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The International Atomic Energy Agency convened a technical meeting on

environmental enteric dysfunction (EED) in Vienna (October 28–30, 2015;

https://nucleus.iaea.org/HHW/Nutrition/EED_Technical_Meeting/index.html)

to bring together international experts in the fields of EED, nutrition, and stable

isotope technologies. Advances in stable isotope–labeling techniques open up

new possibilities to improve our understanding of gastrointestinal dysfunction

and the role of the microbiota in host health. In the context of EED, little is known

about the role gut dysfunction may play in macro- and micronutrient bioavail-

ability and requirements and what the consequences may be for nutritional status

and linear growth. Stable isotope labeling techniques have been used to assess

intestinal mucosal injury and barrier function, carbohydrate digestion and

fermentation, protein-derived amino acid bioavailability and requirements,

micronutrient bioavailability and to track microbe-microbe and microbe-host

interactions at the single cell level. The noninvasive nature of stable isotope

technologies potentially allow for low-hazard, field-deployable tests of gut

dysfunction that are applicable across all age groups. The purpose of this review

is to assess the state-of-the-art use of stable isotope technologies and to provide a

perspective on where these technologies can be exploited to further our under-

standing of gut dysfunction in EED.
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nvironmental enteric dysfunction (EED) is thought to be a
major contributing cause of the failure of nutritional interven-
E

tions, be they based on micronutrient, macronutrient, and combined
supplementation with behavioral change to normalize postnatal
linear growth in populations living in poverty (conceptualized in
Fig. 1 adapted from (1)). EED, among other factors, is the result of
multiple and continuous infections even in the absence of diarrhea
or well-defined clinical illness. It is posited to lead to local intestinal
inflammation, altered intestinal permeability with subsequent bac-
terial translocation and immune activation. Functional aberrations
in EED may include a reduced ability to digest macronutrients,
reduced capacity to absorb essential nutrients, and disturbances in
micronutrient requirements. The role of the small intestinal micro-
biota is unclear but clearly is an important factor in the development
and pathogenesis of EED (2). In EED, the state of chronic immune
activation compromises intestinal function and host metabolism in a
way that derails normal prescribed linear growth patterns in
affected populations.
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FIGURE 1. Repeated enteric infections coupled with altered mucosal
immune responses and macronutrient/micronutrient absorption and

availability are major determinants of gut dysfunction observed

in environmental enteric dysfunction (EED). The role of the gut

microbiome requires further investigation. Together, these may be
important drivers of the outcomes observed in EED such as growth

faltering, reduced vaccine response, and impairments in cognitive

development.
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Stunting, defined as linear growth (height-for-age) 2 standard
deviations below the population median growth curve, currently affects
25.7% of the world’s children; the total number of affected individuals
being 165 million (3). Despite this burden, controlled interventions
including the provision of food in food insecure settings, and the
provision of education regarding feeding practices have had only
moderate effects on linear growth (4). EED is thought to be one of
the major causes of the failure of nutritional interventions in children at
risk from stunting (5). The validation of this theory is however currently
limited by a lack of reliable assays to measure some of these key
parameters that are thought to be deranged in EED.

Identification of better biomarkers and delineation of the key
biological pathways may also guide better-targeted interventions.
Although markers of systemic inflammation are plentiful and well
described (6), markers of intestinal permeability, nutrient absorp-
tion, enterocyte metabolic capacity, intestinal inflammation, and
intestinal regeneration and repair are extremely limited. This lack of
functional measurements severely limits our understanding of the
intestinal processes that control nutrient bioavailability and inflam-
mation and our ability to focus on effective interventions. Here, we
review and discuss the potential of available stable isotope tech-
niques as non-/less-invasive and safe tools for advanced diagnosis
and research of gastrointestinal dysfunction.

PRINCIPLE OF USING STABLE ISOTOPES IN
GASTROENTEROLOGY

The basic principle of all stable isotope techniques in gastro-
enterology is to administrate a stable isotope–labeled compound to
the body (ie, orally, rectally, or intravenously) in ‘‘trace’’ amounts
to minimally disturb normal physiology, and to subsequently track
the fate of the compound or its catabolic products in breath, tissue,
feces, urine, and/or blood (7). The route of administration and type
of isotope label and compound essentially determine which gastro-
intestinal function is assessed. Stable isotope techniques are often
used to determine general epithelial function such as absorption and
permeability. They, however, can also rather precisely measure
 Copyright © ESPGHAL and NA
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specific metabolic features in the intestinal tract such as uptake of a
defined micronutrient or a defined physiological property of intes-
tinal microbiota members metabolizing the administered com-
pound. The attraction of stable isotope–based technologies in
EED is their potential for noninvasive diagnosis in field research
settings to assess a wide assortment of different components of gut
physiology and function. By measuring the magnitude of deviation
from normal physiology in different epidemiologic contexts, the
underlying nature and extent of pathology that underscores gut
dysfunction in EED could be elucidated facilitating the develop-
ment of effective diagnostic tests and interventions.
BREATH TESTS AND SMALL INTESTINAL
FUNCTION

Breath tests are characterized by their noninvasive technol-
ogy and as such are ideal for both diagnostic and longitudinal
studies. The test performance characteristics are particularly well-
suited for studying children as testing is painless and noninvasive
(8). The most robust, safe, sensitive, and specific stable isotope
breath test devised is the 13C urea breath test for the diagnosis and
monitoring of Helicobacter pylori (Hp). It has repeatedly been
shown to have>95% sensitivity and specificity (9). There are some
intrinsic advantages that favor this. First, when Hp is present it is
usually the dominant microorganism in the low pH environment of
the stomach and may affect linear growth (10). By thriving in the
mucosa of the stomach, Hp is also close to the site of oral tracer
administration, leading to rapid delivery of the tracer bolus to the
site of infection. As the tracer target moves more distal in the
intestine, complex delivery formulation may be needed to allow for
site-directed tracer delivery, and there may be variations in transit
time that reduce sensitivity and specificity of the test.

Therefore, the measurement of functional characteristics in
gastrointestinal tract regions distal to the stomach presents greater
challenges with respect to targeting functional characteristics,
epithelial damage, and barrier integrity and specifically targeting
pathogens (11,12). Several stable isotope breath tests for assessing
gastric emptying have been designed and validated against scinti-
graphic methods (13,14). These tests have also been combined with
nonabsorbable carbohydrates, such as lactulose, using H2 measure-
ments in breath to determine orocecal transit time of a particular
meal (15). This in turn gives an indication and allows calculation of
small intestine residency time. Less attention has been given to
interrogating the patency of the small intestinal mucosa. A notable
exception is the assessment of lactase deficiency or lactose malab-
sorption and intolerance (16). This has traditionally been detected
using a H2 breath test or with a combined H2/13CO2 breath test (17).

Only a small percentage of individuals exhibit a genetically
determined sucrase deficiency, much less than the global 70% to
90% prevalence for lactase deficiency (18). This raises the possib-
ility of using a 13C sucrose breath test (SBT) as a noninvasive
reporter for detecting small intestinal villus dysfunction and
damage, by targeting sucrase activity as the surrogate for quantify-
ing the maturity of the absorptive capacity of the epithelium (19,20).
A villus atrophy induced by chemotherapy is a common occurrence,
but ethical practice precludes endoscopy to assess the severity and
to thus monitor any ameliorating interventions. The SBT has been
reported in animal models and in childhood cancer chemotherapy
and appears to act as a surrogate marker for small intestinal villus
dysfunction and damage (21–23).

Other settings where significant small intestinal damage
occurs include rotavirus infection, Giardia lamblia infestation,
celiac disease, and the endemic spectrum of EED. In many of
these diseases and disorders, the degree of absorptive impairment is
SPGHAN. All rights reserved.
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not known nor easily measurable; thus, its contribution to health and
linear growth in childhood is not fully understood. Preliminary
studies in children with acute diarrhea have shown lowered SBT
response that improves as disease resolution occurs (24). In infants
with EED, resolution of the small intestinal impairment in the same
time frame, however, did not occur. Correspondingly, nor did the
severity of diarrhea in these children (25).

Multiple isotope labels, targeted delivery, and additional
stable isotope end-points, including breath 13CO2, will potentially
move this strategy forward for understanding gut dysfunction
in EED.

STABLE ISOTOPES, MACRONUTRIENT
BIOAVAILABILITY, AND HOST RESPONSE

Classical stable isotope–dilution techniques, which use
steady-state tracer infusion protocols, have become an essential
tool for determining metabolite flux in humans (26). They, how-
ever, only focus on a limited number of targeted metabolites and are
 Copyright © ESPGHAL and NA
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unsuitable for investigations in young children because they involve
extended tracer infusions and serial blood and/or tissue sampling.

Intrinsic labeling of macronutrients for human feeding stu-
dies allows for an integrative assessment of nutrient bioavailability.
The photosynthetic pathways of carbon sequestration in plants (C3
vs C4) provide natural isotopic carbon-13 (13C) enrichment in C4
plant material that is sufficient for measurement by isotope ratio
mass spectrometry (27). C4 plant-derived carbohydrates have been
allowed assessment of liver glycogen oxidation (28), starch diges-
tion, and exogenous glucose production in adults (29,30) and
children (31). This approach is however limited by the low signal
to background 13C abundance. Studies using isotope labeling
(enrichment) techniques have largely overcome these challenges.
This experimental approach is exemplarily outlined for stable
isotope–labeled, plant-derived dietary compounds in Figure 2.
Isotope labeling has been used to describe quantitative exogenous
glucose production and insulin sensitivity from native plant-derived
starches (32–34). Beyond starch, 13C labeling has been used to
determine quantitatively short chain fatty acids (SCFA) production
SPGHAN. All rights reserved.
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from inulin in vivo (35), and the extent of carbohydrate oxidation from
b-glucan–enriched barley (36). These tools uniquely allow a full
understanding of macronutrient bioavailability, requirements, and
metabolism and potentially provide new mechanistic insights into
how carbohydrate requirements and metabolism are altered in EED.

Of considerable interest in EED is the bioavailability of, and
nutritional requirements for, protein-derived amino acids. Energy,
protein, and usable protein availability are negatively associated with
stunting (37). Recent evidence has demonstrated reduced serum
essential amino acids in stunted children (38). What role EED plays
in altering protein digestion and amino acid absorption and use is
unclear at the present time. The limitations of current techniques to
assess protein quality and amino acid requirements have been exten-
sively reviewed elsewhere (39,40). 15N-labeled proteins have been
used to determine net postprandial protein use (41,42), by measuring of
the kinetics of dietary N appearance in ileal contents, plasma proteins,
plasma free amino acids, body and urinary urea, and urinary ammonia
in a 13-compartment, 21-parameter model (43). The complexity of the
technique means it is unlikely to be widely adopted for routine
applications (39). In children, 13CO2 production has been used as an
index of bioavailability from oxidation of protein-bound indicator 13C-
labeled amino acids whereby the extent of amino acid oxidation is
inversely related to amino acid uptake through protein synthesis (44).
Amino acid infusion studies using animals to intrinsically label-specific
amino acids in milk and meat protein have shown a dose-response of de
novo muscle protein synthesis to whey protein in human feeding
studies (45), and that minced beef increases postprandial protein
retention compared with beef steak (46). A combined dual stable
isotope study using 15N-labeled Spirulina protein and 2H-phenyl-
alanine has demonstrated that protein digestibility is severely com-
promised in patients with cystic fibrosis (47). Of significant potential is
intrinsic labeling of cereal, legume, and animal-derived protein with
2H, in combination with 13C-labeled amino acids from a (predigested)
crystalline amino acid mixture having the same composition as the
intact protein to assess amino acid bioavailability (48,49). In EED, this
approach has the potential to assess amino acid bioavailability and
requirements, taking into account directly the disturbances in digestion
and absorption. Finally, intrinsic labeling of amino acids in humans
using 2H2O has been used to determine the role of diet and disease on
whole-body and tissue-specific protein synthesis (50–52).

Isotope studies on lipid use related to gut dysfunction have
largely been focused on the efficiency of fat digestion in the
intestine. The use of 13C-labeled triglyceride combined with
13CO2 appearance in breath has been used to assess pancreatic
exocrine insufficiency (53), efficacy of pancreatic enzyme supple-
mentation in disease (54), the effects of gastrectomy on fat digestion
(55), and to determine how oral fat exposure, enteral lipid metab-
olism impacts upon postprandial lipemia (56).

The power of stable isotopes to trace macronutrient assimilation
is unparalleled because they can be used in physiologically relevant
settings. The challenge is to develop methodologies that are minimally
invasive while yielding maximum information on how EED affects the
digestion, absorption, and the use of the major macronutrients.
MICRONUTRIENT ABSORPTION AND
BIOAVAILABILITY

Zinc and iron are 2 micronutrients of particular importance
for investigations of etiology and therapy for EED. Deficiencies of
each nutrient are common, and disrupted absorption and homeo-
stasis are considered to be likely. Stable isotope studies have been
widely applied to examine bioavailability of each of these nutrients
from local diets, fortified and bio-fortified foods, and from supple-
ments in vulnerable populations. Great potential exists for detailed
 Copyright © ESPGHAL and NA
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studies in children with EED to better characterize the extent and
impact of the condition on micronutrient use.

Zinc

Three stable isotopes of zinc (70Zn, 67Zn, and 68Zn) have low
enough natural abundance to be useful as tracers of zinc homeo-
stasis (57). The most commonly applied approach to measurement
of zinc absorption is the ‘‘dual isotope tracer ratio’’ method, which
involves oral administration of 1 isotope and intravenous admin-
istration of another isotope. Measurement of the ratio of the isotope
enrichment in plasma or urine several days later provides a deter-
mination of the fractional absorption of zinc; multiplication of this
times the amount of ingested zinc yields the amount of absorbed
zinc. Oral isotope is ideally administered with all meals of the day to
yield total daily absorbed zinc; administration in postabsorptive
state with a standardized dose can provide estimate of absorption
‘‘capacity.’’ Excretion of endogenously secreted zinc in the
intestine, a critical aspect of zinc homeostasis, can also be estimated
by the ‘‘isotope dilution’’ method, by determination of the ratio of
the amount of an intravenously administered isotope in feces to that
in urine during the same time period (58). Because the endogenous
fecal zinc appears to be more reflective of host zinc status than the
absorption efficiency, simplified approaches to its determination
are being explored (eg, using partial instead of complete fecal
collections). The size of the exchangeable Zn pool, a putative index
of zinc status, can also be estimated by measurement of urine
enrichment of an intravenously administered stable isotope. All of
these approaches to zinc homeostasis have been safely applied in
pregnant women, infants, and young children. Although adminis-
tration and collection procedures require meticulous care and
attention to detail, they have been successfully applied in many
austere environments (59).

As appreciation of the complexity of EED has been increas-
ingly recognized, it also seems likely that micronutrient require-
ments are higher, as a result of the impaired absorption and/or
increased losses. Several approaches using zinc stable isotopes are
relevant: studies comparing absorption in children with and without
EED; measuring absorption from a range of doses to identify that
which is high enough absorption to meet ‘‘pathophysiologic
requirements’’; and studies to document endogenous intestinal
losses in EED. As a potential biomarker of zinc status and response
to zinc interventions, exchangeable Zn pool is expensive, but it
could usefully be measured in subsets of subjects participating in
intervention trials to evaluate response to intervention and to link to
functional outcomes.

Iron

The criterion standard for measuring iron absorption and
bioavailability from foods or supplements, both in healthy individ-
uals and those with malabsorption, is the iron stable-isotope tech-
nique based on erythrocyte incorporation of the stable isotope labels
14 days after intake (60). Three stable isotopes of iron are com-
monly used (54Fe, 57Fe, and 58Fe). Labeled iron compounds (eg,
ferrous sulfate, ferrous fumarate, NaFeEDTA) can be prepared from
isotopically enriched elemental iron. The labels are added to test
meals or supplements that are fed to fasted human subjects (61). The
labels mix with the total nonheme iron pool from the meal or
supplement in the stomach and are mainly absorbed in the upper
duodenum (62). Either within- or between-subject designs can be
used. Fourteen days after the administration of the test meals, on the
basis of the shift in the iron isotope ratios in the blood samples
measured by mass spectrometry and the amount of iron circulating
SPGHAN. All rights reserved.
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in the body, the amounts of the labeled iron compounds in the blood
and thereby fractional absorption of the iron is calculated (63).
Because these techniques involve no radioactivity, they can be used
in infants and young children with no health risk (60,64).

Stable iron isotopes could be used to quantify, with high
precision, iron absorption and bioavailability from diets, lipid-
based nutritional supplements, and/or micronutrient powders in
children with EED. This would provide insight into the severity
of iron malabsorption and the etiology of anemia in EED, as well
as assessing changes in absorption in children recovering
from EED.

SINGLE CELL ISOTOPE METHODS FOR
PROBING MICROBIOTA-GUT FUNCTION

Spatially highly resolved isotope imaging emerges as an import-
ant complement to common stable isotope–labeling techniques, which
essentially measure whole body or population averages that mask
relevant differences between individual cells. In working toward a
complete understanding of a biological system, it is important to get a
more refined understanding of the contributions of its individual parts,
the cells, and their interactions with each other (65,66). Use of high-end
microspectroscopy and secondary ion mass spectrometry instruments
for stable isotope analytics allows dissection of the physiological
function and metabolic heterogeneity of subpopulations of cells that
constitute a tissue or the diverse species of the complex human
microbiota. This is of particular importance for the gastrointestinal
tract, where metabolic processes are extremely complex and dynamic
 Copyright © ESPGHAL and NA
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because of the temporally and spatially variable presence of various
diet- or host-derived substrates, and the diverse microbial populations
and host cells that metabolize those substrates (67). With these single
cell stable-isotope methods in hand, one can now start disassembling
the manifold synergistic and antagonistic physiological interactions
among individual cells of the intestinal microbiota and the host tissue
and identifying key cellular populations that determine the flow of
nutrients and energy to and from the host. As with any other stable
isotope-labeling approach, the type of isotope (mostly 13C, 15N, but also
18O or 2H) and substrate, and how the labeled substrate is administered
determines which physiological function is being investigated. The
incorporation of the isotope label into cellular components of a
microbial cell is subsequently quantified with specialized instruments,
such as a confocal Raman microspectroscopy, which has a lateral
resolution of approximately 1 mm, or a NanoSIMS, a secondary ion
mass spectrometer for parallel detection of up to 7 ion masses and
nanoscale spatial resolution. Isotope analysis can be directly combined
with fluorescence in situ hybridization for the identification of
microbial cells (67). Selected applications include identification of
microbes that forage on host-derived 13C/15N-labeled protein com-
pounds (68) and use of heavy water (2H2O) as a general marker for
cellular activity (69). Although these single-cell methods were initially
developed and applied in animal models, stable isotope analysis of
individual cells can be readily performed on fecal samples or tissue
biopsies obtained from patients that are subject to some of the more
routine stable isotope tests mentioned above. Single cell analysis by
Raman microspectroscopy or NanoSIMS is inherently time-consuming
SPGHAN. All rights reserved.
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and thus essentially not tailored to routine diagnostics in gastroenter-
ology. Instead, these advanced research tools will contribute to a high-
resolution picture of the complex physiological processes in gastroin-
testinal tract, particularly into the role of individual members of the
resident microbiota in EED.

CHALLENGES AND FUTURE PERSPECTIVES
The potential for stable isotope–based techniques to provide

noninvasive, possibly low-cost, and field-deployable diagnostic
tests in gut dysfunction is a tantalizing prospect. Significant
research is still required to realize this prospect if we are to make
use of stable isotopes in a setting such as EED for diagnostic or
disease stratification purposes. There are challenges to overcome
but the opportunities that could be realized are profound.

Challenges

Integrating high-end, high-cost mass spectrometry technol-
ogies in limited-resource settings may be seen as a significant
barrier to implementing stable isotope technologies in a community
setting. Solutions are beginning to emerge with field-deployable
infrared-based techniques for measuring isotopic abundance in
select metabolites (mainly CO2 and H2O). Careful selection and
validation of appropriate tracers for appropriate end-point measure-
ments with robust clinical outcomes is required. Techniques for
single cell investigations will remain focused in well-resourced and
competent research laboratories, but because such techniques can
add considerable insights into microbe and host physiology, they
need to be embraced to provide a greater understanding of EED.

Future Perspectives

The adoption of stable isotope–based micronutrient bioa-
vailability assays in intervention studies in EED will continue to add
considerable insight into micronutrient use and the efficacy of
fortification trials. Research using combinations of tests (stable
isotopes and biomarkers) are needed to assess multiple aspects of
gut dysfunction (mucosal injury, digestion, permeability/barrier
function and microbiota function) simultaneously. The potential
for intrinsic labeling of food to dissect how macronutrient uptake
and use are affected in EED holds significant promise. These
opportunities are outlined in Figure 3. Whether this integrated
physiological view has the potential to allow stratification of
EED into relative risk of stunted growth remains to be seen, but
stratification based on biomarkers has yielded significantly
improvements in the management and treatment in other contexts,
for example, cancer and cardiovascular disease. Stable isotopes add
essential functional measurements to the existing array of bio-
markers and have significant potential to be applied in diseases
where gut dysfunction has an important role.
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