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Abstract Brief periods of sleep loss have long-lasting consequences such as impaired memory

consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of

memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic

structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers

selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein

cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function

prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term

memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading

phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5

function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated

with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-

cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction

in hippocampal spine density.

DOI: 10.7554/eLife.13424.001

Introduction
Sleep is a ubiquitous phenomenon and most species, including humans, spend a significant time

asleep. Although the function of sleep remains unknown, it is widely acknowledged that sleep is cru-

cial for proper brain function. Indeed, learning and memory, particularly those types mediated by

the hippocampus, are promoted by sleep and disrupted by sleep deprivation (Havekes et al.,

2012a; Abel et al., 2013; Whitney and Hinson, 2010). Despite the general consensus that sleep

deprivation impairs hippocampal function, the molecular signaling complexes and cellular circuits by

which sleep deprivation leads to cognitive deficits remain to be defined.

The alternation of wakefulness and sleep has a profound impact on synaptic function, with

changes observed in synaptic plasticity and transmission (Havekes et al., 2012a; Abel et al., 2013;
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Tononi and Cirelli, 2014). This relationship has led to the development of influential theories on the

function of sleep (Tononi and Cirelli, 2006; Pavlides and Winson, 1989). Recent imaging suggests

that dendritic structure is dynamic, especially during development, with alterations in spine numbers

correlating with changes in sleep/wake state (Maret et al., 2011; Yang and Gan, 2012). However,

the impact of sleep deprivation or sleep on synaptic structure in the hippocampus in the context of

memory storage or synaptic plasticity has not been examined. This is an important issue, as such

structural changes in ensembles of synapses have been shown to play a critical role in memory stor-

age (Caroni et al., 2012; Vogel-Ciernia et al., 2013).

The formation of associative memories increases the number of dendritic spines in area CA1 of

the hippocampus (Leuner et al., 2003). Also, the induction of long-term potentiation (LTP), a cellular

correlate of memory storage (Mayford et al., 2012), is associated with an increase in spine density

in cultured hippocampal neurons (Oe et al., 2013). In addition to a critical function during develop-

ment (Gurniak et al., 2005), cofilin plays an essential role in synapse structure by mediating both

the enlargement and pruning of dendritic spines (Rust, 2015; Bamburg, 1999; Bosch et al., 2014).

The activity of cofilin is negatively regulated by phosphorylation. Specifically, phosphorylation of ser-

ine 3 of cofilin suppresses its depolymerizing and F-actin severing activity (Bamburg, 1999). Impor-

tantly, increased cofilin activity can lead to the depolymerization and severing of F-actin, which in

turn results in the shrinkage and loss of spines (Rust, 2015; Zhou et al., 2004; Davis et al., 2011;

Shankar et al., 2007). Hippocampal cofilin phosphorylation levels are increased after the induction

of long-term potentiation (LTP) (Rex et al., 2010; Chen et al., 2007; Briz et al., 2015), and during

memory consolidation (Fedulov et al., 2007; Suzuki et al., 2011). Additionally, elevated cofilin

activity in the hippocampus was recently implicated in abnormal spine structure and function in

mutant mice with altered chromatin remodeling (Vogel-Ciernia et al., 2013).

Here we show for the first time that 5 hr of sleep deprivation leads to the loss of dendritic spines

of CA1, but not CA3, neurons in the dorsal hippocampus. The spine loss in CA1 neurons was accom-

panied by reductions in dendrite length. This process was readily reversed by sleep, with just 3 hr of

recovery sleep normalizing this spine loss and dendrite length. The molecular mechanisms underly-

ing these negative effects of sleep deprivation were shown to target cofilin, whose elevated activity

could contribute to spine loss. Indeed, suppression of cofilin activity in hippocampal neurons pre-

vented the structural, biochemical, and electrophysiological changes as well as the cognitive impair-

ments associated with sleep loss. The elevated cofilin activity is caused by the activity of the cAMP

degrading phosphodiesterase-4A5 isoform (PDE4A5), which suppresses activity of the cAMP-PKA-

LIMK pathway. Genetic inhibition of the PDE4A5 isoform in hippocampal neurons restores LIMK and

cofilin phosphorylation levels and prevents the cognitive impairments associated with sleep loss.

eLife digest The demands of modern society means that millions of people do not get sufficient

sleep on a daily basis. Sleep deprivation, even if only for brief periods, can impair learning and

memory. In many cases, this impairment appears to be related to changes in the activity of a brain

region called the hippocampus. However, the exact processes responsible for producing the effects

of sleep deprivation remain unclear.

During learning or forming a new memory, the connections between the relevant neurons in the

brain change. Havekes et al. found that depriving mice of sleep for just five hours dramatically

reduced the connectivity between neurons in the hippocampus. This reduction is caused by the

increased activity of cofilin, a protein that breaks down the actin filaments that shape the

connections between neurons.

Havekes et al. then used a virus to introduce an inactive version of cofilin into hippocampal

neurons to suppress the activity of the naturally present cofilin. This manipulation prevented both

the loss of the connections between neurons and the memory deficits normally associated with sleep

deprivation. Havekes et al. also found that recovery sleep leads to the re-wiring of neurons in the

hippocampus. Future studies are now needed to determine how the neurons are able to re-wire

themselves during recovery sleep.

DOI: 10.7554/eLife.13424.002
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Thus changes in the cAMP-PDE4-PKA-LIMK-cofilin signaling pathway in the adult hippocampus

underlie the cognitive deficits associated with sleep loss. These observations provide a molecular

model for the notion that prolonged wakefulness reduces structural signaling and negatively impacts

dendritic structure, which is then restored with sleep.
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Figure 1. Sleep deprivation reduces spine numbers and dendrite length in CA1 neurons of the hippocampus. (A) Representative images of Golgi-

impregnated dendritic spines of CA1 pyramidal neurons from sleep deprived (SD) and non-sleep deprived (NSD) mice. Scale bar, 5 mm. (B) Sleep

deprivation reduces the spine density of apical/basal dendrites of CA1 neurons (n = 5–6, Student’s t-test, p=0.0002). (C) Sleep deprivation decreases

apical/basal dendrite length of CA1 neurons (n = 5–6, Student’s t-test, p=0.0012). (D, E) Comparative analyses of spine numbers in the second-third

branch of apical dendrites of CA1 neurons reveal a significant reduction as a result of sleep deprivation using either the DiI labeling method (n = 3–4,

Student’s t-test, p=0.03) or Golgi analyses (n = 5, Student’s t-test, p=0.03). Importantly, for the comparison of the two methods we focused on the

second and third branch of the apical dendrites. See also the Materials and methods section. (F) Sleep deprivation reduces the number of all spine

types in apical/basal dendrites of CA1 neurons (n = 5–6, Student’s t-test, p<0.005). (G) Sleep deprivation reduces spine density of apical/basal

dendrites between 60 and 150 mm away from the soma of CA1 neurons (n = 5–6, Student’s t-test, p<0.005). (H) Sleep deprivation reduces apical/basal

spine density in branch 3–9 of CA1 neurons (n = 5–6, Student’s t-test, p<0.005). NSD: non-sleep deprived, SD: sleep deprived, Values represent the

mean ± SEM. *p<0.05, ***p<0.005, by Student’s t test. See also Figure 1—figure supplement 1 and 2 for separate Golgi analyses of apical and basal

spine numbers.

DOI: 10.7554/eLife.13424.003

The following figure supplements are available for figure 1:

Figure supplement 1. Sleep deprivation decreases spine density and dendrite length in both basal and apical dendrites of CA1 neurons.

DOI: 10.7554/eLife.13424.004

Figure supplement 2. Sleep deprivation does not reduce spine density and dendrite length in both basal and apical dendrites of CA3 neurons.

DOI: 10.7554/eLife.13424.005
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Results

Sleep deprivation causes a robust reduction in apical and basal CA1
spine numbers and dendrite length
To determine whether short periods of sleep loss affect dendritic structure in the hippocampus, we

used Golgi staining to examine the length of dendrites and number of dendritic spines in the mouse

hippocampus following 5 hr of sleep deprivation, a period of sleep loss that is known to impair

selectively hippocampus-dependent memory consolidation and synaptic plasticity (Havekes et al.,

2012a; Abel et al., 2013; Graves et al., 2003; Vecsey et al., 2009; Havekes et al., 2014). Analyses

of Golgi-impregnated CA1 neurons (Figure 1A) indicated that sleep deprivation significantly

reduced the apical/basal spine density (Figure 1B; spine numbers per dendrite, NSD: 1.42 ± 0.03,

SD: 1.17 ± 0.02; Student’s t-test, p=0.0002) and dendrite length (Figure 1C; NSD: 1198.4 ± 31.6,

SD: 984.2 ± 29.8 mm; Student’s t-test, p=0.0012). This decrease in spine density and dendrite length

was observed in both apical and basal dendrites (Figure 1—figure supplement 1A,B). To comple-

ment our Golgi studies, we conducted an additional experiment in which individual CA1 neurons in

hippocampal slices from sleep deprived and non-sleep deprived mice were labeled using the DiI

method as described (Seabold et al., 2010). In line with our Golgi studies, we found that sleep dep-

rivation significantly reduced the total number of spines on apical dendrites of CA1 neurons

(Figure 1D; NSD: 1.0 ± 0.03, SD: 0.84 ± 0.04 Student’s t-test, p=0.033; Figure 1E; NSD: 1.0 ± 0.06,

SD: 0.86 ± 0.02 Student’s t-test, p=0.03).

Subtype-specific apical/basal spine analyses of the Golgi impregnated neurons revealed a signifi-

cant decrease for all spine subtypes in sleep-deprived mice (Figure 1F, for all spine types, Student’s

t-tests p<0.005, for separate apical and basal spine analyses see Supplementary Figure 1C,D). Sleep

deprivation causes the greatest reduction in apical/basal spine density between 60 mm and 150 mm

from the soma (Figure 1G, for separate apical and basal spine analyses see Figure 1—figure sup-

plement 1E,F). This region corresponds to the middle range of the dendritic branch (third to ninth

branch orders, Figure 1H) where the primary input from CA3 is located (Neves et al., 2008), sug-

gesting that the hippocampal Schaffer collateral pathway is particularly vulnerable to sleep loss.

We next assessed whether sleep deprivation also impacted spine numbers and dendrite length of

CA3 neurons. Surprisingly, in contrast to CA1 neurons, CA3 neurons were unaffected by sleep depri-

vation. We did not observe reductions in spine density or dendrite length of either basal or apical

dendrites of any type (Figure 1—figure supplement 2). Together, these data suggest that CA1 neu-

rons at the level of dendritic structure seem particularly vulnerable to sleep deprivation.

To determine whether recovery sleep would reverse spine loss in CA1 neurons, we repeated the

sleep deprivation experiment but then left the sleep-deprived mice undisturbed for three hours

afterwards. This period was chosen as our previous work indicated that three hours of recovery sleep

is sufficient to restore deficits in LTP caused by sleep deprivation (Vecsey et al., 2009). In line with

the electrophysiological studies, recovery sleep restored apical/basal spine numbers and dendrite

length in CA1 neurons to those observed in non-sleep deprived mice (Figure 2A, spine density of

apical/basal dendrites, NSD: 1.23 ± 0.02, RS: 1.29 ± 0.02; Student’s t-test, p>0.05; Figure 2B, den-

drite length in mm, NSD: 1817.0 ± 64.6, RS: 1741.6 ± 55.57; Student’s t-test, p=0.1721; Figure 2C,

Student’s t-test, p>0.05 for each distance from soma; Figure 2D, Student’s t-test, p>0.05 for each

branch number; for separate apical and basal spine analyses see Figure 2—figure supplement 1)

with the exception of branched spines in the basal dendrites (Figure 2—figure supplement 1C).

Recovery sleep slightly but significantly elevated the number of filopodia spines of the apical CA1

dendrites and total spine numbers of the seventh and eighth branch of the apical and basal den-

drites respectively (Figure 2—figure supplement 1).

Sleep deprivation increases hippocampal cofilin activity and
suppression of cofilin function prevents spine loss in CA1 neurons
associated with the loss of sleep
We hypothesized that the structural changes in the hippocampus following sleep deprivation might

be related to increased activity of the actin-binding protein cofilin because increased cofilin activity

can cause shrinkage and loss of dendritic spines through the depolymerization and severing of actin

filaments (Zhou et al., 2004; Davis et al., 2011; Shankar et al., 2007). The ability of cofilin to bind
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and depolymerize and sever F-actin is inhibited by phosphorylation at serine 3 (Rust, 2015; Bam-

burg, 1999; Bosch et al., 2014). We therefore assessed whether sleep deprivation alters cofilin

phosphorylation by Western blot analysis of hippocampus homogenates collected after 5 hr of sleep

deprivation. Indeed, 5h of sleep deprivation reduced cofilin Ser-3 phosphorylation, suggesting an

increase in cofilin activity in the hippocampus (NSD: 100.0 ± 6.9%; SD: 67.7 ± 9.2%; Student t-test

p=0.0090; Figure 3A). A similar effect was not evident in the prefrontal cortex (NSD, n = 5: 100.0 ±

1.84%; SD, n = 5: 101.92 ± 2.41%; Student t-test p=0.54; Figure 3—figure supplement 1), indicat-

ing sleep deprivation affects cofilin phosphorylation in a brain region-specific fashion.
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Figure 2. Three hours of recovery sleep restores spine numbers and dendrite length of CA1 neurons in the

hippocampus. (A) Golgi analyses indicated that three hours of recovery sleep after 5 hr of sleep deprivation

restores the total number of spines per apical/basal dendrite of CA1 neurons (n = 6, Student’s t-test, p>0.05). (B)

Three hours of recovery sleep after 5 hr of sleep deprivation restores apical/basal dendrite length of CA1 neurons

(n = 6, Student’s t-test, p=0.173). (C, D) Three hours of recovery sleep restores apical/basal spine numbers at all

distances from the soma (Student’s t-test, p>0.05 for each distance from soma, C) and at each branch number

(Student’s t-test, p>0.05 for each branch number, C). NSD: non-sleep deprived, RS: Sleep deprivation + recovery

sleep. Values represent the mean ± SEM. See also Figure 2—figure supplement 1 for separate Golgi analyses of

apical and basal spine numbers.

DOI: 10.7554/eLife.13424.006

The following figure supplement is available for figure 2:

Figure supplement 1. Three hours of recovery sleep after 5 hr of sleep deprivation is sufficient to restore spine

numbers and dendrite length in both basal and apical dendrites of CA1 neurons.

DOI: 10.7554/eLife.13424.007
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Figure 3. Increased cofilin activity in the hippocampus mediates the spine loss associated with sleep deprivation. (A) Five hours of sleep deprivation

leads to a reduction in cofilin phosphorylation at serine 3 in the hippocampus. A representative blot is shown. Each band represents an individual

animal. (n = 13–14, Student’s t-test p=0.0090). (B) Mice were injected with pAAV9-CaMKIIa0.4-eGFP or pAAV9-CaMKIIa0.4-cofilinS3D-HA into the

hippocampus to drive expression of eGFP or the mutant inactive form of cofilin (cofilinS3D) in excitatory neurons. This inactive mutant form of cofilin was

made by substituting serine 3 for aspartic acid, which mimics a phosphoserine residue. An HA-tag was included to discriminate between mutant and

Figure 3 continued on next page
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Based on these findings, we hypothesized that suppressing cofilin activity would prevent the

sleep deprivation-induced changes in spine numbers of CA1 neurons. To test this hypothesis, we

used a phosphomimetic form of cofilin that renders it inactive, namely cofilinS3D (Pontrello et al.,

2012; Popow-Wozniak et al., 2012; Meberg et al., 1998). Previous work suggested that cofilinS3D

expression can inhibit endogenous cofilin activity (Zhao et al., 2008; Shi et al., 2009), through com-

petition with endogenous cofilin for signalosomes where cofilin is activated by means of dephos-

phorylation (Sarmiere and Bamburg, 2004; Konakahara et al., 2004). For example, cofilinS3D may

compete with endogenous cofilin for binding to the cofilin-dephosphorylating phosphatase slingshot

(Konakahara et al., 2004). Importantly, cofilinS3D expression does not alter spine density under

baseline conditions (Pontrello et al., 2012; Shi et al., 2009). We expressed either the phosphomi-

metic cofilinS3D or enhanced green fluorescent protein (eGFP), which served as a control, in hippo-

campal excitatory neurons of adult male C57BL/6J mice using Adeno-Associated Viruses (AAVs)

(Figure 3B,C). A 0.4kb CaMKIIa promoter fragment was used to restrict expression to excitatory

neurons (Dittgen et al., 2004). Virally mediated expression of cofilinS3D was observed in excitatory

neurons in all 3 major sub-regions of the hippocampus three weeks after viral injection (Figure 3D–

F). Western blot analyses of hippocampal lysates 3 weeks after injection showed that the level of

virally delivered cofilin was roughly estimated 75% of the amount of endogenous wild-type cofilin

and that the amount of wild-type cofilin per se was not substantially affected by expression of the

mutant form (Figure 3G).

We subsequently determined whether expression of the inactive cofilinS3D prevented the loss of

dendritic spines in hippocampal area CA1 caused by sleep deprivation. Analyses of Golgi-impreg-

nated hippocampal neurons in area CA1 indicated that in cofilinS3D expressing mice sleep depriva-

tion no longer reduced the spine density of apical/basal dendrites (NSD: 1.42 ± 0.03; SD: 1.34 ±

0.03; Student’s t-test, p>0.05 Figure 3H,J,K; for separate apical and basal spine analyses see Fig-

ure 3—figure supplement 2) with the exception of a small but statistically significant reduction in

branched spines of apical and basal dendrites (Figure 3, Figure Supplement C, D) and a decrease in

number of spines on apical dendrites about 180 mm away from the soma (Figure 3—figure supple-

ment 2E,F). Likewise, sleep deprivation no longer affected dendrite length (NSD: 1283.0 ± 35.95

mm, SD: 1250.1 ± 41.19 mm; Student’s t-test, p=0.5612; Figure 3I, for separate apical and basal

dendrite length analyses see Figure 3—figure supplement 2B). Together these data suggest that

suppressing cofilin function in hippocampal neurons prevents the negative impact of sleep depriva-

tion on spine loss and dendrite length of CA1 neurons.

Figure 3 continued

endogenous cofilin. (C) A representative image showing that viral eGFP expression was restricted to the hippocampus. (D–F) CofilinS3D expression was

excluded from astrocytes in area CA1 as indicated by a lack of co-labeling (F) between viral cofilin (D) and GFAP expression (E). Scale bar, 100 mM. (G)

Virally delivered cofilinS3D protein levels were approximately 75% (blue bar) of wild-type cofilin levels (green bar). Wild-type cofilin levels were not

significantly affected by expression of cofilinS3D. An HA-tag antibody was used to detect the mutant inactive form of cofilin. (n = 4). (H) Hippocampal

cofilinS3D expression prevents spine loss in apical/basal dendrites of CA1 neurons that is associated with sleep deprivation (n = 6, Student’s t-test,

p>0.05). (I) Hippocampal cofilinS3D expression prevents the decrease in apical/basal dendritic spine length in neurons of hippocampal that is caused by

sleep deprivation (n = 6, Student’s t-test, p>0.05). (J) Sleep deprivation does not alter the number of any spine type in apical/basal dendrites of CA1

neurons in the hippocampus of mice expressing cofilinS3D (n = 6, Student’s t-test, p>0.05). (K) Sleep deprivation does not attenuate apical/basal spine

density at any distance from the soma in mice expressing cofilinS3D (n = 6, Student’s t-test, p>0.05). NSD: non-sleep deprived, SD: sleep deprived.

Values represent the mean ± SEM. **p=0.0090. Student’s t test. See also Figure 3—figure supplement 1. For separate analyses of apical and basal

spine numbers see Figure 3—figure supplement 2.

DOI: 10.7554/eLife.13424.008

The following source data and figure supplements are available for figure 3:

Source data 1. Sleep deprivation reduces cofilin phosphorylation in the hippocampus.

DOI: 10.7554/eLife.13424.009

Figure supplement 1. Sleep deprivation does not alter cofilin phosphorylation in the prefrontal cortex.

DOI: 10.7554/eLife.13424.010

Figure supplement 1—source data 1. Sleep deprivation does not alter cofilin phosphorylation in the prefrontal cortex.

DOI: 10.7554/eLife.13424.011

Figure supplement 2. CofilinS3D expression prevents sleep deprivation-induced reductions in spine numbers and dendrite length in both basal and

apical dendrites of CA1 neurons.

DOI: 10.7554/eLife.13424.012
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Suppressing cofilin function in hippocampal neurons prevents the
impairments in memory and synaptic plasticity caused by brief periods
of sleep deprivation
As a next step, we sought to determine whether prevention of the increase in cofilin activity in

sleep-deprived mice would not only protect against the reduction in spine numbers on CA1 den-

drites but also the functional impairment at the behavioral level. The consolidation of object-place

memory requires the hippocampus (Oliveira et al., 2010; Florian et al., 2011) and is sensitive to

sleep deprivation (Havekes et al., 2014; Florian et al., 2011; Prince et al., 2014). Therefore, we

assessed whether cofilinS3D expression would prevent cognitive deficits caused by sleep deprivation

in this task. Mice virally expressing eGFP or cofilinS3D were trained in this task 3 weeks after viral

infection and sleep deprived for 5 hr immediately after training or left undisturbed in the home

cage. Upon testing for memory the next day, sleep-deprived mice expressing eGFP showed no pref-

erence for the relocated object indicating that brief sleep deprivation impaired the consolidation of

object-place memory. In contrast, mice expressing cofilinS3Dshowed a strong preference for the dis-

placed object despite sleep deprivation (eGFP NSD: 45.2 ± 6.4%, eGFP SD: 33.4 ± 2.0%, cofilinS3D

NSD: 51.9 ± 2.9%, cofilinS3D SD: 53.2 ± 4.6%; Figure 4A).

Expression of the mutant form of cofilin did not affect object exploration during training, explora-

tion of an open field or zero maze indicating that anxiety levels were unaffected by expression of

cofilinS3D in the hippocampus (Figure 4—figure supplement 1A–C). Moreover, using a behaviorally

naı̈ve cohort of mice, we found that cofilinS3D expression did not alter short-term object-place mem-

ory in the same task (Figure 4—figure supplement 1D). Together, these findings demonstrate that

cofilinS3D expression specifically prevents the cognitive deficits caused by sleep deprivation.

Although we can not rule out the possibility of off-target effects of the cofilinS3D mutant, we think

that these are unlikely as expression of this mutant form of cofilin reversed the effects of sleep depri-

vation, restoring spine loss and memory to non-sleep deprived levels while not having an effect in

non-sleep deprived mice.

To further define the role of cofilin in impairments in hippocampal function caused by sleep depri-

vation, we next determined if suppression of cofilin activity would prevent the deficits in hippocam-

pal LTP caused by brief periods of sleep deprivation (Havekes et al., 2012a; Abel et al., 2013;

Vecsey et al., 2009; Prince et al., 2014). Five hours of sleep deprivation significantly impaired long-

lasting LTP induced by 4 high-frequency trains of electrical stimuli applied at 5-minute intervals

(spaced 4-train stimulation) in hippocampal slices from mice expressing eGFP (Figure 4B), confirm-

ing our previously published findings with non-injected wild-type mice (Vecsey et al., 2009). In con-

trast, spaced 4-train LTP was unaffected by sleep deprivation in hippocampal slices from mice

expressing the inactive cofilinS3D (Figure 4C). The expression of cofilinS3D or sleep deprivation did

not alter basal synaptic properties or paired-pulse facilitation (Figure 4—figure supplement 1E-H)

suggesting that the spine loss caused by sleep deprivation specifically impairs long-lasting forms of

synaptic plasticity.

As a next step, we wanted to assess whether expression of a catalytically active version of cofilin

(cofilinS3A) mimics the behavioral and synaptic plasticity phenotypes associated with sleep depriva-

tion. Mice virally expressing eGFP or cofilinS3A were trained in the object-place memory task 3 weeks

after viral infection and tested 24 hr after training. Mice expressing eGFP showed a strong prefer-

ence for the relocated object while mice expressing cofilinS3A showed no preference for the object

that was moved to a novel location (eGFP: 46.9 ± 6.4%, cofilinS3A: 34.9 ± 2.1%; Figure 4—figure

supplement 2B). The observed memory deficit could not be explained by a reduction in object

exploration during the training as the total object exploration time was similar for both groups dur-

ing training (Figure 4—figure supplement 2A).

Based on these findings, we conducted a set of electrophysiological experiments to determine

whether expression of cofilinS3A is also sufficient to induce impairments in spaced 4-train LTP. Cofi-

linS3A expression did not affect this form of L-LTP (Figure 4—figure supplement 2E). The expression

of cofilinS3A did not alter basal synaptic properties or paired-pulse facilitation (Figure 4—figure sup-

plement 2C–D).

In summary, these data show that phosphorylation-dependent reductions in cofilin activity in hip-

pocampal excitatory neurons prevent the decrease in hippocampal spine numbers, and also prevent

the functional impairments in synaptic plasticity and behavior caused by a brief period of sleep
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Figure 4. Increased cofilin activity in the hippocampus mediates the memory and synaptic plasticity deficits

associated with sleep deprivation. (A) Mice expressing eGFP or cofilinS3D were trained in the hippocampus-

dependent object-place recognition task. Half of the groups were sleep deprived for 5 hr and all mice were tested

24 hr later. Hippocampal cofilinS3D expression prevents memory deficits caused by sleep deprivation (n = 9–10,

two-way ANOVA, effect of virus F1,35 = 18.567, p=0.0001; effect of sleep deprivation F1,35 = 2.975, p=0.093;

interaction effect F1,35 = 4.567, p=0.040; eGFP SD group versus other groups, p<0.05). The dotted line indicates

chance performance (33.3%). (B, C) Following 5 hr of sleep deprivation, long-lasting LTP was induced in

hippocampal slices by application of four 100 Hz trains, 1 s each, spaced 5 min apart to the Schaffer collateral

pathway. Five hours of sleep deprivation impairs long-lasting LTP in slices from mice expressing eGFP (n = 6–7,

Figure 4 continued on next page
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deprivation. Furthermore, expression of constitutively active cofilin in hippocampal neurons is suffi-

cient to mimic the memory deficits but not the synaptic plasticity impairment associated with a brief

period of sleep deprivation.

cAMP phosphodiesterase-4A5 (PDE4A5) causes the increase in cofilin
activity associated with sleep deprivation through inhibition of the
cAMP-PKA-LIMK pathway
Sleep deprivation attenuates cAMP signaling in the hippocampus through increased levels and

cAMP hydrolyzing activity of PDE4A5 (Vecsey et al., 2009). Cofilin activity is known to be sup-

pressed by the PKA-LIMK signaling pathway through the LIMK-mediated phosphorylation of cofilin

at Ser-3 (Lamprecht R, 2004; Nadella et al., 2009). We hypothesized that the elevation in PDE4A5

activity, associated with sleep loss, could negatively impact the cAMP-PKA-LIMK signaling pathway

by enhancing cAMP degradation, thereby leading to increased cofilin activity. Based on this hypoth-

esis, we also anticipated that blocking PDE4A5 function in hippocampal neurons would make the

cAMP-PKA-LIMK pathway, which controls cofilin activity, resistant to the effects of sleep deprivation.

To test this hypothesis, we engineered a catalytically inactive form of PDE4A5 (referred to as

PDE4A5catnull) in which an aspartate group located deep within the cAMP binding pocket of

PDE4A5 (PDE4A5D577A), that is critical for catalytic activity, is replaced with an alanine group

(Baillie et al., 2003; McCahill et al., 2005). Expression of PDE4A5catnull outcompetes the low levels

of active, endogenous PDE4A5 from PDE4A5-containing signalosome complexes that specifically

sequester it (Houslay, 2010), thereby preventing the breakdown of cAMP in the vicinity of those

complexes. We used the viral approach (Havekes et al., 2014) to express PDE4A5catnull selectively

in hippocampal neurons (Figure 5A,B). Four weeks after viral injections, expression of PDE4A5catnull

was observed in all major hippocampal subregions (Figure 5C–E), and expression was excluded

from astrocytes (Figure 5F–H). Expression of PDE4A5catnull did not alter PDE4 activity in the hippo-

campus, prefrontal cortex or cerebellum (Figure 5—figure supplement 1A–C). Next, we sleep

deprived mice for 5 hr and assessed whether the phosphorylation of LIMK and cofilin was altered in

the hippocampus. In agreement with our hypothesis, we observed that 5 hr of sleep deprivation

reduced both LIMK and cofilin phosphorylation in hippocampal lysates from eGFP mice (Figure 5I,

J). PDE4A5catnull expression prevented the sleep deprivation-induced decreases in LIMK and cofilin

phosphorylation (Figure 5I,J). While expression of PDE4A5catnull fully restored the pcofilin/cofilin

ratio in the hippocampus of sleep deprived mice to the levels observed under non-sleep deprivation

conditions, it should be noted that phosphatases such as slingshot (Sarmiere and Bamburg, 2004)

may also contribute to the reduction in cofilin phosphorylation levels under conditions of sleep dep-

rivation. Three hours of recovery sleep was sufficient to restore both LIMK and cofilin

Figure 4 continued

two-way ANOVA, effect of virus F1,10 = 21.685, p<0.001). In contrast, virally delivered cofilinS3D prevents sleep

deprivation-induced deficits (n = 5, two-way ANOVA, effect of virus F1,8 = 0.016, p>0.902). NSD: non-sleep

deprived, SD: sleep deprived. Values represent the mean ± SEM. *p<0.05 by posthoc Dunnet’s test, **p<0.01 by

Student’s t test. See also Figure 4—figure supplement 1.

DOI: 10.7554/eLife.13424.013

The following source data and figure supplements are available for figure 4:

Source data 1. CofilinS3D expression prevents memory deficits in the object-location memory task caused by sleep

deprivation.

DOI: 10.7554/eLife.13424.014

Figure supplement 1. CofilinS3D expression in hippocampal neurons does not affect exploratory activity, anxiety

levels, or basal synaptic transmission.

DOI: 10.7554/eLife.13424.015

Figure supplement 1—source data 1. CofilinS3D expression in hippocampal neurons does not affect exploratory

activity.

DOI: 10.7554/eLife.13424.016

Figure supplement 2. CofilinS3A expression in hippocampal neurons attenuates the formation of long-term

object-location memories but not long-term potentiation induced by spaced-four train LTP.

DOI: 10.7554/eLife.13424.017
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Figure 5. Expression of catalytically inactive PDE4A5 in hippocampal neurons prevents memory deficits and alterations in the cAMP-PKA-LIMK-cofilin

signaling pathway associated with sleep deprivation. (A) Mice were injected with pAAV9-CaMKIIa0.4-eGFP or pAAV9-CaMKIIa0.4-PDE4A5catnull-VSV into

the hippocampus to drive neuronal expression of eGFP or catalytically inactive full-length PDE4A5 (PDE4A5catnull). (B) Robust PDE4A5catnull expression

was observed at the expected molecular weight, 108 kDa, in hippocampal lysates. (C–E) PDE4A5catnullexpression was observed in all 3 subregions of

the hippocampus. (F–H) PDE4A5catnullwas not expressed in astrocytes reflected by a lack of co-labeling between PDE4A5catnull and GFAP expression. (I)

Figure 5 continued on next page

Havekes et al. eLife 2016;5:e13424. DOI: 10.7554/eLife.13424 11 of 22

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.13424


phosphorylation levels in the hippocampus (Figure 5K,L). The latter observation is in line with our

previous observations that a few hours of recovery sleep is sufficient to restore hippocampal synaptic

plasticity (Vecsey et al., 2009).

Blocking PDE4A5 function in hippocampal neurons prevents memory
deficits caused by sleep deprivation
Because PDE4A5catnull expression in hippocampal neurons prevents changes in the cAMP-PKA-LIMK-

cofilin pathway caused by sleep deprivation, we hypothesized that expression of PDE4A5catnull in

hippocampal excitatory neurons would also prevent the memory deficits induced by 5 hr of sleep

deprivation. Mice expressing eGFP showed a clear preference for the displaced object 24 hr after

training, which was lost in animals that were deprived of sleep for 5 hr immediately after training

(Figure 5M). In contrast, mice expressing PDE4A5catnull showed a strong preference for the dis-

placed object despite sleep deprivation (Figure 5M). The memory rescue was not a result of altered

exploratory behavior during training in the object-place recognition task (Figure 5—figure supple-

ment 1D). Furthermore, PDE4A5catnull expression did not alter anxiety levels and exploratory behav-

ior in the open field (Figure 5—figure supplement 1E).

Although the catalytic unit of the 25 distinct PDE4 isoforms is highly conserved, each has a unique

N-terminal localization sequence that directs isoform targeting to a specific and unique set of pro-

tein complexes (signalosomes) (Houslay, 2010). This allows for a highly orchestrated sequestering of

cAMP signaling in specific intracellular domains rather than a general, global degradation of cAMP

throughout the cell (Houslay, 2010). We therefore aimed to determine whether the rescue of mem-

ory impairments by expression of PDE4A5catnull requires the unique N-terminal domain of PDE4A5.

To answer this question, we engineered a truncated version of PDE4A5catnull that lacks the first 303

base pairs encoding the isoform unique N-terminal domain (Bolger et al., 2003) (referred to as

PDE4A5catnullD4, Figure 5—figure supplement 1F) and expressed this mutant in excitatory neurons

in the hippocampus using a viral approach. As this species has no targeting N-terminus then, unlike

the full length inactive PDE4A5 that displaces endogenous active PDE4A5 from its functionally rele-

vant location in the cell and thereby increase cAMP levels localized to the sequestering signaling

complex, this engineered 5’ truncated complex would simply lead to the expression of an inactive

PDE4A catalytic unit unable to be targeted like the native enzyme and so unable to exert an effect

on localized cAMP degradation in the functionally relevant compartment.

Figure 5 continued

Sleep deprivation causes a reduction in LIMK serine 596 phosphorylation in the hippocampus that is prevented by PDE4A5catnull expression (n = 7–8;

two-way ANOVA, effect of virus F1,27 = 3.299, p=0.08; effect of sleep deprivation F1,27 = 6.124, p=0.02; interaction effect F1,27 = 11.336, p=0.002; eGFP

SD group versus other groups p<0.05). (J) Sleep deprivation causes a reduction in cofilin phosphorylation in the hippocampus that is prevented by

PDE4A5catnull expression (n = 9–10; two-way ANOVA, effect of virus F1,35 = 4.122, p=0.05; effect of sleep deprivation F1,35 = 2.885, p=0.1; interaction

effect F1,35 = 9.416, p=0.004; eGFP SD group versus other groups p<0.05). (K, L) Three hours of recovery sleep after five hours of sleep deprivation

restores hippocampal LIMK phosphorylation at serine 596 and cofilin phosphorylation at serine 3 to those observed in non-sleep deprived controls

(p>0.45 for both comparisons). (M) Mice expressing eGFP or PDE4A5catnull were trained in the hippocampus-dependent object-place recognition task

and immediately sleep deprived for 5 hr after training (SD) or left undisturbed (NSD). Hippocampal PDE4A5catnull expression prevents memory deficits

caused by sleep deprivation (n = 8–10; two-way ANOVA, effect of virus F1,33 = 2.626, p=0.115; effect of sleep deprivation F1,33 = 2.311, p=0.138;

interaction effect F1,33 = 7.485, p=0.01; posthoc Dunnet test eGFP SD group versus other groups p<0.05). In all blots, each lane represents one

individual animal. NSD: non-sleep deprived, SD: sleep deprived, SD+RS: sleep deprived plus recovery sleep. Scale bar, 100 mm. Values represent the

mean ± SEM. *p<0.05 by posthoc Dunnet’s posthoc test. See also Figure 5—figure supplement 1.

DOI: 10.7554/eLife.13424.018

The following source data and figure supplements are available for figure 5:

Source data 1. Recovery sleep following sleep deprivation restores LIMK and cofilin phosphorylation levels in the hippocampus, and expression of an

inactive version of PDE4A5 in hippocampal neurons prevents memory deficits associated with sleep deprivation.

DOI: 10.7554/eLife.13424.019

Figure supplement 1. Expression of catalytically null PDE4A5 in the hippocampus: Catalytically inactive PDE4A5 without the unique N-terminal

localization domain fails to prevent memory deficits associated with sleep loss.

DOI: 10.7554/eLife.13424.020

Figure supplement 1—source data 1. Exploratory activity in mice expressing catalytically inactive PDE4A5 or PDE4A5D4 in hippocampal excitatory

neurons.

DOI: 10.7554/eLife.13424.021
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Western blot analyses of hippocampal tissue 4 weeks after viral injection confirmed the presence

of the truncated PDE4A5catnullD4 at the protein level using an antibody that detects all PDE4A iso-

forms and an antibody against the HA-tag (Figure 5—figure supplement 1F,G). With a behaviorally

naı̈ve cohort of mice now expressing eGFP or PDE4A5catnullD4 we repeated the object-place recogni-

tion task. Brief sleep deprivation after training in the object-place recognition task resulted in a loss

of preference for the displaced object in mice expressing PDE4A5catnullD4 (Figure 5—figure supple-

ment 1I). The inability of PDE4A5catnullD4 to prevent the memory deficit caused by sleep deprivation

was not a consequence of altered exploration levels during training (Figure 5—figure supplement

1H). This finding indicates that the memory rescue in the previous experiment was a result of the full

length PDE4A5catnull being sequestered to specific signalosomes through the isoform-unique N-ter-

minal region rather than a consequence of PDE4A5catnull being unable totarget the functionally rele-

vant complexes sequestering full length PDE4A5. It also indicates that displacing sequestered,

active endogenous PDE4A5 in hippocampal excitatory neurons is sufficient to prevent memory defi-

cits induced by 5 hr of sleep deprivation. Overall, these data suggest that sleep deprivation nega-

tively impacts spine numbers by targeting the PKA-LIMK-cofilin pathway through the alterations in

activity of PDE4A5 (Figure 6).

Discussion
One of the major challenges in sleep research is the elucidation of molecular mechanisms and cellu-

lar circuits underlying the adverse consequences of sleep loss. Here, we use in vivo rescue experi-

ments to define a critical molecular mechanism by which brief sleep deprivation leads to cognitive

Adenylyl
Cyclase

PKA

cAMP

PDE4A5

Baseline

Hippocampal 
Neuron

Adenylyl

Cyclase

Gs

cAMP

Sleep Deprivation

Hippocampal 
Neuron

Gs

PKA

pLIMK

pCofilin Cofilin

LIMK pLIMK

pCofilin Cofilin

LIMKPDE4A5

Figure 6. The impact of sleep deprivation on hippocampal spine dynamics. Sleep deprivation increases PDE4A5 protein levels that cause a reduction in

cAMP levels and attenuation of the PKA-LIMK signaling pathway, which results in a reduction in the phosphorylation of cofilin. Dephosphorylated cofilin

can lead to spine loss. Suppressing PDE4A5 function through viral expression of a catalytically inactive PDE4A5 prevents alterations in LIMK and cofilin

signaling as well as the cognitive impairments caused by sleep deprivation. Likewise, attenuating cofilin activity through viral expression of a

catalytically inactive form of cofilin prevents the loss of dendritic spines, impairments in synaptic plasticity, and memory deficits associated with sleep

loss. Proteins whose function is reduced after sleep deprivation are shown in blue. Proteins whose function is promoted by sleep deprivation are shown

in red.

DOI: 10.7554/eLife.13424.022
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impairments. First, we show that sleep deprivation dramatically reduces spine number and dendrite

length of hippocampal CA1 neurons without affecting dendritic structure of CA3 neurons. Second,

we demonstrate that sleep deprivation increases cofilin activity in the hippocampus, but not the pre-

frontal cortex, which is a likely explanation for the reductions in CA1 spine numbers and dendrite

length. Third, we find that three hours of recovery sleep restores spine number, dendrite length and

cofilin phosphorylation levels to those observed in non-sleep deprived mice. Fourth, we show that

suppression of cofilin activity in hippocampal excitatory neurons is sufficient to prevent sleep-depri-

vation-induced decreases in dendritic spines number, LTP impairments, and memory. Fifth, we dem-

onstrate that hippocampal expression of constitutively active cofilin is sufficient to cause long-term

memory deficits but not LTP impairments. Sixth, we find that suppression of PDE4A5 function

through overexpression of a catalytically inactive mutant version of PDE4A5 changes LIMK and cofi-

lin phosphorylation levels caused by sleep deprivation. Finally, we show that hippocampal suppres-

sion of PDE4A5 function prevents the negative impact of sleep deprivation on memory

consolidation. Thus, our studies demonstrate that changes in the cAMP/PKA/LIMK/cofilin pathway

are necessary to cause memory deficits under conditions of sleep deprivation.

In light of the fact that elevated cofilin activity can lead to spine shrinkage and spine loss

(Zhou et al., 2004; Pontrello et al., 2012), our genetic manipulations of cofilin and PDE4A5 signal-

ing independently link impairments in synaptic plasticity and memory caused by brief sleep depriva-

tion with the loss of dendritic spines in the hippocampus. Deficits in synaptic plasticity and memory

both represent read outs of the impact of sleep deprivation on hippocampal function, but our work

does not directly examine the direct relationship between synaptic plasticity and memory, a topic

that has been the subject of extensive study and discussion in the literature (Lynch, 2004; Sah et al.,

2008). That care should be taken to directly relate LTP deficits with memory impairments is empha-

sized by our findings that expression of constitutively active cofilin is sufficient to cause memory defi-

cits while it does not impact at least one form of L-LTP that is disrupted by sleep deprivation

(Vecsey et al., 2009).

We observed a significant reduction in the total number of dendritic spines of excitatory CA1

neurons after 5 hr of sleep deprivation. This substantial decrease in dendritic spine number occurs

rapidly and exceeds the fluctuations in hippocampal spine number observed across the estrus cycle

(González-Burgos et al., 2005), or the changes in spine number caused by stress

(McLaughlin et al., 2005; Shors et al., 2001). In contrast to sleep deprivation, acute stress results in

an increase rather than a decrease in CA1 spine number in male rats (Shors et al., 2001). Even 3 to

4 weeks of chronic stress or systemic delivery of corticosterone does not alter dendritic arborization

of CA1 neurons (McLaughlin et al., 2005). It is also unlikely that other factors associated with the

procedure to keep animals awake rather than sleep deprivation per se causes the spine loss as our

previous work indicated that applying the exact same amount of stimulation in the waking phase (i.

e. the dark phase) does not lead to memory impairments (Hagewoud et al., 2010a).

In line with our finding of reductions in spines during sleep deprivation, work by Yang and col-

leagues revealed that sleep promotes dendritic spine formation in neurons activated by learning

(Yang et al., 2014). Combined with our work, these experiments suggest that sleep deprivation dis-

rupts learning-induced changes in spines that occur during sleep. Importantly, our structural studies

reveal that spine loss is reversed by recovery sleep, consistent with this idea. Thus, our work reveals

a distinct, selective, and rapid effect of brief periods of sleep loss on synaptic structure. It is note-

worthy that even a short period of sleep deprivation acts to trigger such a dramatic effect on neuro-

nal structure, which is reversed by recovery sleep.

Studies assessing the impact of sleep deprivation on electrophysiological properties of excitatory

hippocampal neurons suggest that sleep deprivation negatively impacts long-lasting forms of LTP

(Havekes et al., 2012a; Abel et al., 2013). In this study and our previous work (Vecsey et al., 2009;

Prince et al., 2014), we showed that 5 hr of sleep deprivation attenuates long-lasting forms of LTP

in the hippocampus. We observed that expression of an inactive mutant form of cofilin prevented

the reductions in CA1 spine number, the impairment in a long-lasting form of LTP caused by sleep

loss. It is interesting to note that three hours of recovery sleep not only restores spine numbers in

CA1 neurons, but also hippocampal LIMK and cofilin phosphorylation levels. These findings comple-

ment our previous electrophysiological studies, in which we showed that such a short period of

recovery sleep also restores deficits in LTP caused by 5 hr of sleep deprivation (Vecsey et al., 2009).
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Our work reveals that PDE4A5 is a critical mediator of the impact of sleep deprivation on memory

consolidation. Indeed, one reason why hippocampal area CA1 is specifically vulnerable to sleep dep-

rivation may be the high level of PDE4A5 expression in this region (McPhee et al., 2001). Specific

PDE4 isoforms are sequestered by distinct signalosome complexes that regulate localized cAMP sig-

naling and impart functionally distinct roles (Houslay, 2010). Impairing the function of PDE4A5 sig-

nalosomes through expression of a full length catalytically inactive form of PDE4A5 exerts a

dominant negative action, phenotypically identified here as preventing the alterations in LIMK and

cofilin signaling caused by sleep deprivation. This makes memory consolidation resistant to the neg-

ative impact of sleep loss. Consistent with the notion that a key functional role of the isoform-unique

N-terminal region of PDE4 isoforms is the targeting to signalosomes so as to exert functionally dis-

tinct actions (Houslay, 2010), the hippocampal expression of a catalytically in active version of

PDE4A5 lacking the isoform unique N-terminal domain fails to rescue the cognitive deficits associ-

ated with sleep loss. The latter observation suggests that the isoform-specific N-terminal domain of

PDE4A5 targets this specific PDE isoform to signalosomes that degrade cAMP in the vicinity of com-

plexes that are particularly sensitive to sleep deprivation such as the complexes that contain LIMK

and cofilin. Consistent with this, no such dominant negative phenotype is evident in a catalytically

inactive PDE4A construct engineered to lack such an N-terminal targeting region.

Our data contradict the synaptic homeostasis hypothesis for sleep function. This hypothesis pro-

poses that sleep functions to downscale synaptic strength that has increased as a result of neuronal

activity and experiences during wakefulness (Tononi and Cirelli, 2006). This hypothesis has focused

on explaining data from the cortex rather than the hippocampus, but one previously published study

has suggested that the synaptic homeostasis hypothesis applies to the hippocampus as well

(Vyazovskiy et al., 2008). However, the hippocampus may be unique from the cortex as the hippo-

campus is involved in episodic memory and in much greater experience-dependent plasticity than

anywhere else in the brain and thus our findings may not extend to other areas where synaptic plas-

ticity is not as prominent. Further, the hippocampus also exhibits many distinct forms of synaptic

plasticity. Here, we examine structural changes in hippocampal neurons and find that extended

wakefulness leads to a loss of synaptic spines mediated by a signaling pathway involving cofilin. This

suggests that prolonged wakefulness down-regulates synaptic connectivity in the hippocampus. As

little as 3 hr of recovery sleep is sufficient to restore signaling through these complexes, suggesting

that sleep functions to restore synaptic connectivity. Thus, the signaling pathways that mediate

changes in dendritic structure are rapidly impaired by sleep loss and then can be quickly restored

during recovery sleep.

Lack of sleep is a common problem in our 24/7 modern society and it has severe consequences

for health, overall wellbeing, and brain function (Bryant et al., 2004; Harrison and Horne, 2000).

Despite decades of research, the mechanisms by which sleep loss negatively impacts brain function

have remained unknown. Our findings suggest that the cognitive impairments caused by brief sleep

deprivation are a result of altered spine dynamics leading to a reduction in spine numbers. Our find-

ings may also explain the reduction in hippocampal volume observed in an animal model of more

chronic sleep restriction (Novati et al., 2011) and sleep disorders, such as primary insomnia

(Riemann et al., 2007) as well as sleep apnea (Morrell et al., 2003). Our work defining the molecu-

lar pathway through which sleep deprivation impacts memory consolidation underscores the impor-

tance of the plasticity of the neuronal cytoskeleton and reveals that rapid synaptic remodeling

occurs with changes in behavioral state.

Materials and methods

Subjects
Experimentally naı̈ve C57BL/6J male mice (2–3 months of age; IMSR_JAX:000664) were obtained

from Jackson laboratories at an age of 6 weeks and housed in groups of 4 with littermates on a

12 hr/12 hr light/dark schedule with lights on at 7 am (ZT0). Mice had food and water available ad

libitum. In case of the viral studies, mice underwent surgery at an age of 8–12 weeks, were single

housed for 5 days and then pair-housed with a littermate throughout the experiment. For the perfu-

sion experiments, mice were single housed 1 week prior to the start of the experiment. For all
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experiments, mice were randomly assigned to groups and were handled for 5 days for 2 min per

day.

Sleep deprivation
Mice were sleep deprived using the gentle stimulation method (Vecsey et al., 2009;

Hagewoud et al., 2010a; Vecsey et al., 2013; Hagewoud et al., 2010b, 2010c). In short, animals

were kept awake by gentle tapping the cage, gently shaking the care and/or removing the wire

cage top. Their bedding was disturbed in cases when mice did not respond to tapping or shaking

the cage. This method of sleep deprivation has been validated by our laboratory using EEG record-

ings (Meerlo et al., 2001).

Behavioral assays
In the object-place recognition task, mice learn the location of 3 distinct objects and were tested for

memory of the object locations 24 hr after training by displacing one of the objects. Training com-

menced at ZT0 or 45 min after lights on using the previously described training protocol

(Oliveira et al., 2010; Tretter et al., 2009). Mice were trained 3 or 4 weeks after viral surgery.

Object exploration levels were scored manually by the experimenter blind to treatment conditions.

The zero maze and open field studies were conducted as previously described (Tretter et al., 2009;

Havekes et al., 2012b).

Viral surgeries
Mice were anaesthetized using isoflurane and remained on a heating pad throughout the surgery

and kept warm using a heating lamp for 5–10 min during the recovery from the anesthesia until the

mouse was awake. Mice received metacam and buprenol as analgesics during and post-surgery and

artificial tears (Puralube) were used to prevent the eyes from drying out during surgery. Two small

holes were drilled in the skull at the appropriate locations using a microdrill. The virus was injected

using a nanofil 33G beveled needles (WPI) attached to a 10 ml Hamilton syringe. A microsyringe

pump (UMP3; WPI) connected to a mouse stereotax and controller (Micro4; WPI) were used to con-

trol the speed of the injections. The needle was slowly lowered to the target site over the course of

3 min and remained at the target site for 1 min before beginning of the injection (0.2 ml per minute).

After the injection, the needle remained at the target site for 1 min and then was slowly gradually

removed over a 5 min period. The coordinates for the bilateral injections are (A/P �1.9 mm, L/M ±

1.5 mm, and 1.5 mm below bregma). After removal of the needle, a small amount of bone wax

(Lukens) was used to close the drill holes and the incision was closed with sutures.

DNA manipulation and Virus constructs
Site-directed mutagenesis of plasmid DNA was carried out to generate PDE4A5catnull using the Stra-

tagene QuikChange Site-Directed Mutagenesis kit, using the method in the manufacturer’s instruc-

tions. N-terminal lacking PDE4A5catnull was generated using standard PCR cloning procedures and

the Stratagene PfuUltra High-Fidelity DNA polymerase. Purified plasmid DNA was produced using

Qiagen QIAprep kits and stored at 4˚C. The pAAV9-CaMKIIa0.4-PDE4A5catnull-VSV, pAAV9-

CaMKIIa0.4-PDE4A5catnullD4-HA, pAAV9-CaMKIIa0.4-CofilinS3D-HA, pAAV9-CaMKIIa0.4-CofilinS3A-

HA and pAAV9-CaMKIIa0.4-eGFP were constructed by standard methods and packaged by the Uni-

versity of Pennsylvania viral core. Transduced cofilinS3D may compete with endogenous cofilin for

binding to the cofilin-specific phosphatase slingshot, thereby leading to inactivation of the endoge-

nous protein (Sarmiere and Bamburg, 2004; Konakahara et al., 2004). Titers ranged from 2.4 �

1012 to 4.91 � 1013 genome copy numbers. A 0.4kb CaMKIIa promoter fragment (Dittgen et al.,

2004) was used to restrict expression to excitatory neurons. An HA-tag was included to discriminate

endogenous from virally expressed proteins. Approximately 1 ml, (corrected for genome copy num-

ber between constructs) was injected per hippocampus.

Biochemistry
The cAMP-specific PDE activity assays and western blots to assess sleep deprivation-induced

changes in PDE4A5 levels were conducted as described (Vecsey et al., 2009). Hippocampal tissue

was lysed using a tissue ruptor (Qiagen, Germany) in lysis buffer (Tris 50 mM, pH: 9, sodium
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deoxycholate 1%, Sodium fluoride 50 mM, activated sodium vanadate 20 mM, EDTA 20 mM, and

beta-glycerophosphate 40 mM. Additional phosphatase inhibitor cocktail (Thermo scientific) and pro-

tease inhibitors (Roche, Switzerland) were added to the freshly prepared buffer just prior to tissue

lysis. Samples were centrifuged for 10 min at 13,000 �g at 4˚C and supernatant was collected. Pro-

tein concentration of the samples was measured using the Bradford method (Biorad, Hercules ,CA,

USA) and sample concentration was corrected using additional lysis buffer. Afterwards LDS sample

buffer (Nupage, Invitrogen, Carlsbad, CA, USA) including 2-mercaptoethanol was added and sam-

ples were for boiled for 5 min prior to loading on Criterion TGX 18-well 4–20% gels. After electro-

phoreses, proteins were transferred to PVDF membrane followed by blocking for 1 hr in 5% milk in

TBST or 5% BSA in TBST (in case of cofilin antibodies). After blocking, the following antibodies were

used GAPDH (1:1000, Santa Cruz, Santa Cruz, CA, USA RRID:AB_10167668), PDE4A (1:1000(27)),

PDE4A5 (1:1000(27)), pCofilin (1:1000, Cell signaling, RRID:AB_2080597), Cofilin (1:3000 BD Trans-

duction Laboratories,San Jose, CA, USA; RRID:AB_399515), HA-tag (1:1000, Roche, RRID:AB_

390918), VSV-G tag (1:1000, Abcam, United Kingdom, RRID:AB_302646), LIMK (1:2000, Millipore,

Billerica, MA, USA; RRID:AB_1977324). Polyclonal phospho-serine 596 LIMK antibody was generated

by New England Biopeptides (Gardner, MA, USA) using CDPEKRP(pS)FVKLEQ peptide. After incu-

bation with the primary antibodies, membranes were incubated in HRP-conjugated secondary anti-

bodies for 1 hr at room temperature (Santa Cruz, mouse secondary antibody 1:1000, RRID:AB_

641170; Santa Cruz, rabbit secondary antibody, RRID:AB_631746). The immunoreactive bands were

captured on autoradiography film (Kodak, Rochester, NY, USA) and analyzed using ImageJ (NIH).

Immunohistochemistry
Immunohistochemistry was conducted as described previously (Havekes et al., 2012b;

Isiegas et al., 2008). In short, animals were transcardially perfused with ice cold 4% paraformalde-

hyde in PBS followed by a 48 hr post fixation in 4% PFA. Coronal brain sections were cut at a thick-

ness of 25 microns. Sections were rinsed in PBS, blocked with 5% normal serum and incubated in

PBS with 0.1% triton and 2% normal serum with either of the following antibodies or combinations

of antibodies PDE4A5 (1:200, (27)), HA-tag (1:200, Roche, RRID:AB_390918), VSV-G tag (1:2000,

Abcam, RRID:AB_302646), GFAP-alexa 488 (1:200, Invitrogen, RRID:AB_143165) followed by the

appropriate Alexa fluor-conjugated secondary antibodies (1:1000 Invitrogen, RRID:AB_141459,

RRID:AB_10562718, RRID:AB_10564074). Fluorescent images were analyzed using a Leica confocal

microscope.

Diolistic staining
After sleep deprivation mice were injected (i.p) with a lethal dose of morbital and perfused with

phosphate-buffered saline (PBS, 3 min at RT), followed by 1.5% PFA (20 min at RT). Brains were then

removed and post-fixed in 1.5% PFA (40 min at RT). After post perfusion incubation in 1.5% PFA,

each hemisphere was cut in 130 mm slices using a vibratome. Slices were collected to multiwell

plates filled with PBS. After one hour incubation in room temperature, PBS was removed and slices

were stained with a GeneGun (Biorad, pressure: 100–120 psi) using nylon filter (Merc Millipore,

10 mm, cat. No. NY1004700). DiI bullets were prepared as described (Seabold et al., 2010). After

staining, slices were incubated over night at RT in PBS. The next day slices were incubated for one

hour in 4% PFA and mounted with DapiFluoromount G (SouthernBiotech). Microphotographs of DiI

stained apical dendrites in the stratum radiatum of CA1 area (approx. 100 mm from cell bodies) were

performed in z-stacks using Zeiss LSM 780 (step 0.3 mm, objective 63x, digital magnifications 5x,

resolution 1024 � 1024). Linear density (per mm of dendrite) and size of spines were counted using

SpineMagick software. On average 155 spines were analyzed per an animal. Importantly, for the

comparison of the spine numbers using golgi and diolistic staining methods we focused specifically

on the second and third branch of the apical dendrites as the diolistic staining technique is subopti-

mal to label and analyze branches farther away from the soma.

Electrophysiology
Experiments were performed in the hippocampal Schaffer collateral pathway as previously described

(Vecsey et al., 2009; Havekes et al., 2012b). Briefly, male mice injected with eGFP or cofilinS3D

virus were sacrificed by cervical dislocation, and hippocampi were quickly collected in chilled,
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oxygenated aCSF containing 124 mM NaCl, 4.4 mM KCl, 1.3 mM MgSO4 � 7H2O, 1 mM

NaH2PO4 � H2O, 26.2 mM NaHCO3, 2.5 mM CaCl2 � 2H2O, and 10 mM D-glucose bubbled with

95% O2 / 5% CO2. 400 mm thick transverse hippocampal slices were placed in an interface recording

chamber at 28ºC (Fine Science Tools, Foster City, CA). Slices were equilibrated for at least 2 hr in

aCSF (pH 7.4). The stimulus strength was set to elicit 40% of the maximum field excitatory postsyn-

aptic potential (fEPSP) amplitude. The average of the baseline initial fEPSP slope values over the first

20 min was used to normalize each initial fEPSP slope.

Golgi analyses
Brains were impregnated using the Rapid Golgi stain kit (FD Neurotechnologies Inc) according to

the instructions. Coronal sections (80-um thickness) that covered the rostro-caudal axis of CA1 of the

hippocampus were analyzed. The serial sections were then chosen and analyzed using a stereology-

based software (Neurolucida, v10, Microbrightfield, VT), and Zeiss Axioplan 2 image microscope

with Optronics MicroFire CCD camera (1600 � 1200) digital camera, motorized X, Y, and Z-focus for

high-resolution image acquisition and digital quantitation in combination with a 100x objective using

a sophisticated and well established method that should represent a 3D quantitative profile of the

neurons sampled and prevents a failure to detect less prominent spines.

Our sampling strategy is to prescreen the impregnated neurons along the anterior/posterior axis

of the region of interest to see if they were qualified for analysis. Neurons with incomplete impreg-

nation or neurons with truncations due to the plane of sectioning were not collected. Moreover, cells

with dendrites labeled retrogradely by impregnation in the surrounding neuropil were excluded. We

also made sure there was a minimal level of truncation at the most distal part of the dendrites; this

often happens in most of the Golgi studies, likely due to the plane of sectioning at top and bottom

parts of the section. The brains were cut at a 80 mm thickness. With consideration of the shrinkage

factor after processing (generally 10–25% shrinkage), the thickness of the section is even less, so the

visualization of the spine subclass is no issue as we used a 100x Zeiss objective lens with immersion

oil, which is sufficient to resolve the details or subtype of the spines for laborious counting. All analy-

ses were conducted by an experimenter blind to treatment.

Statistics
Behavioral and electrophysiological data were analyzed using Student’s t-tests or two-way ANOVAs

(in some cases with repeated measures as the within subject variable). Dunnett’s tests were used for

post-hoc analyses where needed. Biochemical data was analyzed using independent samples t-tests.

The experimenter was blind to group treatment in all studies. Differenceswere considered statisti-

cally significant when p<0.05. All data are plotted as mean ± s.e.m.
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