
Open Research Online
The Open University’s repository of research publications
and other research outputs

CrowdService: Serving the Individuals through Mobile
Crowdsourcing and Service Composition
Conference or Workshop Item
How to cite:

Peng, Xin; Gu, Jingxiao; Tan, Tian Huat; Sun, Jun; Yu, Yijun; Nuseibeh, Bashar and Zhao, Wenyun (2016).
CrowdService: Serving the Individuals through Mobile Crowdsourcing and Service Composition. In: ASE 2016
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ACM, New York,
USA, pp. 214–219.

For guidance on citations see FAQs.

c© 2016 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/2970276.2970334

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/2970276.2970334
http://oro.open.ac.uk/policies.html

CrowdService: Serving the Individuals through Mobile
Crowdsourcing and Service Composition

Xin Peng1,2, Jingxiao Gu1,2, Tian Huat Tan3, Jun Sun3,
Yijun Yu4, Bashar Nuseibeh4,5, Wenyun Zhao1,2

1 School of Computer Science, Fudan University, China
2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

3 Singapore University of Technology and Design, Singapore
4 Department of Computing and Communications, The Open University, UK

5 Lero - The Irish Software Research Centre, University of Limerick, Limerick, Ireland

ABSTRACT
Some user needs in real life can only be accomplished by lever-
aging the intelligence and labor of other people via crowdsourcing
tasks. For example, one may want to confirm the validity of the
description of a secondhand laptop by asking someone else to in-
spect the laptop on site. To integrate these crowdsourcing tasks into
user applications, it is required that crowd intelligence and labor be
provided as easily accessible services (e.g., Web services), which
can be called crowd services. In this paper, we develop a frame-
work named CROWDSERVICE which supplies crowd intelligence
and labor as publicly accessible crowd services via mobile crowd-
sourcing. We implement the proposed framework on the Android
platform and evaluate the usability of the framework with a user
study.

CCS Concepts
•Information systems→ Crowdsourcing;

Keywords
mobile crowdsourcing, service composition, reliability, Quality of
Service (QoS)

1. INTRODUCTION
A variety of user needs nowadays can be automated by calling

computational services, either remotely through a Web service or
locally through a mobile application. These services are used to
construct personal applications using lightweight service composi-
tion techniques such as mashup [10, 11, 13]. However, not all user
needs can be accomplished only by computational services. For
example, one may want to check the validity of the description of
a secondhand laptop by site inspection, and assess its market value
by consulting experts. Beyond pure computational services and
their compositions, such needs can only be met by leveraging the
intelligence and labor of others, e.g., those who are currently near
to the laptop or have the required expertise.

An emerging way of involving humans in information seeking
and computation tasks is crowdsourcing, which enables a crowd of
undefined size to be engaged in solving a complex problem through
an open call [7, 8, 12]. Existing crowdsourcing platforms such as
Amazon Mechanical Turk (AMT) [1] allow a requester to hire a
large number of workers from Web-based online community to ac-
complish short and self-contained microtasks such as tagging im-
ages or translating fragments of text. Web-based crowdsourcing,
however, cannot support location-based crowdsourcing tasks such
as site inspection, which require the workers to use mobile devices
to enable location-based worker selection.

To compose crowdsourcing tasks into user applications, addi-
tionally, it is required that crowd intelligence and labor themselves
be encapsulated and served as services, which could be invoked in
a similar way as computational services. Each time such a service
is invoked, a set of workers are selected to participate the crowd-
sourcing task and each of them gets instructions for his/her own mi-
crotasks. After accomplishing their work, the results they returned
are aggregated to generate the output of the service invocation.

In this paper, we develop a framework named CROWDSERVICE
which supplies crowd intelligence and labor as publicly accessi-
ble crowd services. A crowd service satisfies specific individual’s
needs via mobile crowdsourcing and can be composed with other
crowd services and computational services. For each invocation
of a crowd service, CROWDSERVICE launches a crowdsourcing
task and aggregates the results returned by workers into the out-
put. To the best of our knowledge, we are the first to investigate
service composition that includes human services provided by mo-
bile crowdsourcing.

2. MOTIVATING EXAMPLE
Suppose that Bob would like to buy a secondhand laptop from an

online market, which allows registered users to sell personal items
and supports online transactions only. Following the online shop-
ping process, Bob would first search for a desired laptop, examine
its detailed information, buy it by generating an order, and lastly
make the payment. However, Bob is worried that the description
of the laptop may be fraud. Furthermore, he is afraid that the price
set by the seller might be unreasonably high. Thus, Bob would like
to find someone to check the validity of the description by site in-
spection and take a picture of the laptop before he decides to buy it.
Moreover, Bob wants to consult local experts on the market value
of the laptop. If the price set by the seller is much higher than the
price assessed by the experts, he would abort the transaction.

The above process could be accomplished by a series of activ-

ities. Apart from automated computational services (e.g., a Web
service for online bank transaction), the crowd services have to be
employed for site inspection and price assessment. We argue that
in order to fully automate the above process (and its alike), one
needs to combine the framework to compose computational ser-
vices which has been investigated extensively [5, 14]) with crowd
services. Our CROWDSERVICE framework can be used to address
Bob’s problem.

In the design of CROWDSERVICE, we maintain a set of work-
ers, which can potentially provide crowd services. Each worker is
associated with a set of attributes, e.g., his/her location, past ser-
vice providing records, etc. For each invocation of a crowd ser-
vice, CROWDSERVICE launches a crowdsourcing task and selects
workers based on their attributes to accomplish the task. Then the
selected workers accomplish their work and submit their results.

CROWDSERVICE provides composition templates of crowd and
computational services for common needs, such as purchasing sec-
ondhand items. To compose crowd services with computational
services, each crowd service is wrapped as a Web service and pub-
lished on the platform in CROWDSERVICE. Developers of a crowd
service need to define its input and output parameters and spec-
ify its execution strategy such as result aggregation method. For
example, the price assessment service takes as input a series of de-
scriptions and a picture of an item and returns as output an assessed
price. The results of price assessment from multiple workers will
be aggregated based on the specified aggregation method (e.g., by
taking the average) to generate the final output.

When a crowd service is to be executed, ideally an optimal set
of workers should be selected. For example, if the allocated cost
and time constraints of the site inspection service are 8 dollars and
6 minutes respectively, and Bob hopes that at least two workers can
return their results in time. This implies the optimization objec-
tive of maximizing the probability of at least two workers returning
their results in 6 minutes while the money paid to all the selected
workers does not exceed 8 dollars.

With a composite service and user specified constraints, CROWD-
SERVICE would first synthesize constraints on each involved com-
putational service and crowd service and calculate the feasibility of
composite service based on the likelihood of satisfying those con-
straints. Afterwards, CROWDSERVICE would automatically exe-
cute the composite service by invoking the services accordingly.
Whenever a service is finished, the constraints are updated. When
a crowd service is to be executed (e.g., site inspection of the lap-
top), CROWDSERVICE generates an open call to potential workers
based on, in this example, their physical locations. After receiv-
ing feedback from the workers (e.g., whether a worker is willing
to participate and for how much reward), CROWDSERVICE selects
the workers based on the constraints and keeps executing the com-
posite service until its completion.

3. CROWD SERVICE
In this section, we first describe the conceptual model of crowd

service and then introduce different types of crowd services. After-
wards, we introduce the composition of crowd services.

3.1 Conceptual Model
A crowd service leverages human intelligence and labor via mo-

bile crowdsourcing and is packaged in the form of computational
service (e.g., Web service). It can be used for acquiring infor-
mation (e.g., assessing the price of an item, querying availability
of spaces/rooms in a specific building) or accomplishing real-life
tasks (e.g., performing site inspection of an item, booking a table
in a restaurant onsite).

The conceptual model of crowd services is shown in Figure 1.
A crowd service declares zero or more input parameters, each of
which specifies the name and type of an input value provided by
the consumer, and one or more output parameters, each of which
specifies the name and type of an output value returned to the con-
sumer. A crowd service defines one or more task fields, each of
which specifies the name and type of a result value provided by
workers. Note that the output parameters of a crowd service can
be different from its task fields. For example, a crowd service for
price assessment has a personal price assessment and a confidence
level as its task fields, but has only an assessed price as its output
parameter, whose value will be calculated based on its task fields.

A crowd service has a text description specifying its task require-
ments for workers. For example, the text description of a crowd
service for site inspection can be specified as follows.

Please get to the designated location and inspect the item spec-
ified below. Check the physical item and evaluate whether it is
consistent with the item description given below. Take a picture
of the item and upload the picture.

This description and the input parameters such as seller address
and item description constitute task instructions for workers.

Each invocation of a crowd service results in the execution of a
crowdsourcing task; that is, a crowdsourcing task is an instantia-
tion of a crowd service. It returns an output result which provides
a value for each of the output parameters of the crowd service. De-
pending on the crowd service definition, a crowdsourcing task can
be location independent, or be targeted at one or several locations.

A crowdsourcing task can be accomplished by one or more work-
ers and a microtask is generated for each worker. In each micro-
task, the worker accomplishes the assigned work and returns a re-
sult which provides a value for each of the task fields of the crowd
service. The results returned by the workers will be aggregated into
the output result of the task.

A crowdsourcing task has three operational parameters: C spec-
ifies the maximal cost that can be spent on the task (i.e., cost con-
straint); T specifies the maximal time that can be spent on the task
(i.e., time constraint); RN specifies the minimal number of work-
ers who successfully return their results, which is specified by the
consumer and reflects his/her expectation of necessary redundancy.
For example, for a site inspection task, the consumer may expect
that at least two workers return their results (i.e., RN = 2).

Figure 1: Conceptual Model of Crowd Service
3.2 Types of Crowd Services

There are different types of crowd services. According to the
content of service, a crowd service can be a query service or an
actionable service. A query service requires workers to provide
specific information without taking any other actions, while an ac-
tionable service requires workers to take some real-life actions. For
instance, a worker participating in an actionable task may need to
move to a target location (e.g., a restaurant) and accomplish some
social interactions (e.g., booking a table).

A crowd service can be location based or location independent.
This dimension is orthogonal to the dimension of service content.

A query service can be location based if the queried information is
associated with a specific location, for example querying availabil-
ity of spaces/rooms in a specific building. Otherwise, it is location
independent, for example querying a reasonable price for a sec-
ondhand item. On the other hand, there are both location-based
actionable services (e.g., booking a table in a restaurant without
online booking or phone booking) and location-independent action-
able services (e.g., paying a bill by third-party online payment).

3.3 Crowd Service Composition
Crowd services can be composed with computational services

based on a predefined business process. A business process consists
of a series of activities, which can be accomplished by different
kinds of services such as follows.

• Web Service (WS): standard Web services or RESTful Web
services provided by remote servers;
• App Service (APP): business services provided by mobile

applications (e.g., Android App) which can provide complex
user interaction and encapsulate access to sensors (e.g., cam-
era, audio recorder) in mobile devices;
• UI Service (UI): simple user interaction services for users

to examine returned results, make choices, or input required
information on their mobile devices.
• Crowd Service (CS): human powered services accomplished

via mobile crowdsourcing;

Among the service types, Web service, App service, and UI ser-
vice are computational services. Figure 2 shows a business pro-
cess for the composite service of buying secondhand items using
an activity diagram. According to the process, a consumer first
searches for and selects a desired secondhand item with an App
service, which can be provided by a mobile client of a secondhand
market. Based on the returned item and seller information, the pro-
cess queries the price of the corresponding new product with a Web
service and requests a site inspection of the item with a crowd ser-
vice in parallel. Then the consumer examines the returned item in-
formation, site inspection results and product price and determines
whether to continue. If the consumer chooses to continue, a crowd
service is invoked to assess the price of the selected item. If the
price set by the seller is lower than certain threshold (e.g., 1.1 times
of the assessed price), an order is generated and submitted with a
Web service.

A business process is implemented as a template that can be ex-
ecuted on mobile devices after being instantiated into a composite
service by binding a concrete service for each activity. The pro-
cess template specifies the interaction flow and parameter passing
among different services.

Figure 2: Business Process for Buying Secondhand Items

4. FRAMEWORK
In this section, we first present an overview of CROWDSERVICE

and then present details on the underlying techniques.

4.1 Overview
An overview of our agent-based crowd service framework is pre-

sented in Figure 3. It shows the software agents and other modules

of the crowd service platform, consumer client, and worker client,
together with the interactions between them.

Basic information of registered workers such as age, sex, and
ability is stored in the worker profile database on the platform.
In order to report availability and update the real-time state (e.g.,
location), the worker agent on the mobile device of a worker pe-
riodically (e.g., once 2 minutes) sends heartbeat messages to the
checkin agent on the platform. The checkin agent updates the
real-time states of available workers in the worker profile database.
To protect privacy, a worker can control when to report availabil-
ity to the platform or choose to send heartbeat messages without
location information (which means only participating in location-
independent tasks). Moreover, privacy policies, regulatory strate-
gies, and computational algorithms (e.g., anonymity and obfusca-
tion) [9, 6] could be used for protecting privacy data, which will be
employed in the future work.

To execute a composite service involving crowd services on a
mobile device, the consumer needs to specify the overall cost and
time constraints of the composite service and the acceptable mini-
mal number of successfully returned worker results (i.e., RN) for
each involved crowd service. The execution engine on consumer
client executes a composite service by invoking the crowd services
and computational services involved in it.

Each time right before a crowd service is invoked, the execution
engine requests an execution plan for the remainder of the compos-
ite service. The planner in CROWDSERVICE executes a planning
process to produce an optimized execution plan, which allocates
the resources (response time and cost) to each unexecuted crowd
service or computational service and estimates the feasibility (prob-
ability of success) of the composite service. If the estimated feasi-
bility is lower than the threshold (e.g., 60%) specified by the con-
sumer, the execution engine terminates the execution and reports
a failure to the consumer. Otherwise, the execution engine sends
a request of the current crowd service with the allocated resources
(i.e., cost and time) to the platform and gets a service response from
it.

Each time a crowd service request is received, the crowd service
wrapper on the platform creates a task agent and assigns the service
request to it. The task agent gets input parameters from and returns
an output result to the wrapper. It executes a series of behaviors to
accomplish the assigned task (i.e., crowd service invocation).
• Open Call: The task agent sends an open call with task in-

structions (including task description, target locations and in-
put parameters) to all the available candidate workers who
may satisfy specific conditions (e.g., with the required capa-
bilities or near the target locations).
• Worker Selection: The task agent receives responses from

workers who are willing to participate and selects a near-
optimal subset of workers based on the cost and time con-
straints. After that it sends a participation confirmation to
each selected worker.
• Result Aggregation: The task agent receives results from

workers and aggregates all the received results to generate
an output result (see Section 4.4).

Correspondingly, the worker agent on the mobile device of a
worker executes a series of behaviors to communicate with the task
agent, and guides the worker to accomplish his/her microtask.
• Task Examination: The worker agent receives an open call

from the platform and presents the task instructions on the
worker’s UI (User Interface). The worker examines the task
instructions and inputs an offer (i.e., expected reward). Then
the worker agent sends a response to the platform.
• Microtask Execution: The worker agent generates a micro-

task view presenting task instructions and an interaction form

Figure 3: Overview of Crowd Service Framework

to capture the result. The worker accomplishes the microtask
and returns his/her result in the interaction form, for exam-
ple, by typing in a text input, choosing in a drop-down box,
or taking a picture, etc. (see Section 4.3).
• Result Submission: The worker agent sends the worker’s

result to the platform after he/she finishes the microtask.
4.2 Crowd Service Description

To develop and publish a crowd service, a developer only needs
to specify a crowd service description and deploy it on the platform.
A crowd service description includes input/output parameters, lo-
cation information, task fields, and an aggregation method. Based
on this description, the platform can automatically generate a Web
service with the specified input/output parameters and execute the
specified execution strategy when the service is invoked.

The description of each input/output parameter includes its name
and type. A parameter can be of primitive data type (e.g., string,
integer) or multimedia data type (e.g., image, audio).

Location information specifies whether a crowd service is loca-
tion dependent or not and, if so, the way to get the target locations
(current location, direct input, input transformation). Current loca-
tion means to use the current location of the consumer (e.g., when
ordering food from restaurants nearby) as the target location. Di-
rect input means to use a specified input parameter (e.g., the loca-
tion of a seller for the site inspection service) as the target location.
Input transformation means to transform a specified input param-
eter (e.g., the name of a restaurant) into target locations (e.g., the
locations of its branches) using coordinate transformation services.

Task fields specify the schema of worker results provided by
workers. The name and type of each task field is described in ser-
vice description. The types of task fields include primitive data
type, choice type, and multimedia data type. A primitive data type
can be string, integer, or float. For a string field, its length needs
to be specified. For a number field (integer or float), its range and
precision need to be specified. A choice field provides predefined
options for a field. A multimedia field can be an image, audio, or
video that needs to be recorded by a worker using corresponding
sensors (e.g., camera) on his/her mobile device. Task field defi-
nition of a crowd service is used as the schema of worker result
representation and microtask view generation (see Section 4.3).

Aggregation method specifies how the value of each output pa-
rameter can be aggregated from the workers’ results. CROWDSER-
VICE provides standard aggregation methods such as computing
the average or taking the result of the highest ranked expert. For
an output parameter using a standard aggregation method, the de-
veloper can simply choose the corresponding aggregation method
provided by the template. In other cases, the developer can define
his/her own aggregation method, which can be either a simple stan-
dard aggregation or a more complex customized computation (see
Section 4.4).

4.3 Microtask Execution
For each assigned microtask, a worker agent generates a micro-

task view on the worker UI, showing task instructions and an inter-

Table 1: A Virtual Table of Worker Results
Worker Level Time AssPrice Conf

W1 9 2015-01-28 15:20:10 500 H
W2 7 2015-01-28 15:20:02 460 H
W3 7 2015-01-28 15:20:25 510 M
W4 5 2015-01-28 15:21:01 510 M
W5 6 2015-01-28 15:20:45 510 L

action form to guide the worker to accomplish the microtask.
Task instructions consist of a task description, an optional task

map, and an input value panel. The task description is the text de-
scription of the corresponding crowd service. For a location-based
task, the task map shows the target locations on an online map (e.g.,
Google Maps), which can be used for navigating to the target loca-
tions. The input value panel shows the input values provided by the
consumer client.

The interaction form allows the worker to input the required re-
sult after accomplishing the microtask. It is generated based on the
task field definition of a crowd service. For each task field, a text
label is generated to show its name and an input is generated based
on its data type. For a primitive data type, a text input is generated
for the worker to input a value. For a choice type, a drop-down
box is generated for the worker to choose an option. For a multi-
media data type, a button is generated, which if clicked will open
a specific recorder (e.g., camera or voice recorder) on the worker’s
mobile device based on the media type (e.g., image or audio), with
a multimedia container for preview.

Based on the task instructions, the worker accomplishes the as-
signed work and provides his/her result with the interaction form.

4.4 Result Aggregation
Worker results received from workers are stored in database and

can be regarded as a virtual table. As an example, five worker
results for the price assessment service are shown in Table 1. In
the table, each record corresponds to a worker result, including the
worker, worker level, submission time, and values of task fields.

To aggregate worker results into an output result, task agent needs
to generate a value for each output parameter. An output parameter
can be generated by simple aggregation or complex computation.

Simple Aggregation. Simple aggregation generates an output value
by using standard aggregation operations, which can be defined as
an SQL query on the worker result table. It reports a failure if the
query returns no results. For example, the following query speci-
fies an aggregation method for output parameter assessedPrice,
which computes the average price assessment returned by workers.

select avg(assPrice) from $WorkerResult$
The following query defines a more complex aggregation method,

which selects price assessments with the highest worker level from
those with high confidence and computes their average.

select avg(assPrice) from $WorkerResult$ T1 where conf=’H’
and not exists (select * from $WorkerResult$ T2 where
conf=’H’ and T2.level>T1.level)
Apart from returning a single value, simple aggregation can also

return a list of values as an output value. For multimedia data, sim-

ple aggregation can be used to select the best result. For example,
a picture that is submitted earliest or returned by a worker with the
highest level. More complex aggregation of multimedia data have
to be implemented by more complex computations.

Complex Computation. Complex computation generates an out-
put value by using service-specific algorithm. For example, an al-
gorithm can be used to select a picture of the best quality from all
the submitted results based on service-specific criteria. This kind of
computation can be implemented as service-specific plugin which
can be registered to the crowd service platform and invoked by task
agent for result aggregation.

5. IMPLEMENTATION
We have implemented the CROWDSERVICE framework on the

Android platform using JADE, which is an open source agent de-
velopment framework [3]. The implementation includes a crowd
service platform, a consumer client, and a worker client.

The consumer client is implemented on the Android platform us-
ing the OSGi [4] framework. Specifically, we choose Apache Fe-
lix [2], an open source implementation of OSGi. Both composite
services and component services (local services or stubs to remote
services) are implemented as OSGi bundles. When a consumer
chooses a composite service to execute, the execution engine re-
quests corresponding composite service bundle and required com-
ponent service bundles from the service repository, and dynami-
cally installs and activates them. After that, the engine invokes the
execution method of the composite service defined in its base class.

Consumer UI includes a composite service execution list view
and an execution process view. To execute a composite service, the
consumer can click the plus (+) button on the execution list view
and choose a composite service on a pop-up dialog. The execu-
tion process view (see Figure 4(a)) provides user interaction for the
consumer to specify execution settings and gets feedback of esti-
mated probability of success. After the execution of a composite
service starts, the execution process view shows execution logs for
the consumer to understand its execution process.

(a) Consumer UI (b) Worker UI
Figure 4: CROWDSERVICE Android Client UI

Worker client is also implemented on the Android platform, in-
cluding worker agent and worker UI. Worker UI includes a task
examination view and a microtask view. When worker agent re-
ceives an open call, it initiates a task examination view showing
received task instructions. If the worker chooses to participate, a
pop-up dialog is shown for him/her to input an offer. When worker
agent receives a participation confirmation, it initiates a microtask
view showing received task instructions and an interaction form.

The task examination view and microtask view are dynamically
generated based on received task instructions and task field descrip-
tions. A series of Android UI controls are used to show differ-
ent kinds of information and interaction fields, for example Edit-

Text (for primitive data type field), Spinner (for choice field), Im-
ageView (for image display). Figure 4(b) shows a microtask view
of the site inspection service, which asks the worker to confirm the
description and take a picture of a secondhand laptop.

6. USER STUDY
We conducted a user study to evaluate the usability of our frame-

work and implementation. Our user study was performed by exe-
cuting the composite service of buying secondhand items (see Fig-
ure 1) in a real-life scenario. We recruited 23 students (including 4
PhD students, 17 master students, and 2 senior undergraduate stu-
dents). Among them, three students played the role of secondhand
laptop seller and were located in three different buildings in the
campus; 20 students played the role of worker and three of them
also played the role of consumer. For the price assessment service,
all the workers were set to be experts who can be selected. The
reliability of each worker was equally set to 0.9.

Each consumer executed the composite service four times and
was given 40 yuan (RMB) (or roughly 7 USD) for each execution.
He/she could decide the overall cost and time constraints and the
result number constraint of each crowd service by himself/herself,
but was told to try different settings in the executions. All the work-
ers walked around the three buildings (within 10-500 meters) and
decided whether to participate in a crowdsourcing task and the ex-
pected reward by themselves. They could get the expected rewards
as bonus if they were selected and successfully finished their work.
Therefore, they were motivated to provide reliable service with rea-
sonable cost as in the real-world scenario.

After the experiments, we conducted a questionnaire survey and
a group interview to get the feedback of the users.

6.1 Execution Processes and Results
Table 2 shows statistics of the execution processes and results of

our user study. For each execution, it lists the consumer (Con.),
consumer specified time (T) and cost constraints (C), and execu-
tion information of the two crowd services. For each crowd ser-
vice, it lists the result number constraint (RN), synthesized time
constraint (ST) and cost constraint (SC), estimated probability of
success (Pro.), whether succeeded or not (Succ.), execution time
(ET), and the numbers of worker offers (#OF), selected workers
(#SE), and workers who successfully returned their results (#WR).

For Crowd Service 1 (site inspection), on average, each service
execution had nine worker offers, six selected workers, and six re-
turned results, and was finished in 151 seconds. For Crowd Ser-
vice 2 (price assessment), on average, each service execution had
17 worker offers, nine selected workers, and eight returned results,
and was finished in 68 seconds. The numbers of worker offers of
Service 2 were usually larger and the expected rewards were usu-
ally lower than those of Service 1. This is reasonable, since Service
2 is location independent and all the workers were qualified.

Among all the 12 executions of Service 1, 11 executions suc-
ceeded (i.e., the required number of worker results were returned
to the platform) and only one failed, making a success rate of 92%.
Among all the 12 executions of Service 2, 9 executions succeeded
and the other three failed, making a success rate of 75%.

After analyzing the execution results and logs, we found that
there are two main causes for failed executions. One cause is that
constraints synthesis was unable to find a feasible resource alloca-
tion plan, which was usually due to high result number constraint,
insufficient workers available, low cost, or insufficient time. The
other cause is that worker selection was unable to select a set of
workers, which was usually due to high result number constraint,
insufficient worker offers, or low cost.

Table 2: Execution Processes and Results of User Study

Con.
Constraint Crowd Service 1: Site Inspection Crowd Service 2: Price Assessment

T C RN ST SC Pro. Succ. ET(s) Worker RN ST SC Pro. Succ. ET(s) Worker
#OF #SE #WR #OF #SE #WR

C1

600 25 3 388 17 0.99 Yes 145 13 6 6 3 100 8 0.99 Yes 47 17 7 7
650 30 5 176 17 0.59 Yes 89 9 5 5 6 100 11 0.96 Yes 52 16 8 8
400 20 1 223 13 0.99 Yes 98 9 4 4 3 100 6 0.99 Yes 100 18 6 5
800 40 8 184 23 0.43 Yes 81 9 8 8 10 - - - No - - - -

C2

750 35 3 310 17 0.99 Yes 310 9 8 7 3 100 21 0.99 Yes 89 16 12 12
800 30 2 176 20 0.99 Yes 82 11 6 6 2 100 10 0.99 Yes 50 19 8 8
200 10 2 120 5 0 No - 9 - - - - - - - - - - -
600 30 1 229 18 0.99 Yes 229 7 5 3 1 100 16 0.99 Yes 90 16 12 12

C3

600 30 3 415 17 0.99 Yes 162 10 5 5 7 - - - No - - - -
500 25 1 367 10 0.99 Yes 143 7 4 4 5 100 14 0.99 Yes 63 17 10 10
600 35 3 388 24 0.99 Yes 136 9 7 7 3 100 10 0.99 Yes 53 17 7 7
1000 25 2 311 16 0.99 Yes 186 9 6 6 4 100 8 0.99 Yes 69 17 7 7

The above analysis shows that crowd services can be provided as
reliable services in real life when sufficient workers are available.

6.2 User Feedback
We analyzed the feedback of the consumers and workers col-

lected in the survey and interview.
The consumers generally think crowd service provides a con-

venient and cost-efficient way to fulfill their needs by leveraging
crowd intelligence and labor. Their main concerns include reliabil-
ity, result quality, and privacy. They regard the estimation of proba-
bility of success is useful for them to establish confidence on crowd
services and provides useful feedback for their execution settings.
They would usually have enough confidence to start the execution
if the estimated probability of success was higher than 75%. In
30% cases, they adjusted their execution settings (i.e., cost, time,
and result number constraints) to improve the probability of suc-
cess. Some consumers mentioned that they were not sure about the
quality of the returned results, as they did not know whether the
workers had done their work properly. Some consumers were con-
cerned about privacy issues, as some tasks may involve private in-
formation such as home address. They suggested that CROWDSER-
VICE could allow consumers to set the scope of worker selection to
specific groups of people such as those in the same university.

Some workers think crowd service provides an opportunity for
them to create value by making use of their location conveniences
and capabilities. They suggested to provide more transparency. For
instance, they often felt overwhelmed when considering expected
rewards as they did not know whether their expectations were too
high or too low. This problem can be addressed by providing a
reference price based on historical data of similar tasks or estima-
tion formula. The workers suggested two improvements on the in-
teraction modes supported by CROWDSERVICE. One suggestion
is to provide a negotiation process between consumers and work-
ers. This is useful for some crowd services with high cost and high
quality requirements, but may introduce unnecessary disturbance
for other crowd services. The other suggestion is to provide a pull
mode for task participation instead of pushing tasks to them. The
current task participation is push mode, i.e., the platform pushes
task invitations to workers, while by pull mode workers can search
for interested crowdsourcing tasks when they are available.

7. CONCLUSION
In this paper, we have proposed the CROWDSERVICE framework

to supply crowd intelligence and labor as publicly accessible crowd
services. To support their composition with computational ser-
vices, the framework wraps each crowd service as a Web service.
The execution of these wrapped crowd services launches mobile
crowdsourcing tasks, and aggregates the results returned by indi-
vidual workers. For reliability, CROWDSERVICE dynamically syn-

thesizes and updates near-optimal cost and time constraints for each
crowd service involved in a composite service and selects a near-
optimal set of potential workers for each to-be-executed crowd ser-
vice. We have developed an implementation of CROWDSERVICE
on the Android platform and evaluated its usability.

Acknowledgments
This work is supported by National High Technology Development
863 Program of China under Grant No. 2015AA01A203, and ERC
Adv. Grant 291652 - ASAP.

8. REFERENCES
[1] Amazon Mechanical Turk. http://www.mturk.com. 2015.
[2] Apache Felix. http://felix.apache.org. 2015.
[3] JADE. http://jade.tilab.com. 2015.
[4] OSGi Alliance. http://www.osgi.org. 2015.
[5] M. Alrifai and T. Risse. Combining global optimization with

local selection for efficient QoS-aware service composition.
In WWW 2009, pages 881–890.

[6] M. Barhamgi, A. K. Bandara, Y. Yu, K. Belhajjame, and
B. Nuseibeh. Protecting privacy in the cloud: Current
practices, future directions. IEEE Computer, 49(2):68–72,
2016.

[7] A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive
crowdsourcing. In WWW 2013, pages 153–164.

[8] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and
D. Zeinalipour-Yazti. Crowdsourcing with smartphones.
IEEE Internet Computing, 16(5):36–44, 2012.

[9] J. Krumm. A survey of computational location privacy.
Personal and Ubiquitous Computing, 13(6):391–399, 2009.

[10] X. Liu, Y. Hui, W. Sun, and H. Liang. Towards service
composition based on mashup. In Proceedings of the 2007
IEEE International Conference on Services Computing -
Workshops, SCW ’07, pages 332 –339, 2007.

[11] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An
online platform for web APIs and service mashups. IEEE
Internet Computing, 12(5):32–43, 2008.

[12] X. Peng, M. A. Babar, and C. Ebert. Collaborative software
development platforms for crowdsourcing. IEEE Software,
31(2):30–36, 2014.

[13] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf.
Composing RESTful services and collaborative workflows: a
lightweight approach. IEEE Internet Computing,
12(5):24–31, 2008.

[14] T. H. Tan, E. André, J. Sun, Y. Liu, J. S. Dong, and M. Chen.
Dynamic synthesis of local time requirement for service
composition. In ICSE 2013, pages 542–551.

http://www.mturk.com
http://felix.apache.org
http://jade.tilab.com
http://www.osgi.org

	Introduction
	Motivating Example
	Crowd Service
	Conceptual Model
	Types of Crowd Services
	Crowd Service Composition

	Framework
	Overview
	Crowd Service Description
	Microtask Execution
	Result Aggregation

	Implementation
	User Study
	Execution Processes and Results
	User Feedback

	Conclusion
	References

