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Development of Bayesian analysis program for

extraction of polarisation observables at CLAS

S. Lewis, D. Ireland, W. Vanderbauwhede

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United
Kingdom

E-mail: s.lewis.2@research.gla.ac.uk

Abstract. At the mass scale of a proton, the strong force is not well understood. Various
quark models exist, but it is important to determine which quark model(s) are most accurate.
Experimentally, finding resonances predicted by some models and not others would give valuable
insight into this fundamental interaction. Several labs around the world use photoproduction
experiments to find these missing resonances. The aim of this work is to develop a robust
Bayesian data analysis program for extracting polarisation observables from pseudoscalar meson
photoproduction experiments using CLAS at Jefferson Lab. This method, known as nested
sampling, has been compared to traditional methods and has incorporated data parallelisation
and GPU programming. It involves an event-by-event likelihood function, which has no
associated loss of information from histogram binning, and results can be easily constrained
to the physical region. One of the most important advantages of the nested sampling approach
is that data from different experiments can be combined and analysed simultaneously. Results
on both simulated and previously analysed experimental data for the K+Λ channel will be
discussed.

1. Introduction
The strong force at the level of the mass of the nucleon is not well understood. Experiments
addressing this fundamental problem of nuclear physics have been performed by several
international collaborations, including CLAS [1] at Jefferson Lab and A2 at Mainz. Pseudoscalar
meson photoproduction reactions can be used to learn about the excited nucleon spectrum.
The use of Bayesian analysis in hadronic physics has several benefits over more conventional
statistical methods. Nested sampling [2] is an algorithm based on Bayesian statistics that can
extract more information from data than some other conventional methods. Data parallelism
and GPU programming can be implemented to speed up the algorithm, and there are several
tools that can be used to do this.

2. Background Physics Theory
Quantum chromodynamics explains the strong interaction in general, but cannot be solved at
the mass of the proton. Many quark models exist that attempt to address this issue [3]. Quark
models can be supported or excluded based on experimentally finding mass resonances that the
models predict. One way to find these resonances is through pseudoscalar meson photoproduc-
tion [1] reactions, where a photon beam is incident on a stationary nucleon target.
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Pseudoscalar meson photoproduction reactions are completely described by four complex
amplitudes, a1, a2, a3 and a4 [4]. These amplitudes can be accessed experimentally through 15
polarisation observables, listed in Table 1, in addition to the differential cross-section. Polarising
different aspects of the experiment provides access to a different subset of observables, and a
well-chosen set of observables are required to make a complete measurement. There are three
single-spin observables (Σ, P, T ), four double-spin beam-recoil observables (Cx, Cz, Ox, Oz),
four double-spin beam-target observables (E, F, G, H), and four double-spin target-recoil
observables (Tx, Tz, Lx, Lz). These observables are bilinear combinations of the amplitudes,
and measuring a subset of observables should constrain the others. In other words, information
can be gained about observables that are not directly measured through their correlations.

Table 1. Observables in terms of Complex Amplitudes [4]
Observable Type Amplitude Combination

Σ Single |a1|2 + |a2|2 − |a3|2 − |a4|2
P |a1|2 − |a2|2 + |a3|2 − |a4|2
T |a1|2 − |a2|2 − |a3|2 + |a4|2
E Beam-target 2<(a1a

∗
3 + a2a

∗
4)

F 2=(a1a
∗
3 − a2a

∗
4)

G 2=(a1a
∗
3 + a2a

∗
4)

H −2<(a1a
∗
3 − a2a

∗
4)

Cx Beam-recoil −2=(a1a
∗
4 − a2a

∗
3)

Cz 2<(a1a
∗
4 + a2a

∗
3)

Ox 2<(a1a
∗
4 − a2a

∗
3)

Oz 2=(a1a
∗
4 + a2a

∗
3)

Tx Target-recoil 2<(a1a
∗
2 − a3a

∗
4)

Tz 2=(a1a
∗
2 − a3a

∗
4)

Lx −2=(a1a
∗
2 + a3a

∗
4)

Lz 2<(a1a
∗
2 + a3a

∗
4)

In this work, data from an experiment involving a linearly polarised photon beam and an
unpolarised proton (liquid hydrogen) target were analysed. The reaction is shown in Equation
1.

γ p → K+ Λ → K+ p π− (1)

The resulting Λ then decays to a proton and pion. The scattered kaon and recoiling proton were
detected, and the polarisation of the Λ was determined through the self-analysing properties of
the hyperon. This provided access to the observables Σ, P, T, Ox and Oz.

The experimental data was collected by the CLAS Collaboration, based in Hall B at the
Thomas Jefferson National Accelerator Facility. Hall B houses the CLAS (CEBAF Large
Acceptance Spectrometer) detector [5], which has a wide solid angle acceptance and is well
understood.

3. Analysis Method
The current most popular method of analysis involves the classical χ2 binned fitting approach.
This method involves binning data into histograms and calculating polarisation observables
based on asymmetries of these binned histograms [7]. There are several disadvantages to this
approach: Information is lost through histogram binning, observables are not bound to the
physical region, and observables are treated independently and as free variables (the information
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yield is not maximised; correlations between observables are not used). In order to address some
of these problems, a new analysis method was explored using Bayesian statistics.
Bayesian analysis has recently become a popular alternative to conventional analysis methods.
A distinguishing feature of the Bayesian approach is its use of a prior distribution, which can be
thought of as an initial approximation to the results, before any data is taken into consideration.
The prior can contain any physical constraints known about the system, and a good choice of
prior can often speed up the analysis [8]. A likelihood function is then applied to the prior
distribution, and a posterior distribution is produced (the statistics of which give the results).
In this work, the nested sampling algorithm was applied to the analysis of data from pseudoscalar
meson photophroduction experiments, and provides certain interesting features over the more
conventional analysis methods currently being used. The fundamental difference between this
Bayesian approach and the χ2 binned fitting method is that the amplitude space is explored,
and the observables are not completely independent variables. Observables are calculated from
the complex amplitudes, using the equations listed in Table 1. The use of an event-by-event
likelihood function rather than binned histograms reduces the amount of information lost, and
the prior distribution includes conditions that constrain the observables to the physical region.
These features allow the information extracted from the data to be maximised. One problem
was found with the nested sampling program, however, as the run-time was significantly longer
than the χ2 program. This led to the investigation into data parallelism and GPU programming
techniques, discussed in Section 4.
The nested sampling analysis program was benchmarked against the χ2 fitting method, using
10 sets of simulated data, and three dataset sizes. The difference between the input observable
values and the extracted values were compared for each of the two methods, and the resulting
plot is shown in Figure 1 (top). This plot indicates that the nested sampling approach produced
more accurate values, even when the statistics were poor. The second plot in Figure 1 shows
an measure of the understanding of the errors, where the optimal value would be expected to
equal the number of observables being extracted. Here, the ideal value would have the square
root of the sum of the residuals to be 5. It is seen that nested sampling achieves this value more
consistently than does the binned χ2 fit.

A further benefit of the nested sampling approach is the potential to combine data from
different experiments and extract observables that inherently obey the constrains imposed by
their correlations. This has been tested using simulated data and shown to be successful, but
has yet to be attempted using data from real experiments.

4. Data Parallelism
The exceedingly long run-time of the nested sampling program spurred efforts into optimisation
and parallelism. The code, written in C++ (and using the ROOT framework), was optimised
before any parallelism was explored. It was determined that the event-by-event likelihood
function was the primary bottleneck. Implementations were developed using OpenCL (Open
Computing Language) [9] and OpenMP (Open Multiprocessing)[10]. OpenCL is an open-
source framework that allows code to be parallelised and run on the GPU or the CPU, but
is dependent on the hardware. Code written for an AMD GPU, for example, would need
to be fine-tuned to obtain the best results on an NVIDIA GPU. To parallelise a program
using OpenCL, the code must consist of two parts: the host code and the kernel code.
The kernel code contains the function or algorithm that is parallelised, and is called by
the host program. There is a substantial amount of “boiler plate” code that is required
to initialise the OpenCL environment, which can make the programming complicated and
intimidating. Collaboration with the School of Computing Science led to the use of OclWrapper
(https://github.com/wimvanderbauwhede/OpenCLIntegration), a wrapper class developed by
W. Vanderbauwhede that greatly simplifies this task. An OpenCL implementation of the nested

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022020 doi:10.1088/1742-6596/513/2/022020

3



Figure 1. Benchmarking results comparing the accuracy of the nested sampling method with
the binned χ2 approach.

sampling program [11] was developed and tested on a GPU as well as a multicore CPU.
The other option explored was an implementation using OpenMP, an open-source multithreading
API. OpenMP uses a series of compiler directives to allow programmers to manipulate threads
and parallelise algorithms. This was a much simpler option, requiring only a few additional
lines of code inserted into the existing program, and is supported by most recent compilers. The
OpenMP implementation of the program was limited to running on the CPU only.
The various implementations (including the optimised, unthreaded and unparallelised version)
were timed for three different dataset sizes, and the results are shown in Figure 2.

It was found that for the smaller datasets, OpenMP provided the fastest run-time, and in fact,
OpenCL run on the GPU provided the slowest (slower even than the unparallelised code). This
is due to the difference in data transfer times related to the hardware devices. The time required
to transfer data from the main memory to the GPU memory far exceeds that required to transfer
data to the CPU. For the OpenCL implementations, the overhead caused by transferring data
exceeded any speed-up in the calculations. As the dataset size increases, it can be seen that
this speed-up from calculations begins to catch up with the data transfer overhead, and it is
expected that if greater datasets were tested, the GPU implementation would provide the best
speed-up. For the specific physics problem faced here, however, the datasets that are anticipated
are more towards the lower number of events, often a few 103.

5. Results
Previously analysed data from a CLAS experiment was used to test the nested sampling program
against conventional methods. Whilst nested sampling does not bin data into histograms in order
to perform its analysis, the datasets that are analysed are binned by photon energy (W ) and
scattering angle in the centre of mass frame (cos(θCM

K )).
The resulting observables extracted via the nested sampling analysis program were compared
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Figure 2. Run-times of each implementation with increasing dataset size.

to results found in previous analyses [6] of the same data. Figure 3 shows the comparison plot
for one observable, Σ. It can be seen that the nested sampling method produces values that are
sufficiently close and consistent with previous results.

One of the benefits of using nested sampling becomes apparent with one type of output. By
exploring the amplitude space, information about observables not being directly measured is
discovered and can be shown as two-dimensional likelihood plots. Figure 4 shows a series of
plots of all 15 observables in one energy bin. Each blob, or band, shows the resulting posterior
distribution for each of the 15 observables, each corresponding to one angular bin. The plot
shows how much the other observables are constrained by the information found from the data.
This is information that was previously not obtainable and makes a significant difference in the
impact of these pseudoscalar meson photoproduction experiments.

6. Summary
In order to address the problem of understanding the strong interaction on the hadronic level, it
is important to find missing resonances that are predicted by quark models, as yet unobserved.
This can be done through pseudoscalar meson photoproduction experiments, such as those
performed by the CLAS Collaboration at Jefferson Lab. Pseudoscalar meson photoproduction
reactions can be described completely by four complex amplitudes, which can be accessed
experimentally through polarisation observables. These observables are bilinear combinations of
the amplitudes, suggesting that measuring some observables will inherently provide information
about all the others. Current methods of analysis treat observables as independent, free variables
and therefore do not maximise the information extracted from the data. A new Bayesian
approach called nested sampling has been developed, whose distinguishing feature is the use of
amplitude space and preserve the correlations between polarisation observables. Unfortunately,
this method has a significantly longer run-time than the more conventional analysis methods.
Data parallelism and multithreading can be used to speed up the program quite effectively, and
studies were done into the most efficient solution. It was found that introducing multithreading
using OpenMP gave the fastest run-time at the dataset sizes that will likely be faced in analysing
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Figure 3. Preliminary results from CLAS data (colour online): Previously obtained results
(red squares) [7] are compared to the results from the nested sampling program (black circles).

pseudoscalar meson photoproduction experiments. Future work will be focused on analysing
combined datasets of multiple experiments and extracting observables in a way that retains the
constraints of their correlations.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022020 doi:10.1088/1742-6596/513/2/022020

6



Figure 4. Plot showing the posterior distributions of all 15 observables in one energy bin,
2.03 < W < 2.05 GeV (colour online). For each cosine bin, the resulting distribution is shown,
where brighter areas suggest the more likely values of the observable.
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