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Introduction

Cerebrovascular disease and Alzheimer's disease (AD) lesions are very common in older

people, and accumulate with age. Cerebrovascular lesions can directly reduce cognitive

status: vascular dementia is the second most-common cause of clinical dementia after AD. In

addition, cerebrovascular lesions worsen the impact of AD and other dementia pathologies,

and may contribute to AD aetiology. This spectrum is reflected in the concept of Vascular

contributions to Cognitive Impairment and Dementia (VCID)1.

There are numerous vascular pathologies underlying VCID2-4. The most prevalent is cerebral

small vessel disease (SVD), or arteriolosclerosis, in small arteries (outer diameter up to ~

200µm) that supply deep nuclei and deep white matter areas in the human brain2, 3, 5, 6.

Parenchymal lesions associated with SVD vasculopathy are small focal infarcts (“lacunes”),

diffuse white matter lesions (WML), and microhemorrhages3, 4, 6. Other VCID-related

vascular pathologies include microatheroma, venous collagenosis and cerebral amyloid

angiopathy (CAA)1, 3, 6.

The limitations of animal models for VCID are well-known1, 7, 8. Experimental species differ

from humans in terms of lifespan, relative white matter abundance, large artery dimensions

(Figure 1) and in size and morphology of deep penetrating arteries (Figure 2). Nevertheless,

animal paradigms provide valuable insights into mechanisms, progression and possible

therapies in VCID. All experimental use of animals for human health-related research carries

ethical responsibilities, and must be governed by internationally-agreed Animal Research:

Reporting of In Vivo Experiments (ARRIVE) guidelines (www.nc3rs.org.uk/arrive-

guidelines). Here we update a previous systematic review of VCID-relevant models8 (Online

Supplement, please see http://stroke.ahajournals.org ) and summarize instructive examples

(Table 1).
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**** Figures 1 and 2 near

*** Table 1 near

Hypoperfusion: rats and mice

Bilateral surgical ligation of the common carotid arteries (2VO) in rats remains the most

frequently-used model8 (see Online Supplement). Bilateral carotid artery stenosis (BCAS) in

mice, using metal coils to narrow the arteries by 50%, produces a less-severe, chronic global

hypoperfusion29, 30. BCAS mice develop some white-matter damage, increased BBB

permeability and cognitive impairment29, 31. F18-FDG-PET indicates a decrease in

hippocampal glucose utilization 6 months post-BCAS. In the radial maze and Barnes maze

tasks, working memory was impaired at 30 days. Impaired reference memory was also

detected at 5-6 months post-surgery8, 9.

After six months of stenosis the animals display significantly (30%) reduced fractional

anisotropy on diffusion tensor imaging in white matter areas9. Histologically, they exhibit

thickened basement membrane collagen IV (relative to one month post-BCAS and sham-

operated animals)9 and hippocampal atrophy with pyknotic and apoptotic cells from 6-8

months post-surgery29. An unexpected finding in BCAS mice is the incidence at six months

of subcortical haemorrhagic lesions, detected on MRI and confirmed histologically9. The

haemorrhagic lesions, and an astroglial response with unusual distribution of aquaporin-4,

suggest a pathological process additional to global hypoperfusion9, 30.

In order to produce more gradual CBF reduction, ameroid micro-constrictor cuffs filled with

casein (which swells on absorbing water) are placed around the carotid arteries of rats10. In

rats gradual bilateral occlusion (2VGO) over 2-3 days leads to comparable CBF reduction

and white matter damage, with lower mortality and hippocampal neuronal death, relative to
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the standard 2VO rat model8, 10. 2VGO in hypertensive (SHR) rats produced a gradual

reduction in global CBF (to 68% of baseline values, after 7 days) and cognitive impairment in

the Y-maze12. Mice with an ameroid constrictor placed on one common carotid artery and a

microcoil causing 50% stenosis on the other (“ACAS” mice) exhibit subcortical infarcts in

addition to diffuse white matter damage11. ACAS mice exhibited gradual reduction of CBF

over 28 days, and multiple infarct damage in subcortical regions ipsilateral to the ameroid

constrictor cuff, observed in 81% of the mice11. At day 28 post-surgery, ACAS mice showed

significant decrease in spatial working memory11.

Hypoperfusion: baboons

In adult baboons (Papio anubis; age 12 years or more) occluding one vertebral and both

internal carotid arteries (termed three vessel occlusion; 3VO), led to a severe hypoperfusion

state13. Activation of microglia was marked at 3 days post-occlusion, and plasma

extravasation at 7-14 days, both being resolved by 28 days. From 7 days post-occlusion these

animals developed progressive white matter pallor and vacuolation in the corpus callosum,

deep subcortical and periventricular white matter areas, with some demyelination, up to

sacrifice at 28 days13. While a primate surgical model poses substantial logistic challenges,

data from a human-like experimental species with extensive white matter are uniquely

valuable7, 32, 33.  For VCID-relevant research, it is notable that ageing baboons exhibit both β-

amyloid and tau neuropathology.

Hypoperfusion paradigms in relation to clinical SVD and VCID

Regional CBF in white-matter is universally low across species (figure 1). This is generally

considered to explain the white matter predilection for diffuse hypoperfusion lesions. In
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human brain the deep subcortical white matter is supplied by the distal fields of deep

penetrating medullary arteries (length 50 mm or more) arising from the leptomeningeal

branches of the anterior, middle and posterior cerebral arteries. Thus, even under normal

circumstances this deep white matter is subject to relatively low perfusion pressure. Though

there are some anastomoses between these vessels34, an episode of profound global

hypoperfusion (eg. acute ICA occlusion) causes white matter infarcts in a characteristic deep

or internal borderzone distribution35. Experimental induction of abnormally-low perfusion

pressure in an animal (e.g. 2VO or 3VO models) would be expected to cause ischaemic white

matter damage with a similar pattern.

A caveat is that pathogenesis of WML in these hypoperfusion models is very different from

human SVD. The majority of WML and lacunes in humans are thought to arise as a direct

result of local small vessel wall changes3 not from embolic events or episodes of global

hypoperfusion. Hence, while experimental proximal large vessel occlusion will cause white

matter changes, the distribution of lesions is likely to be more confined and stereotyped, and

other features contributing to the local milieu in chronic hypertensive arteriopathy, such as

blood brain barrier (BBB) dysfunction, are likely to be different in such models, or absent.

Further, any vascular adaptions such as ischaemic preconditioning36 are unlikely, except

where occlusion is more gradual (e.g. 2VGO).

Hypertensive rodents with co-morbidities

Spontaneously hypertensive stroke prone rats (SHRSP) develop severe hypertension from 9-

12 weeks of age and typically exhibit stroke lesions at 9-12 months, with 90% mortality by

12 months of age8. Stroke lesions are frequently haemorrhagic in nature and are unpredictable

in timing, severity, location and behavioural outcome. In the absence of co-morbidities,
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stroke-free SHRSP exhibit little white matter change on MRI or histologically14, 37, 38. In

SHRSP subjected to unilateral carotid artery occlusion (UCCAo), then a combination of low-

protein, high salt diet (so-called “Japanese permissive diet”, JPD) and NaCl (1%w/v)-

supplemented drinking water, diffuse WML were seen on MRI14. These were accompanied

by impaired performance in the Morris water maze (MWM). Histologically there was loss of

myelin, signs of inflammatory response and matrix metalloproteinase-mediated BBB

disruption14. While mature oligodendrocytes were depleted in white matter of SHRSP,

oligodendrocyte progenitor cells paradoxically increased in density14, 37. The WML were

accompanied by hypoperfusion, determined by arterial spin labelling MRI, and reduced brain

tissue pO2 measured by electron paramagnetic resonance15. Hypoxia-induced HIF-1,

activating MMP-2, may be the pathway for BBB disruption. The antibiotic minocycline has

both anti-inflammatory and anti-apoptotic activity. Young SHRSP were treated with this drug

(50mg/kg ip, every 2 days) for 9 weeks, following the UCCAo surgery and transfer to JPD.

Minocycline-treated animals showed an impressive protection from WML on MRI, modest

improvement in the MWM, and increased lifespan, relative to vehicle-treated animals16.

While SHRSP develop severe hypertension, milder chronic hypertension is induced by

supplementing drinking water with the NOS-inhibitor L-NAME39, or chronic infusion of

angiotensin II by minipump40. Mice receiving a “sub-pressor” infusion of angiotensin II

develop mild hypertension (MABP 90 mmHg, relative to 70 mmHg in saline-infused

controls)40. In addition to vascular actions, sub-pressor concentrations of the hypertensive

agent may have direct effects on neural organization and metabolism.

Hyperhomocysteinemia in mice and rats
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Elevated plasma concentration of the non-essential amino acid homocysteine, termed

hyperhomocysteinemia (HHCy), is a risk factor for VCID41. In wildtype mice a diet deficient

in three B-vitamins (B6, B9-folate and B12) resulted in HHCy within 10 weeks, accompanied

by reduced capillary density in brain tissue and impaired performance in MWM17. The same

dietary regime also exacerbated cognitive impairment in APP transgenic mice18.

Maintaining wildtype mice for 12 weeks on a diet enriched for the HCy precursor

methionine, in addition to B6/B9/B12-defficiency, resulted in plasma [homocysteine] in the

range 70-90 µmol/l19 classified as “moderate” HHCy in mice19, 41 (physiological range for

plasma [homocysteine] in healthy mice and humans: 5-10 µmol/l). These mice exhibited

cognitive impairment on the two-day radial arm water maze, increased metalloproteinase

(MMP2, MMP9) activity in brain tissue and small focal cerebral haemorrhages19. The

methionine-enriched, B6/B9/B12-defficient diet was also applied to dual mutant APP/PS1

mice20. In these animals, cerebral microhemorrhages (evident on MRI and histology) were

accompanied by redistribution of β-amyloid deposits from brain parenchyma to the 

microvasculature20.

In rats B9-folate deficiency alone was sufficient to induce HHCy and cognitive impairment,

and to reduce cerebral blood volume and reactivity measured by absolute, non-invasive near

infra-red spectroscopy42. While the molecular mechanism of HHCy-induced VCID is unclear,

the locus of pathology appears to be vascular rather than neuronal41.

Animal models of Blood-brain barrier dysfunction

Pdgfr-/- mice deficient in pericytes, the contractile cells that ensheath capillary vessels,

showed progressive BBB breakdown from one month of age, with increasing extravasation of

plasma proteins in the hippocampus and cerebral cortex. This was accompanied by reduced
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capillary density and age-dependent reduction in baseline CBF and response to a vasogenic

stimulus (whisker twitch)43. By 16 months of age the mice exhibited pronounced neuronal

loss within the hippocampus, accompanied by impaired performance in a simple assay of

learning (novel object recognition task)43.

APOE genotype is a risk factor for sporadic AD. The APOE ε4 allele increases risk, possibly

via a toxic effect of the APOE ε4 gene product, or via loss of physiological APOE function.  

In an elegant series of target replacement (TR) studies, mice lacking native ApoE expressed

the human alleles APOE 2, 3 or 4, under an astrocyte-specific promoter. TR mice carrying

only the APOE ε4 allele (like ApoE-/- null mice) exhibited enhanced BBB permeability that

was evident by two weeks of postnatal age25, 26. This was dependent on MMP9 activity,

induced via the pro-inflammatory cytokine cyclophilin-A25. None of these changes was

evident in APOE2 or APOE3 TR mice. APOE4 TR mice exhibited worse spatial memory

relative to age-matched APOE3 TR animals at older ages (12, 24 months) but also in young

adulthood (3 months)27, 28.

Regional CBF was much reduced in the APOE4 TR or ApoE-/- null animals at 9 months of

age. CBF could be restored and was at normal levels in double knockout animals, lacking

ApoE as well as the gene for cyclophilin-A25. These well-defined transgenic animal systems

allow specific biochemical pathways to be explored. The gene product of APOE3 binds to

the membrane transporter LRP1, and this supresses the harmful effects of cyclophilin-A on

MMP9 activation and BBB breach25. These experiments also suggest that the harmful effect

of APOE4 is loss of function, rather than a toxic action of the APOE4 gene product. A

functional APOE and LRP1 transport system stimulates clearance of amyloid peptides and

possibly other brain parenchymal debris. Further, when APOE4 TR mice are crossed to the

APP transgenic mouse models of amyloid deposition, CAA is significantly increased,

suggesting a potential role for ApoE4 in the vascular accumulation of amyloid44.



STROKE/2015/012066_R1

9

Another molecular participant in β-amyloid clearance from brain tissue is PICALM, a 

phosphoinositide binding protein associated with clathrin that is required for endocytosis and

internalisation of cell surface receptors. PICALM interacts with endothelial LRP1 to mediate

β-amyloid clearance from brain tissue45. Heterozygous Picalm+/- mice, expressing sub-

physiological levels of PICALM protein in brain endothelium, exhibited increased β-amyloid 

neuropathology and some cognitive impairment, assessed with measures of nest-building and

burrowing45. PICALM has emerged as a candidate in genome wide association studies

(GWAS) for AD, suggesting a key role in the pathogenesis of AD and dementia46.

CADASIL and CARASIL mice

CADASIL and CARASIL are rare monogenic forms of SVD, leading to early-onset VCID.

In CADASIL the underlying gene is NOTCH3 and in CARASIL the gene is HTRA1.

Notch3R169C transgenic mice have 4-fold overexpression of CADASIL-associated mutant

Notch3. These mice exhibit defective CBF reactivity from 5 months of age, reduced CBF

from 12 months and progressive WML from 18 months21. The main WML were

microvacuoles within the myelin sheath, suggested to reflect defective ion-water

homeostasis24. There was no apparent loss of oligodendrocyte density and axons were

intact24. The extracellular matrix proteins vitronectin and TIMP-3 accumulated in the

vascular GOM deposits that are characteristic of CADASIL. Double-transgenic mice that

express CADASIL-causing Notch3 mutations, in addition to being heterozygous null for

vitronectin, exhibit rescue from WML at 12 to 20 months of age, but not rescue of impaired

CBF. Stroke lesions have not been reported for these mice (up to age 24 months). Another

transgenic strain has recently been reported22, carrying the human genomic NOTCH3

sequence. Knock-in Notch3Arg170Cys mouse models, with a mutation in the endogenous
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Notch3 gene23, developed a CADASIL-like vessel pathology and, in addition, some incidence

of parenchymal lesions (from 20 months of age)23. Micro-infarcts, micro-haemorrhages and

behavioural motor deficits were seen in a minority (up to 12%) of these mutant mice up to

age 13 months23.

HTRA1 encodes a secreted serine protease that is involved in TGFβ signalling.  CARASIL-

causing mutations result in loss of HtrA1 activity. Brain tissue from Htra1-/- null mice, and

fibroblasts from CARASIL patients, exhibited reduced TGFβ signalling and dysregulation of 

an extracellular TGFβ-binding protein (LTPB-1) that is a novel HtrA1 target47. In brain

tissue from Htra1 null mice, LTBP1 levels were augmented and TGFβ signalling 

depressed47.

Discussion

Co-morbid models

Greater understanding of interactions between risk factors, genotype and specific vascular

lesions (Figure 3) may come from animals with multiple pathologies and/or co-morbidities.

Examples are hypertensive rats with JPD diet and brain hypoperfusion14, 16, or diet-induced

HHCy combined with AD pathology20. In AD molecular understanding is more advanced

than in VCID and transgenic AD models are well-established. VCID-AD overlap and

interaction may therefore be explored using vascular challenges combined with brain-injected

Aβ peptides48 or in APP transgenic animals30.

*** Figure 3 near
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Larger Species.

Larger animals (primates, dogs, sheep, swine) have longer natural life span than rodents, and

offer valuable data relevant to the human brain gyrencephalic anatomy, abundant white-

matter and arterial morphology (Figure 2), even though cohort sizes may necessarily be

limited13, 33. They can be subjected to VCID-relevant risk factors (old age, hypertension,

high-fat diet, physical exercise status). Rhesus macaques 20-30 years of age are considered

analogous to older people 60-90 years of age33. Quantitative MRI of these animals shows a

highly significant reduction in white matter volume with increasing age33. In old dogs a

cognitive dysfunction syndrome, featuring some aspects of VCID, has been described49.

Experimental sheep models have recently been developed to simulate acute ischemic stroke50,

51. Sophisticated cognitive testing paradigms are available for primates32, 52. By contrast,

cognitive paradigms for large domestic species are currently rudimentary53, 54.

A very small species: Zebrafish.

Perturbation of FOXC1 (which encodes a forkhead-like transcription factor) in Danio rerio

led to cerebral haemorrhages55. FOXC1. GWAS studies suggested possible linkage of the

FOXC1 locus with SVD phenotype (white matter hyperintensities). Suppression of FOXC1

also affected PDGF signalling and CNS development55. The zebrafish offers a rapid

screening platform for genetic alterations.

Summary

Animal models have great potential to increase our understanding of specific vessel

pathologies, how these cause parenchymal lesions, how known risk factors influence vessel

and parenchymal changes, and the mechanisms that link them all to VCID (Figure 3).
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For example, transgenic animals permit well-controlled testing of molecular hypotheses

regarding a functional pathway, such as ApoE-mediated clearance25, 26, 43, 45. “CADASIL

mice” carrying Notch3 mutations combine a known molecular cause with biologically-

appropriate vessel pathology and parenchymal lesions reminiscent of human SVD21-24. The

risk factor HHCy is induced by dietary manipulation in rodents, which exhibit vessel fibrosis,

microhaemorrhages and cognitive deficits17-20. HHCy mice and rats offer a valuable platform

for identifying the currently-unknown molecular targets of HHCy-related brain disease41.

Diffuse WML can be induced in rodents following chronic hypoperfusion9-12 and also in

SHRSP with dietary and surgical co-morbidities14, 16, in both conditions with some

concomitant cognitive deficit. As noted, the vascular pathology in these animals is likely to

differ from human VCID (Figure 3).

There are several directions for future progress. In our view experimental species with closer

metabolic and immunological similarity to humans (primates, larger domestic species) will

make pre-clinical testing of interventions more translational. Given the multi-factorial nature

of the VCID spectrum, co-morbid animals may also accelerate discovery biology for VCID

treatments. While the models discussed here clearly do not reflect the full pathogenic

pathway of human disease (Figure 3) they represent a pragmatic test-bed for interventions11,

12, 16. VCID is a broad concept1, and there is no one “optimal VCID model”. We hope that

this review will assist selection of experimental models most relevant to the aspect of VCID

under study.
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Figure Legends

Figure 1. Lifespan and cerebral large artery diameter, white matter content and blood

flow: comparison across species.

A, normal lifespan (open circles) and outer diameter of the middle cerebral artery just off the

circle of Willis (MCA; filled circles, microns). Typical data for mouse (Ms), rat, cat, dog,

monkey (Macaque) and human.

B, white matter volume as a fraction (%) of total cerebral volume (squares), global CBF

(filled circles) and white matter CBF (WM; open circles). X-axis shows greatest whole brain

width in coronal section (mm).

Figure 2. Deep penetrating arteries in rat, pig, monkey and human.

A, adult SHRSP male rat, age 8 months. Small penetrating artery within the caudate nucleus

is labelled immunohistochemically for smooth muscle α-actin (brown, DAB chromagen).  

B, young adult domestic pig, age 29 weeks. Small artery within subcortical white matter.

Periodic acid-Schiff (PAS) stain labels connective tissue within the artery wall bright pink.

C, adult monkey, Macaca mulatta (archive material). Small penetrating artery in the caudate

nucleus stained with phosphotungstic acid-haematoxylin (PTAH).

D, older human (male, aged 76 y) with severe small vessel disease. In small penetrating

arteries within deep subcortical white matter, the basement membrane is labelled

immunohistochemically for collagen-α1IV (brown). Note the endothelium (arrow) and an 

advential layer of collagen-α1IV (arrowheads). 
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Unpublished data (AHH). In all cases, nuclear chromatin is counterstained with haematoxylin

(blue). Scale bars 20 µm.

Figure 3. Schematic for VCID pathogenesis.

Numerous risk factors, some of which are listed, impact on vessel and parenchymal changes,

and also on the mechanisms that link these to each other and to VCID. In addition, rare

monogenic mutations are causal, including NOTCH3, HTRA1 and COL4A1/COL4A2 (the

genes encoding collagen-α1IV and collagen-α2IV).  
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Table 1. Overview of selected VCID-relevant models

Model Cognitive

Impairment

Brain Pathology Selected

References

Global

hypoperfusion:

rat 2VO, 2VGO;

mouse BCAS,

ACAS

Working memory

deficits; later, RM

deficits (MWM,

Barnes maze, Y-

maze)

Diffuse WML; some BBB

deficit, microglial activation;

micro-haemorrhages at 6 mo.

9-12

Global

hypoperfusion:

baboon 3VO

Not reported Progressive, diffuse WML;

transient microglial

activation; transient global

BBB opening

13

SHRSP, with JPD

and UCCAo

Memory deficits

(MWM)

Diffuse WML;

neuroinflammation, BBB

deficit

14-16

HHCy in

mice, rats

Learning deficits

(MWM)

Micro-haemorrhages; CAA 17-20

Notch3 transgenic

mice

Not reported Vessel fibrosis; later, WML;

reduced CBF. No BBB deficit

21-24

ApoE deficient

mice

Learning deficits

(MWM, Barnes maze)

BBB deficit (from 2 weeks);

CAA

25-28

Abbreviations: BBB: blood-brain barrier. BCAS: bilateral carotid artery stenosis. CAA:

cerebral amyloid angiopathy. JPD: Japanese permissive diet. MWM: Morris water maze.
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RM: reference memory. UCCAo: unilateral common carotid artery occlusion. 2VGO: two-

vessel gradual occlusion. 3VO: three vessel occlusion.
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Supplementary Method 

Search Strategy for systematic review. Using PubMed, we searched English language 

publications in the period 01/01/2010–31/01/2016 for the following terms: (brain OR 

cerebral) AND (cogniti* OR dement*) AND (Vascular OR cerebrovascular OR arteri*) AND 

(vivo OR rodent  OR rat OR mouse OR murine OR rabbit OR gerbil OR hamster OR porcine 

OR swine OR cat OR feline OR dog OR canine OR primate OR monkey OR marmoset OR 

baboon).  

This search yielded 238 hits, of which 33 were reviews. For the remaining 205 papers, 

abstracts were independently screened by two authors (JBM, AHH) and the following 

exclusion criteria applied: not an animal model; not an in vivo model; not an appropriate 

disease/injury model; review article, without original data; conference abstract or other non-

peer-reviewed source. Conflicts (on 25 selections) were resolved by discussion. Additional 

hits were added from bibliographies of included papers, and review articles. A final list of 

100 papers were selected (below). Compare with our previous systematic review1. 

 

 

Supplementary Results 

 

Models retrieved by systematic review 2010-2016 

Chronic hypoperfusion 

Rat; bilateral common carotid artery occlusion (BCCAo); also referred to as two-vessel 

occlusion (2-VO)2-38 

Rat; two vessel gradual occlusion (2-VGO)39; 2-VGO in SHR rats40 

Rat; three vessel occlusion (3-VO)41 

Mice; bilateral carotid artery stenosis (BCAS)42-48; BCAS in ASK-/- mice49; BCAS in mice 

with HHCy50  

Mice; unilateral common carotid artery occlusion (UCCAo)51, 52; UCCAo with intra-gastric 

C. butyricum53  

Baboons; 3-VO, 28 days54 

 

Acute global ischaemia 

Mice; transient BCCAo55 

 

Hyperhomocysteinemia (HHCy) 

Rats; dietary induction of HHCy56-59; high homocysteine and/or high cholesterol diet60 

Mice; dietary induction of HHCy61, 62 

Cystathionine beta-synthase deficient (CBS+/-) mice 63, 64 



3 
 

Diabetes mellitus-related changes and insulin/glucose control 

Diabetic rats; streptazocin-treated65 

Diabetic rats; obese-Zucker66; Otsuka Long-Evans Tokushima Fatty rats, with 2-VO67 

Mice with CNS-restricted deletion of the insulin receptor substrate protein 2 (IRS-2)68 

 

Hypertensive animals 

Hypertensive rats (renal artery ligation)69 

Hypertensive rats SHRSP70-72 

Hypertensive rats SHR73 

Hypertensive mice; NADPH oxidase subunit Nox2-deficent; aortic banding; dietary L-

NAME74 

Hypertensive mice; chronic administration of angiotensin II75 

Endothelial NO synthase deficient, eNOS+/- mice76 

 

With focal ischaemic lesions 

Middle cerebral artery occlusion (MCAo), P2Y1-null mice77 

Mice; permanent single penetrating arteriole occlusion78, 79 

Rats; micro-particle emboli (50-180 µm)80 

Mice; multiple micro-infarcts induced by injection of cholesterol emboli (40-70 µm), in 

addition to unilateral internal carotid artery occlusion81 

 

Vascular features of AD-relevant models 

APP/PS1 transgenic mice; CAA, micro-hemorrhage82 

APP transgenic mice (Tg2576 strain); with UCCAo83 

Rat; intra-striatal injections of endothelin-1 (ET1) and β-amyloid84 

Rat; β-amyloid i.c.v. injections in addition to 2-VO85 

Tau transgenic mice (rTg4510 strain); vascular effects86, 87 

Mice; Apoe-deficient, APOE2/APOE3/APOE4-expressing; CypA-defficient88 

 

CADASIL and CARASIL-related mice 

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) Notch3 transgenic mice89-92 

CADASIL Notch3 transgenic mice; with MCAo93 
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Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy 

(CARASIL) HtrA1 null mice94 

 

Miscellaneous 

Rats; alpha-adrenoceptor autoantibodies95 

Senescence-accelerated mouse prone 8 (SAMP8) mice96 

Rats; involuntary physical exercise97 

Rats; long term (12 month) dietary ethanol and/or high dietary cholesterol56, 98 

Mice; hippocampal C-reactive protein (CRP) injection99 

Rats; vascular calcification (0.75% adenine)100 

Mice; Endothelia-specific depletion of the transcription factor Serum Response Factor SRF101 
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