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Abstract: Nuclear factor of activated T cells (NFAT) is a family of transcription factors important
for innate and adaptive immune responses. NFAT activation is tightly regulated through the
calcineurin/NFAT signaling pathway. There is increasing evidence on non-coding RNAs such as
miRNAs playing a crucial role in regulating transcription factors and signaling pathways. However,
not much is known about microRNAs (miRNAs) targeting the calcineurin/NFAT signaling pathway
involved in immune response in human. In this study, a comprehensive pathway level analysis has
been carried out to identify miRNAs regulating the calcineurin/NFAT signaling pathway. Firstly, by
incorporating experimental data and computational predictions, 191 unique miRNAs were identified
to be targeting the calcineurin/NFAT signaling pathway in humans. Secondly, combining miRNA
expression data from activated T cells and computational predictions, 32 miRNAs were observed to
be induced by NFAT transcription factors. Finally, 11 miRNAs were identified to be involved in a
feedback loop to modulate the calcineurin/NFAT signaling pathway activity. This data demonstrate
the potential role of miRNAs as regulators of the calcineurin/NFAT signaling pathway. The present
study thus emphasizes the importance of pathway level analysis to identify miRNAs and understands
their role in modulating signaling pathways and transcription factor activity.
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1. Introduction

Nuclear factor of activated T cells (NFAT) is a family of transcription factors that was first
described as a part of a protein complex, which altered transcription of the interleukin-2 (IL-2) gene.
The NFAT family consists of five members: NFATc1 (NFAT2), NFATc2 (NFAT1), NFATc3 (NFAT4),
NFATc4 (NFAT3) and NFAT5, in which the first four NFATs are regulated by calcium signaling [1,2].
NFAT transcription factor activities are tightly regulated through the calcineurin/NFAT signaling
pathway. This pathway is an essential player in immune responses including cytokines’ production of
TNF-α and IL-10 [1]. When T cells are activated, the intracellular calcium level increases and binds
to a protein called calmodulin. The calcium-bound calmodulin interacts with calcineurin, which in
turn dephosphorylates NFATs into its active form. Dephosphorylated NFATs translocate from the
cytoplasm to the nucleus and induce NFAT-dependent transcription [2,3]. The calcineurin/NFAT
signaling pathway is thus crucial for the adaptive immune response and T cell activation [4]. Together
with its role in adaptive immunity, NFATs are also involved in innate immune responses against fungal
and bacterial infection [5,6].

MicroRNAs (miRNAs) are short (18–22 nucleotides in length), endogenous, non-coding
single-stranded RNAs that regulate expression of target mRNAs. miRNAs have emerged as one
of the key regulators of gene expression [7]. Nearly one-third of the genes in the human genome are
estimated to be regulated by the ~2000 mature miRNAs so far identified [8]. miRNAs can activate or
inhibit the function of a signaling pathway by translational inhibition of the component genes [9,10].
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There is growing evidence on miRNA regulating the calcineurin/NFAT signaling and its
involvement in innate and adaptive immune responses [11–14]. For example, NFATc2 in CD4 T
cells was shown to be regulated by miR-184 and miR-568 was shown to inhibit the activation of T cells
by targeting NFAT5 [15,16]. Also, miRNA-124 has been shown to repress activation of the NFATs that
lead to an altered immune response [11]. Another recent study demonstrated that overexpression of
miR-9 in T cells activates NFAT by repressing Dyrk1, a kinase that phosphorylates NFAT [17]. A few
miRNAs, such as miR-23a, have been reported to be controlled by NFAT transcription factor [18]. Apart
from the immune cells, a number of studies have explored miRNA regulation on the calcineurin/NFAT
signaling pathway in cardiac hypertrophy [19–24]. NFATc4 was targeted by miR-133 in cardiac
hypertrophy [20] and miR-199b has been shown to regulate the calcineurin/NFAT signaling pathway
by targeting Dyrk1A [25]. Similarly, NFAT was shown to interact with miR-25 to regulate the functional
activity of NFAT [24]. MiR19a/b was studied to positively regulate the NFAT activation and this
effect was observed to be suppressed with calcineurin inhibitors [23]. Though there are a few studies
suggesting miRNAs regulate the calcineurin/NFAT signaling pathway, a comprehensive study to
identify all miRNAs targeting this pathway and their effect on pathway regulation is lacking and has
not been explored in detail. In addition, not much is known about the miRNAs induced by NFAT
transcription factors. Only a few studies have experimentally explored miRNA function in the context
of network regulation [21]. Emerging studies have shown the role of miRNAs in such feedback loops
to regulate signaling pathways and transcription factor activities [26]. However, miRNAs involved in
a feedback loop to modulate the calcineurin/NFAT signaling pathway activity are unknown. Thus,
a comprehensive systems-level analysis is required to understand the role of miRNAs and the feedback
loops involving these miRNAs to regulate the calcineurin/NFAT pathway.

A number of computational methods have been developed to predict the miRNA targets based
on sequence and structural information of miRNA-mRNA interaction [27–31]. In addition, there
are high-throughput sequencing–based experimental studies exploring the expression patterns of
miRNAs in human and mouse [12,32]. In this study, computational prediction methods were combined
with published experimental data for a precise prediction of miRNAs involved in modulating the
activities of the calcineurin/NFAT signaling pathway. In addition, miRNAs targeting members of
the pathway and miRNAs induced by NFAT transcription factor were identified. Further, miRNAs
that are potentially involved in a feedback loop that would regulate the calcineurin/NFAT signaling
pathway in humans were identified through a comprehensive systems-level analysis.

2. Results

2.1. miRNAs Targeting the Calcineurin/NFAT Signaling Pathway

There are a few studies describing the role of miRNAs in regulating the calcineurin/NFAT
signaling pathway [11,15–18,20]. In this study, combining computational prediction algorithms
and incorporating experimental data, miRNAs targeting the calcineurin/NFAT signaling pathway
were identified. To undertake this analysis, 23 key genes, NAFT, Protein Phosphatase 3, Catalytic
Subunit, Alpha Isozyme (PPP3CA), Catalytic Subunit, Beta Isozyme, (PPP3CB), Protein Phosphatase 3,
Regulatory Subunit B, Alpha (PPP3R1), Protein Phosphatase 3, Regulatory Subunit B, Beta (PPP3R2),
Regulator Of Calcineurin 1 (RCAN1), Glycogen synthase kinase 3 beta (GSK3B), Dual specificity
tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), Homer Scaffolding Protein 2 ( HOMER2),
Inositol 1,4,5-Trisphosphate Receptor Type 1 (ITPR1), Mitogen-Activated ProteinKinase Kinase Kinase 7
( MAP3K7), TAK1-binding protein (TAB), Casein Kinase (CSNK1A1/CK1), Leucine-Rich Repeat
Kinase 2 (LRRK2), Calcineurin-Binding Protein 1 (CABIN1), A-Kinase Anchor Protein 5 (AKAP5),
calmodulin 1 (CALM1), Stromal Interaction Molecule 1 (STIM1) and Orai Calcium Release-Activated
Calcium Modulator 1 (ORAI1), from the calcineurin/NFAT signaling pathway described to be
important for regulating NFAT activity were selected based on the literature review (Table 1) [33–38].
A combination of six target prediction algorithms, StarBase [39,40], TargetScan [41,42], miRDB [43,44],
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TarBase 7 [45,46], DIANA [47,48] and miRNAMap [49,50], was used to identify miRNAs targeting
the selected genes regulating NFAT activation. Most of these algorithms incorporate experimental
validation of miRNA expression data. Since these algorithms are based on different prediction
methods, sequences and/or structural interaction between miRNA and mRNA, the prediction overlap
of these algorithms remains very low. However, combined, prediction algorithms are shown to give
better a prediction of the targets [51]. These algorithms incorporate features that include sequence
composition, secondary structure and species conservation to predict miRNA targets. The miRNA
targets predicted by all six algorithms were used for further analysis. The computational analysis
predicted 4679 combinations of mRNA-miRNA interactions involving 1961 unique miRNAs targeting
the calcineurin/NFAT signaling pathway (Supplementary data).

Table 1. Members of the calcineurin/NFAT signaling pathway analyzed in this study. Twenty-three
key members of the calcineurin/NFAT signaling pathway were selected based on literature survey.

Gene Description

NFATc1
Family of transcription factors that are expressed in the vertebrates.
These transcription factors induce expression of cytokine genes
important for immune response.

[38,52]
NFATc2

NFATc3

NFATc4

PPP3CA
Calcium-dependent, calmodulin-stimulated protein phosphatase.
It dephosphorylates the NFAT transcription factors and facilitates
nuclear transport of NFAT.

[33]
PPP3CB

PPP3R1

PPP3R2

RCAN1 Transcribed by NFAT transcription factor and interacts with calcineurin to
inhibit calcineurin-dependent signaling pathways. [38,53]

GSK3B Phosphorylates NFAT into its inactive form and facilitates the cytoplasmic
transport of NFAT. [38,54,55]

DYRK1A

HOMER2 Is a negative regulator of T cell activation and binds with NFAT to compete
with calcineurin binding. [34]

ITPR1 Intracellular channel that mediates calcium release from the
endoplasmic reticulum. [38,56]

MAP3K7 Selectively induces calcineurin-NFAT signaling through direct
phosphorylation of RCAN1. [35]

TAB1 Phosphorylated RCAN1 and inhibits RCAN1 from binding to calcineurin. [35]
TAB2

CSNK1A1/CK1 Works as a negative inhibitor of the NFAT by phosphorylation and
mediates its cytoplasmic translocation. [57]

LRRK2
Negative regulator of the transcription factor NFAT and is a component
of a complex that includes the large non-coding RNA NRON
(an NFAT repressor).

[58]

CABIN1 Binds specifically to the activated form of calcineurin and inhibits
calcineurin-mediated signal transduction and NFAT nuclear translocation. [36]

AKAP5 Inhibits calcineurin-dependent dephosphorylation of NFAT [59]

CALM1 Calmodulin is a calcium binding protein that activates the calcineurin. [37]

STIM1 Ca2+ sensor proteins on the endoplasmic reticulum, which is an
indispensable part in the activation of store-operated Ca2+ channels (SOC). [60]

ORAI1 Calcium channel subunit that is activated by the calcium sensor STIM1
when calcium stores are depleted. [61]
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The miRNA targeting the calcineurin/NFAT signaling pathway was further refined by
incorporating experimental data on miRNA target validation. Experimental validation data was
collected from the miRTarBase database [28,62]. A subset of 230 miRNAs with experimentally validated
data on targeting the calcineurin/NFAT signaling pathway was selected for subsequent analysis
(Supplementary data). This miRNA subset was further refined by incorporating miRNA-expressed
data from human immune cells (Supplementary data). Since the calcineurin/NFAT signaling
pathway is known to be important for regulating the T cell development and immune response [4],
miRNAs expressed in immune cells were collected from miRmineHuman miRNA expression
(http://guanlab.ccmb.med.umich.edu/mirmine/index.html) database [63]. By incorporating this
expression data, 191 miRNAs targeting the calcineurin/NFAT signaling pathway were identified
(Supplementary data). The negative regulators of this pathway, Glycogen synthase kinase 3 beta
(GSK3B), Dyrk1A, CSNK1A1 and RCAN1, were among the highly targeted genes, with 26, 14, 14 and
11 miRNA targets, respectively. The positive regulators of this pathway, PPP3R1, MAP3K7, TAB2,
CALM1 and ITPR1, were also observed to be targeted by 19, 14, 14, 15 and 12 miRNAs, respectively
(Supplementary data).

2.2. miRNAs Induced by NFAT Transcription Factor Family

miRNAs are known to be transcribed mainly in two different ways: (a) as part of an mRNA
or (b) individually with a separate promoter [64]. The majority of the miRNAs are thought to form
an independent transcription unit and the rest are transcribed as part of the annotated genes [65].
However, it is not clearly understood which miRNAs are transcribed as part of an mRNA or have
independent transcription. Not many studies are done on transcription factors that transcribe these
miRNAs. However, a number of computational prediction methods have been developed to predict
transcription factors that can bind to the miRNA promoter region and potentially transcribe it [66].
There are ChIP-seq experimental data available on transcription factors inducing miRNA expression
in ChIPBase (http://deepbase.sysu.edu.cn/chipbase/index.php) [67,68]. However, miRNAs induced
by the NFAT family of transcription factors are not available from the above study.

In the current study, miRNAs induced by the NFAT transcription factors were predicted
by combining computational predictions and published experimental data. To conduct this
analysis, miRNA sequence coordinates were collected from the miRBase database [8]. Promoter
regions of the miRNAs were obtained through the UCSC genome browser [69,70] and promoter
sequences for 1443 human miRNAs were collected from UCSC. The NFAT binding sites on these
promoter regions were predicted using transcription factor prediction algorithms TFSEARCH
(http://diyhpl.us/~bryan/irc/protocol-online/protocol-cache/TFSEARCH.htmls) [71] and PROMO
(http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) [66,72]. Prediction
results from these algorithms were combined to identify 536 miRNAs with an NFAT transcription
factor binding site on the promoter region (Supplementary data).

This computational prediction of the miRNAs induced by NFAT transcription factors was further
refined by incorporating published miRNA expression data in activated and non-activated T cells in
humans [32]. In an activated T cell, NFAT translocate into the nucleus and starts transcribing genes
under its control. Thus, it was hypothesized that the miRNAs induced by NFATs would get transcribed
in activated T cells and would get upregulated in activated T cells compared to non-activated T cells.
Based on this hypothesis, miRNA expression data for human T cells were further analyzed. Ninety-five
miRNAs upregulated by 1.5-fold or more in active T cells were selected (Supplementary data). A subset
of these miRNAs was observed to have an NFAT transcription factor binding site on their promoter
region. Thirty-two miRNAs from this subset that were identified to have an NFAT binding region and
to be upregulated in activated T cells were selected, because they are potentially induced by NFAT
transcription factor (Figure 1).
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Figure 1. List of 32 miRNAs potentially induced by NFAT transcription factor with the fold change 

of expression in activated T cells. These miRNAs were observed to be highly overexpressed in activated 

T cells compared to non-activated T cells. 
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Activity 

Signaling pathways such as the calcineurin/NFAT pathway are tightly regulated through positive 

or negative feedback loops to reduce fluctuations in gene expression [61–63]. Previous studies have 

shown the role of miRNAs in such feedback loops [26]. While miRNAs operate through a repressive 

mechanism, their function in signaling pathways can result in activation or repression of the 

pathways. Not much is known about the miRNAs involved in a feedback loop to regulate the 

calcineurin/NFAT signaling pathway. An miRNA feedback loop can be of two types: a negative 

feedback loop, where miRNAs transcribed by NFAT transcription factor inhibit NFAT activation 

(translocation to nucleus) by repressing NFAT or NFAT activators (type 1), and a positive feedback 

loop, where miRNAs transcribed by NFAT transcription factors repress the expression of the NFAT 

inhibitor, which results in the activation of NFAT (type 2) (Figure 2). 
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Figure 1. List of 32 miRNAs potentially induced by NFAT transcription factor with the fold change of
expression in activated T cells. These miRNAs were observed to be highly overexpressed in activated T
cells compared to non-activated T cells.

2.3. miRNAs in Negative or Positive Feedback Loop to Modulate the Calcineurin/NFAT Signaling
Pathway Activity

Signaling pathways such as the calcineurin/NFAT pathway are tightly regulated through positive
or negative feedback loops to reduce fluctuations in gene expression [73–75]. Previous studies have
shown the role of miRNAs in such feedback loops [26]. While miRNAs operate through a repressive
mechanism, their function in signaling pathways can result in activation or repression of the pathways.
Not much is known about the miRNAs involved in a feedback loop to regulate the calcineurin/NFAT
signaling pathway. An miRNA feedback loop can be of two types: a negative feedback loop, where
miRNAs transcribed by NFAT transcription factor inhibit NFAT activation (translocation to nucleus) by
repressing NFAT or NFAT activators (type 1), and a positive feedback loop, where miRNAs transcribed
by NFAT transcription factors repress the expression of the NFAT inhibitor, which results in the
activation of NFAT (type 2) (Figure 2).
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Figure 2. Schematic representation of feedback loops regulating the calcineurin/NFAT signaling
pathway. In a negative feedback loop (type 1), miRNAs transcribed by NFAT inhibit NFAT activation,
whereas in a positive feedback loop (type 2), miRNAs transcribed by NFAT repress the expression of
the NFAT inhibitor which results in the activation of NFAT.

In this study, by combining miRNAs targeting the calcineurin/NFAT signaling pathway and
miRNAs induced by NFAT transcription factor, miRNAs involved in feedback loops to modulate the
calcineurin/NFAT signaling pathway were identified. Computational predictions combined with
experimentally validated data have identified 191 miRNAs targeting the calcineurin/NFAT signaling
pathway and 32 miRNAs induced by NFAT transcription factors. By combining these two sets of
miRNAs, a subset of 11 miRNAs (Table 2) were observed to be potentially involved in a feedback
loop to regulate the calcineurin/NFAT signaling pathway. Out of the 11 miRNAs, six (hsa-miR-21-3p,
hsa-let-7b-5p, hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-92b-3p and hsa-miR-17-3p) are involved in
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a negative feedback loops that modulates NFAT activity down and five miRNAs (hsa-miR-21-5p,
hsa-miR-181c-5p, hsa-let-7c-5p, hsa-let-7b-3p and hsa-miR-155-5p) are involved in a positive feedback
loops facilitating NFAT activation.

Table 2. List of miRNAs potentially involved in a feedback loop to modulate the calcineurin/NFAT
signaling pathway. Eleven miRNAs are identified in this study to be involved in a feedback loop with
target genes and expression in human activated T cells.

miRNAs Involved in
Feedback Loops Target Genes miRNA Average Expression in

Activated T Cells (RPM)

hsa-miR-21-3p CALM1 191
hsa-let-7b-5p NFATC1 8617

hsa-miR-17-5p PPP3R1 778
hsa-miR-17-3p STIM1 859

hsa-miR-19a-3p ITPR1 4379
hsa-miR-92b-3p ITPR1 254
hsa-miR-21-5p CSNK1A1 372,670

hsa-miR-181c-5p CSNK1A1 321
hsa-let-7c-5p GSK3A 889
hsa-let-7b-3p GSK3B 77

hsa-miR-155-5p GSK3B 282,932

3. Discussion

The calcineurin/NFAT signaling pathway is an important immune regulatory pathway in
vertebrates. This pathway regulates the activation of a family of NFAT transcription factors,
which upon activation regulate the gene expression of important immune regulatory cytokines [1].
Over the past decade, the importance of miRNAs in the regulation of signaling pathways, such
as the calcineurin/NFAT signaling pathway, has become more and more evident [76]. miRNAs
through their repressive function can modulate diverse signal transduction pathways [9]. However,
apart from a few miRNAs, not much is known about the miRNAs involved in regulating the
calcineurin/NFAT signaling pathway [11,15,17]. In the present study, computational predictions,
experimental validation and miRNA expression data were combined to identify miRNA feedback
loops regulating the calcineurin/NFAT signaling pathway. The concept of feedback regulation of
pathways has been known for over 100 years [77]. A variety of studies in the literature have identified
positive or negative feedback loops in the calcineurin/NFAT signaling pathway [1,25,35,53]. However,
miRNA feedback loops are much less studied, and currently no information is available on miRNA
feedback loops regulating the calcineurin/NFAT signaling pathway. The present study describes
11 miRNAs (Table 2) potentially involved in feedback loops to regulate the calcineurin/NFAT signaling
pathway. These miRNAs were systematically identified based on their involvement in targeting
the calcineurin/NFAT pathway and on computational predictions to be a potential target of NFAT
transcription factor. miRNAs observed to be involved in negative feedback loops, hsa-miR-21-3p,
hsa-let-7b-5p, hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-92b-3p and hsa-miR-17-3p, are targeting the
NFAT activators, thus modulating down the NFAT activity. miRNAs observed to be part of the positive
feedback loops, hsa-miR-21-5p, hsa-miR-181c-5p, hsa-let-7c-5p, hsa-let-7b-3p and hsa-miR-155-5p,
target the negative regulators of the NFAT, thus facilitating NFAT activation (Figure 3).
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Figure 3. Schematic representation of the calcineurin/NFAT signaling pathway and the miRNAs
involved in feedback loops to modulate the pathway activities. All the selected 23 genes associated
with the calcineurin/NFAT signaling pathway in humans have miRNAs targeting those genes which
are involved in feedback loops to regulate the calcineurin/NFAT signaling pathway.

The let-7 miRNAs, identified in this study to be involved in both negative and positive feedback
loops, are part of the highly conserved miRNA families across different species. The let-7 family of
proteins is described to be expressed in immune cells (miRmine database) and is overexpressed in T
cells upon activation [32]. Various experimental validation studies have shown that the let-7 family of
miRNAs targets members of the calcineurin/NFAT signaling pathway (hsa-let-7b-3p, hsa-let-7c-5p
targeting GSK3 and hsa-let-7b-5p targeting NFATc1) [78,79]. Let-7f, one member of the let-7 miRNA
family, has previously been shown to positively modulate NF-κB signaling by targeting an inhibitor
of the pathway, A20 [76]. Thus, upregulation of let-7f is shown to be beneficial for the immune
cells to control infection [76]. The current study demonstrates the potential role of hsa-let-7b-3p and
hsa-let-7c-5p in a positive feedback loop by targeting the negative regulator of NFAT, GSK3. This data
suggest, similar to the NF-κB signaling, the potential role of let-7 in activating the NFAT signaling
pathway by targeting GSK3, which would be beneficial for immune response.

The next set of miRNAs observed to be involved in feedback loops, hsa-miR-17-3p, hsa-miR-17-5p,
hsa-miR-19a-3p and hsa-miR-92b-3p, are part of the miR-17~92 cluster. In humans, the miR-17~92
cluster is composed of six members from four different seed families—miR-17, miR-18a, miR-19a,
miR-20a, miR-19b-1, and miR-92-1. In mice, overexpression of the miR-17~92 cluster has been shown
to be associated with an increased CD4+ T cell population and autoimmune disease [80]; however,
similar data is not available for humans. Transcription factors c-Myc and E2F are shown to be
associated with activation of the miR-17~92 cluster miRNAs. In addition, the miR-17~92 cluster is
involved in a feedback loop regulating E2F family members [80]. The four members of the miR-17~92
cluster, hsa-miR-17-3p, hsa-miR-17-5p, hsa-miR-19a-3p and hsa-miR-92b-3p, from this study have
been observed to be involved in a negative feedback loop to target the calcineurin/NFAT signaling
pathway. Three of them are observed to be targeting the genes associated with calcium release
(hsa-miR-17-3p targeting STIM1, hsa-miR-19a-3p and hsa-miR-92b-3p targeting ITPR1). This data
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suggests that members of the miR-17~92 cluster are potentially involved in negatively regulating the
calcineurin/NFAT signaling pathway, potentially to reduce over-activation of the immune response.

Bazzoni et al. have demonstrated the miRNA-mRNA interaction between hsa-miR-155-5p
and GSK3, and explored the potential involvement of hsa-miR-155 in the regulation of innate
immune response [81]. There are several studies exploring the role of hsa-miR-155 in regulating
immune responses, and in mice miR-155 has been shown to be crucial for T cell differentiation and
proliferation [80]. In humans, miR-155 expression was shown to be associated with transcription
factor NF-κB; however, in mice, miR-155 was shown to be activated via the NFAT pathway [81,82].
However, no study has yet explored the role of NFAT transcription factor as an inducer of hsa-miR-155
expression in human immune cells. In this study, the transcription factor binding region analysis
identified a potential NFAT binding site on the hsa-mir-155 promoter region and also demonstrated the
role of hsa-miR-155 in positive feedback loops. Thus, similar to let-7, by targeting GSK3 hsa-miR-155
potentially activates the calcineurin/NFAT pathway, which is important for T cell proliferation.

Similar to miR-155, hsa-miR-21 has also been shown to be a major regulator of Th1 versus
Th2 T cell response [83]. In this study, hsa-miR-21-5p has been shown to target CK1 (CSNK1A1)
and to be involved in a positive feedback loop activating the calcineurin/NFAT signaling pathway.
A microarray study done by Gabriely et al. has validated the miRNA-mRNA interaction between
hsa-miR-21-5p and CK1 (CSNK1A1) [84]. Being involved in a positive feedback loop and by targeting
CK1, miR-21 might be contributing to T cell proliferation through activating the NFAT transcription
factor. Interestingly, hsa-miR-21-3p has been observed to be targeting the CALM1 gene and to be
involved in a negative feedback loop. It is known that miRNAs from the same pre-miRNA could have
different functional properties depending on the differences in the seed sequence or nucleotides at
the 51 and 31 ends [85]. The second miRNA target of CSNK1A1, hsa-miR-181c, however, has not been
studied in detail for its function in T cell activation and immune responses. hsa-miR-181c is part of the
miR-181 family, consisting of miR-181a, miR-181b and miR-181c. Kishore et al., using the cross-linking
and immunoprecipitation (CLIP) method, have validated the interaction between CSNK1A1 and
hsa-miR-181c [86]. In the present study, hsa-miR-181c has been described to be potentially involved in
a positive feedback loop to activate the calcineurin/NFAT pathway by silencing the negative of the
pathway, CSNK1A1. These data thus suggest a potential role of hsa-miR-181c in silencing CSNK1A1,
which would activate the NFAT pathway and immune response.

Taken together, feedback loops involving miRNAs demonstrate the crucial role of miRNAs in
modulating the calcineurin/NFAT signaling pathway. Additional comprehensive pathway level
studies including experimental validations need to be carried out to identify these miRNAs and
understand their role in signaling pathways.

4. Materials and Methods

4.1. Computational Prediction of miRNA Targeting Members of the Calcineurin/NFAT Pathway

Six miRNA target prediction algorithms, StarBase (v2.0 release at September 2013) (http://starbase.
sysu.edu.cn/index.php/) [40], TargetScan (Release 7.0, August 2015) (http://www.targetscan.org/) [42],
DIANA (2015) (http://diana.imis.athena-innovation.gr/DianaTools/index.php) [48], miRDB
(2015) (http://mirdb.org/miRDB/index.html) [44], miRNAMap (http://mirnamap.mbc.nctu.edu.
tw/index.php) [50] and TarBase 7 (v7.0,2015) (http://diana.imis.athena-innovation.gr/DianaTools/index.
php?r=tarbase/index) [46] were used for computational prediction of miRNAs targeting 23 members
of the calcineurin/NFAT pathway. The algorithms were used using their default parameters and
miRNAs predicted by at least one of the prediction algorithms were selected for subsequent analysis.
The computational prediction identified 4679 combinations of mRNA-miRNA interactions with 1961
unique miRNAs targeting the calcineurin/NFAT signaling pathway (Supplementary data).
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4.2. Experimental Validation Data on miRNA Targets

miRNA target validation data was collected from the database miRTarBase (http://mirtarbase.
mbc.nctu.edu.tw/index.php) [62]. List of all miRNAs targeting the 23 members of the calcineurin/NFAT
pathway were collected. Experimental validation data on 840 miRNA-mRNA interactions were
collected from miRTarBase (Supplementary data).

4.3. miRNA Expressed in PBMCs

miRNA expression data was collected from miRmine—Human miRNA expression database
(http://guanlab.ccmb.med.umich.edu/mirmine/index.html) [63]. A subset of 692 miRNAs were
collected which were expressed in human PBMCs with reads per million (RPM) >20 (Supplementary data).

4.4. miRNA Promoter Sequences and NFAT Transcription Factor Binding Site

Genomic coordinates of the miRNA precursor were obtained from miRBase database (Release 20:
June 2013). The miRNA promoter sequences (5000 nt) for human (h19) was downloaded from UCSC
Genome Browser website (http://genome.ucsc.edu/index.html) [70]. The NFAT transcription factor
binding sites on the miRNA promoter regions were retrieved using two transcription factor binding
site prediction algorithms: TFSEARCH (http://diyhpl.us/~bryan/irc/protocol-online/protocol-
cache/TFSEARCH.htmls) [71] and PROMO (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/
promoinit.cgi?dirDB=TF_8.3) [66,72]. (Supplementary data).

4.5. Upregulated miRNA Selection from Activated Human T Cells

Expression profile of miRNAs from activated or non-activated T cells for human was collected
from previously published datasets [32]. miRNAs were sorted based on their expression fold change
in activated T cells compared to the non-activated cells. Seventy-three miRNAs with fold change >1.5
were selected for further analysis (Supplementary data).

5. Conclusions

A combination of computational prediction algorithms and experimental data available on miRNA
expression and target predictions was used to identify possible miRNA feedback loops modulating
the calcineurin/NFAT signaling pathway in humans. The feedback loop mechanism described in this
study highlights the central role of miRNAs in regulating NFAT activity. Further studies need to be
undertaken, especially experimental validation, which will lead to novel insights into the nature of
miRNA modulation of the calcineurin/NFAT signaling pathway. Overall, this study demonstrates the
importance of a comprehensive systems-level analysis in identifying the indirect role of miRNAs in
activating or silencing pathway response, such as that of the calcineurin/NFAT signaling pathway.

Supplementary Materials: The following are available online at www.mdpi.com/2311-553X/2/2/3/s1,
Supplementary data.
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The following abbreviations are used in this manuscript:

NFAT Nuclear factor of activated T cells
PPP3CA Calmodulin-Dependent Calcineurin A Subunit Alpha Isoform
RCAN RCAN Family Member/ Down Syndrome Candidate Region 1-Like Protein
GSK Glycogen Synthase Kinase
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DYRK1A Dual-Specificity Tyrosine-(Y)-Phosphorylation Regulated Kinase 1A
HOMER2 Homer Scaffolding Protein
ITPR1 Inositol 1,4,5-Trisphosphate Receptor, Type 1
MAP3K7 Mitogen-Activated Protein Kinase Kinase Kinase 7
TAB TGF-Beta Activated Kinase 1/MAP3K7 Binding Protein
CSNK1A1 Casein Kinase 1, Alpha 1
LRRK Lrrk Leucine-rich repeat kinase
CABIN Calcineurin Binding Protein
AKAP A-kinase anchor proteins
CALM Calmodulin
STIM stromal interaction molecule
ORAI Calcium Release-Activated Calcium Modulator
miRNA micro RNA
RPM Reads Per Million
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