting a less stringent p-value threshold of 1×10−4. Notably, the
leave-one-out sensitivity analysis revealed that the genetic overlap between CRP level and
schizophrenia we observed at genome-wide and 1×10−4 significance thresholds was not driven
by a few major SNPs. In contrast, others have previously shown that CRP levels are signifi-
cantly elevated in patients with schizophrenia [69,70], with a recent meta-analysis concluding

Table 4. The effect of the CRP genetic risk score instrument of 18 SNPs associated with CRP (GRSGWAS) on somatic and neuropsychiatric out-
comes after correcting for heterogeneity.

Disease or Trait M Effect Size (95% CI)1 Goodness-of-Fit Test p-Value p-Het

Autoimmune/inflammatory

Celiac disease 16 1.05 (0.90 to 1.23) 0.56 0.10

IBD 12 0.92 (0.79 to 1.06) 0.24 0.14

Crohn disease 12 0.93 (0.79 to 1.08) 0.34 0.12

Ulcerative colitis 16 1.11 (0.96 to 1.28) 0.16 0.12

Psoriatic arthritis 16 1.42 (1.05 to 1.94) 0.02 0.14

Rheumatoid arthritis 13 0.83 (0.71 to 0.97) 0.02 0.09

Type 1 diabetes 14 1.06 (0.89 to 1.27) 0.52 0.07

Cardiovascular

CAD 15 0.98 (0.91 to 1.06) 0.65 0.20

DBP2 17 0.385 (0.008 to 0.78) 0.05 0.09

Metabolic

Type 2 diabetes 17 0.95 (0.82 to 1.10) 0.52 0.09

eGFRcr
3 16 0.001 (−0.007 to 0.01) 0.74 0.11

Serum albumin level4 12 −0.017 (−0.03 to −0.004) 0.01 0.07

Serum protein level4 17 0.021 (−0.002 to 0.05) 0.07 0.31

1Effect size (95% CI) per 1-mg/l increase in lnCRP. For risk of disease, effect size is given as an OR, otherwise given in the specific units in which the

outcome was measured. Derived from the IV causal estimator α.
2Effect size unit is millimeters of mercury per 1-mg/l increase in lnCRP.
3Effect size unit is milliliters/minute/1.73 m2 per 1-mg/l increase in lnCRP.
4Effect size unit is grams/deciliter per 1-mg/l increase in lnCRP.

M, number of markers used in the genetic instrument; p-het, p-value of heterogeneity of effect test.

doi:10.1371/journal.pmed.1001976.t004
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that the association between elevated CRP and schizophrenia is indeed robust [71]. Given that
clinical studies report elevated CRP levels in schizophrenia, one would expect to find that
alleles for elevated CRP would confer an increased risk for schizophrenia. The fact that we
found the completely opposite effect—in a cohort of over 25,000 cases and 30,000 controls—
should give one pause when deriving clinical meaning from these results. Our observation that
a genetically determined marginal increase in the level of CRP is likely to be protective for
schizophrenia may fuel the debate about whether the observed CRP elevation in schizophrenia
is a by-product of the pathogenesis of schizophrenia or directly contributing to clinical mani-
festations of the disorder [6]. Our finding may also point out potential biases in previous stud-
ies regarding the causes of elevated CRP levels in patients with schizophrenia, such as reverse
causality and/or pleiotropic effects within chosen instruments.

The exact mechanism for how elevated CRP levels are linked to schizophrenia requires a
well-defined experimental analysis. In addition to CRP variants, other recent studies have iden-
tified several inflammatory genetic variants associated with schizophrenia and bipolar disorder,
which include variants in the major histocompatibility complex (MHC) region on Chromo-
some 6p21 [72]—harboring many cytokine genes [54,73–76]—and in the IL10 promoter [77],
TNF promoter [78], IL1B [79], and C4 [80].

Biological Annotation
Following comments made by the reviewers, we explored the possible underlying pathways
that may explain the potential protective causal association between CRP and schizophrenia.
We performed a follow-up in silico functional pathway analysis using a previously reported
approach [81] as summarized in S5 Methods and S4–S13 Tables. In brief, our results show that
pathways associated with the interferon response are significantly enriched amongst genes har-
bored by CRP loci and their associated expression quantitative trait loci (eQTLs) and that there
are differentially expressed genes between schizophrenia cases and controls. Previous studies
showed that the induction of T cell IFN cytokine release stimulates microglia and astrocytes to
facilitate glutamate clearance in neuronal cells without evoking inflammatory mediators
[82,83]. One could speculate that CRP-interferon pathways may induce neuroprotection by
contributing to glutamate clearance, leading to the protection of neurons against the oxidative
stress associated with an excess of glutamate [84,85], and thereby offering a protective effect
against schizophrenia.

CRPGRSGWAS Association with Bipolar Disorder
As for bipolar disorder, we found a nominal effect of a 1.21-fold increase in risk for bipolar dis-
order with a 10-s% increase in CRP level. Though this nominal predisposing effect needs to be
confirmed, our finding corroborates epidemiological observations suggesting that elevated
CRP is associated with the disease and supports a potential causal influence of general inflam-
mation in bipolar disorder [86]. We note that, though it may be biologically sensible, this result
failed to pass multiple testing correction. Confirmation by replication in independent cohorts,
functional follow-up analyses, or the use of a stronger CRP GRSGWAS in upcoming studies is
required to draw a definitive conclusion.

CRPGRSGWAS Association with Blood Pressure and Hypertension
We found nominally significant evidence for an up to ~0.70-mm Hg increase in blood pressure
with a 10-s% increase in CRP level and no evidence of heterogeneity for SBP. Additionally,
there was nominally borderline significance for a causal association between CRP and DBP
after adjustment for heterogeneity. These nominally significant findings, on the one hand, are
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in line with numerous epidemiological studies that have highlighted an association between
elevated CRP and an increased risk of hypertension. For instance, one study found an associa-
tion between CRP loci and hypertension in Asian individuals [87]. An additional line of sup-
port for a possible causal association of CRP and blood pressure comes from an experimental
study in which an increase in CRP gene expression in mice, and subsequently CRP protein lev-
els, led to a rise in SBP particularly [88]. Moreover, an ex vivo study by Zhou et al. showed that
combining IL6 treatment and mechanical strain leads to a consistent increase in CRP expres-
sion at the protein and mRNA levels in smooth muscle cells [89]. Both inflammatory factors
and local mechanical strains are abundant in blood vessels and are well-known risk factors for
high blood pressure. Our finding did not reach a statistically significant level after correction
for multiple testing; thus, it may echo previous MR studies that have failed to find a causal rela-
tionship between CRP level and blood pressure or hypertension in Europeans [90,91]. How-
ever, our systematic literature review showed that previous studies had some limitations (S1
Table). For instance, no study used a refined GWAS set of 18 CRP-associated SNPs; instead,
they tested single or a limited set of CRP SNPs. Using such instruments might have led to
biased estimates as their corresponding effects on CRP levels have been found to be small
[30,57]. A combination of weak instruments and small sample sizes might have led to type II
error [28,57] and hence to a conclusion of no causal association between CRP and blood pres-
sure traits in previous studies. When all of the evidence is taken together, a direct link between
CRP and blood pressure remains to be elucidated, though our nominal associations between
GRSCRP and GRSGWAS and blood pressure do add to a line of findings from experimental stud-
ies suggesting a potential causal relationship between CRP and blood pressure.

CRPGRSGWAS Association with Osteoarthritis
Our nominally significant finding that CRP might be a potential causal factor for knee osteoar-
thritis (using GRSGWAS) should be interpreted with caution. In line with our findings, we have
previously shown that levels of CRP were higher in women with early radiological knee osteo-
arthritis (i.e., Kellgren-Lawrence grade 2+) and in women whose disease progressed [92]. Addi-
tionally, another study showed that genetically elevated CRP levels contribute to osteoarthritis
severity [93]. However, other studies have found contrasting results [71,72,94]. One systematic
review provided evidence that the relationship between CRP and osteoarthritis does exist but is
dependent on body mass index [95]. It remains to be further investigated whether weight gain
over the lifetime mediates the potential causal association between genetically elevated CRP
and knee osteoarthritis.

CRPGRSGWAS Shows No Association with Other Remaining Outcomes
The present study was able to calculate nominal causal estimates for IBD, Crohn disease, psori-
atic arthritis, CAD, eGFRcr, serum albumin level, and serum protein level using CRP GRSGWAS,
but the estimates were altered by removal of SNPs from GRSGWAS based on heterogeneity tests,
resulting in nominal or nonsignificant associations. These outcomes appeared therefore to
have heterogeneity in the causal estimates, suggesting that these observed estimates were
biased, likely due to pleiotropic effects of CRP loci. These results corroborate negative findings
of previous studies (S1 Table), suggesting that a causal role of CRP in these traits and diseases
is unlikely.

Methodological Concerns and Advantages
Pleiotropic biases in Mendelian randomization analyses using CRP GRSGWAS. A

detailed evaluation of pleiotropic SNPs in our study showed that the method applied to identify
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heterogeneity sources was able to indicate and exclude several already known pleiotropic loci
from the GRSGWAS IV. For instance, the use of a SNP in IL6R (rs4129267), amongst others,
resulted in heterogeneity of effects on CAD risk. The same variant contributed to heterogeneity
of effects for Crohn disease in our study, and it has been shown that this SNP is associated with
levels of biomarkers other than CRP [56]. Further, a MR study found that IL6R SNPs, specifi-
cally the nonsynonymous SNP rs8192284, are associated with CAD risk and CRP levels [96].
Our selected IL6R SNPs, namely rs4537545 and rs4129267, are in extremely high linkage dis-
equilibrium with rs8192284 (r2 � 0.96 for both SNPs in HapMap data, CEU population). Car-
riers of the risk allele of rs8192284 have higher CRP, IL6, and fibrinogen levels [96]. Fibrinogen
is also a well-known risk factor for CAD. Therefore, it is unclear so far which biomarker(s)
mediates the effect of IL6R SNPs on CAD. Besides the IL6 locus, APOC1 and PABPC4 have
been indicated as pleiotropic in three out of 32 our investigated outcomes, and PTPN2 and
GCKR in six. With this information taken together, we were able to disentangle at least part of
the pleiotropy regarding the causal estimates of CRP for outcomes. Again, we found no signifi-
cant association of CRP GRSGWAS with IBD, Crohn disease, psoriatic arthritis, CAD, eGFRcr,
serum albumin level, and serum protein level after adjustment for heterogeneity.

Using summary statistics of large-scale consortia. It is of utmost interest whether the
observed effect of CRP as a risk predictor for human disease is causal, and thus whether reduc-
tion of CRP levels will lower the risk of disease. Here, we investigated the causality of CRP in
32 phenotypes by leveraging very large sample sizes collected by GWAS consortia, an approach
that was much better powered than most previous MR studies. We found that genetically ele-
vated CRP levels approximated by powerful instruments did not appear to contribute directly
to most of the studied somatic and psychiatric outcomes. Our findings are consistent with pre-
vious MR studies reporting null associations of genetically elevated CRP levels with inflamma-
tion-related outcomes including CAD [56,59,97], type 2 diabetes [98], high body mass index
[99], Alzheimer disease, and depression [100]. All previous MR studies were substantially lim-
ited to a single or a few outcomes, used only SNPs in the CRP gene, or had sample sizes much
smaller than that of the present study (S1 Table). In addition to these studies, the current
GWAS data do not corroborate epidemiological observations suggesting that elevated CRP lev-
els are associated with amyotrophic lateral sclerosis [101], Alzheimer disease [102], Parkinson
disease [103], and major depressive disorder [104]. Furthermore, patients with immunity-
related disorders frequently have a very high CRP level (as high as 100 mg/l) due to their dis-
ease status. Our findings may therefore more favorably indicate reverse causality. Taken
together, these results show that CRP is highly unlikely to contribute causally to most of the
major common somatic and neuropsychiatric outcomes that were investigated in the present
study, with the possible exception of schizophrenia.

Strength of instrumental variables. The results presented in Table 2 show that our
GRSCRP is not a weak instrument, as indicated by its high F-values owing to the large sample
sizes of available outcomes from GWASs for the phenotypes under study. The strength of our
instrument increased considerably in all disease classes when we used variants of multiple loci
associated with CRP in GWASs. However, the variants comprising the CRP GRSGWAS explain
on average only a moderate ~5% of the total variance in baseline CRP levels [30]. Moreover,
the possibility of effect modification by nongenetic CRP-related factors on the outcomes
remains to be investigated. We may be able to create even stronger instruments based on ongo-
ing efforts to identify additional variation influencing CRP levels. Even if larger sample sizes
and stronger instruments can be realized, the overwhelming lack of causal effects observed for
most outcomes in our study implies that therapies targeted at lowering CRP will not directly
result in decreased risk of the investigated outcomes, or in better symptom management
[105,106].
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Using summary statistics instead of individual-level data. Here we used summary asso-
ciation statistics obtained from previously conducted meta-GWASs in order to maximize our
study power. One may argue this may induce bias compared to when one uses individual-level
data. Nevertheless, previous studies showed high agreement in results fromMR methods using
GWAS summary data and individual-level data [60,107]; Furthermore, our analyses of individ-
ual-level data for schizophrenia led to the same conclusion as our analyses using summary sta-
tistics data, confirming the robustness of our methodological approach.

Other potential sources of bias. An important rationale for MR is that the gene variants
do not change over time and are inherited randomly. Thus, the genetic variants are considered
free from confounding and reverse causation [108]. However, one cannot completely control
for the possibility of confounding of genotype–intermediate phenotype–disease associations.
For instance, there could be a confounding effect by ethnic/racial group (i.e., population strati-
fication), but this is unlikely to be a major problem in most situations [108]. In the present
study, we included summary statistics data from highly credible results of meta-GWASs. All
the original meta-GWASs corrected for population stratification in cohort-level analyses and
at meta-GWAS level.

Another caveat of MR is that developmental compensation might occur, through a genotype
being expressed during fetal development that in turn buffers the effects of either environmen-
tal or genetic factors, a process called canalization [108,109]. Therefore, buffering mechanisms
could hamper the associations between genetic variants and the outcome of interest. As
opposed to this, a lifetime exposure to a risk factor may enhance its effects on the disease [109].
However, it is not clear to what extent genetically determined small changes in any given expo-
sure would be sufficient to induce compensation [108].

All 32 of the meta-GWASs from which instrument summary estimates were taken were per-
formed in individuals of European descent in Europe and the US and included thousands of
samples for each outcome (S1 Table), which was also the case for our previous CRP meta-
GWAS from which we chose the CRP-associated SNPs to calculate GRSGWAS. Therefore, the
results of this MR study are applicable to individuals of European descent and are not necessar-
ily generalizable to other ethnic groups.

Conclusion
We showed that elevated CRP levels driven by genetic factors are causally associated with pro-
tection against schizophrenia, suggesting that CRP may be one important puzzle piece that
leads to an improved understanding of the pathogenesis of schizophrenia. We observed nominal
evidence that genetically elevated CRP is causally associated with SBP, DBP, knee osteoarthritis,
and bipolar disorder. Based on current GWAS data, we cannot verify any causal effect of CRP
on the other 27 common somatic and neuropsychiatric outcomes investigated in the present
study. Therefore, disease-associated rise in CRP levels may be a response to the disease process
rather than a cause for these 27 outcomes. This implies that interventions to lower CRP levels
are unlikely to result in decreased risk for the majority of common complex outcomes.
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Editors' Summary

Background

Inflammation is an important part of the human immune response, the network of cells
and molecules that protects the body from attack by pathogens (infectious organisms) and
from harmful substances and foreign particles (for example, splinters). When human cells
are attacked by pathogens or injured by trauma or chemicals, molecules called inflamma-
tory mediators induce fluid leakage from the blood vessels into the damaged tissue and
attract “phagocytes” (a type of immune cell) to the site of infection or injury to “eat” the
germs and dead or damaged cells. The end result is inflammation, which is characterized
by swelling, redness, heat, and pain. The inflammatory response, although unpleasant,
limits the damage caused by foreign invaders or chemicals by preventing further contact
with body tissues. Sometimes, however, inflammation can be harmful. Persistent dysregu-
lation of the inflammatory response is implicated in numerous somatic disorders (diseases
that affect the body, such as cardiovascular disease) and neuropsychiatric disorders (men-
tal disorders attributable to diseases of the nervous system, such as schizophrenia).

WhyWas This Study Done?

Observational studies suggest that increased blood levels of C-reactive protein (CRP, an
inflammatory protein) are associated with certain somatic and neuropsychiatric disorders.
But observational studies cannot prove that changes in CRP levels actually cause any of
these disorders. It could be that the individuals who develop a specific disease and who
have a high CRP level also share another unknown characteristic that is actually responsi-
ble for disease development (confounding). Alternatively, it could be that the disease itself
increases CRP levels (reverse causation). It is important to know whether CRP is causally
involved in the development of specific diseases because it might then be possible to pre-
vent or treat these diseases using drugs that control CRP levels. Here, the researchers
undertake a Mendelian randomization study to determine whether CRP has a causal rela-
tionship with 32 common complex somatic and neuropsychiatric outcomes. Because gene
variants are inherited randomly, they are not prone to confounding and are free from
reverse causation. So, if CRP levels actually cause a specific somatic or neuropsychiatric
disease, genetic variants that affect CRP levels should be associated with an altered risk for
that disease.

What Did the Researchers Do and Find?

The researchers used data collected by several consortia involved in large genome-wide
association studies (studies that ask whether specific genetic changes across the whole
human genome, or blueprint, are associated with specific diseases) to look for associations
between 32 somatic and neuropsychiatric outcomes and two genetic risk scores (GRSs) for
CRP level. GRSCRP consisted of four single nucleotide polymorphisms (SNPs; a type of
genetic variant) in the gene encoding CRP; GRSGWAS consisted of 18 SNPs that were asso-
ciated with CRP level in a genome-wide association study. The researchers report that a
genetically increased CRP level was significantly associated with a reduced risk of schizo-
phrenia (a significant association is one unlikely to have arisen by chance). In addition,
they found a nominally significant association (an association that needs to be confirmed)
between genetically increased CRP levels and an increased risk of knee osteoarthritis,
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raised diastolic and systolic blood pressure, and bipolar disorder. Notably, there was no
evidence for an effect of genetically increased CRP levels on any of the other 27 outcomes
studied.

What Do These Findings Mean?

These findings suggest that genetically raised levels of CRP are causally associated with
protection against schizophrenia, an unexpected finding given other recent studies that
suggest that raised CRP levels and brain inflammation predispose individuals to schizo-
phrenia. The findings also provide preliminary evidence that genetically raised levels of
CRP may be causally associated with an increased risk of raised blood pressure, knee
arthritis, and bipolar disorder. The lack of any association between genetically raised levels
of CRP and the other outcomes studied suggests, however, that many previously identified
disease-associated rises in CRP levels might be a response to the disease process rather
than a cause of these diseases. Like all Mendelian randomization studies, the reliability of
these findings depends on the validity of several assumptions made by the researchers and
on the ability of the GRSs used in the study to explain variations in CRP level. Importantly,
however, these findings suggest that interventions designed to lower CRP level are unlikely
to decrease the risk of people developing the majority of common complex somatic and
neuropsychiatric outcomes.

Additional Information

This list of resources contains links that can be accessed when viewing the PDF on a device
or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001976.

• Wikipedia has pages on inflammation, C-reactive protein, and Mendelian
randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; avail-
able in several languages)

• The MedlinePlus encyclopedia has a page on C-reactive protein (in English and
Spanish)

• The American Heart Association provides a short article on inflammation and heart
disease

• A UK National Health Service “Behind the Headlines” article explains a recent study
that found an association between immune activity in the brain and schizophrenia
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