

Ko, H., Jin, J., and Keoh, S. L. (2016) Secure service virtualization in IoT by
dynamic service dependency verification. IEEE Internet of Things Journal,
(doi:10.1109/JIOT.2016.2545926).

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/121294/

Deposited on: 03 August 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/121294/
http://eprints.gla.ac.uk/121294/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Secure Service Virtualization in IoT
by Dynamic Service Dependency Verification

Hajoon Ko
Harvard University

hrko@g.harvard.edu

Jiong Jin
Swinburne University of Technology

jiongjin@swin.edu.au

Sye Loong Keoh
University of Glasgow

Syeloong.keoh@glasgow.ac.uk

Abstract—Virtualizing Internet of Things (IoT) services is
a concept of dynamically building customized high-level IoT
services that rely on the real time data streams flowing from low-
level standalone IoT devices. IoT service virtualization is essential
when a myriads of IoT devices can get on-line, interact with each
other, exchange data and based on them create one’s own service.
Especially, when virtualization occurs across multiple externals
domains, it’s crucial for clients to verify the source of virtual
services, i.e. whether they are built based on authentic original
service sources. Also, original services sources must be constantly
aware of the identity of entities who (recursively) virtualize their
services. To address these issues, this paper proposes IoT Service
Dependency Tree (SDT) validation scheme. SDT uses service
dependency trees and dependency signature trees, which enable
clients to validate the original sources of a virtual IoT service,
verify its service dependency relationships, and have original
service sources to be constantly notified of the list of entities
(recursively) virtualizing their services. This paper explains SDT
scheme and presents use cases for IoT service virtualization where
SDT can be applied. Our experimental analysis shows SDT is
scalable for practical use.

Keywords—IoT security, IoT service virtualization, service de-

pendency

I. INTRODUCTION

Internet of Things (IoT) research is of special interest to
academia and industry. In an academic context, IoT opens
up new research grounds to explore, including fields such
as network systems, cloud computing, data mining, machine
learning, social networking and security & privacy. In the
business context, IoT promises a highly productive business
ecosystem which attracts a great number of application de-
velopers, businessmen and IT service providers worldwide, to
automate complex cyber-physical systems in order to be cost-
effective. Proliferating IoT networks and digital devices will
provide smarter services and greater convenience to humans
than in the past, thus creating a new era of technology.

As the number of IoT devices increases, multiple IoT
devices are likely to collaborate to address high-level issues
such as comprehensive data aggregation, analysis and pro-
cessing. As a consequence, IoT devices providing services
can be dynamically composed or virtualized [1]–[3], hence
facilitating re-use of IoT services. IoT virtualization is a
concept of dynamically building customized high-level IoT
services which rely on the real-time I/O data streams from low-
level IoT sensors/actuators. An IoT device having access to
the Internet can potentially interact with any other IoT devices
in the world, exchange data with them, and thereby creating

a customized virtual service for its own clients. Virtualized
IoT services provide scalability to build large-scale pervasive
systems, and they can be dynamically composed and disbanded
according to the requirements and context.

Meanwhile, security becomes complex because a virtual-
ized IoT service is a composition of many IoT devices. A
client who wishes to use a virtualized IoT service needs to:
(1) authenticate the identity of the virtualized IoT service (2)
verify if it has the capability of providing the claimed service.
In particular, virtualized IoT services may have complicated
service dependency, and virtualization may occur not only
within a closed local network but through external open
networks governed by mutually untrusted administrators or
organizations [4]. Furthermore, virtualized IoT services may be
re-virtualized in a recursive manner. To this end, it is important
that a client who wishes to use a virtualized IoT service has a
comprehensive view of the the virtual IoT service’s underlying
service composition, identifies external IoT services it depends
on and verifies their real-time service dependency association,
so that a virtual IoT service cannot falsely overstate its an
association with other IoT services as its underlying service.

To address these security problems of virtual IoT services,
this paper proposes IoT Service Dependency Tree (SDT)
validation mechanism. In SDT, each virtual IoT service node
creates its own service dependency tree that represents which
external IoT service nodes its virtual service depends on. A
client of a virtual IoT service can validate the virtual service
by sending a random challenge number (nonce) to the virtual
IoT service node and get it dynamically signed by all its
depending lower-level IoT service nodes. Finally, the virtual
IoT service node returns to the client a dynamically generated
light-weighted dependency signature tree, as a proof of autho-
rization. Then the client verifies the signatures in the tree and
compares the tree’s structural consistency with the virtual IoT
service node’s previously declared service dependency tree.
SDT ensures that a virtual IoT service node cannot overstate
its service composition to its client or higher-level virtual
IoT service node by falsely declaring a service dependency
tree branches it does not have. Thus, each client can verify
the promised service composition of a virtual IoT service
node. Furthermore, SDT enforces each virtual IoT service
node to non-repudiably notify its identity to its all depending
(physical/virtual) IoT service nodes in a dynamic manner,
therefore every recursive step of virtualization is transparently
visible to all its depending IoT service nodes.

This paper’s contributions are as follows:

 Office Building
 Smart IoTs
(Physical IoT Service)

 Department Store
 Smart IoTs
(Physical IoT Service)

 School Building
 Smart IoTs
(Physical IoT Service)

Third Party Building Safety Agency’s
 Emergency Detector
 (Virtual IoT Service)

 Firefighter’s PDA
 (Client)

Policeman’s PDA
 (Client)

(service provision) (service provision)

(dependent service)

(dependent service)
(dependent service)

- Smart IoTs: WiFi AP’s location service, surveillance camera, CO2/heat sensor,
 fracture detector, etc)

Fig. 1: A single-level IoT virtualization for smart building
safety management

• Proposing SDT as a mechanism for clients to verify
a virtual IoT service by comparing its service depen-
dency tree with its dynamically created dependency
signature tree.

• Allowing each physical IoT service node to be dy-
namically aware of the identity of all recursive virtual
IoT service nodes who virtualize its service, which
promotes transparency in service virtualization.

This paper is organized as follows: Section II presents use
cases of virtual IoT services and their security requirements.
Section III explains SDT validation mechanism. Section IV
shows and discusses experimental results. Section VI presents
related work. Section VII concludes the paper.

II. USE CASES AND SECURITY REQUIREMENTS

A. IoT Virtualization Use Case

Figure 1 describes a scenario of a city’s integrated smart
building safety management system, where virtual IoT ser-
vices can be deployed. Each building (office, department
store, school) has its own smart building system with smart
sensors managed by their local administrator. While some
smart building functionalities such as energy consumption
monitoring, air conditioning or light failure detection can be
regarded as the building’s exclusive local services, other safety
functionalities such as detecting earthly vibration [5], structural
defects, diffusion of toxic chemicals, potential explosives [6]
or malicious human activities [7] regard people’s life and in
case of emergency these services must be made available to
external fire-fighters or policemen. Figure 1 describes such a
case where each building’s particular services are exported to
the external third party, a building safety agency. The agency’s
emergency detector collects real-time data for each building’s
condition, analyses them and sends the results to the fire-
fighters or policemen’s PDA, which can be utilized for their
more efficient rescue activity. In this case, each building’s
smart IoT sensors are physical IoT service nodes, while the
third party agency’s emergency detector is a virtual IoT service
node whose service depends on other lower-level physical
IoT service nodes. In particular, the emergency detector’s

Building A

Safety Agency 1 Emerg. Detector

 Ambulance Policeman’s PDA

(service provision) (service provision)

(dependent service)

(dependent service)

Building B Building C Building D

Safety Agency 2 Emerg. Detector

Building E Building F

Police Station’s Global Monitor 2nd level
 virtual IoT

 1st level
 virtual IoT

(dependent service)

Fire-fighter’s PDA

Fig. 2: Multi-level IoT virtualization

service depends on three lower-level IoT services from the
office, department store and school buildings 1. We denote
this service dependency structure as the emergency detector’s
service dependency tree, whose height is 1. The root node is
the emergency detector, and three leaf nodes are the office,
department store and school’s physical IoT sensor. In reality,
the emergency detector may have a direct communication with
each building’s physical IoT sensor(s), or may have an indirect
connection via each building’s representative central server
which directly communicates and collects data from physical
IoT sensors in its building.

While Figure 1 is a case of single-level IoT virtualization,
Figure 2 describes an example of two-level IoT virtualization.
This example supposes there exist many independent third-
party safety agencies, each of which host a virtual IoT service
based on its assigned set of buildings. The data of emergency
detectors from all independent safety agencies finally converge
to the police station’s global emergency monitor as the second-
level virtual IoT service node, which provides service to its
clients such as policemen, fire-fighters and ambulance crews.
In this paper, a physical IoT service node denotes a service
device at the leaf node in a service dependency tree, whereas
a virtual IoT service node refers to any none-leaf nodes in the
dependency tree.

B. Threat Model

In our threat model, the adversary is a dishonest virtual IoT
service which overstates its underlying service composition by
claiming itself to have a mutually agreed association with some
external IoT service(s) which it doesn’t have. An adversary
could also capture and replay SDT, claiming that it has the
capability of providing a particular virtual IoT service. In this
way, a victim client will be tricked into believing the adversary
as a verified virtual IoT service.

C. Security Requirements

As in Figure 1, in order for the emergency detector to
host its virtual IoT service, it is necessary that each building’s
(office, department store, school) IoT sensors, or their owners,
agree to export their serviced data stream to the emergency
detector. In this scenario, the fire-fighter or policeman, as

1Although each building will have multiple physical IoT sensors, for
simplicity in this explanation we regard building as a single physical IoT
service node.

a client of the emergency detector, has to perform three
security verifications on their virtual IoT service node: (1)
to authenticate the server’s (emergency detector) identity, (2)
to dynamically verify if the emergency detector, as a virtual
IoT service node, has a mutually agreed service dependency
association with its depending IoT service nodes: office, de-
partment store and school’s IoT services. Furthermore, in case
of multi-level IoT virtualization, (3) each physical IoT service
node must be aware of the identity of all higher-level virtual
IoT service nodes whose services depend on it (i.e. identity of
non-leaf nodes in service dependency trees).

Issue (1) can be addressed by issuing digital certificates to
each (physical/virtual) IoT service node based on Public Key
Infrastructure (PKI), supporting revocation techniques such as
Certificate Revocation List (CRL) [8] or On-line Certificate
Status Protocol (OCSP) 2. We address issue (2) and (3) by
using SDT mechanism (see Section III). Especially, SDT
ensures that a virtual IoT service node cannot lie to its client
or higher-level virtual IoT service node by falsely declaring
a service dependency tree it does not have, thus each client
can verify the service integrity of each virtual IoT service
node. Furthermore, SDT enforces each virtual IoT service
node to non-repudiably notify its identity to its all depending
(physical/virtual) IoT service nodes, therefore each step of IoT
service virtualization is transparently visible to all its lower-
level IoT service nodes.

We generalize the aforementioned three security issues into
the following security requirements for IoT virtualization:

• A client must be able to authenticate the identity of
the (physical/virtual) IoT service node it is communi-
cating with.

• A client must be able to validate his communicating
virtual IoT service node’s declared service dependency
tree in real-time, in order to verify its service integrity.

• (Physical/virtual) IoT service nodes comprising a ser-
vice dependency tree must be able to authenticate each
other’s identity.

• In a service dependency tree, a higher-level virtual IoT
service node must be able to validate its lower-level
virtual IoT service node’s declared service dependency
trees.

• In a service dependency tree, a physical IoT service
node or an intermediate virtual IoT service node must
be aware of the identity of all higher-level virtual IoT
service nodes whose services depend on it (i.e. all
parent nodes).

III. SERVICE DEPENDENCY TREE (SDT) VALIDATION
MECHANISM

A. SDT Overview

This section describes SDT validation mechanism as a
solution for the security requirements illustrated in Section II.
SDT comprises 5 protocols: (1) certificate issuance, (2) service
dependency tree creation, (3) top-level validation of a service

2http://www.rfc-editor.org/rfc/rfc6960.txt

dependency tree, (4) recursive validation of a service depen-
dency tree, and (5) revocation of a service dependency.

In our proposed SDT validation scheme, a virtual IoT
service node informs its clients of its underlying service
composition by creating and sending its own service depen-
dency tree, which represents the complete view of its service
dependency with its underlying external services. An example
of a service dependency tree is Fig. 1 or Fig. 1 with the topmost
client nodes (Firefighter’s PDA, Policeman’s PDA, Ambu-
lance) removed. The client validates the service dependency
tree by sending a random challenge number (nonce) to the
virtual IoT service node, which has to be dynamically signed
by all its depending lower-level IoT service nodes previously
declared in its service dependency tree. The final output is a
dependency signature tree. The client verifies it against the
virtual IoT service’s previously declared service dependency
tree. If the verification is successful, the virtual IoT service is
verified.

B. Certificate Issuance

Certificate Issuance

CA : Certificate authority
S : IoT (physical/virtual) service node

1) CA : CERTs = Sign(Privca , hPubs , Infosi)
CA ! S : hCERTsi

Fig. 3: Issuing an IDC and AC(s) to devices

Each (physical/virtual) IoT service device is issued a PKI
certificate by its owner, administrator or a trusted authority, as
described in Figure 3. Each service node uses its certificate
to authenticate its identity either to its clients during service
provision or to another (physical/virtual) service node during a
service dependency tree creation (see Section III-G). For cer-
tificate issuance, Standard X509 certificates can be used with
ECDSA [9] signatures, whose key size and the required CPU
cycles are much less than RSA signatures and thus suitable
for resource-constrained IoT devices that will participate in
generating dependency signature trees (see Section III-F).

C. Creating a Service Dependency Tree

Figure 4 describes how two IoT service nodes create a
service dependency. S denotes a higher-level IoT service node
who will import service stream from Sl , a lower-level service
node. For example, Sl ’s sensed environmental data will flow to
S , who uses it to create its own higher-level virtual services.
Note that in Figure 4, S is always a virtual IoT service
node, while Sl can be either a virtual or physical IoT service
node. In Step 1, S and Sl create an encrypted communication
channel and perform standard PKI-based (e.g. DTLS) mutual
authentication by using their certificates. In Step 2, S requests
Sl for creating a service dependency chain between them. In
Step 3, Sl declares its own service dependency tree for its
service stream to be exported to S , who in turn validate Sl ’s
declared service dependency tree in real time, by running Top-
level Validation protocol in Fig. 5 (see Section III-D). In Step
4, Sl sends S ’s certificate to its directly lower-level IoT service
nodes, who in turn recursively send it to their own lower-level

http://www.rfc-editor.org/rfc/rfc6960.txt

Service dependency tree - Creation protocol

S : A higher-level IoT service node in a dependency tree
Sl : A lower-level IoT service node in a dependency tree
S*

ll : Sl’s all recursively lower-level IoT service nodes

1) S $ Sl : PKI-based mutual authentication by using their
CERTs and CERTsl

2) S ! Sl : Request for creating a service dependency tree
[Sl ! S]

3) S $ Sl : S verifies the service dependency tree(s) of Sl

by running Fig. 5, where S := Sl , C := S

4) Sl ! S*
ll : CERTs (recursively notify S ’s identity to Sl ’s

all lower-level IoT service nodes)

5) S $ Sl : Sustain this channel for future’s dynamic
service dependency tree validation for [Sl ! S]

Fig. 4: Creation of an IoT service dependency tree [Sl ! S]
between service node Sl and S (i.e. S depends on Sl)

IoT service nodes. This step is to notify the identity of S

to all its recursively depending IoT service nodes, to meet
security requirement 5 in Section II-C. In Step 5, S and Sl

have successfully created a service dependency chain between
them and S defines its service dependency tree, accordingly.
S and Sl maintain their current session to serve S ’s future’s
service dependency tree validation request made by S ’s future
clients or higher-level IoT virtual service nodes.

Note that Sl can allow virtualizing its service to other
multiple virtual IoT service nodes simultaneously, which are
not part of S ’s service dependency tree because S ’s virtual
service provision does not depend on them.

D. Top-level Validation of a Service Dependency Tree

Figure 5 describes how a client (C) dynamically validates
a virtual IoT service node’s (S) declared service dependency
tree in real time. As a high-level description, the virtual
IoT service node declares its service dependency tree to the
client via an established encrypted channel. Then the client
challenges the virtual service node by sending a nonce, which
must be recursively signed by all non-root service nodes in
the declared dependency tree. In the end, the virtual service
node returns the generated dependency signature tree, which
is to be verified by the client. In Step 1, C and S create an
encrypted communication channel, and C authenticates S ’s
identity by using standard PKI-based authentication. In Step
2, C requests S for validating its service dependency tree. In
Step 3, S declares its service dependency tree and sends to C

the certificates of all (physical/virtual) IoT service node nodes
in its tree. In Step 4, C sends a random number, noncec , which
must be signed by all service nodes in S ’s tree in a top-down
manner. In Step 5, S appends a magic number MAGSDT to
the client’s noncec , signs it and broadcasts a copy of it to
its every immediate child node (Sj) in its service dependency
tree, by using the channel created from Fig. 4, step 5.

In specific, S runs Fig. 6 with its immediately lower-level
IoT service nodes in order to deliver SDT validation message

Service Dependency Tree - Top-level Validation protocol

S : Top-level IoT virtual service node
C : Client
Sign(Privs , hdatai) : The signature for data signed by

S ’s private key Privs

MAG

SDT

: A publicly known high-entropy magic
number for SDT signature message

1) C $ S : PKI-based server authentication by using CERTs

2) C ! S : The client (C) requests the service node (S) for
service dependency tree validation

3) S : L = {Sj | S depends on a lower-level service node Sj}
: M = {CERTSj |Sj 2 L}
: D = {Declare its service dependency tree(s)}

S ! C : hM ,Di

4) C ! S : hnonceci

5) S : ⇡s = Sign(Privs , hnoncec ||MAGSDT i)
: Qs = hnoncec ,⇡si

S ! Si : Send hQsi to every Sj 2 L

(i.e. go to Fig. 6, Step 1, where Sl := S ,Sll := Sj)

6) S Si : Receive hTsj i from every Sj 2 L

(i.e. return from Fig. 6, Step 4)

7) S : Ts = h⇡s, {Tsj |Sj 2 L}i
S ! C : hTsi

Fig. 5: A client’s IoT service dependency tree validation of
service node S

to its all (recursively) lower-level IoT service nodes.

The purpose of appending MAGSDT before signing is
to make it explicit for the signer that he signs it for SDT

verification purpose. Using MAGSDT prevents a dishonest
virtual IoT service from performing a relay attack. Suppose a
client requires a dishonest virtual service to get noncec signed
by its falsely overstated underlying IoT service nodes. And
suppose the dishonest virtual service is a client of the falsely
overstated IoT service node(s) but doesn’t have a service
dependency association with them. Then, if MAGSDT is not
used, the virtual service can contact those underlying services
as their client, send them the original client’s same noncec ,
get it signed, and return it to the original client, who will
then believe the virtual service to have a genuine service
dependency association with those falsely claimed underlying
service nodes.

Recursive validation is to be discussed in detail in Sec-
tion III-E. In Step 6, S receives recursively created dependency
signature trees (see Section III-F) for noncec from its every
immediate child node (Sj). In Step 7, S merges signature trees
received from its children nodes into a single tree and sends
it to C , who validates it. If the signatures of the tree’s every
path verifies successfully and the tree is consistent with what
S declared in D , C concludes S ’s service dependency tree is
valid.

Note that in Step 5, if S does not properly sign noncec

with its private key in an attempt to hide its identity from its

further lower-level IoT service nodes, its Qs will be rejected
by its immediate child nodes (i.e. Sj , immediately lower-level
IoT service nodes), because they check the existence of S ’s
signature on Qs whenever they receive it.

E. Recursive Validation of a Service Dependency Tree

Service Dependency Tree - Recursive Validation protocol

Sll : A lower-level IoT service node in the service dependency tree
Sl : A higher-level intermediate IoT service node in the service

dependency tree

1) Sl ! Sll : hQsl i

2) Sll : L = {Sj | Sll depends on a lower-level service node Sj}
⇡sll = Sign(Privsll , h⇡sl ||MAGSDT i)
Qsll = hQsl ,⇡sll i

Sll ! Si : Send hQsll i to every Sj 2 L

(i.e. recursively go to step 1, where Sl := Sll ,Sll := Sj)

3) Sll Si : Receive hTsj i from every Sj 2 L

(i.e. return from step 4 of the previous recursion)

4) Sll : Tsll = h⇡sll , {Tsj |Sj 2 L}i
Sll ! Sl : hTsll i

Fig. 6: Recursive Validation protocol of service dependency
tree [Sll ! Sl ! S] for an intermediate virtual IoT service
node Sl

Figure 6 describes the Recursive Validation protocol of a
service dependency tree for an intermediate node (i.e. middle-
level virtual IoT service node). This protocol is almost identical
to Step 4⇠7 of Top-level Validation protocol in Figure 5,
with the exception that the role of client (C) is replaced
by a higher-level intermediate IoT service node (Sl). In Step
1, a parent service node (Sl : higher-level IoT service node)
sends to its child service node(Sll : lower-level IoT service
node) its top-down dependency signature chain (Qsl) built
upon the client’s initial noncec . Sll verifies Qsl ’s signature
chain and if is consistent with the latest service dependency
chain update received from Fig. 4 step 4 (Service Dependency
Creation protocol), and Fig. 8 step 1 (Service Dependency
Revocation protocol). In Step 2, Sll extracts Qsl ’s signature
⇡sl , concatenates the SDT magic number MAGSDT to it, signs
it, appends this new signature ⇡sll to Qsl to generate its new
message Qsl l , then sends it to its every child service node (Sj :
immediately lower-level IoT service node). Each child service
node performs the same recursive process all the way until
reaching the leaf node (lowest physical IoT service node). In
Step 3, Sll receives the dependency signature tree (TSj) back
from each Sj . In Step 4, Sll merges dependency signature trees
TSj received from all its children nodes and finally sends back
to Sl . Note that if Sll is a leaf node, Tsll will contain only
h⇡sll i.

F. Dynamically Generating Dependency Signature Trees

Figure 7 is an illustrative example of a dependency sig-
nature tree being generated during validation of a service
dependency tree in protocols of Figure 5 and 6. In Figure 7,
S is a 2-level virtual IoT service node depending on three
directly lower-level IoT service nodes: SL1 , SL2 and SL3 . SL1

S: <PubS , πS>

πS : Sign(PubS, <noncec || MAGSDT>)
πSL1 : Sign(PubSL1, <πS || MAGSDT>)
πSL2 : Sign(PubSL2, <πS || MAGSDT>)
πSL3 : Sign(PubSL3, <πS || MAGSDT>)
πSLL1: Sign(PubSLL1, <πSL1 || MAGSDT>)

SL1: <PubSL1 , πSL1> SL2: <PubSL2 , πSL2> SL3: <PubSL3 , πSL3>

SLL1: <PubSLL1 , πSLL1>

C → S : QC = <noncec>
S → SL1, SL2, SL3 : QS = <PubS , QC , πS>
SL1→ SLL1 : QSL1 = <PubSL1 , QS , πSL1>

SLL1→ SL1: TSLL1 = <πSLL1>
SL1 → S : TSL1 = <πSL1 , [πSLL1] >
SL2 → S : TSL2 = <πSL2>
SL3 → S : TSL3 = <πSL3>
S → C : TS = < πS [πSL1 [πSLL1]] [πSL2] [πSL3] >

Client’s Challenge (noncec) Propagation

Signature Collection

Definitions

Dependency Signature Tree

Fig. 7: An exemplary dependency signature tree.

is a single-level virtual IoT service node which has SLL1 as its
depending lower-level IoT service node. SLL1 , SL2 and SL3

are physical IoT service nodes because they don’t depend on
other IoT service nodes.

During client challenge (noncec) propagation, each IoT
service node sending down its message (Q) is supposed to
additionally signs it so that its all recursively lower-level
IoT service nodes are transparently aware of its identity.
Before signing data, each IoT service node must additionally
concatenate MACSDT to it in order to make it explicit that
the signature was generated for SDT verification purpose.
Each lower-level IoT service node receiving the message (Q)
verifies the entire signature chain in the message starting
from (noncec), and then also verifies that the last signature
is created by its immediately upper-level virtual IoT service
node, the same entity from service dependency chain creation
in Figure 4.

During signature collection, the lower-level service nodes
only need to send their signature (⇡), because the upper-
level service nodes have already learned about the public
keys of their lower-level service nodes from their service
dependency chain creation in Figure 4, and they can derive
the target data that is supposed to be signed at each level
in the tree (the parent node’s ⇡ concatenated by MAGSDT .
Sending and receiving only signatures reduce data overhead.
Each intermediate service node collects signatures from its
immediate child nodes, generates a signature tree by using
its own signature as a root node and the signatures from
child nodes as sub-trees of the root, and returns the generated
signature tree to its parent node. At the end of this recursive
signature tree generation, S gets a finalized signature tree
whose each path forms a chain of signatures, where each node
contains a signature signed on its parent node’s signature. S
sends the finalized signature tree to the client.

Finally, when the client validates the signature tree, it
initially verifies the root node’s signature (⇡s) by using noncec

and Pubs , and then recursively verifies each of ⇡SL1 , ⇡SL1

and ⇡SL1 by using ⇡s and each of their corresponding public
key. Such recursive signature verification continues on all the
way until reaching every leaf node in the signature tree. If
the client finds that every signature in the tree is verified, and
if the signature tree’s structure is consistent with the service
dependency tree previously declared by the S in Figure 5 step
3, he concludes that S ’s virtual IoT service is validated.

G. Service Dependency Revocation protocol

Revoking a Service Dependency

S : A higher-level IoT service node in a dependency tree
Sl : A lower-level IoT service node in a dependency tree
S*

ll : Sl’s all recursively lower-level IoT service nodes
ID(CERT

s

) : The certificate ID of CERTs

1) Sl ! S*
ll : ID(CERTs) (recursively notify the revoked S ’s

identity to Sl ’s all lower-level IoT service nodes)

2) Sl ! S : Notify that service dependency between
S and Sl has been revoked

Fig. 8: Revoking a IoT service dependency between between
service node Sl and S (i.e. S depends on Sl)

Figure 8 describes how a service dependency is revoked
between two IoT service nodes (Sl and S). Strictly speaking,
it is the lower-level IoT service node (Sl) who is in charge
of this revocation. In Step 1, Sl sends the certificate ID of its
virtual service node to be revoked to its immediately lower-
level IoT service nodes, who recursively send it to their own
lower-level IoT service nodes. In Step 2, Sl notifies S that
their service dependency has been successfully revoked. As
of this point, S cannot prove its service dependency association
with Sl to its clients who newly requests for SDT validation.
By default, each client runs SDT protocol once upon its
connection or reconnection with the virtual IoT service and
the SDT validation result holds until their connection ends.
Optionally, the client can set her own refreshment period for
SDT validation (e.g. 5 minutes, 10 minutes, 1 hour) while
remaining in the same connection.

IV. EVALUATION

We implemented SDT software as an OpenSSL C wrapper
library, whose source code is approximately 1100 lines long.
We evaluated SDT scheme’s overhead by simulating virtual
IoT service nodes with changing the number of depending
external services and changing their virtualization level. In
our simulation, we used multiple desktop PCs hosting a large
group of virtual IoT service nodes (⇠ 100), which remotely
communicate with other PCs’ virtual IoT service nodes. Each
PC, connected to LAN, is physically located in different
buildings, which simulates the communication of IoT service
nodes residing in different building networks. In order to
simulate resource-constrained IoT devices, each PC’s CPU
frequency was limited at 900MHz and each virtual IoT service
node instance’s RAM at 500MB. The type of LAN used in
our experiment was 10BASE-TX (100 MBit/s). For proper
simulation we made sure that every step of service virtual-
ization took place between virtual IoT service node instances

from two different PCs residing in different buildings- not
ones from the same PC. This ensures that each IoT service
node communicates with remote IoT service nodes in the
external domain- not local ones within the same PC. IoT
service nodes used X509 certificates signed by ECDSA. Each
certificate’s size was 491 bytes and each signature comprising
the dependency signature tree was 71 bytes.

To our knowledge, SDT is the first security scheme that
enables clients to efficiently validate recursively virtualized IoT
services. There is no previous work that provides the same
level of security as SDT that allows clients to recursively verify
the depending nodes of a virtualized IoT service as well as
their service dependencies. As such, our experiment compares
the performance of SDT with a naive scheme, both of which
provide the same level of security. The naive scheme forces
each client to manually and recursively contact all depending
nodes of the virtual IoT service, authenticate them and query
about the genuineness of their dependency relationship with
the virtual IoT service. In contrast, SDT simplifies the client’s
duty to only contacting the virtual IoT service and verifying
the dependency signature tree generated and returned by it.
This considerably reduces the naive scheme’s overhead, while
maintaining the same level of security.

Our experiment assumed a client device’s communication
with a virtual IoT service node. We measured the delay and
exchanged data size for SDT verification scheme between the
client and the service node. These overhead measurements in-
clude the comprehensive communication cost incurred during
exchanging certificates, generating and sending dependency
trees, and verifying them.

The experiment was conducted in 2 parts. The first part
of the experiment assumed a single-level virtual IoT service
node and we changed the number of its depending external
IoT services from 10 to 100. The experimental results are
summarized in Table I. As the number of depending service
nodes increased, the delay and exchanged data size between the
virtual IoT service node and client for SDT scheme increased
linearly. When a virtual IoT service node depended on 10
external IoT services, its verification took 26.4 ms and its ex-
changed total data size with the client was 6.54 kilobytes. The
delay remained to be less than 100 ms while the virtual service
node’s number of depending IoT services was below 40. When
the virutal IoT service node depended on 100 external IoT
services as the worst case scenario, its verification time and
data overhead was 245.2 ms and 57.04 kilobytes. The overall
overhead increased linearly with the number of depending
IoT service nodes, which implies SDT is practically usable.
When SDT’s performance is compared to the naive scheme,
SDT’s delay is approximately 54% smaller and its data size
overhead is 57% smaller, on average. The naive scheme incurs
a larger overhead because the client has to create as many new
network connection as the number of depending nodes of the
virtual IoT service to verify. On the other head, SDT removes
this overhead of creating extra network connections by using
the technique of verifying dynamically generated dependency
signature trees (see Section III-D, III-E and III-F)

In the second part of the experiment, we changed the virtual
IoT service node’s virtualization level from 1 to 7, where each
intermediate virtual IoT service node node has exactly 2 child
service nodes (i.e. two depending service nodes). Thus, the top-

hhhhhhhhhhhhhhhhhhhSchemes & Metrics

of Depending IoTs
10 20 30 40 50 60 70 80 90 100

Delay (ms) Naive scheme 45.3 95.1 135.2 165.3 218.8 247.8 314.6 351.0 398.3 430.4
SDT scheme 26.4 46.6 69.7 91.5 113.0 156.9 175.1 200.2 223.8 245.2

Exchanged Data (KB) Naive scheme 11.03 21.13 30.60 41.34 51.43 61.53 71.64 81.74 91.84 101.94
SDT scheme 6.54 12.15 17.13 23,28 28.98 34.59 40.21 45.82 51.43 57.04

TABLE I: Overhead comparison for a single-level virtual IoT service node over various number of depending IoT service nodes

hhhhhhhhhhhhhhhhhhhhhhhhhSchemes & Metrics

Virtualization Level [# of total IoTs]

1 [1] 2 [3] 3 [7] 4 [15] 5 [31] 6 [63] 7 [127]

Delay (ms) Naive scheme 4.3 11.9 32.8 61.2 130.4 275.8 532.2
SDT scheme 4.3 8.1 15.3 31.9 68.2 136.3 268.9

Exchanged Data (KB) Naive scheme 1.01 3.03 7.07 15.15 31.31 63.63 128.27
SDT scheme 1.01 2.13 4.38 8.86 17.84 35.79 71.70

TABLE II: Overhead comparison for a virtual IoT service node over various virtualization levels

level virtual IoT service node’s service dependency tree formed
a complete binary tree. We use this binary tree structure only
as a standard example for our experiment. In real scenarios,
SDT does not have to be a binary tree and its dependency tree
can be in any shape. The experimental result is summarized
in Table II. When the virtualization level increased to 5, the
delay and data overhead was 68.2 ms and 15.65 kilobytes,
which is reasonably manageable. At virtualization level 7 as
the worst case scenario, the delay was 268.9 ms and data size
64.02 kilobytes. We expect virtualization level 5 to be more
than sufficient in most use cases.

Note that SDT’s overhead is only one-time. That is, the
client uses SDT only once when it makes an initial connection
or re-connection with the virtual IoT service node. To this
end, SDT is best applicable to services where the client
continuously uses the same service within the same connection
with the service node, such as a building condition monitoring
service in Figure 1, 1.

When processing dependency signature trees between in-
termediate virtual IoT service nodes in the service dependency
tree, we observed approximately 175% delay reduction when
setting their network sockets’ TCP_NODELAY option to be
true, which disables Nagle’s network packet buffering algo-
rithm 3. In SDT, this configuration change enforces the client’s
challenge and each IoT service node’s signature to be sent
out immediately once prepared, rather than waiting for buffer
outgoing data packets to become a full size.

V. DISCUSSION

SDT prevents a dishonest virtual IoT service from overstat-
ing its underlying service composition to its clients. However,
SDT does not necessarily prevent it from understating its
underlying service composition. For example, a dishonest
virtual IoT service who has a service dependency association
with an external service Aand B may claim to its client that it
has an association only with service A, omitting service B. A

3https://en.wikipedia.org/wiki/Nagle%27s algorithm

dishonest virtual IoT service may have a motivation to make
such a false claim to the client if service B is a sensitive
service that has a conflict of interest with the client. Based
on SDT, it’s possible for an honest virtual IoT service to
prove to clients that it has no association with some sensitive
service, such as service B. The virtual IoT service makes
a service dependency relationship with both service A and
service B. In this case, service B has to volunteer to help
the virtual IoT service to prove to its clients that it has no
service dependency with service B. When a client requests for
a signature on its nonce, the virtual IoT service forwards it
to both service A and B. Service A appends MAGSDT to the
nonce and signs, while service B appends MAGNSDT to it
and signs. MAGNSDT is a new magic number representing
the opposite of MAGSDT , which implies that the signer has
no service dependency association with the IoT virtual service
in concern.

When a virtual IoT service’s some of existing service
dependencies get revoked, the client who has already es-
tablished a connection with the virtual IoT service has to
re-run SDT protocol with it to update this information. By
default, SDT protocol runs only at the initial connection or re-
connection between a client an a virtual IoT service. However,
each client can additionally set its reasonable period for re-
running SDT protocol depending on the nature of service.
In our experiment, each virtual IoT service can host up to
10 underlying IoT services with any virtualization level less
than 4, if the maximum allowed communication cost for SDT
validation is 30 ms. A virtual IoT service can host up to
50 underlying IoT services with any virtualization level less
than 6, if the maximum allowed communication cost for SDT
validation is 100 ms.

VI. RELATED WORK

IoT service virtualization was introduced by Zhang et al.
[1]. They developed a virtual sensor editor tool which creates
a virtual representation of sensors (on a PC), based on real
time data streams flowing from remote physical sensors. This

https://en.wikipedia.org/wiki/Nagle%27s_algorithm

approach assumed a closed local network scenario excluding
the possibilities of external attacks, and thus security was
not taken into account. We improved IoT virtualization to be
security-aware by using SDT mechanism, so that it operates
securely through insecure open networks.

OAuth [10], [11] allows a service provider and its client
to verify a third party’s eligibility for directly accessing the
client’s resource stored in the service provider. Upon the
client’s approval, the third party gets an access token, with
which it can retrieve the client’s resource stored in the server.
In OAuth, granting a third-party access to a client’s resource is
analogous to granting service virtualization in SDT. However,
SDT makes difference in that it allows recursive service
virtualization and allows the physical IoT service node (i.e.
original resource owner) and end-users to dynamically verify
the service dependency tree (i.e. resource dependency tree).

Macaroon [12] is an improved version of Internet cookies
that can be delegated and whose caveats can be added by the
delegator (e.g. a third party server) over each delegation. Each
macaroon stands for its holder’s capabilities. Macaroon is used
for a primary and third party server to authorize their clients.
On the other hand, SDT is used for a physical IoT service node
(primary server) and clients to verify a virtual IoT service node
(third party server).

Oh et al. [13] proposes an access control framework for
Web of Things (WoT). In this work, each IoT resource is
mapped to a unique HTTP URI and a set of access control
policies. Whenever a client accesses an URI, its mapped access
control policies are checked on the client. The proposed WoT
access control is designed for client authorization purpose, and
unlike SDT, it does not consider recursive resource virtualiza-
tion.

Our current CamFlow research aims at applying Infor-
mation Flow Control (IFC) [14] to IoT devices by using
a kernel module [15] and middleware [16] as trusted IFC
enforcement software, whose integrity is dynamically verified
by remote attestation [17] and TPM [18] technology. When
IFC is applied to IoT devices, each device or data owner can
have control on where his data may continuously flow across
multiple IoT nodes. However, this scheme is unsuitable for
verifying the detailed service dependency of a virtual service.
SDT achieves this by using a service dependency tree and
dependency signature tree.

Numerous previous research works propose cloud-based
IoT services [19]–[21], where the cloud server collects data
from IoT devices, processes them and provides service to its
clients. In this framework, all IoT devices resides behind the
wall of the cloud server and clients cannot directly access them.
SDT proposes a more decentralized security approach such
that each client is allowed to directly interact with individual
IoT devices without the intervention of central cloud servers.
Since each IoT device’s data are not stored or processed by
the third party server, data privacy for IoT device owners is
better preserved.

SDT is compatible other existing security mechanisms. For
example, Moreno et al. [22] proposes decentralized IoT service
access control based on client certificates, which is issued by
the service domain manager who grants clients access to each
IoT resource. SDT can adopt client certificates for mutual

authentication between virtual servers and clients. Keoh et
al. [23] proposes improved DTLS protocol standards optimized
for resource-constrained IoT devices. SDT can run over such
optimized DTLS protocols for efficient communication among
clients and virtual/physical servers.

Some research in wireless sensor networks (WSN) have
proposed data aggregation schemes based on privacy ho-
momorphism [24], which allows direct computation on en-
crypted data. For example, concealed data aggregation (CDA)
scheme [25] calculates SUM and AVERAGE of data collected
from multiple WSN nodes, while homomorphic stream cipher
(HSC) scheme [26] supports efficient data aggregation for
mean, variance and standard deviation. [27] proposes a cloud
service framework for storing and managing client data as
an encrypted form. However, ciphertext-based data processing
has limitation for tasks such as high-level data analysis,
interpretation and pattern recognition. To the end, SDT allows
virtual IoT service nodes to have full access to their depending
services, while ensuring their service dependencies to be
transparently visible to their clients and lower-level servers.

There has been much research on efficiently revoking
compromised nodes in an ad-hoc network. For example, [28]
and [29] propose revocation algorithms for bad nodes based
on votes from neighbouring nodes. The core idea is to pre-
define different keys for each future timeslot, and split each
future key into multiple shares by using a multivariate secret-
sharing algorithm [30], keeping each share in a different node.
A particular node can retrieve its next timeslot’s key only if all
external nodes holding its future secret shares approves him.
However, according to this scheme a node cannot be revoked
until its current timeslot expires. SDT supports immediate
revocation of compromised nodes by dynamically revoking
dependency branches within a service dependency tree.

VII. CONCLUSION

In this paper we addressed security challenges for IoT ser-
vice virtualization and proposed SDT scheme as the solution.
In SDT, each virtual IoT service node declares its own service
dependency tree and allows its clients to validate the declared
tree in real-time by sending a challenge number to the virtual
IoT service node, which must be signed recursively by its all
depending IoT service nodes comprising its declared tree. The
virtual IoT service node finally returns the client a dependency
signature tree whose structure should be exactly the same as
the service node’s originally declared service dependency tree.
The client verifies the signature tree by verifying each node’s
signature with its corresponding IoT service node’s public
key. The size of the dependency signature tree is optimized
to contain only the minimal information necessary to verify
the entire tree. Our experimental results indicate SDT incurs
only a small overhead and thus efficiently applicable in real
scenarios.

REFERENCES

[1] J. Zhang, Z. Li, O. Sandoval, N. Xin, Y. Ren, R. Martin, B. Iannucci,
M. Griss, S. Rosenberg, and A. Cao, J. an Rowe, “Supporting Personiz-
able Virtual Internet of Things,” in Proc 10th International Conference
on Ubiquitous Intelligence and Computing, and Autonomic and Trusted
Computing (UIC/ATC), pp. 329–336, IEEE, 2013.

[2] S. Alam, M. Chowdhury, and J. Noll, “Senaas: An event-driven sensor
virtualization approach for internet of things cloud,” in Networked
Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE
International Conference on, pp. 1–6, Nov 2010.

[3] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in internet of things’ virtualization via openflow,” in Mobile, Ubiquitous,
and Intelligent Computing (MUSIC), 2012 Third FTRA International
Conference on, pp. 195–200, June 2012.

[4] H. Ning, H. Liu, and L. Yang, “Cyberentity security in the internet of
things,” Computer, no. 4, pp. 46–53, 2013.

[5] S. N. Pakzad and G. L. Fenves, “Statistical analysis of vibration modes
of a suspension bridge using spatially dense wireless sensor network,”
Journal of Structural Engineering, vol. 135, no. 7, pp. 863–872, 2009.

[6] S. Simi and M. V. Ramesh, “Real-time monitoring of explosives using
wireless sensor networks,” in Proceedings of the 1st Amrita ACM-W
Celebration on Women in Computing in India, A2CWiC ’10, pp. 44:1–
44:7, ACM, 2010.

[7] Intelligent Building Hazard Detection Using Wireless Sensor Network
and Machine Learning Techniques, pp. 485–492.

[8] D. W. Chadwick, A. Otenko, and E. Ball, “Role-based Access Control
with X. 509 Attribute Certificates,” Internet Computing, IEEE, vol. 7,
no. 2, pp. 62–69, 2003.

[9] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digi-
tal signature algorithm (ecdsa),” International Journal of Information
Security, pp. 36–63, 2001.

[10] B. Leiba, “Oauth web authorization protocol,” Internet Computing,
IEEE, vol. 16, no. 1, pp. 74–77, 2012.

[11] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “Oauth
demystified for mobile application developers,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, (New York, NY, USA), pp. 892–903, ACM, 2014.

[12] A. Birgisson, J. G. Politz, lfar Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with contextual caveats for decen-
tralized authorization in the cloud,” in Network and Distributed System
Security Symposium, 2014.

[13] S. W. Oh and H. S. Kim, “Study on access permission control for the
web of things,” in Advanced Communication Technology (ICACT), 2015
17th International Conference on, pp. 574–580, 2015.

[14] A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in 17th Symposium on Operating Systems Principles
(SOSP), pp. 129–142, ACM, 1997.

[15] T. Pasquier, J. Singh, D. Eyers, and J. Bacon, “CamFlow: Managed
Data-Sharing for Cloud Services,” IEEE Transactions on Cloud Com-
puting, 2015.

[16] J. Singh, T. F. J.-M. Pasquier, and J. Bacon, “Securing Tags to Control
Information Flows within the Internet of Things,” in International
Conference on Recent Advances in Internet of Things (RIoT’15), IEEE,
2015.

[17] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert, “Beyond Kernel-level
Integrity Measurement: Enabling Remote Attestation for the Android
Platform,” in Trust and Trustworthy Computing, pp. 1–15, Springer,
2010.

[18] S. Bajikar, “Trusted Platform Module (TPM) Based Security on Note-
book PCS-White Paper,” Mobile Platforms Group Intel Corporation,
pp. 1–20, 2002.

[19] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” Internet
of Things Journal, IEEE, vol. 1, pp. 112–121, April 2014.

[20] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling
Smart Cloud Services Through Remote Sensing: An Internet of Every-
thing Enabler,” Internet of Things Journal, vol. 1, no. 3, pp. 276–288,
2014.

[21] T. Zhang, “Defending Connected Vehicles Against Malware: Challenges
and a Solution Framework,” Internet of Things Journal, vol. 1, no. 1,
pp. 15–20, 2014.

[22] A. Skarmeta, J. Herna?ndez-Ramos, and M. Moreno, “A decentralized
approach for security and privacy challenges in the Internet of Things,”
in Internet of Things (WF-IoT), pp. 67–72, IEEE, 2014.

[23] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” Internet of Things Journal, IEEE,
pp. 265–275, 2014.

[24] J. Domingo-Ferrer, “A provably secure additive and multiplicative
privacy homomorphism,” in Proceedings of the 5th International Con-
ference on Information Security, pp. 471–483, 2002.

[25] J. Girao, D. Westhoff, and M. Schneider, “Cda: concealed data ag-
gregation for reverse multicast traffic in wireless sensor networks,” in
Communications, 2005. ICC 2005. 2005 IEEE International Conference
on, pp. 3044–3049 Vol. 5, 2005.

[26] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of
encrypted data in wireless sensor networks,” in Mobile and Ubiquitous
Systems: Networking and Services, 2005. MobiQuitous 2005. The
Second Annual International Conference on, pp. 109–117, 2005.

[27] M. Henze, S. Bereda, R. Hummen, and K. Wehrle, “SCSlib: Trans-
parently Accessing Protected Sensor Data in the Cloud,” in The 5th
International Conference on Emerging Ubiquitous Systems and Perva-
sive Networks (EUSPN-2014), p. 370??375, ScienceDirect, 2014.

[28] T. Moore, J. Clulow, S. Nagaraja, and R. Anderson, “New strategies for
revocation in ad-hoc networks,” in Proc. 4th European Conference on
Security and Privacy in Ad-hoc and Sensor Networks, ESAS, pp. 232–
246, Springer, 2007.

[29] H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan, “On the
distribution and revocation of cryptographic keys in sensor networks,”
IEEE Trans. Dependable Secur. Comput., vol. 2, no. 3, pp. 233–247,
2005.

[30] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, pp. 612–
613, Nov. 1979.

	Introduction
	Use Cases and Security Requirements
	IoT Virtualization Use Case
	Threat Model
	Security Requirements

	Service Dependency Tree (SDT) Validation Mechanism
	SDT Overview
	Certificate Issuance
	Creating a Service Dependency Tree
	Top-level Validation of a Service Dependency Tree
	Recursive Validation of a Service Dependency Tree
	Dynamically Generating Dependency Signature Trees
	Service Dependency Revocation protocol

	Evaluation
	Discussion
	Related Work
	Conclusion
	References

