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Most sudden deaths are because of a cardiac etiology and are termed sudden car-
diac death (SCD). In younger individuals coronary artery disease is less prevalent
and cardiac genetic disorders are more common. If sudden death is unexplained
despite an appropriate autopsy and toxicologic assessment the term sudden
arrhythmic death syndrome (SADS) may be used. This is an umbrella term and com-
mon underlying etiologies are primary arrhythmia syndromes with a familial basis
such as Brugada syndrome, longQT syndrome, and subtle forms of cardiomyopathy.
The first clinical presentation of these conditions is often SCD,whichmakes identifica-
tion, screening, and risk stratification crucial to avert further deaths. This review will
focus on genetic testing in the context of family screening. It will address the role
of the ‘‘molecular autopsy’’ alongside current postmortem practices in the evalua-
tion of SADS deaths. We describe the current data underlying genetic testing in these
conditions, explore the potential for next-generation sequencing, and discuss the
inherent diagnostic problems in determination of pathogenicity. (Translational
Research 2015;-:1–15)
Abbreviations: AHA ¼ American Heart Association; ARVC ¼ arrhythmogenic right ventricular
cardiomyopathy; BrS ¼ Brugada syndrome; ChIP ¼ channel interacting protein; CPVT ¼ cate-
cholaminergic polymorphic ventricular tachycardia; DCM ¼ dilated cardiomyopathy; EHRA ¼
European Heart RhythmAssociation; ERS¼ early repolarization syndrome; HCM¼ hypertrophic
cardiomyopathy; HRS ¼ Heart Rhythm Society; IVF ¼ idiopathic ventricular fibrillation; LQTS ¼
longQT syndrome; PCCD¼premature cardiacconduction disease; SADS¼ suddenarrhythmic
death syndrome; SCD¼ suddencardiacdeath; SNR¼ signal-to-noise ratio; SQTS¼ short QT syn-
drome; SUDS ¼ sudden unexpected death syndrome; VUS ¼ variant of unknown significance
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INTRODUCTION
T he estimated incidence of sudden cardiac death
(SCD) in the general population in Europe and
the United States (US) is between 50 and 100

per 100,000 per annum.1-3 SCD claims 300,000–
400,000 deaths per annum in the US4,5 and there were
an estimated 70,000 SCDs in the UK in 2010, most
because of ischemic events.6 SCD is usually defined
as an unheralded witnessed instantaneous death but it
may also be described as being preceded by a prodrome
of acute cardiac symptoms up to 1 hour before death.5

Unwitnessed cases without a prior deterioration in the
preceding 12–24 hours may also be included. Estimates
vary, however, because of a dependence on the presence
1
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of autopsied vs nonautopsied cases and the variability of
definitions and the duration of prodromal symptoms
before the terminal event. A national prospective survey
of English coroners’ cases for more than a 20-month
period in the late 1990s evaluated sudden deaths in Cau-
casians aged 4–64 years with no history of cardiac dis-
ease, negative toxicology, and last seen alive within
12 hours of death. A normal coroner’s autopsy and sub-
sequent evaluation of the heart by a cardiac pathologist
established these as sudden arrhythmic death syndrome
(SADS) cases with an estimated incidence of up to 1.38
per 100,000 per annum.

SCD in the young. In individuals aged ,35 years in-
herited cardiac diseases are more prevalent and esti-
mates of the incidence of SCD vary depending on
definitions and study site. For example, a Danish nation-
wide analysis of deaths from 2000 to 2006 revealed an
annual incidence of young SCD of 2.8 per 100,000,7

whereas a retrospective US study of .6 million
military recruits reported an incidence as high as 13
per 100,000 per annum.8 Puranik et al9 retrospectively
reviewed pathologic reports from 427 autopsied
sudden death cases aged 5–35 years at a forensic
medical facility from 1995 to 2004 in Sydney. The
most common cardiac cause of death was presumed
arrhythmia in those with no (or minimal) structural
heart disease (29%), that is, SADS. Retrospective
analysis of death certification, autopsy reports, and
registry data estimated that 31% of autopsied SCD
cases in Danes aged 1–49 years were unexplained and
attributed to SADS.10

Conversely, in 79% of 197 cases of young SCD in
Italy, histologic analysis yielded a structural diagnosis
such as cardiomyopathy or focal myocarditis; 6%
were unexplained and attributable to SADS.11 In the
Veneto region of Italy, studies have implicated arrhyth-
mogenic right ventricular cardiomyopathy (ARVC) in
20% of sudden deaths among athletes and the young.12

Maron et al13 described sudden deaths in young compet-
itive athletes for more than a 27-year period in the US:
56% were because of cardiovascular disease, the most
common cause (36%) being hypertrophic cardiomyop-
athy (HCM).
In the UK the incidence of cardiac death in the young

(#35 years) as determined by analysis of Office for Na-
tional Statistics data was 1.8 per 100,000 in England and
Wales (2002–2005). Critical appraisal estimated the
incidence of SADS as 0.24 per 100,000 per annum,
significantly higher than the 0.1 per 100,000 reported
by the Office for National Statistics as instantaneous un-
explained sudden death, but still less than most other es-
timates.14 This is likely to be because of
misclassification of the cause of death as mortality
data are largely derived from death certificate documen-
tation that may under-report the true incidence of car-
diac arrhythmia. For example, in one study a
significant proportion (23%) of unexplained drowning
cases carried mutations associated with arrhythmia syn-
dromes,15 and certification of sudden death in epilepsy
may overlook cases, which result from a primary
arrhythmic cause.16,17

DEFINING SADS

A consensus statement from the Heart Rhythm Soci-
ety (HRS), European Heart Rhythm Association
(EHRA), and the Asia Pacific HRS defines SADS as a
pathologic diagnosis of exclusion after postmortem car-
diac investigation and toxicologic analysis.18 Even if
nondiagnostic pathology is detected, cases should still
be considered as SADS because of the high chance of
underlying inherited ion channel disease.19 Expert au-
topsy is also recommended as general pathologists
may misdiagnose cases, over diagnosing ARVC, and
under diagnosing SADS.20 Guidelines for autopsy prac-
tice exist and include detailed description of postmor-
tem sampling techniques with integration of specialist
skills in the evaluation of possible familial disor-
ders.21,22 In the US, the state-wide Sudden Death in
the Young Registry collates young SCD case data, using
DNA analysis in a subset of cases for the purpose of
further evaluation and future research.23 Unfortunately,
access to expert cardiac pathology is very much limited
internationally.

DIAGNOSTIC APPROACHES AND GENETIC TESTING

Two approaches may be taken to make a diagnosis in
a family: familial clinical evaluation with genetic
testing targeted to phenotype and postmortem genetic
testing ‘‘the molecular autopsy.’’ The overall aim is to
identify cardiac genetic disease were present and insti-
tute preventative treatment were necessary to avert
further SCD.24 The clinical role of genetic testing is
therefore a diagnostic one and dependent on identifying
mutations, that is, disease-causing or pathogenic rare
genetic variants. The rapid development in sequencing
technology has, however, led to the identification of
frequent rare genetic variation in both healthy and
affected individuals. Rare variants are often private to
a specific family and therefore may be unknown in the
literature. Their associated risk for disease causation
and therefore their clinical significance is often uncer-
tain and a major challenge as incorrect inferences of
causality can have serious implications for diagnosis
and management of families. If pathogenicity of a rare
variant remains uncertain then it is termed a ‘‘variant
of unknown significance’’ (VUS).25
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Fig 1. Guidelines for genetic testing in the channelopathies and diagnostic utility based on the signal-to-noise ra-

tio. Estimates for molecular autopsy are based on the studies analyzed in this review. Adapted from the HRS and

EHRA Genetic Testing Guidelines.27 *Yield of diagnostic test—proportion of patients with positive genotyping,

derived from unrelated cases. The first number is the yield when a major gene has been targeted. The number in

parenthesis is the total when including all disease-associated genes. **Signal-to-noise ratio—estimate of positive

predictive value, devised by dividing the case yield of rare variants by the background control rate of rare missense

variants among major genes.^Rare missense variants—possible disease-causing mutations determined by a per-

centage of rare amino acid substitutions in the major disease-associated genes. BrS, Brugada syndrome; CPVT,

catecholaminergic polymorphic ventricular tachycardia; ECG, electrocardiogram; EHRA, European Heart

Rhythm Association; HRS, Heart Rhythm Society; LQTS, long QT syndrome; SUDS, sudden unexpected death

syndrome.
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The presence in healthy normal people of rare vari-
ants, usually missense, is described as genetic ‘‘back-
ground noise’’ (ie, the frequency of rare variants
within a particular gene in the healthy population).26

The ratio of rare variant yield in cases (also mainly
missense) to background noise is known as the
‘‘signal-to-noise ratio’’ (SNR) (Fig 1). Various methods
for assessing likelihood of pathogenicity of rare variants
have evolved as follows.28,29

Absence of the variant in a healthy control
population. Before the extent of rare genetic variation
in the genome was appreciated, most research studies
and laboratory reports presumed pathogenicity on the
basis of absence in a control population. Although the
presence of a rare variant in the general population is
helpful in reducing the chance of it being directly caus-
ative, novelty no longer carries much weight. Nonethe-
less, it is the first step in assessing likelihood of
pathogenicity and increasingly large reference data-
bases are available such as the Exome Aggregation
Consortiumwith exome data frommore than 60,000 un-
related individuals.30
Cosegregation of phenotype with genotype in large
families. This is the process of associating a variant
with disease in a family by identification of the variant
in all affected individuals. This assists in determining
the likelihood of causality, although if one affected rela-
tive does not carry the variant then it cannot be used as a
clinical test. In practice, however, this approach is often
not feasible because of small family sizes and the possi-
bility of association by chance. The detection of a de
novo rare variant in an associated gene in an affected
child with unaffected parents does, however, support
strongly the likely pathogenicity of the variant.

Severity of the type of mutation, that is, nonsense vs
missense. In general, the likelihood of a functional ef-
fect of a variant on a protein is increased the more
‘‘radical’’ the associated DNA change is. Nonsynony-
mous single nucleotide changes, that is missense muta-
tions, are common and are found in both healthy
unaffected and affected individuals and are most
difficult to assess (see aforementioned). Mutations
because of deletions or insertions and some splice-site
mutations may lead to abnormal protein products and

http://dx.doi.org/10.1016/j.trsl.2015.06.007


Translational Research
4 Miles and Behr - 2015
protein truncations. These ‘‘nonsense’’ mutations are
less common and less likely to be present in
unaffected individuals. Causation is therefore less
difficult to determine. For example, premature
truncation SCN5A mutations have been linked to
severity of disease and are highly likely to be
pathogenic because of haploinsufficiency.31 However,
although truncating variants of the gene titin (TTN)
are associated with dilated cardiomyopathy (DCM),32

they are also present in unaffected controls and
represent a diagnostic challenge.33

Prior and reliable description in the literature. It can be
helpful if a variant has previously been associated
with disease in another proband and their family. Unfor-
tunately not all prior reports are robust. Previously pub-
lished rare variants postulated to be mutations have
since been determined to be present in population data-
bases at too high a frequency to be causative of dis-
ease.34,35 They may represent functionally active
variants that modify disease expression or otherwise
are nonfunctional population variants. For example,
one study examined an established exome database
and compared it with a catalog of 197 variants
reported as causative of DCM; 16.8% of the variants
reported as causative were also present in the exome
database, although functional data suggested that a
significant proportion may have been lower
penetrance disease-causing alleles.36 Another study of
childhood recessive diseases suggested 27% of
mutations previously cited as pathogenic are in fact
common polymorphisms or misinterpreted variants.37

Amino acid conservation and in silico
methods. Missense mutations result in an amino acid
changes that may have varying differences of side chain
size, polarity, and lipophilicity compared with the wild-
type protein. The greater the difference is the more
likely that a structural and/or functional change will
occur. In addition, the amino acid may be at a critical
part of the protein that is conserved in other human
proteins with similar functional domains (paralogs) or
the same protein in other species (orthologs). Measures
of conservation of amino acids and therefore likelihood
of disease causation because of an amino acid change
have been assessed by algorithms such as the Grantham
conservation score.38 These methods have also been
incorporated into a number of different in silico tools
that can also use predicted protein structural changes to
infer causation. In combination, they can be effective in
assisting assessment of pathogenicity of rare variants in
KCNQ1 and KCNH2 in long QT syndrome (LQTS)39

and to lesser extent SCN5A variants in LQTS and
Brugada syndrome (BrS).40 They are, however,
unreliable as sole evidence of pathogenicity in the
clinical setting.
Functional expression studies of the variant’s biophysical
effect. The consequences of mutations can be studied in
RNA expression systems and functional models such as
ion channel expression studies, animal models, and
induced pluripotent stem cell–derived cardiomyocytes.
Unfortunately, these are generally costly and are not
feasible for routine evaluation of genetic findings.
To optimize and standardize assessment, Campuzano

et al have recently proposed a scoring system todetermine
the pathogenicity of genetic variants associated with the
arrhythmia syndromes combining data from the previ-
ously mentioned methods. A scoring range from 0 to 15
categorized variants into separate groups, including
benign, VUS, and pathogenic.41 This sort of approach
may enable better classification of variants in the future.
Determining the causation of disease in families can

be further complicated by other genetic variants that
can influence phenotype may also be responsible,
known as digenic or oligogenic inheritance. For
example, 5%–10% of LQTS patients have mutations
in 2 or more of the known genes, which can influence
disease expression.42

CAUSES OF SADS AND THE ROLE OF GENETIC TESTING

Arrhythmia syndromes (or cardiac channelopathies)
are a heterogeneous group of conditions that are usually
hereditary and are associated with an apparently struc-
turally normal heart. They are often caused by muta-
tions in genes encoding cardiac ion channel subunits
and channel interacting proteins (Table I). The channe-
lopathies include LQTS, BrS, catecholaminergic poly-
morphic ventricular tachycardia (CPVT), short QT
syndrome, idiopathic ventricular fibrillation, early repo-
larization syndrome, premature cardiac conduction dis-
ease, and others. These are described in Table I. LQTS
has the highest yield from testing (approximately 75%),
with wide variation among the other channelopathies
(20% in the BrS).25 In some cases, despite a normal
heart being found at autopsy, cardiomyopathy is de-
tected during clinical evaluation of the family. Thus,
disease insufficient to cause histopathologic changes
detectable even at expert autopsy may still cause or pre-
dispose toward SCD.70 We focus on the main pheno-
types of interest subsequently.

Long QT syndrome. Congenital LQTS has a preva-
lence of approximately 1:200071 and is characterized
by prolongation of the QT interval on the
electrocardiogram (ECG) and increased risk of the
characteristic ventricular arrhythmia, Torsades de
Pointes, and SCD. Hundreds of mutations in 14
genes25 predominantly encoding components and
channel interacting proteins of repolarizing potassium
currents and the sodium channel current (Nav1.5)
have been identified (Table I).

http://dx.doi.org/10.1016/j.trsl.2015.06.007


Table I. Genes associated with ion channel diseases and their associated phenotypes and frequencies

Clinical syndrome Gene
Ion channel
component

Effect of
mutation

Ion channel
disease

Frequency in phenotype
(1reference)

Brugada syndrome SCN5A a Subunit INa Loss of function BrS1 20%–30%40

GPD1L INa ChIP Loss of function BrS2 ,1%43

CACNA1C a Subunit ICa Loss of function BrS3 BrS 2%–12%43-45

CACNB2 b Subunit ICa Loss of function BrS4 BrS 2%–12%43-45

SCN1B b Subunit INa Loss of function BrS5 ,1%43

KCNE3 b Subunit IKs/Ito Gain of function BrS6 ,1%43

SCN3B b subunit INa Loss of function BrS7 ,1%43

HCN4 If Loss of function BrS8 NA46

KCNJ8 a Subunit IKATP Gain of function BrS9 ,1%43

CACNA2D1 a2d subunit ICa Loss of function BrS10 BrS 2%–12%43-45

KCND3 a subunit Ito Gain of function BrS11 ,1%43

MOG1 INa ChIP Loss of function BrS12 ,1%43

SLMAP INa ChIP Loss of function BrS13 NA47

Long QT syndrome KCNQ1 a Subunit IKs Loss of function LQT1 40%–55%48

KCNH2 a Subunit IKr Loss of function LQT2 35%–45%48

SCN5A a Subunit INa Gain of function LQT3 2%–8%48

ANK2 INa,K, INCX ChIP Loss of function LQT4 ,1%48

KCNE1 b Subunit IKs Loss of function LQT5 ,1%48

KCNE2 b Subunit IKr Loss of function LQT6 ,1%48

KCNJ2 a Subunit IK1 Loss of function LQT7 (CPVT-like) ,1%48

CACNA2D1 a2d Subunit ICa Gain of function LQT8 ,1%48

CAV3 INa ChIP Gain of function LQT9 ,1%48

SCN4B b Subunit INa Gain of function LQT10 ,0.1%48

AKAP9 IKs ChIP Loss of function LQT11 ,0.1%48

SNTA1 INa ChIP Gain of function LQT12 ,0.1%48

KCNJ5 a Subunit IKAch Loss of function LQT13 NA49

CALM1/CALM2 SR Ca regulation Loss of function LQT14 NA50

CPVT RYR2 a Subunit Loss of function CPVT1 50%51

CASQ2 SR Ca regulation Loss of function CPVT2 NA52

TRDN SR Ca regulation Loss of function CPVT4 NA53

CALM1 SR Ca regulation Loss of function CPVT5 NA54

Other syndromes KCNQ1 a Subunit IKs Gain of function SQT2, FAF NA55,56

KCNH2 a Subunit IKr Gain of function SQT1 NA57

KCNE2 b Subunit IKr Gain of function FAF NA58

KCNJ2 a Subunit IK1 Gain of function SQT3, FAF NA57,59

KCNJ8 a Subunit IKATP Gain of function ERS NA60,61

DPP6 Ito Gain of function IVF NA62

HCN4 If Loss of function SSS NA63

CACNA1C a Subunit ICa Loss of function ERS NA
CACNB2 b Subunit ICa Loss of function ERS NA

CACNA2D1 a2d Subunit ICa Loss of function ERS NA
SCN5A a Subunit INa Loss of function PCCD NA64

ERS 66%65

SSS 2%–3%66

Mixed effect Overlap NA67,68

Gain of function MEPPC NA69

Abbreviations: BrSX, Brugada syndrome subtype X;ChIP, channel interacting protein;CPVT, catecholaminergic polymorphic ventricular tachy-
cardia; ERS, early repolarization syndrome; FAF, familial atrial fibrillation; ICa, depolarizing inward calcium current (slow); If, funny current; IK1,
Kir2.1 inward rectifying current; IKACH, acetylcholine-sensitive inward rectifying potassium current; IKATP, ATP-sensitive potassium channel; IKr,
repolarizing outward rapid rectifying potassium current; IKs, repolarizing outward slow rectifying potassium current; INa, depolarizing inward

sodium current (fast) Nav1.5; INCX, sodium-calcium exchanger-associated current; Ito, transient outward potassium current; IVF, idiopathic
ventricular fibrillation; LQTX, long QT syndrome subtype X; MEPPC, multifocal ectopic Purkinje-related premature contractions; NA, not ascer-
tained or applicable; PCCD, premature cardiac conduction disease; SQTX, short QT syndrome subtype X; SR Ca, sarcoplasmic reticulum
calcium; SSS, sick sinus syndrome.
Adapted from Wilde and Behr.25
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Approximately 75% of patients with the syndrome
have mutations in 1 of 3 ‘‘major’’ LQTS genes, the po-
tassium channel genes KCNQ1 (LQT1, 35%) and
KCNH2 (LQT2, 30%) and the sodium channel gene
SCN5A (LQT3, 10%).72 With a background genetic
‘‘noise’’ level of 2%–4% for major genes, this gives a
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relatively favorable SNR. The 2011 HRS and EHRA
Expert Consensus Statement therefore recommends
comprehensive or LQT1–3 targeted LQTS genetic
testing for any patient meeting diagnostic criteria
(Fig 1).28 The 2013 diagnostic guidelines include car-
riers of a pathogenic mutation as being affected, regard-
less of clinical features.27 Genotype can be associated
with phenotypic differences in clinical presentation
and may be important in the SADS victim’s presenta-
tion: LQT1 with exercise (especially swimming) and
high emotional states; LQT2 with sudden arousal and
acoustic triggers; and LQT3 with rest or sleep.72

The less common or ‘‘minor’’ LQTS genes have been
associated with phenotype in small studies with low
yields and small control groups. In some cases linkage
is not available and causality rests on functional data
and absence in a control. For example, the original
description of CAV3 as the cause of LQT9 has been
questioned in subsequent follow-up studies.73 Back-
ground rare variation increases when the minor genes
are included in testing panels but with little increase
in yield. This makes the SNR less favorable and result
less readily interpretable.

Brugada syndrome. BrS is diagnosed by the presence
of at least 2 mm of coved ST increase with Twave inver-
sion in at least one of the standard and high intercostal
space right ventricular ECG leads: the type 1 ECG
pattern.18,74 This pattern can be concealed and often
dynamic, unmasked by factors such as sleep75 and
pyrexia,76 as well as provoked by sodium channel
blocking drugs such as ajmaline, procainamide, and
flecainide.77 It can manifest with syncope because of
polymorphic ventricular tachycardia, ultimately
predisposing to ventricular fibrillation and SCD,
which is commonly the first presentation.78 The
prevalence of a BrS type 1 ECG is higher in Asian
countries, approximately 0.15% in adults. This is
compared with ,0.02% in a Western population.79

BrS is a heterogeneous condition with reduced ge-
netic penetrance. Recent evidence has suggested vari-
able clinical phenotypes, where the syndrome may
overlap with structural conditions such as ARVC.80 In-
heritance can be autosomal dominant with variable ex-
pressivity or sporadic,81 as such, most individuals can
remain asymptomatic throughout their lifetime.
Recent evidence has also supported an oligogenic
inheritance pattern.82 The most commonly affected
gene is the SCN5A gene (approximately 20% of BrS
cases, BrS183). More than 300 mutations of SCN5A
have been described84 leading to loss of function
because of a reduction in the amplitude of the sodium
channel current by reduced expression and/or altered
voltage-gating properties.85 Conversely, although
gain-of-function SCN5A mutations are found in
LQT3, an overlap in phenotype exists between BrS
and LQTS, both having been described in large fam-
ilies.67 In addition, there are large SCN5A positive
families that have affected individuals who are noncar-
riers, suggesting a modifier role rather than direct
causation in these pedigrees.86

Many other genes have been associated with the syn-
drome (Table I). One study identified mutations of the
L-type calcium channel (encoded by CACNA1C,
CACNB2B, and CACNA2D1) in 10%–15% of BrS
cases.44 The clinical phenotype also demonstrated a
short QT interval. This has not been replicated by a
follow-up study and the rest of these candidate genes ac-
count for very small numbers of cases.43 Other than
GPD1L and SCNB1, these have not demonstrated ge-
netic linkage in pedigrees.22 A recent study has also
implicated SCN10A, which encodes the neuronal cur-
rent Nav1.8, as being responsible for a significant pro-
portion of BrS cases.87 This has not been confirmed in
a similar study of SCN5A negative BrS patients. Great
caution must therefore be used in assessing rare variants
in these low frequency genes.
Thus, the overall SNR level and potential for oligo-

genic inheritance are relatively unfavorable for diag-
nostic testing and recommendations are not as strong
as in LQTS. Genetic testing can be useful in known or
suspected cases of BrS, but a positive test adds little
to the on-going clinical management. It is, however, rec-
ommended for assessing relatives (Fig 1).27

Catecholaminergic polymorphic ventricular
tachycardia. CPVT is a rare inherited arrhythmic disor-
der first described in 1975,88 typically presenting within
the first decade of life. Prevalence is estimated in
1:10,000 and individuals are at risk of SCD by means
of catecholamine-induced polymorphic and
bidirectional VT.89 The mechanism of arrhythmia in
CPVT is chiefly because of intracellular calcium
mishandling, where mutations in the RYR2 gene cause
uncontrolled calcium release from the sarcoplasmic
reticulum during diastole.90 The initial clinical
manifestation is typically syncope associated with
exercise or acute stress; however, SCD can be its sole
presentation. The heart structure and resting ECG is
often unremarkable in CPVT, necessitating use of
exercise or catecholamine stress testing to capture
arrhythmias, most commonly bidirectional VT.27

CPVT principally arises from mutations in 2 genes:
CPVT1-RYR2 (encodes the cardiac ryanodine receptor
channel) and CPVT2-CASQ2 (encodes calsequestrin,
responsible for buffering calcium in the sarcoplasmic
reticulum).91 CPVT has been described in small
numbers of KCNJ2, ANKB, and CALM1/2 carriers,
genes that have also been associated with LQTS.92

The condition is inherited with high penetrance in either

http://dx.doi.org/10.1016/j.trsl.2015.06.007
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an autosomal dominant (RYR2) or recessive (CASQ2)
fashion, the former being more common affecting
55%–65% of probands, with CASQ2 only affecting a
small number of cases but increasing the likelihood of
earlier symptom onset.91 More than 100 mutations of
RYR2 have been linked to CPVT1, the autosomal domi-
nant form, which affect certain regions of the protein
(mainly the FKBP12.6 binding domain, covering most
RYR2).93 Because of the large size of the gene, targeted
screening has been used in the past and can potentially
miss causative mutations.94 Recent studies suggest that
mutation location may be associated with severity of the
phenotype, suggesting a future role for genetic risk
stratification alongside conventional techniques.95

Because of the favorable SNR level targeted CPVT
genetic testing is recommended for any patient with
clinical suspicion of CPVT based on the clinical find-
ings and electrocardiographic phenotype during stress
testing. Mutation-specific genetic testing is also recom-
mended for family members and appropriate relatives
after the identification of the CPVT-causative mutation
in an index case.27 Like with LQTS, the 2013 diagnostic
guidelines include carriers of a pathogenic mutation as
being affected, regardless of clinical features.18

Cardiomyopathies. The cardiomyopathies are dis-
eases of the heart muscle associated with mechanical
failure of myocardial performance. The American Heart
Association (AHA) describes a heterogeneous group of
diseases usually exhibiting ventricular hypertrophy or
dilatation, caused by a variety of etiologies that
frequently are genetic.96 They can broadly be divided
into HCM, DCM, and ARVC.
HCM, the most common cardiomyopathy, has a prev-

alence of approximately 1:500 of the general popula-
tion.96 It is characterized by unexplained cardiac
hypertrophy, often in an asymmetric septal pattern,
but not always. Mutations involving sarcomere proteins
and other proteins involved in cardiac contraction are
responsible. Familial HCM is mostly (.90%) inherited
in an autosomal dominant fashion and most mutations
involve cardiac b-myosin heavy chain (MYH7) and car-
diac myosin binding protein C (MYBPC3). Genes en-
coding mitochondrial enzymes have also been
identified.97 HRS and EHRA guidelines recommend ge-
netic testing after diagnosis, with mutation-specific
testing indicated for family members after identifica-
tion.27

In idiopathic DCM, the heart is dilated and impaired
leading to symptoms and signs of congestive cardiac
failure but without an apparent underlying cause. The
estimated prevalence is approximately 1:2500, affecting
both adults and children; inherited forms make up to
50%, where there is a family history in one or more
relatives.98 Mutations in .30 genes have been associ-
ated with DCM, most following an autosomal dominant
inheritance pattern.99 The titin gene (TTN) probably ac-
counts for approximately 20% of cases in recent studies
but the high frequency of rare variants has limited the
clinical utility of assessing risk; other genes have a
low yield.100 Extensive or targeted (LMNA and
SCN5A) testing is recommended (class I indication)
for those patients with significant conduction disease
with or without overt DCM as mutations in these genes
can indicate an increased risk of SCD.27

ARVC is characterized by fibro-fatty replacement of
the right and/or left ventricular myocardium with asso-
ciated risk of SCD because of ventricular arrhythmias.
Most cases are inherited in an autosomal dominant
pattern with incomplete penetrance and variable expres-
sivity. Its overall prevalence is approximately 1:10000,
often presenting between the second and fourth decade
of life.101 Seven genes have been associated with
ARVC: JUP, DSP, PKP2, DSG2, DSC2, TGFb3, and
TMEM43.102 HRS and EHRA guidelines suggest that
comprehensive or targeted genetic testing can be useful
in those that meet existing 2010 task force diagnostic
criteria (which include evaluation of right ventricular
structure and repolarization abnormalities), but is not
helpful in those with an uncertain diagnosis.27

FAMILY EVALUATION AND PHENOTYPE TARGETED
GENETIC TESTING

The first study of families of SADS victims reported a
limited investigative protocol followed by targeted gene
testing in 32 families.103 Inherited cardiac disease,
mainly LQTS, was diagnosed in 22% of families
although testing of the LQTS genes (KCNQ1,
KCNH2, SCN5A, KCNE1, and KCNE2) did not
contribute to any of the clinical diagnoses. A follow-
up study of 57 families used more comprehensive
clinical assessment and targeted genetic evaluation.70

In addition, where available, DNA extracted from
formalin-fixed paraffin blocks from 24 SADS cases
was used for molecular autopsy of the LQTS genes.
Twenty-five families with phenotypic features of car-
diac genetic disease underwent targeted mutation anal-
ysis. Overall, 53% of families had features of inherited
cardiac disease based on the clinical and genetic
evaluation, where 70% were diagnosed with LQTS or
BrS. Genetic evaluation alone contributed to only 1
(2%) case (identifying a likely LQTS-causing muta-
tion). Other studies have also examined the yield of clin-
ical evaluation and are described in Fig 2. The mean
yield of these various studies is 32% with a range of
18%–53%. This variability is very much dependent on
the population, the availability of autopsy and expert
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Fig 2. Causes of sudden arrhythmic death syndrome as determined by various studies of familial evalua-

tion.70,103-108 BrS, Brugada syndrome; CPVT, catecholaminergic polymorphic ventricular tachycardia; LQTS,

long QT syndrome.

Fig 3. Proportion of molecular diagnoses made in studies of clinical evaluation when testing is targeted to those

with a clinical phenotype.70,105-107 LQTS, long QT syndrome. *1 CPVT and 1 BrS mutation were exclusively

identified via post-mortem genetic testing.
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autopsy, and the rigor of the investigative protocol used.
Once a diagnosis is made the actual proportion of mo-
lecular diagnoses in those with a clinical phenotype
ranges from 23%247% overall (Fig 3).

Clinical role. The importance of systematic and
comprehensive clinical and genetic evaluation in
SADS families is reinforced by recent guidelines.18

Familial evaluation always begins with a detailed
analysis of the index case that may give clues to the
underlying cause. Pertinent background information
includes prior symptoms and clinical encounters
(including any previous ECGs) as well as the
circumstances of death and pathologic reports. First-
degree relatives are then offered full clinical
cardiological assessment. Relatives with worrisome
symptoms such as syncope, seizures, or palpitations
are prioritized for assessment and obligate carriers in a
pedigree will also be targeted. This includes
history and examination, resting 12-lead ECG (with
and without high right ventricular leads),
echocardiography, exercise, and ambulatory ECGs,
and where indicated signal averaged ECG, provocative
testing with sodium channel blockers and/or
epinephrine, cardiac imaging, and genetic testing. This

http://dx.doi.org/10.1016/j.trsl.2015.06.007
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is typically conducted in a multidisciplinary
environment with access to genetic counseling in a
dedicated inherited cardiac disease clinic.109 After
comprehensive evaluation, if no abnormalities are
detected in first-degree relatives, the risk of future
cardiac events related to inherited cardiac disease is
generally low.110

In the context of familial assessment, gene testing of
SADS relatives is targeted to the phenotype identified in
the affected members of the family as described in the
previous section. Cascade genetic testing is then per-
formed when a positive clinical diagnosis is made in a
family member, enabling identification in other rela-
tives by testing for a specific mutation.111 Coordination
of clinical cardiological evaluation and mutation anal-
ysis can also help to clarify whether a VUS is likely
to be causative that is segregation analysis.
The lack of 100% sensitivity of genetic testing must

be addressed by appropriate counseling as well as
exploration of relatives’ concerns and any psychologi-
cal implications. In 2014, Erskine et al112 conducted in-
terviews with 50 individuals who had a personal or
family history of an arrhythmic syndrome or SCD.
Seventy-four percent pursued genetic testing for
LQTS or another channelopathy, motivated by factors
such as relieving uncertainty surrounding a potential
diagnosis, seeking an explanation for a family mem-
ber’s death, and guiding future medical management.
Expectations concerning the scope of genetic testing
and individual efficacy in establishing a diagnosis are
varied. The main reasons against pursuing testing
were fear, denial, and lack of information.
Unfortunately a universal and structured approach to

deal with the families of young SCD victims is lacking.
Indeed, in many countries no formal local guidance ex-
ists for evaluating relatives of SADS cases, and an au-
topsy is often not required. Van der Werf et al104

conducted a community-based intervention study to
try to increase autopsy rates of young SCD victims in
the Netherlands. Increased awareness in 1 intervention
group was promoted via a dedicated helpline for the
use of community general practitioners and coroners;
information provided by educational meetings and cor-
respondence was also used in another group. The au-
topsy rate was not significantly improved in either
intervention and few families went on to have targeted
evaluation in an inherited cardiac disease clinic. This
study highlights the difficulties faced in establishing ac-
cess to suitable services for relatives. Assessment of the
cause of death in young SCD cases beyond just exclu-
sion of foul play should be mandatory, as should the on-
ward notification of families to health services. Steps
have been taken in Australia, New Zealand, Canada,
and the UK, but large gaps in practice remain even in
these countries.113-115
MOLECULAR AUTOPSY

Postmortem genetic testing involves the collection of
tissue suitable for DNA extraction at autopsy and muta-
tion analysis for specified genes, often described as the
‘‘molecular autopsy.’’

Postmortem sample collection. Postmortem genetic
testing has traditionally relied on formalin-fixed
paraffin-embedded (FFPE) tissue because of ease of
storage and transport. More amenable sample media,
such as fresh frozen tissue or EDTA-preserved blood,
have not been routinely archived postmortem. In
2008, Carturan et al evaluated different DNA
extraction protocols and the feasibility of mutational
analysis from archived FFPE tissue. A total of 35
sudden unexpected death syndrome (SUDS) cases
were studied; using a number of DNA extraction
techniques, nearly one-third of the regions of interest
could not be examined.116

In case of SADS, HRS guidelines recommend collec-
tion of a tissue sample for subsequent DNA analysis.18

Tissue samples include heart, liver, spleen, and whole
EDTA tube or blood spot testing. The National Associ-
ation of Medical Examiners suggests circumstances in
which such specimens should be saved, detailing
DNA preservation standards and appropriate counseling
of relatives in the context of SCD.117 FFPE should
therefore be avoided to allow consistent DNA sampling
and more favorable diagnostic yield.

Results in research. The first documented report was in
1999 where LQTS was diagnosed from an autopsy
specimen of a 19 year-old girl who died after a near-
drowning.118 Early work by Tester et al involved
mutational analysis of LQTS-associated genes
(KCNQ1, KCNH2, and SCN5A)119 and RyR2,
implicated in CPVT, in 49 SADS cases.120 Targeted
analysis of 18 exons of RyR2 revealed potential
CPVT1-causing mutations in 1 of every 7 cases,
whereas the yield in LQTS cases was 1 in 5 (20%),
giving an overall yield of 35%.27

Further research into molecular autopsy has, howev-
er, indicated lower yields. In 2011, Skinner et al121 per-
formed postmortem genetic testing for LQTS in young
sudden unexplained death cases. LQT1-6 gene analysis
was performed using direct sequencing or denaturing
high-performance liquid chromatography. Thirty-three
cases underwent testing, and missense mutations in
LQTS genes were found in 15%. A more conservative
yield was obtained by Winkel et al,122 who examined
a young Danish SUDS population of 44 between 2000
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Fig 4. Causes of sudden arrhythmic death syndrome as determined by various molecular autopsy

studies.119-121,124-126 CPVT, catecholaminergic polymorphic ventricular tachycardia; LQTS, long QT syndrome.
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and 2006. KCNQ1, KCNH2, and SCN5A were
sequenced; 11% carried a mutation in at least 1 of the
3 genes. In a UK study, a molecular diagnosis was
made in 14% of 45 cases, and a higher uptake of cascade
screening in relatives where a molecular diagnosis had
been made at autopsy was also reported.123

The yield of testing LQT and CPVT genes was re-
examined by Tester et al124 more recently in an extended
series of 173 autopsy-negative SUDS cases that include
their original 49 strong cohort. Forty-five likely patho-
genic mutations were identified, but the overall yield
(25%) was lower than their initial cohort. However,
the yield was significantly higher (45%) in those aged
,50 years with a family history of premature SCD.
Fig 4 describes the yield of molecular autopsy from
this and other recent studies. The mean yield of LQTS
and CPVT gene testing was 13% and 11%, respectively,
in keeping with more recent conservative estimates.

Clinical role. Thus, if the role for the molecular au-
topsy is to attempt to make a genetic diagnosis in a fam-
ily then it cannot supplant clinical evaluation given the
lower yield. It may complement evaluation by identi-
fying sporadic mutations and focusing evaluation on
any offspring of the victim. It may help to confirm or
exclude a putative genetic cause in a family especially
if a VUS had been found. Occasionally, it may provide
a clear well recognized causative variant and direct fam-
ily evaluation. However, the SNR in molecular autopsy
is already as low as 2.25 for the major LQTS and CPVT
genes because of the relatively low yields and frequency
of rare variation in the general population (see Fig 1). It
is therefore not a stand-alone tool at this time.
Nonetheless molecular autopsy may have implications
for the prevention of additional deaths in other
relatives, and HRS and EHRA guidelines currently
recommend genetic testing if circumstantial evidence
points toward a clinical diagnosis of LQTS or CPVT70

(Fig 1). This has been reinforced by the more recent
clinical testing guidelines that state that an arrhythmia
syndrome focused gene panel can be useful.18
NEXT-GENERATION SEQUENCING AND THE FUTURE

Genetic testing for the channelopathies has tradition-
ally involved Sanger sequencing for single gene muta-
tions.127 This method is limited by potential scalability,
as more genes with susceptibility to channelopathy
have been identified. Advances in technology, massive
parallel sequencing or next-generation sequencing,
have led to the ability to simultaneously sequence pro-
tein coding exons of all genes nucleotide by nucleotide
(‘‘the exome,’’ which is approximately 1% of the
genome) from much smaller quantities of DNA.128

Bagnall et al125 performed exome sequencing on a
subgroup of 28 SUDS cases referred for autopsy in
Australia between 2005 and 2009. Three rare variants
were discovered in the 3 most common LQTS genes
when a narrow panel of the 4 major genes (KCNQ1,
KCNH2, SCN5A, and RYR2) was studied. The scope
of the molecular autopsy was also expanded to include
a wider selection of .70 arrhythmia and cardiomyopa-
thy genes, subsequently revealing a variant in the CAC
NA1C gene of a 20 year-old man who died in his sleep.
This variant had previously been identified in a LQTS
family,129 highlighting that screening additional genes
may offer causality beyond the ‘‘usual suspects.’’ Unfor-
tunately two-thirds of the other putative mutations that
were identified were VUSs.
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This highlights the concern over increasing gene
panel sizes. The SNR will become even lower for the
expanded ‘‘next-generation’’ arrhythmia syndrome and
cardiac genetic disease panels because of the enhanced
background variation and minimal increase in yield.
The family context is currently the only way to extract
additional value from the high yield of VUSs by molec-
ular autopsy. This situation will only improve when
more is understood about how to assess the likely func-
tional effects of mutations detected in these disorders.
CONCLUSIONS

The molecular autopsy can only occasionally diag-
nose disease in an index case and direct subsequent fam-
ily evaluation. Because of methodological issues
surrounding determination of variant pathogenicity,
the comprehensive next-generation sequencing panel
will have to complement careful phenotypic evaluation
of family members to inform a targeted genotyping
strategy (see Fig 5). Indeed, the utility of genetic testing
is only really appreciated in such a context and repre-
sents the best chance of developing clinically meaning-
ful results. Only once robust methods are in place for
assessing the pathogenicity or disease susceptibility of
putative mutations from a large range of potential ge-
netic causes can the molecular autopsy be a truly diag-
nostic tool. In the interim most of its clinical utility will
be provided by analyzing the 4 major LQTS, BrS, and
CPVT genes that we already know and understand best.
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