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ON THE OUTER AUTOMORPHISM GROUPS OF FINITELY

GENERATED, RESIDUALLY FINITE GROUPS

ALAN D. LOGAN

Abstract. Bumagin–Wise posed the question of whether every countable

group can be realised as the outer automorphism group of a finitely gener-

ated, residually finite group. We give a partial answer to this problem for
recursively presentable groups.

1. Introduction

Every group can be realised as the outer automorphism group of some group
[Mat89]. One can ask what restrictions can be placed on the groups involved.
Notably, Bumagin–Wise proved that every countable group Q can be realised as
the outer automorphism group of a finitely generated group GQ [BW05]. Several
other authors have achieved results in a similar vein (see, for example, [Koj88],
[GP00], [DGG01], [BG03], [FM05], [Min09]).

To prove their result, Bumagin–Wise construct GQ as the kernel of a short exact
sequence using a version of a Rips’ construction [Rip82]. Their proof also shows
that if Q is finitely presented then GQ can be taken to be residually finite. They
then pose the question: can every countable group Q be realised as the outer
automorphism group of a finitely generated, residually finite group GQ?

In this paper we give a partial answer to this question of Bumagin–Wise. Our
proof is based upon the construction of Bumagin–Wise and utilises an embedding
of Sapir [Sap14].

Theorem A. If Q is a finitely generated, recursively presented group then either Q
or Q× C2 can be realised as the outer automorphism group of a finitely generated,
residually finite group GQ.

This theorem admits a possible improvement: Osin asked if every finitely gener-
ated, recursively presentable group can be embedded as a malnormal subgroup of
a finitely presented group, and a positive answer to this question would allow us to
dispense with the Q×C2 possibility. Sapir has recently stated that his embedding
yields such a positive solution.

Theorem B. Suppose every finitely generated, recursively presented group Q can
be embedded as a malnormal subgroup of a finitely presented group HQ. Then
every finitely generated, recursively presented group Q can be realised as the outer
automorphism group of a finitely generated, residually finite group GQ.
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Outline of the paper. In Section 2 we prove a technical theorem, Theorem 2.6,
which classifies the outer automorphism group of mapping tori Hφ = HoφZ where
H has trivial centre and has no epimorphisms onto Z. In Section 3 we use this
technical result to obtain a way of “grabbing” a finitely generated subgroup of
Out(H), which is applied to prove our main theorems, Theorems A and B.

2. The outer automorphism groups of mapping tori

For φ ∈ Aut(H) an automorphism of H we shall write Hφ = H oφ Z for the
mapping torus 〈H, t; tht−1 = φ(h), h ∈ H〉 associated to φ. In this section we prove
Theorem 2.6, which is the main technical result of this paper. For H a group with
no epimorphisms onto Z and with trivial center, this theorem gives a description
of the outer automorphism group Out(Hφ) of a mapping torus Hφ. Theorem 2.6
forms the basis of the proof of Theorems A and B, which are the main theorems of
this paper.

The layout of this current section is as follows. We begin by proving, in Lemma 2.1,
that, because H has no epimorphisms onto Z, every automorphism of the mapping
torus Hφ fixes the subgroup H. We then use this to prove, in Lemma 2.4, that the
representatives for elements of Out(Hφ) can be taken to have a specific form. In
Section 2.4 we use the representatives given by Lemma 2.4 to prove Theorem 2.6.

2.1. Automorphisms fix the base group. Consider a mapping torus Hφ =
H oφ Z such that H has no epimorphisms onto Z. The following lemma appears in
a paper of Arzhantseva–Lafont–Minasyan [ALM14], although it is somewhat hidden
in the proof of their Proposition 2.1.

Lemma 2.1 (Arzhantseva–Lafont–Minasyan). Suppose H has no epimorphisms
onto Z. Then every automorphism of a mapping torus Hφ = H oφ Z maps H to
itself.

Proof. Consider the following composition of maps, where the first embedding is
the natural one of H into Hφ, where the map ψ : Hφ → Hφ is an automorphism of
Hφ, and where the final surjection is the natural one of Hφ onto Z by quotienting
out H.

H ↪→ Hφ
ψ−→ Hφ � Z

As H does not map onto Z, these maps compose to give the trivial map. Therefore,
Hψ ≤ H. Using the same argument with ψ−1, we see that Hψ−1 ≤ H and so
Hψ = H as required. �

Note that for H an arbitrary group, the automorphisms of a mapping torus Hφ =
H oφ Z which fix H form a subgroup AutH(Hφ) of Aut(Hφ), and this subgroup
contains all the inner automorphisms so there is an analogous subgroup OutH(Hφ)
of Out(Hφ). The work in the remainder of Section 2 can be viewed as studying this
subgroup OutH(Hφ) of Out(Hφ). Lemma 2.1 proves that OutH(Hφ) = Out(Hφ)
in our particular case.

2.2. The form of (outer) automorphisms. Consider a mapping torus Hφ =
H oφ Z = 〈H, t; tht−1 = φ(h), h ∈ H〉 such that H has no epimorphisms onto Z
and H has trivial center. Our main technical theorem, Theorem 2.6, follows from a
classification of the elements of Out(Hφ), that is, to prove the main technical the-
orem we begin by finding representative automorphisms for elements of Out(Hφ).
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The purpose of this current section, Section 2.2, is to prove Lemma 2.4, which gives
this classification.

We begin by proving that certain maps, which are used as representatives for
elements of Out(Hφ) in Lemma 2.4, define automorphisms of Hφ. There are two
forms these representatives take, and Lemma 2.2 considers the first form while
Lemma 2.3 considers the second form.

We shall write [h, k] = h−1k−1hk, and by δφ(h) we mean φ(δ(h)). We shall
write multiplication in G as gh and as g · h, with the latter notation being used
to ease any ambiguity occurring when considering the images of elements under
automorphisms, for example we would write g · φψ(h) · k. For K some group with

automorphism ψ ∈ Aut(K), we shall write ψ̂ for the element of Out(K) with
representative ψ. We shall write CK(g) to denote the centraliser of the element
g ∈ K.

Lemma 2.2. Let Hφ be a mapping torus of H. If δ ∈ Aut(H) is such that δ̂ ∈
COut(H)(φ̂) then δ induces an automorphism of Hφ in the following way, where g
is such that [δ, φ] = γg.

αδ : h 7→ δ(h) ∀h ∈ H
t 7→ gt

Proof. To see that αδ is a homomorphism note that it satisfies all the relators of
H, as αδ|H ∈ Aut(H), so it is sufficient to prove that αδ(th) = αδ(φ(h) · t) for all
h ∈ H. So, the left hand side is as follows.

αδ(th) = gt · δ(h)

= g · δφ(h) · t ∀h ∈ H

We now evaluate the right hand side as follows. Note that (1), below, is obtained
because g is such that δφγ−1g = φδ.

αδ(φ(h) · t) = φδ(h) · gt
= δφγ−1g (h) · gt(1)

= g · δφ(h) · t ∀h ∈ H
The left and right hand sides are equal, so αδ is a homomorphism.

To see that αδ is surjective, note that its restriction to H is surjective, and
further note that t 7→ gt for some g ∈ H so t is in the image.

To see that αδ is right-invertible, and so injective, we note that αδ−1 is also a
homomorphism and then prove that αδαδ−1 is trivial. So, αδ−1 is a homomorphism

as δ̂−1 ∈ COut(H)(φ̂) because δ̂ ∈ COut(H)(φ̂). Now, because [δ, φ] = γg we have

that [δ−1, φ] = γδ−1(g−1), which means that αδ−1(t) = δ−1(g−1) · t. Then, αδ−1 is
the right inverse of αδ as clearly αδαδ−1 fixes h for all h ∈ H while we have the
following.

αδαδ−1(t) = αδ−1(gt)

= δ−1(g) · δ−1(g−1) · t
= t

Therefore, αδ is injective. The proof of the lemma is complete. �

The second form which automorphisms can take is given by Lemma 2.3.
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Lemma 2.3. Let Hφ be a mapping torus of H. If δ ∈ Aut(H) is such that δ̂−1φ̂δ̂ =

φ̂−1 then δ induces an automorphism of Hφ in the following way, where g is such
that δ−1φδ = φ−1γg.

ζδ : h 7→ δ(h) ∀h ∈ H
t 7→ g−1t−1

Proof. To see that ζδ is a homomorphism note that it satisfies all the relators of
H, as ζδ|H ∈ Aut(H), so it is sufficient to prove that ζδ(th) = ζδ(φ(h) · t) for all
h ∈ H. So, the left hand side is as follows.

ζδ(th) = g−1t−1 · δ(h)

= g−1 · δφ−1(h) · t−1

We now evaluate the right hand side as follows. Note that (2), below, is obtained
because g is such that δφ−1γg = φδ.

ζδ(φ(h)t) = φδ(h) · g−1t−1

= δφ−1γg(h) · g−1t−1(2)

= g−1 · δφ−1(h)t−1

The left and right hand sides are equal, so ζδ is a homomorphism.
To see that ζδ is surjective, note that its restriction to H is surjective, and further

note that t 7→ g−1t−1 for some g ∈ H so t is in the image.
In order to prove that ζδ is right-invertible, and so injective, we shall prove

that α(δ2γ−1
g ) is an automorphism of Hφ and that ζ2δ γ

−1
g = α(δ2γ−1

g ). We begin by

evaluating [δ2γ−1g , φ] as follows, where (3) is obtained because δ−1φ−1δ = γ−1g φ,

while φδφγ−1φ(g) = δ yields (4).

[δ2γ−1g , φ] = γgδ
−2φ−1δ2γ−1g φ

= γgδ
−1(δ−1φ−1δ)δφγ−1φ(g)

= γgδ
−1γ−1g (φδφγ−1φ(g))(3)

= γgδ
−1γ−1g δ(4)

= γgγδ(g−1) = γg·δ(g−1)

This implies that δ̂2γ−1g ∈ COut(H)(φ̂), so by Lemma 2.2 we have that α(δ2γ−1
g ) ∈

Aut(Hφ). Note that it also implies the following.

α(δ2γ−1
g )(t) = g · δ(g−1) · t

Then, to prove that ζ2δ γ
−1
g = α(δ2γ−1

g ), note that as their restriction to H is identical

and because ζ2δ is a homomorphism, it is sufficient to prove that ζ2δ γ
−1
g (t) = g ·

δ(g−1) · t. We have the following.

ζ2δ γ
−1
g (t) = ζδγ

−1
g (g−1t−1)

= γ−1g
(
δ(g−1) · tg

)
= g · δ(g−1) · t

We conclude that ζ2δ γ
−1
g = α(δ2γ−1

g ), so the lemma holds. �



Out(G) FOR FINITELY GENERATED, RESIDUALLY FINITE GROUPS 5

Classifying the elements of Out(Hφ). We shall now prove Lemma 2.4, which
classifies the coset representatives for Out(Hφ). Proving this lemma is the purpose
of this current section, Section 2.2.

Lemma 2.4. Suppose Hφ = H oφ Z is a mapping torus such that H has no

epimorphisms onto Z. Then every element ψ̂ of Out(Hφ) has a representative in
Aut(Hφ) of the form αδ or of the form ζδ. Moreover, every map αδ and ζδ defines
an automorphism of Hφ.

Proof. By Lemma 2.2 and Lemma 2.3, each of the prospective representatives αδ
and ζδ define automorphisms of Hφ. Therefore, we prove, below, the first part of
this lemma, that every element of Out(Hφ) has a representative in Aut(Hφ) of one
of the stipulated forms.

We begin by proving that if ψ̂ ∈ Out(Hφ) then there is a representative ψ ∈
Aut(Hφ) of the following form, where g ∈ H and δ ∈ Aut(H).

ψ : h 7→ δ(h) h ∈ H(5)

t 7→ gtε

To see this, consider a representative ψ ∈ ψ̂. Note that ψ(H) = H by Lemma 2.1,
thus the restriction of ψ toH is an automorphism δ ofH. Therefore, asHφ = HoφZ
is a semidirect product, the representative ψ ∈ Aut(Hφ) can be chosen to be such
that ψ(h) = δ(h) for all h ∈ H, and ψ(t) = gti where g ∈ H and δ ∈ Aut(H). We
shall now prove that the number i has absolute value one, |i| = 1. This completes

our proof that a representative ψ ∈ ψ̂ can be chosen to have the form (5). To
see that |i| = 1, note that, because ψ is an automorphism, there exists a word W
over H and gti which represents t, W (gti, H) = t. However, as Hφ is a semidirect
product this word can be written as tijk for some k ∈ H, j ∈ Z. Thus, t = tijk,
and so |i| = 1 as required.

We shall use the form (5) to prove the lemma. We investigate the cases ε = 1
and ε = −1 separately.

Suppose ε = 1. It is sufficient to prove that δφ = φδγg holds. We have the
following.

ψ(th) = ψ (φ(h) · t) ∀h ∈ H
gt · δ(h) = φδ(h) · gt ∀h ∈ H

g · δφ(h) · t = φδ(h) · gt ∀h ∈ H

Then, δφ = φδγg holds, so ψ = αδ.
Suppose ε = −1. It is sufficient to prove that δ−1φδ = φ−1γ−1g holds (note that

g has been replaced with g−1 in the definition of ζδ, as ψ(t) = gt−1). We have the
following.

ψ(th) = ψ (φ(h) · t) ∀h ∈ H
gt−1 · δ(h) = φδ(h) · gt−1 ∀h ∈ H

g · δφ−1(h) · t−1 = φδ(h) · gt−1 ∀h ∈ H

Then, δφ−1γ−1g = φδ holds, which yields the required equality, so ψ = ζδ. This
completes the proof of the lemma. �
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2.3. The subgroup Out0(Hφ). Having proven Lemma 2.4, we know, in a certain
sense, what the elements of Out(Hφ) are, where Hφ = H oφ Z is a mapping torus

and H does not map onto Z. In Section 2.4, below, we analyse the group Out0(Hφ)
consisting of the elements of the form α̂δ, where αδ was defined in Lemma 2.2,
under the additional assumption that H has trivial center, and this analysis yields
Theorem 2.6. Note that the purpose of Section 2 is to prove Theorem 2.6, and this
result forms the basis of the proofs of the main theorems, Theorems A and B.

We shall now explain why we do not consider the automorphisms ζδ, but instead
restrict our investigations to the subgroup Out0(Hφ) of Out(Hφ). If there does not

exist any automorphisms of the form ζδ then Out0(Hφ) = Out(Hφ). Otherwise,

noting that the αδ maps t to g1t while ζδ′ maps t to g−12 t−1 for some g1, g2 ∈ H,

we see that Out0(Hφ) is an index two subgroup of Out(Hφ). Therefore, applying
Lemma 2.3, which provides conditions for the existence of a map ζδ, we have the
following lemma.

Lemma 2.5. The subgroup Out0(Hφ) consisting of the outer automorphisms of the

form α̂δ has index two in Out(Hφ) if φ̂ is conjugate to φ̂−1 in Out(H). Otherwise,

Out0(Hφ) = Out(Hφ).

This lemma is why in Theorem 2.6 we restrict our analysis to Out0(Hφ). Note
that the automorphisms of the form αδ are such that the following hold. We use
these equalities throughout the remainder of Section 2.

αδαξ = αδξ

α−1δ = αδ−1

2.4. The outer automorphism groups of certain mapping tori. Take Hφ =
H oφ Z to be a mapping torus with base group H and associated automorphism
φ ∈ Aut(H), and also assume that H has trivial center and has no epimorphisms
onto Z. In this section we prove Theorem 2.6, which gives a description of Out(Hφ)

for such a group Hφ. Recall that for K a group and ψ ∈ Aut(K), ψ̂ denotes the
element of Out(K) with representative ψ, and that CK(g) denotes the centraliser
of the element g ∈ K.

Theorem 2.6. Let Hφ = H oφ Z be a mapping torus with base group H and
associated automorphism φ. Assume H has trivial center and has no epimorphisms
onto Z. Then we have the following isomorphism,

Out0(Hφ) ∼=
COut(H)(φ̂)

〈φ̂〉

where either Out0(Hφ) = Out(Hφ) or φ̂ is conjugate to φ̂−1 in Out(H), whence

Out0(Hφ) has index two in Out(Hφ).

Proof. By Lemma 2.5, Out0(Hφ) has index one or two in Out(G), and further has

index two precisely when φ̂ is conjugate to φ̂−1 in Out(H), as required. We shall

now prove that Out0(Hφ) is isomorphic to COut(H)(φ̂)/〈φ̂〉, which completes the
proof of the theorem.
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Consider the following map. We shall prove that it is a well-defined surjective

homomorphism with kernel 〈φ̂〉, which proves the theorem.

η : COut(H)(φ̂)→ Out0(Hφ)

δ̂ 7→ α̂δ

Note that the map η is surjective by the definition of Out0(Hφ), and it is a homo-
morphism because αδαξ = αδξ.

To see that η is well-defined, suppose that δ2 = δ1γk. Note that [δ1, φ] =
γkg2·φ(k−1) where g2 is such that [δ2, φ] = γg2 . Then αδ2(h) = αδ1γk(h) for all
h ∈ H, while αδ2(t) = g2t and we have the following.

αδ1γk(t) = k−1kg2 · φ(k−1) · tk
= g2t

We thus have that αδ2 = αδ1γk, so α̂δ2 = α̂δ1 as required.

Finally, to prove that the map η has kernel 〈φ̂〉 begin by supposing that αδ
is inner, and so αδ = γkti for some k ∈ H and i ∈ Z. This means that h =

t−ik−1 · δ−1(h) · kti for all h ∈ H, so φi(h) = δ−1γk(h) for all h ∈ H, and so δ̂ = φ̂j

in Out(H) for some j ∈ Z. Therefore, ker η ≤ 〈φ̂〉. On the other hand, αφ is inner

because αφ(h) = φ(h) = tht−1 while αφ(t) = t. Therefore, 〈φ̂〉 ≤ ker η. Thus, we

conclude that αδ ∈ Inn(Hφ) if and only if δ̂ ∈ 〈φ̂〉. �

3. Proof of Theorem A

In this section we apply Theorem 2.6 to prove the main results of this paper,
Theorems A and B.

Sapir’s embedding. To apply Theorem 2.6 we need to have some knowledge
or control over the centralisers of elements in Out(H). To do this, we use an
embedding of Sapir [Sap14, Theorem 5.1]. If K is a finitely generated, recursively
presented group and x ∈ K, then Sapir’s embedding gives a finitely presented
group P containing K as a subgroup and such that CK(x) = CP (x). It is an
open problem of Osin that every recursively presented group can be embedded as
a malnormal subgroup of a finitely presented group [Sap14]. Sapir remarks that
in his embedding K is malnormal in P , hence the open problem of Osin has a
positive solution, and that this will be proven in his next paper. The proofs of
Theorems A and B both apply Sapir’s embedding. Note that Theorem B can
be rephrased as “if Osin’s problem admits a positive solution then every finitely
generated, recursively presentable group can be realised as the outer automorphism
group of a finitely generated, residually finite group”.

The Bumagin–Wise question. We now prove two theorems, which combine to
prove Theorem A and the second of which yields Theorem B. The first theorem,
Theorem 3.1, gives a partial answer to Bumagin–Wise’s question for certain groups,
while the second theorem, Theorem 3.2, gives a complete answer to Bumagin–Wise’s
question for certain groups.

The proofs of Theorems 3.1 and 3.2 both use the fact that a split extension of
a finitely generated, residually finite group by a residually finite group is residually
finite [Mal56]. Hence if the base group H is a finitely generated, residually finite
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group then the mapping torus Hφ = H oφ Z is also a finitely generated, residually
finite group.

Recall that the group Out0(Hφ), as defined in Section 2.3, is the subgroup
of Out(Hφ) consisting of the elements of the form α̂δ, where αδ is defined in
Lemma 2.2.

Theorem 3.1. Let Q be a finitely generated, recursively presented group. Then
there exists a finitely generated, residually finite group G such that Out(G) ∼= Q×
C2.

Proof. Define Q2 = Q×C2. As Q is finitely generated and recursively presented, we
can use Sapir’s embedding to construct a finitely presented group P which contains
Q2 and such that CP (k) = Q2 where k is the generator of the C2 factor of Q2. As P
is finitely presented, there exists a finitely generated, residually finite group H such
that Out(H) ∼= P [BW05]. Note that this group H is generated by elements of finite
order, and so does not map onto Z, and also note that H is a non-cyclic subgroup
of a finitely presented C ′(1/6) group and therefore has trivial center [BW05]. Thus,
Theorem 2.6 is applicable to Hφ = H oφ Z for all φ ∈ Aut(H).

Let φ̂ be the element of Out(H) associated to k ∈ Q2. Thus, COut(H)(φ̂) ∼= Q2.

Form Hφ = H oφ Z for some φ ∈ φ̂. Then Out0(Hφ) ∼= Q by Theorem 2.6. Note
that Hφ is finitely generated, and residually finite [Mal56].

To complete the theorem it is sufficient to prove that Out(G) = Out0(Hφ)×C2.
To see this, note that k = k−1. Thus, the automorphism ψ : h 7→ h, t 7→ t−1 can
be taken as the coset representative for Out(Hφ)/Out0(Hφ). This automorphism
has order two and generates a normal subgroup of Out(Hφ). Therefore, taking

G = Hφ, Out(G) = Out0(G)× 〈ψ̂〉 ∼= Q× C2, as required. �

The following theorem, Theorem 3.2, allows us to apply a positive solution of
Osin’s problem to get a positive solution to Bumagin–Wise’s question for finitely
generated, recursively presented groups. This is because if Q is finitely generated
and recursively presented then the conditions of Theorem 3.2 hold if, for example,
Q×C3 embeds malnormally into a finitely presented group, and a positive solution
to Osin’s question gives us this embedding.

Theorem 3.2. Let Q′ = Q× C where C = 〈k〉 is cyclic of order greater than two
(possibly infinite). Suppose that Q′ can be embedded into a finitely presented group
P where k is not conjugate to k−1 in P . Then there exists a finitely generated,
residually finite group G such that Out(G) ∼= Q.

Proof. WriteH for the finitely generated, residually finite group such that Out(H) ∼=
P [BW05], and, as in the proof of Theorem 3.1, take φ̂ to be the element of
Out(H) associated to k ∈ Q′ and form the finitely generated, residually finite
group G ∼= H oφ Z such that Out0(G) ∼= Q′. Finally, because k is not conjugate

to k−1 in P , Lemma 2.5 allows us to conclude that Out(G) = Out0(G) ∼= Q, as
required. �

We shall now prove Theorems A and B.

Proof of Theorem A. Theorem A follows immediately from combining Theorems 3.1 and 3.2.
�
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Note that if Osin’s open problem has a positive solution, so every finitely gener-
ated, recursively presented group is a malnormal subgroup of a finitely presented
group, then we can use Theorem 3.2 and disregard Theorem 3.1 to obtain Theo-
rem B.

Proof of Theorem B. If Q is a finitely generated, recursively presentable group
then, by the assumptions of the theorem, Q×C3 embeds malnormally into a finitely
presented group P . Theorem B then follows from Theorem 3.2. �

Recursive presentability. It is natural to ask how far Theorem B goes towards
solving Bumagin–Wise’s question, assuming that Osin’s problem has a positive
solution and that the groups Q in the statement of the question are additionally
assumed to be finitely generated. The “best possible” case would be that every
finitely generated group which occurrs as the outer automorphism group of a finitely
generated, residually finite group is recursively presentable, and so Theorem B
would be the complete solution to Bumagin–Wise’s question for finitely generated
groups. However, the following proposition, Proposition 3.3, implies that this case
does not happen. We then prove, in Proposition 3.5, that if the groups GQ in the
statement of Bumagin–Wise’s question are additionally assumed to be recursively
presentable then Theorem B is the complete solution to Bumagin–Wise’s question
for finitely generated groups.

Proposition 3.3. There exists a finitely generated, non-recursively presentable
group Q which can be realised as the outer automorphism group of a finitely gener-
ated, residually finite group GQ.

We now explain the proof of Proposition 3.3. Note that there exists a finitely
generated, residually finite group R which is not recursively presentable (Bridson–
Wilton [BW14] point out that this follows from work of Slobodskǒı[Slo81]). Using
the existence of such a non-recursively presented group R, a forthcoming paper of
the author (see also the author’s PhD thesis [Log14, Corollary 4.3.16]) constructs
a finitely generated, residually finite group GR̂ whose outer automorphism group
is finitely generated but not recursively presentable (indeed, R is embedded with
finite index into Out(GR̂)). This proves Proposition 3.3. Note, however, this group
GR̂ is itself not recursively presentable.

We now provide a positive answer to the following question: assuming Osin’s
problem has a positive solution, is it true that a finitely generated group Q can
be realised as the outer automorphism group of a recursively presented, finitely
generated, residually finite group GQ if and only if Q is recursively presentable?
That is, is Theorem B is the complete solution to this restricted version of Bumagin–
Wise’s question? We provide a positive answer by combining Theorem B with
following proposition, Proposition 3.4, which is due to Ashot Minasyan in a private
communication with the author. Proposition 3.4 also explains why the group GR̂
in the author’s construction, cited above, is not recursively presentable. We state
the proposition, give a sketch proof of it, and then combine it with Theorem B to
prove Proposition 3.5.

Proposition 3.4 (A. Minasyan). Suppose that G is a finitely generated, recur-
sively presentable group whose outer automorphism group Out(G) is also finitely
generated. Then Aut(G) and Out(G) are recursively presentable.
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Proof. Assume that G and Out(G) are finitely generated, and that G is recursively
presented. Note that this implies that Aut(G) is finitely generated, as it is an ex-
tension of Inn(G) by Out(G), and both Inn(G) ∼= G/Z(G) and Out(G) are assumed
to be finitely generated. We shall just prove that Aut(G) is recursively presentable;
this implies that Out(G) is recursively presentable because G and Out(G) are both
assumed to be finitely generated.

To prove that Aut(G) is recursively presentable, we shall start with the gener-
ators of Aut(G) and construct an algorithm which lists all the relators of Aut(G).
Let ψ1, . . . , ψm be a generating set for Aut(G) and let x1, . . . , xn be a generating
set for G. We can assume that for each i, j we know words uij and vij , over the

alphabet {x1, . . . , xn}±1, such that ψi(xj) = uij and ψ−1i (xj) = vij , because this is
a finite collection of words and we are only proving the existence of an algorithm.
Now, since G is recursively presented, there is a (partial) algorithm A which takes
on input a pair of words, (w1, w2) say, over {x1, . . . , xn}±1 and stops, outputting
“yes” if and only if w1 = w2 in G (this is the algorithm A which re-writes w1 in all
possible ways and compares the result with w2).

To obtain an algorithm listing all defining relators of Aut(G), start enumerating
all words Ψ1,Ψ2, . . . over {ψ1, . . . , ψm}±1. At the same time, for every k check
if Ψk(xj) = xj in G for all j = 1, . . . , n (by writing Ψk(xj) as a word W over
the generators {x1, . . . , xn}±1 in terms of uij and vij , and then inputting the pair
(W,xj) into A). If Ψk = 1 in Aut(G) then we will verify this in finite time, and
so we can add Ψk to the list of defining relators of Aut(G). Thus we have an
algorithm listing all relators in Aut(G), and conclude that Aut(G) is recursively
presented. �

Proposition 3.4 and Theorem B can be combined to yield the following result.
Note that combining Proposition 3.4 and Theorem A yields a similar result which
is independent of Osin’s problem.

Proposition 3.5. Suppose every finitely generated, recursively presented group Q
can be embedded as a malnormal subgroup of a finitely presented group HQ. Then
a finitely generated group Q can be realised as the outer automorphism group of a
recursively presented, finitely generated, residually finite group GQ if and only if Q
is recursively presentable.
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[DGG01] M. Droste, M. Giraudet, and R. Göbel, All groups are outer automorphism groups of

simple groups, J. Lon. Math. Soc. 64 (2001), no. 3, 565–575.

[FM05] R. Frigerio and B. Martelli, Countable groups are mapping class groups of hyperbolic
3-manifolds, Math. Res. Lett. 13 (2006), 897-910 (2005).
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