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Abstract 14 

 15 

The objective classification of sediment source groups is at present an under-investigated 16 

aspect of source tracing studies, which has the potential to statistically improve 17 

discrimination between sediment sources and reduce uncertainty. This paper investigates this 18 

potential using three different source group classification schemes.  19 

The first classification scheme was simple surface and subsurface groupings (scheme 1). The 20 

tracer signatures were then used in a two-step cluster analysis to identify the sediment source 21 

groupings naturally defined by the tracer signatures (scheme 2). The cluster source groups 22 

were then modified by splitting each one into a surface and subsurface component to suit 23 

catchment management goals (scheme 3). The schemes were tested using artificial mixtures 24 

of sediment source samples. Controlled corruptions were made to some of the mixtures to 25 
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mimic the potential causes of tracer non-conservatism present when using tracers in natural 1 

fluvial environments. It was determined how accurately the known proportions of sediment 2 

sources in the mixtures were identified after unmixing modelling using the three 3 

classification schemes. 4 

The cluster analysis derived source groups (2) significantly increased tracer variably ratios 5 

(inter- / intra-source group variability) (up to 2122%, median 194%) compared to the surface 6 

and subsurface groupings (1). As a result, the composition of the artificial mixtures was 7 

identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found 8 

that the cluster groups could be reclassified into a surface and subsurface component (3) with 9 

no significant increase in composite uncertainty (a 0.1% increase over scheme 2).  The far 10 

smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 11 

and 3) was primarily attributed to the increased inter-group variability producing a far larger 12 

sediment source signal that the non-conservatism noise (1). Modified cluster analysis based 13 

classification methods have the potential to reduce composite uncertainty significantly in 14 

future source tracing studies. 15 

 16 

Keywords: Sediment fingerprinting; Sediment sources; Discrimination, Tracing, Uncertainty  17 

 18 

Highlights: 19 

 20 

 Robust discrimination between sediment sources is essential for fingerprinting 21 

 Source groups were classified according to management goals and tracer signatures 22 

 Objective classification reduced intra- and increased inter-group variability 23 

 Objective classification significantly reduced uncertainty in unmixing model outputs 24 

 The impacts of tracer non-conservatism were reduced with objective classification 25 
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 1 

1. Introduction 2 

 3 

Sediment fingerprinting has become a key method of determining the importance of the 4 

sediment sources in a catchment (e.g. Collins et al. 2010a). However, several methodological 5 

uncertainties associated with existing fingerprinting procedures have been highlighted in 6 

recent publications (D’Haen et al. 2012; Koiter et al. 2013; Smith and Blake, 2014; Laceby 7 

and Olley, 2015; Pulley et al. 2015a & b). Establishing a robust discrimination between 8 

sediment sources using suitable tracers is a key recommendation for accurate source tracing 9 

(Collins and Walling, 2002), making it a goal of many sediment fingerprinting based studies. 10 

A fairly robust discrimination between different land uses as well as subsurface (i.e. 11 

streambank) sources has been established using some tracers. For example, 137Cs or excess 12 

210Pb, where the mixing of tracer fallout through the soil profile during ploughing results in 13 

lower activities in cultivated land in comparison to undisturbed grassland or woodland 14 

(Walling and Woodward, 1992). Additionally, very low activities would be expected in 15 

subsurface sources, which are not exposed to direct fallout (Collins and Walling, 2002; 16 

Walling, 2004). However, fallout radionuclides (i.e. 137Cs) my not produce ideal source 17 

identification in many catchments. For example, robust discrimination might be limited in 18 

many catchments if channel banks are composed of displaced surface material or floodplain 19 

deposits (with ages >1950’s), which has high activities (Walling, 2003). Alternatively, where 20 

environmental factors only support shallow channel banks comprising surface soils rather 21 

than well-developed vertical faces and processes of diffusion, bioturbation and eluviation 22 

cause migration of 137Cs down through the soil profile (Walling and Woodward 1992; 23 

Walling, 2003; Mabit et al., 2008), or where agricultural rotation between arable crops and 24 

short-term ley or untilled grass reduces the distinction between cultivated and undisturbed 25 
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surface soils (Smith and Blake, 2014). As a result, there is often incomplete discrimination 1 

between sediment source using 137Cs, or similarly, excess 210Pb (e.g. Collins et al. 2001; 2 

Collins et al. 2007; Smith and Blake 2014). Because of this, it is common practice that 137Cs 3 

and many other individual tracers are utilised in a composite fingerprint consisting of many 4 

tracers, to help avoid spurious source-sediment matches (e.g. Stanton et al. 1992; Collins et 5 

al. 2013). Due to the complex nature of the dynamics of most tracers in the environment, the 6 

basis for source discrimination of many of the tracers utilised in composite fingerprints is 7 

rarely understood, and instead, a ‘black box’ type methodology is commonly used, which has 8 

been criticised (Koiter et al. 2013; Smith and Blake, 2014). 9 

A review by Haddadchi et al. (2013) shows that it is currently practice to classify sediment 10 

source groups by land use (including surface/ subsurface sources) in the vast majority of 11 

sediment fingerprinting research (Slattery et al. 1995; Walling and Woodward, 1995; Collins 12 

et al. 2010a; Collins et al. 2010b; Smith and Blake, 2014). This is despite the fact that the 13 

majority of catchments investigated in source tracing studies will contain heterogeneous 14 

geology or soil types. For example, Pulley et al. (2015a), Collins et al. (2013), Smith and 15 

Blake (2014), Wilkinson et al. (2013), Palazón et al. (2015), Nosrati et al. (2014), Evrard et 16 

al. (2013) and Gellis et al. (2009) have all recently published source tracing studies in 17 

catchments with heterogeneous geology and/or soil. This potentially represents a problem if 18 

the signal of different land use is weakly expressed by the tracers used. Horowitz and 19 

Stephens (2008) investigated the impact of land use on the chemistry of river sediment in a 20 

large scale study of 51 river basins across the USA, with drainage areas ranging from 28 to 21 

49,800 km2. It was found that the only land use to have a significant effect on sediment 22 

chemistry was urban areas. Therefore, the geochemical signal of land use (and subsurface 23 

sources) in river sediments may possibly be very weak. In contrast, the signal of geology or 24 

soil type may often be very strong. For example, with the dissolution of magnetic iron oxides 25 
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which can take place in anoxic and reducing soil conditions (Anderson and Rippey, 1988; 1 

Roberts and Turner, 1993), or highly different tracer concentrations in different geological 2 

units (Collins et al., 1998; Owens et al. 1999; Pulley et al. 2015c) or spatially variable 3 

anthroprogenic tracer inputs (Devereux et al. 2010; Rossini et al. 2010; Guieu et al. 2010). 4 

These factors are likely to result in land use classified source groups with a very large amount 5 

of within-group variability. The effect of a large within-source group variability is to 6 

significantly increase uncertainty associated with source apportionment results (Small et al. 7 

2002; Collins et al., 2010; Pulley et al. 2010a).  8 

The impacts of tracer non-conservatism caused by factors such as organic matter (Wang et al. 9 

2010; Carr et al. 2010; Nadeu et al. 2011) and particle size (Elrick 1987; Motha et al. 2003; 10 

Pye et al. 2007; Pulley et al. 2015c) may also be increased when a small difference in tracer 11 

concentration exists between source groups. For example, if there is only a 10% difference in 12 

the mean tracer concentration of two source groups and non-conservatism causes a 5% 13 

change to a tracer during sediment transport, very large errors will be present in the final 14 

outputs. Alternatively, if a 100% difference exists between tracer signatures in the source 15 

groups, a 5% change caused by non-conservatism during sediment mobilisation, intermediate 16 

storage and delivery will only have a minor impact on source fingerprinting estimates.  17 

A method which could potentially reduce within-source group variability and increase intra- 18 

group variability was developed by Walling et al. (1993) who used pre-selected tracers in a 19 

cluster analysis to classify sediment source groups. It was found that land use was the 20 

primary controlling factor on tracer signatures and classified 4 to 6 source groups. Walling 21 

and Woodward (1995) also used this method and geology was identified as the major 22 

controlling factor controlling source group classification. Using this method of source 23 

classification provides the benefit that the natural variability in tracer concentrations within a 24 

catchment is used to define the source groups; therefore, each source group should have a low 25 
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within-group variability in tracer concentrations and be substantially different to other 1 

groups. Despite these clear advantages, this method of source group classification has largely 2 

been neglected in recent literature. It is likely that catchment management goals such as 3 

identifying sediment inputs from a specific source such as eroding farm tracks (Collins et al. 4 

2010b) have necessitated the prior selection of source groups without regard to the natural 5 

variability in tracers within a catchment. 6 

The overall question this paper aims to answer is: can the objective classification of sediment 7 

source groups using an updated cluster analysis based method reduce gross uncertainty in 8 

fingerprinting outputs? Additionally, can we modify the cluster analysis derived source 9 

groups to suit management goals; in this example discriminating between surface and 10 

subsurface sources, while maintaining the benefits of the cluster analysis method.  11 

This study uses artificial mixtures of sediment source samples, some of which are 12 

deliberately corrupted by numerous means to test the accuracy of unmixing model results 13 

when the different source group classification methods are used. Error evaluation using 14 

artificial mixtures has been increasingly adopted as a routine component of sediment source 15 

tracing studies (e.g. Palazón et al. (2015). 16 

2. Study area 17 

 18 

The sediment source samples were retrieved from the largest tributary sub-catchment (4.3 19 

km2) of Sywell Reservoir, which is located in the Nene river basin in the East Midlands of the 20 

UK. The catchment is composed of Jurassic age mudstones and sand and ironstones in the 21 

lower catchment as well as Quaternary diamicton in the upper catchment (Figure 1). Soils in 22 

the catchment are a combination of freely draining brown earths in the lower catchment over 23 
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the ironstone geology and poorly draining clayey soils in the upper catchment. The land use 1 

is predominantly cultivated land (54.4%) used for wheat production with some areas of 2 

improved grassland (22.7%) which are used for sheep grazing, as well as woodland (22.7%) 3 

(Figure 1; Morton et al. 2011). The River Nene basin has an average annual rainfall of 638 4 

mm recorded at Althorp over the last 140 years according to records transcribed by the 5 

authors from the UK Met Office archives. Construction of Sywell reservoir was completed in 6 

1906, and an area of wetland has developed in alluvial deposits where the river enters the 7 

reservoir close to sampling points 1 and 1b (Figure 1).  Very little erosion of toposils was 8 

observed in the study catchment, with a single small area of cultivated land appearing to have 9 

undergone some minor rill erosion. Channel banks were observed to have slumped and be 10 

exposed to fluvial entrainment in many areas. A previously published fingerprinting 11 

investigation in the River Nene basin by Pulley et al. (2015a) identified that there were large 12 

differences (24%) between the provenance predictions made by different sediment tracer 13 

groups when tracing using land use source categories. Therefore, the Nene basin represents a 14 

challenging environment for the successful application of robust sediment source 15 

fingerprinting. 16 

 17 
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 1 

Figure 1: The geology and land use in the study catchment (after Morton et al 2011; 2 

British Geological Survey 2011) and the locations of sediment source sampling points.  3 

 4 

3. Methods 5 

 6 

3.1.Sediment source sampling and laboratory analyses 7 

 8 
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Sediment source samples were collected from 11 locations along the rivers channel banks 1 

(Figure 1). Samples were only collected from the bank material and topsoils directly above it 2 

as this study aimed to investigate different source classification methods comprising two 3 

fundamental source categories (surface and subsurface) to simplify the interpretation of 4 

results. 5 

At each sampling point, 2 to 10 samples of the channel bank material were collected at 10 to 6 

15 cm intervals down the exposed channel bank face according to vertical stratigraphy; using 7 

a non-metallic knife after 5 to 10 cm of superficial material had been removed in order to 8 

minimise contamination by mass failure surface drapes and flood deposits. The sampling 9 

locations were selected primarily on the basis of the presence of exposed banks with a lack of 10 

vegetation and accessibility and to be roughly evenly spaced along the entire channel network 11 

length. An additional sample of topsoil was collected using a non-metallic trowel to a depth 12 

of 5 cm from each sampling location in the cultivated or grass fields located past the riparian 13 

zone and outside of the limits of any floodplain (~10 m from the river channel). Each sample 14 

was an individual sample and not a composite of multiple samples. A total of 58 subsurface 15 

channel bank samples and 20 surface samples (the top 5 cm of the banks and nearby field 16 

topsoils) were collected.  Each sample was oven dried at 40°C for 24 hours before being 17 

sieved to < 63 µm to conform to common practice in published fingerprinting studies (e.g. 18 

Walling et al., 1993; Walling and Woodward, 1995; Collins et al., 1997, 2010a). 19 

Mineral magnetic (Walden et al. 1997), geochemical (Collins et al. 2010a) and colour 20 

signatures (Pulley and Rowntree, 2016) were measured as potential sediment source tracers.  21 

Mineral magnetic signatures were measured using 8 to 10 g of each sample tightly packed 22 

into 5 ml polystyrene sample pots. The properties shown in Table 1A were measured using 23 

the methods described by Lees (1999). The repeat measurement of six samples for five 24 
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repetitions identified that a mean error (coefficient of variation; %) of 5.3% was associated 1 

with the measurement of magnetic tracers. 2 

Geochemical tracers were measured using 0.8 g of each sample digested in 10 ml of aqua 3 

regia at 180°C for 20 minutes in a CEM Mars 6 digestion unit. The concentrations of Al, B, 4 

Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, Pb, S, Sr, V, Y, Zn and Zr were determined using 5 

a Thermo Scientific iCAP 6500 dual view ICP-OES. The repeat measurement of samples 6 

identified that a mean error (coefficient of variation; %) of 11.6% was associated with the 7 

measurement of geochemical tracers. 8 

Colour signatures were measured using the prepared samples packed into polythene bags. 9 

Images of the source material were captured using a Lexmark x2650 colour scanner and were 10 

imported into Gimp 2 open source image editing software.  The mean intensity of reflected 11 

red, green and blue light was recorded on the 0-255 scale of the RGB colour model. The 12 

colouration indices shown in Table 1B were then calculated using the extracted RGB values. 13 

The methods used for measurement are discussed in more detail by Pulley and Rowntree 14 

(2016). The repeat measurement of samples identified that a mean error (coefficient of 15 

variation; %) of 4.1% was associated with the measurement of colour signatures. 16 

 17 

Table 1. The magnetic properties (Maher, 1988 Walden, 1999; Yang et al. 2010; Wang 18 
et al. 2012) and colour signatures (Ray et al. 2004; Viscarra Rossel et al. 2006) used, 19 
their calculation and the property they represent. All measurements were initially 20 

performed on the <63 µm fraction. 21 

Name Calculation Property Instrument 

(A)   Magnetic signatures       

Low frequency susceptibility 

(χlf) 
Raw data All magnetic minerals 

Bartington Instruments 

MS2b sensor 



11 
 

Frequency dependent 

susceptibility (χfd) 
((lf - hf)/m)x100   

(m = sample mass) 

Ultrafine super 

paramagnetic grains (< 

0.03 μm) 

Bartington Instruments 

MS2b sensor 

Susceptibility of anhysteretic 

(χarm) remanance 

magnetisation 

ARM x 3.14 x 10 

stable single domain 

ferrimagnetic grains in the 

0.02 to 0.4µm range 

Molspin® anhysteretic 

remanent magnetiser; 

Molspin® slow-speed 

spinner magnetometer 

Saturation isothermal 

remanence magnetisation (1T) 

(SIRM) 

Raw data 
Almost all remanence 

carrying minerals 

Molspin® pulse 

magnetiser, Molspin® 

slow-speed spinner 

magnetometer 

Back isothermal remanence 

magnetisation (-100mT) (IRM-

100) 

Raw data 
The majority of single 

domain ferromagnetic 

grains 

Molspin® pulse 

magnetiser Molspin® 

slow-speed spinner 

magnetometer 

Hard isothermal remanence 

magnetisation (HIRM) 

IRM1T/(1—(1 x 

(IRM-100mT / IRM 

1T)))/2 

High coercivity canted 

antiferromagnetic 

minerals or coarse multi-

domain ferromagnetic 

grains 

Calculated 

(B) Colour signatures    

Red Raw data Reflected red light Lexmark x2650 

Green Raw data Reflected green light Lexmark x2650 

Blue Raw data Reflected blue light Lexmark x2650 

HRGB (2xG)-R –B 4 Hue Calculated 

IRGB 
R+G+B  

3 

Light 
Calculated 

intensity 

SRGB 
R-B 

2 
Chromatic information Calculated 

Saturation 

Index 
(R-B) (R+B) Spectra slope Calculated 

Hue Index (2xR-G-B) (G-B) Primary colours Calculated 

Coloration Index (R-G) (R+G) Soil colour Calculated 

Redness Index 
R2  

(BxG3) 
Hematite content Calculated 

 1 

 2 

3.2. Sediment source group classification methods 3 

 4 
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The source samples collected were classified into different sediment source groups for tracing 1 

in the following three ways:  2 

1: The simple method of classification into two fundamental groups; surface (topsoils 0-5 cm 3 

depth) and subsurface (i.e. channel banks) sources.  4 

2: A two-step cluster analysis based upon the methods of Walling et al. (1993) and Walling 5 

and Woodward (1995) was used in SPSS 20 to determine the sediment source groups which 6 

best fitted the measured tracer signatures. Prior to the cluster analysis, the tracer signatures 7 

were included in a principal component analysis with varimax rotation in SPSS 20 to identify 8 

the tracers most strongly correlated with each principal component in the source samples. 9 

This was undertaken to simplify the variables input into the cluster analysis. The two-step 10 

cluster analysis was repeated with between 2 and 6 clusters and the solution with the best 11 

silhouette coefficient (the smallest mean between-cluster distance minus the mean within-12 

cluster distance, divided by the larger of the two distances) was used to define the catchment 13 

source groups. This measure represents how well separated each cluster is from other clusters 14 

and how closely related the data points in any individual cluster are.  15 

3: The third method of source classification was to reclassify the surface and subsurface 16 

sources of each cluster group (from method 2) into separate source groups. This classification 17 

method was aimed at retaining the naturally present cluster groups while fully 18 

accommodating the catchment management goal of discriminating between surface and 19 

subsurface sources for the purpose of targeting sediment control strategies. 20 

 21 

3.3. Creation of the artificial mixtures of sediment sources 22 

 23 
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The effectiveness of each of the three source group classification methods at reducing 1 

uncertainty in the unmixing outputs was tested using artificial mixtures of the channel bank 2 

and topsoil samples. Each mixture was created with known proportions of each sediment 3 

source group derived using the three classification methods, these were generated only after 4 

applying the cluster analyses and discriminant analysis. An equal mass of sediment from each 5 

source sample collected which was in each group was used unless otherwise specified. Some 6 

mixtures were deliberately corrupted in the ways shown in Table 2 in an attempt to replicate 7 

potential ways in which the non-conservatism of tracers might occur in the natural 8 

environment. Three repetitions for each mixture were unmixed, composed of the following 9 

proportions of surface and subsurface sources: 0.25:0.75, 0.50:0.50 and 0.75:0.25 (these were 10 

converted into the proportions in the source groups derived using methods 2 and 3 by 11 

knowing which group the individual source samples added to the mixtures were classified 12 

into). The overall question asked when fingerprinting each mixture is “how close to the actual 13 

proportions of sediment in the artificial mixtures are the fingerprinting results derived using 14 

the different classification methods?”.  15 

For the deliberately corrupted mixtures, the prepared mixtures were wet sieved through a 38 16 

µm stainless steel mesh using ultrapure distilled water and the 63-38 µm and <38 µm 17 

fractions retained for tracing. When organic matter was added, cotton wool (as organic matter 18 

of a uniform composition) was reduced to a powder using a blender and the appropriate mass 19 

added to each mixture.  20 

 21 

Table 2: The artificial sediment source mixtures created and their purpose.  22 

Mixture Purpose 

All channel bank and surface sources 

with no corruption 

How does source group classification change the 5th to 95th range of 

uncertainty produced by the Monte Carlo based unmixing model as well 

as the error resulting from measurement accuracy and the modelling 

procedure? (i.e. how close to the actual mixture composition are the 

results derived using the three classification methods?) 



14 
 

  

Only cluster 3 subsurface sources and 

all surface sources (this mixture was 

decided upon only after the use of the 

cluster analysis) 

 
These three alterations to the mixtures investigate how much error can be 

caused by regional variability in sediment source inputs with each source 

group classification method. For example, if only a small part of channel 

bank composed of an unusual tracer signature undergoes mass failure 

contributing a disproportionally large amount of sediment. 

Only cluster1 surface sources and all 

subsurface sources (this mixture was 

decided upon only after the use of the 

cluster analysis) 

Only a random 10% of samples from 

each source group 

  

All source samples with 10 - 30% of 

the sample mass added as organic 

matter (cotton wool) 

How does the classification of source groups affect the error resulting 

from the enrichment in sediment-associated organic matter during its 

erosion, transport and storage? 

All source samples sieved to <38µm How does the classification of source groups affect the error that can 

result from particle size changes during sediment erosion, transport, 

deposition and delivery. All source samples sieved to 63 -

38µm 

 1 

 2 

3.4. Source group fingerprinting procedure 3 

 4 

The key theory behind this paper is that the cluster analysis source group classification 5 

method will reduce the within-source group variability and increase the inter-source group 6 

variability. To test if the classification methods achieve this aim, tracer variability ratios of 7 

the percentage difference in median tracer concentration between source groups divided by 8 

the mean within-source group variability (coefficient of variation; %) were used (Pulley et al. 9 

2015a).  Prior to the identification of the composite fingerprints for tracing, any tracer with a 10 

maximum variability ratio lower than 1 in any pair of source groups was removed from 11 

further analysis to help reduce the uncertainty present in the final results.  12 

A genetic algorithm driven linear discriminant analysis (GA-LDA; cf. Collins et al. 2012, 13 

2013, 2014) was then used to identify the composite fingerprint of tracers best able to 14 

discriminate between the sediment source groups. The GA-LDA was repeated for each of the 15 

three sediment source group classification methods, to produce a unique composite 16 
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fingerprint for each. The percentage of source samples correctly classified into their 1 

respective group with the optimum fingerprint for each classification method was compared. 2 

An unmixing model (Equation 1) was used to apportion the contributions of sediment in each 3 

of the artificial mixtures (Table 2). Before inclusion in the model, all tracers were rescaled to 4 

range between 0 and 1 by dividing each model value by the maximum value found in any 5 

source group. The unmixing model incorporated Monte Carlo uncertainty analysis (Rowan et 6 

al. 2000) which repeated the model for 3000 iterations, each iteration with a random tracer 7 

value from within the range of the median +/- one median absolute deviation (MAD) of each 8 

source group. The model outputs were presented as the average median Monte Carlo result 9 

with 5th and 95th percentile uncertainty error bars. No correction factors for organic matter or 10 

particle size were used, and no weightings for within-source variability and discriminatory 11 

efficiency were applied, as these may introduce additional uncertainty into the fingerprinting 12 

process (Smith and Blake 2014; Laceby and Olley, 2014). The results of the modelling were 13 

compared to the known proportions of each source group present in the artificial mixtures. 14 

The mean absolute difference (cf. Collins et al., 1997) between the median Monte Carlo 15 

source estimations and the known proportions of each source was calculated for the 3 16 

repetitions of each mixture (Table 2). Using this method, the error present when unmixing the 17 

uncorrupted and deliberately corrupted mixtures was quantified to find how source 18 

classification affects the accuracy of a hypothetical fingerprinting study. 19 

 20 

Equation 1. The structure of the sediment source unmixing model. 21 

 22 
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Where Ci = concentration of fingerprint property (i) in sediment sample; Ps = the optimised 1 

percentage contribution from source category (s); Ssi = median concentration of fingerprint 2 

property (i) in source category (s) n = number of fingerprint properties comprising the 3 

optimum composite fingerprint; m = number of sediment source categories.  4 

4. Results and discussion 5 

 6 

 7 

4.1.Source group classification 8 

 9 

The first classification scheme separated samples into simple surface and subsurface sources 10 

(two source groups used in most published studies). The second source group classification 11 

used the tracer signatures in a two-step cluster analysis. A total of 7 Principal Components 12 

were identified in the tracer signatures accounting for 82.3% of the variance in the total data 13 

set. The tracer most strongly correlated with each Principal Component was identified (and 14 

are those shown in Table 3) and included in the two-step cluster analysis. The cluster analysis 15 

identified that a 3 cluster solution was optimal. The results presented in Table 3 suggest that 16 

these clusters are based on catchment geology (Figure 1) with cluster 1 representing 17 

ironstone-derived topsoils and channel banks (rich in vanadium and iron), cluster 2 18 

representing mudstone and diamicton (rich in lithium) and the third component representing 19 

limestone-derived channel bank material (rich in strontium and calcium). It is of note that 20 

limestone is not marked on the geology map (Figure 1) highlighting a potential shortcoming 21 

of a source classification schemes based only upon a geology or soil map as opposed to one 22 

which uses the tracer signatures for classification. Therefore, in the case of this study, the 23 

tracer signatures are likely to be more naturally defined according to local geology rather than 24 

as simple surface and subsurface sources. In other catchments this may be different, 25 
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reflecting land use (Walling et al., 1993) or soil type. These groupings were used to form the 1 

artificial mixtures used for testing in this paper. 2 

 3 

Table 3: The locations of cluster centres in the two-step cluster analysis (group 4 
classification method 2 only). The cluster with the highest value for each tracer is 5 

highlighted in bold (See Table 1 for a description of colour signatures). 6 

 Cluster 

 1 2 3 

Interpretation 

Oordial Ironstone and 

Sand and ironstone 

Mudstone 

and 

diamicton  Limestone 

Percentage of total 

samples (78) in group 
9.0 70.5 20.5 

Green (intensity) 90.67 107.05 127.94 

SIRM (10-3 Am3 kg-1) 9.65 2.06 0.91 

Sr (mg kg-1) 58.48 36.65 109.2 

V (mg kg-1) 114.75 50.31 61.28 

Li (mg kg-1) 11.12 15.07 9.81 

Mo (mg kg-1) 0.75 0.56 0.55 

 7 

The third source group classification method used the three cluster groups as a starting point 8 

and split the surface and subsurface samples in each cluster group into their own separate 9 

groups. After doing this it was found that there was only one subsurface sample left in the 10 

ironstone subsurface cluster; as a result the subsurface ironstone source group was removed 11 

from further analysis. The source groups identified with scheme 3 can be seen in (Figure 2, 3) 12 

The source groups derived using each classification scheme were mapped on a diagram 13 

representing the down bank profiles at each sampling point (Figure 2). The location of each 14 

sampling point in the study catchment is shown in Figure 1. Mapping the two-step cluster 15 

analysis source groups (classification scheme 2) shows that the majority of ironstone 16 

classified samples are located in the centre of the catchment and on the surface (Figure 2). 17 

The limestone group classified samples are all located in subsurface material at sampling 18 
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sites 3, 4, 7 and 8. In contrast, clay and diamicton derived material is present throughout the 1 

entire study area.  2 

 From the viewpoint of a catchment manager wanting to know where to target mitigation 3 

measures, classification scheme 2, using only the cluster analysis, is perhaps the least useful 4 

since it could only identify how much sediment originated from some of the small outcrops 5 

of limestone and ironstone in the centre of the study catchment. The most useful 6 

classification scheme is number 3 with the greatest number of source groups.  7 

 8 

Figure 2: A simplified map of the source samples derived using the different source 9 
group classification schemes; each diagram represents the down bank profile with 10 

samples over the 0 m line originating from adjacent agricultural fields and samples 11 

immediately below the line being topsoil overlying the channel bank. 12 
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 1 

 2 

4.1. Within- and between-source group variability  3 

 4 

This section compares the percentage difference in median tracer signatures between the 5 

source groups and within-source group variability (mean coefficient of variability as a %) for 6 

the three source group classification schemes, using a tracer variability ratio (intra / inter 7 

group variability). 8 
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The cluster analysis derived source groups (classification scheme 2) greatly increased (by up 1 

to 2122%, median 194%) the variability ratios over the simple surface and subsurface source 2 

groups (scheme 1), indicating a greater difference in tracer signatures between the source 3 

groups and lower within-source group variability (Table 4). The variability ratios remained 4 

substantially higher than the simple surface and subsurface source groupings (scheme 1) 5 

when the cluster analysis based groups were split into a surface and subsurface component 6 

(scheme 3). These results thereby indicate that the lowest uncertainty would be propagated 7 

through to the unmixing model outputs with classification schemes 2 and 3 compared to 8 

scheme 1.  9 

 10 

Table 4: Source group median tracer concentrations, median absolute deviations 11 

(MAD) and tracer variability ratios for the different classification methods (the tracers 12 
shown are those selected in the PCA as representing 82.2% of variance in the total 13 

tracer dataset, not necessarily those used in the composite fingerprints). 14 

1: Surface and subsurface source groups 

Group Name  
Number 

of 

samples 

SIRM Li Mo Sr V Green 

1 Surface Median 20 3.05 13.39 0.56 39.81 55.84 99.8 

  MAD  0.87 2.96 0.13 13.45 14.19 3.2 

2 
Channel 

banks 
Median 58 1.42 12.27 0.52 38.55 51.88 111.5 

  MAD  0.61 2.54 0.12 13.68 12.15 7.4 

          

Surface and channel 

banks 
Variability Ratio 1.50 0.39 0.29 0.09 0.29 2.15 

          

2: Two - step cluster source groups 

1 Ironstone Median 7 10.20 11.89 0.79 51.50 113.20 94.6 

  MAD  5.69 3.22 0.20 5.90 41.65 3.3 

2 Clay Median 55 1.88 13.43 0.53 32.83 47.76 105.6 

  MAD  0.58 2.96 0.10 7.93 9.79 4.2 

3 
Limestone  

subsurface 
Median 16 0.86 9.81 0.49 107.48 50.51 126.3 

  MAD  0.23 2.50 0.12 46.58 16.04 6.2 

          

Ironstone and mudstone 

+ diamicton 
Variability Ratio 1.89 0.47 1.51 2.04 2.02 2.79 
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Ironstone and limestone 

subsurface 
Variability Ratio 2.21 0.67 1.54 1.90 1.62 6.01 

Mudstone + diamicton 

and limestone 

subsurface 

Variability Ratio 1.87 1.13 0.38 2.06 0.21 3.71 

  Maximum ratio 1.89 1.13 1.54 2.06 1.62 3.71 

          

3: Two - step cluster source with only clay surface sources reclassified 

1 
Ironstone 

surface 
Median 7 10.20 11.89 0.79 51.50 113.20 94.60 

  MAD  5.69 3.22 0.20 5.90 41.65 3.30 

2 
Clay  

subsurface 
Median 41 1.65 13.43 0.53 33.76 51.60 108.10 

  MAD  0.65 2.96 0.10 7.30 10.44 4.20 

3 
Limestone  

subsurface 
Median 16 0.86 9.81 0.49 107.48 50.51 126.30 

  MAD  0.23 2.50 0.12 46.58 16.04 6.15 

4 
Clay  

surface 
Median 14 2.33 13.39 0.54 28.53 47.37 101.15 

  MAD  0.89 2.96 0.12 7.11 12.23 1.75 

          

Ironstone surface and 

mudstone + diamicton 

subsurface 

Variability Ratio 1.76 0.47 1.51 2.08 1.91 3.39 

Ironstone surface and 

limestone subsurface 
Variability Ratio 2.21 0.67 1.54 1.90 1.62 6.01 

Ironstone surface and 

mudstone + diamicton 

surface 

Variability Ratio 1.64 0.46 1.35 2.45 1.86 2.48 

Mudstone + diamicton 

subsurface and 

limestone subsurface 

Variability Ratio 1.45 1.13 0.38 2.11 0.08 3.29 

Mudstone + diamicton 

subsurface and clay 

surface 

Variability Ratio 0.75 0.01 0.07 0.67 0.36 2.29 

Limestone subsurface 

and mudstone + 

diamicton  surface 

Variability Ratio 1.93 1.12 0.40 2.15 0.22 6.03 

  Maximum ratio 2.21 1.13 1.54 2.45 1.91 6.03 

 1 

4.2 Discriminant analysis 2 

 3 

The GA-LDA produced composite fingerprints able to classify 100% of the source samples 4 

into their correct groups for all of the source group classification schemes. On this basis, all 5 

three classification schemes are suitable for achieving basic discrimination using the 6 

available tracers. The cluster analysis grouping method (scheme 2) required fewer tracers to 7 

achieve this discrimination than the other groups. Recent research by Sheriff et al. (2015) has 8 
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suggested that larger composite fingerprints may reduce uncertainty in some fingerprinting 1 

methodologies. It was, however, found that including additional tracers to increase the size of 2 

the fingerprint for source classification scheme 2 did not result in a significant change to 3 

unmixing model accuracy in this study, and for this reason, the results derived using the 4 

original smaller number of signatures are presented.  5 

 6 

Table 5: The optimum composite fingerprint selected for each source group 7 

classification scheme. 8 

 
Discriminatory 

power 
Tracers selected 

1: Original groups 100% SIRM, Red, Green, HRGB, IRGB, Al, K, Li, Mn, P, Sr, V, Zn 

2: Cluster analysis 

groups 
100% SIRM, IRGB, Fe, P, Sr   

3: Cluster groups 

with separate surface 

and subsurface 

components 

100% 
χlf, χam, Red, Green, Blue, HRGB, Colouration Index, Ba, Fe, 

Li, Mg, Sr 

 9 

 10 

4.1.Unmixing model outputs 11 

 12 

The artificial mixtures of known proportions of source samples (Table 2) were run through 13 

the unmixing model (Equation 1) using the composite fingerprints in Table 5, to assess how 14 

the different source classification schemes affected the accuracy of the source apportionment 15 

modelling results. Six of the seven mixtures were deliberately corrupted by sieving adding 16 

organic matter or using only a small number of samples from each source group (Table 2). 17 

This was done to mimic some of the key possible sources of tracer non-conservatism in the 18 

natural environment. 19 

Figure 3 shows some examples of the actual and modelled proportions of sediment from each 20 

source group in the artificial mixtures derived for the different source group classification 21 
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schemes. By way of summary, the results are only presented for one of the three samples 1 

unmixed and four of the seven mixture types. The full set of graphs are provided in the online 2 

supplementary material and the results are summarised in Table 6.  3 

The error bars representing the 5th to 95th percentile range of uncertainty in model results 4 

were very large with the simple surface and subsurface source groups (mean for all samples 5 

analysed 71.31% on the 0 – 100% contribution scale, standard deviation 18.19%) (scheme 1). 6 

The range of uncertainty was smallest with the cluster groups (mean 31.05%, standard 7 

deviation 12.90%) (scheme 2) and cluster groups split into surface and subsurface 8 

components (mean 38.63%, standard deviation 19.93%) (scheme 3).  9 

 10 

Figure 3: The actual (black) and modelled (grey) median proportion of sediment in one 11 
of the three artificial mixtures, fingerprinted using the different source grouping 12 
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methods, with 5th and 95th percentile uncertainty bars. The latter represent feasible 1 

unmixing model solutions. 2 

 3 

Table 6 summarises the mean differences between the actual and modelled contributions of 4 

each source to the sediment mixtures for every unmixing model run. The outputs of nearly 5 

every model run were statistically significantly different (P <0.05) to those of other models. 6 

For example, the source apportionment results of the mixtures with organic matter added 7 

were significantly different to those without organic matter added. The simple surface and 8 

subsurface source groupings (scheme 1) resulted in large errors (mean 15.8%), even when no 9 

alterations are made to the mixtures, but the actual composition of the mixtures did, however, 10 

mostly fall within the large range of model uncertainty when the mixtures were unaltered 11 

(Table 6; Figure 3). The mean percentage differences between median tracer concentrations 12 

in the source groups for the composite fingerprints used were 16.75% (scheme 1), 42.11% 13 

(scheme 2) and 34.71% (scheme 3) (Table 4). The small difference in tracer signatures 14 

between source groups using scheme 1 explains its poor performance, as the errors associated 15 

with laboratory tracer measurement were quantified as between 4.1% and 11.6%, which 16 

could remove much of the discrimination provided by the tracers used. Schemes 2 and 3 17 

produce far lower errors with the unaltered mixtures (Mean 7.7 and 10.1%). 18 

Using only part of each source group (either 10% of source samples or a samples only from 19 

specific cluster group in Table 3) in the mixtures to replicate sediment delivery from only a 20 

small part of the study catchment resulted in large errors in provenance apportionment when 21 

source group classification scheme 1 was used (mean 21.7%). Classification schemes 2 and 3 22 

had much lower errors (mean 12.9%). Therefore, where sediment delivery to a river is highly 23 

localised, significant errors could be introduced if source groups are classified on the basis of 24 
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catchment-wide generic subsurface / surface sources alone in a catchment with a 1 

heterogeneous geology or soil type when a composite fingerprinting approach is used. 2 

Sieving the artificial mixtures to <38 µm and 63 - 38 µm to replicate changes to fine 3 

sediment particle size during its transportation from source to river channel resulted in large 4 

errors (mean 28.6%) when scheme 1 was used and lower errors (mean 13%) when 5 

classification schemes 2 and 3 were used. The largest error resulting from any deliberate 6 

corruption to the artificial source mixtures was caused when the samples were sieved to 63 - 7 

38 µm (mean 23.8%). This large error possibly suggests that the basis for source 8 

discrimination may be significantly different between the < 38 µm and 63 - 38 µm fractions 9 

of the source samples. Previous research has reported such a finding. For example, Motha et 10 

al. (2003) and Pye et al. (2007) found higher concentrations of many tracers in fine, <20 µm, 11 

fractions of catchment source material. Alternatively, Horowitz and Elrick (1987) found 12 

anthropogenic pollutants such as Zn concentrated in coarser silts of stream sediments.  13 

When cotton wool was added to the artificial mixtures to replicate the enrichment of organic 14 

matter during sediment transport, this alteration counterintuitively slightly improved model 15 

accuracy (by a mean of 1.5%). It may be that the sediment coated the organic matter meaning 16 

that the sediment colour was not significantly changed by the organic addition. Alternatively, 17 

it is possible that measurement error (of up to 11.6%) caused the tracer concentrations 18 

measured in the mixtures to be too high. In this case dilution of the tracer signatures by 19 

organic matter may well result in the observed improvement. 20 

 21 

Table 6: Mean absolute differences (%) between the actual and modelled proportions of 22 

each sediment source in the artificial mixtures using the different sediment source 23 

classification schemes. The lowest difference for each mixture is highlighted in bold. 24 

Source classification scheme 
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1 

Surface and 

subsurface 

source groups 

2 

Two-step 

cluster 

groups 

3 

Two-step cluster 

groups with separate 

surface and subsurface 

components Mean 

No alteration 15.8 10.1n/a 7.7+ 11.2 

Cluster 3 channel 

banks samples 

only 

16.1* 12.1* 12.3* 13.5 

Random 10% of 

each source 

group 

26.8* n/a 15.5* 21.2 

Cluster 1 surface 

samples only 
22.3* 11.1* 13.7* 15.7 

10 – 30% organic 

matter added 
14.8 9.0* 5.4 9.7 

Mixtures sieved 

to 63 - 38 µm 
36.6* 15.6* 19.3* 23.8 

Mixtures sieved 

to <38 µm 
20.6 15.7* 12.7* 16.3 

     

Mean 21.8 12.3 12.4  

+ Significantly different model output distribution to the simple surface and subsurface 

classifications (for contributions from surface sources), Kruskal Wallis test P <0.05. 

* Significantly different distribution to the unaltered mixture, Kruskal Wallis test P <0.05. 

 1 

5. Conclusions 2 

 3 

The findings of this paper demonstrate how small differences in tracer signatures between 4 

sediment source groups and a high within-source variability can introduce significant 5 

uncertainty into unmixing model results. As a result, it was found that the simple 6 

classification of catchment sources as generic surface and subsurface sources in a catchment 7 

with a heterogeneous geology resulted in large amount of error when using a composite 8 

fingerprinting approach. This error was significantly reduced by the cluster analysis based 9 

method, and was not significantly increased by splitting the cluster analysis source groups 10 

into surface and subsurface components to suit catchment management goals. Therefore, a 11 
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cluster analysis based classification method with the modification of cluster groups appears to 1 

be the optimum method within the Sywell Reservoir catchment. This is likely to be the case 2 

for many other river catchments.  3 

The effects of tracer non-conservatism were found to be substantially reduced by the high 4 

tracer variability ratio associated with the cluster analysis based classification methods. The 5 

reasoning behind this is that the source group signal of the tracers (inter-group variability) is 6 

larger than the noise of tracer non-conservatism with these methods. An additional advantage 7 

to the cluster analysis based methods is that far smaller errors are introduced by highly 8 

localised sediment inputs from only a small part of the catchment, which may have highly 9 

distinctive tracer concentrations (e.g. from the ironstone geology in the case of the Sywell 10 

study catchment).  11 

Whilst this paper found that the sediment source groups in the cluster analysis were strongly 12 

controlled by catchment geology it should be emphasised that this method is likely applicable 13 

to catchments with homogenous soil types, channel bank composition and anthropogenic 14 

tracer inputs. As a result, we would recommend consideration of objective source 15 

classification schemes in combination with the modification of source groups to suit 16 

management goals. On the basis of our findings here, the optimum classification scheme for 17 

applying sediment source fingerprinting in the Sywell catchment is presented in Figure 4).  18 
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 1 

Figure 4: A flow diagram of the optimum source classification scheme identified for the 2 

Sywell reservoir catchment. 3 

 4 

 5 
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6. Online supplementary data 3 

 4 

Table S1: Loadings of the 7 largest principal components in the PCA analysis of tracer 5 

concentrations in the source samples. 6 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Rotation 

Sums of 

Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

1 10.990 26.805 26.805 10.990 26.805 26.805 7.978 

2 7.610 18.560 45.365 7.610 18.560 45.365 4.776 

3 5.228 12.751 58.117 5.228 12.751 58.117 6.534 

4 3.676 8.967 67.083 3.676 8.967 67.083 5.886 

5 2.794 6.814 73.898 2.794 6.814 73.898 7.662 

6 2.031 4.954 78.852 2.031 4.954 78.852 2.915 

7 1.402 3.419 82.271 1.402 3.419 82.271 5.286 

 7 

Table S2. The PCA structure matrix of tracer signatures in the source samples values 8 

larger than 0.4 and smaller than -0.4 are highlighted. 9 

Structure Matrix 

 
Component 

1 2 3 4 5 6 7 

Green -.970 -.122 -.056 .079 -.444 .234 -.042 

IRGB -.969 -.129 -.042 .060 -.433 .228 -.029 

Red -.919 -.122 .254 -.184 -.324 .131 .064 

HRGB -.828 -.028 -.191 .262 -.485 .254 -.173 

Blue -.786 -.114 -.435 .368 -.463 .301 -.138 

Redness index .775 .176 .489 -.350 .568 -.180 .158 

LOI % .769 .468 -.302 -.160 .209 -.055 -.206 

Hue Index .755 .408 -.170 -.004 .208 .167 .053 

Mo .122 .826 .064 .007 .138 -.110 -.360 

Mn .089 .710 .348 -.233 .339 -.181 -.356 

Ba .188 .648 -.081 -.103 .003 -.558 -.443 

K .040 .643 -.078 .615 -.164 -.129 -.336 

Cu .033 .615 -.114 .445 -.299 -.014 -.480 
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Zn .320 .581 .526 -.061 .368 .081 -.176 

P .428 .493 .310 -.160 .471 .346 .112 

V .127 .137 .875 -.263 .515 .137 .129 

Fe .152 -.030 .847 -.115 .433 .283 .189 

Y .169 .079 .838 -.265 .622 .173 .125 

Ni -.170 .226 .793 .188 .061 .262 -.069 

Saturation index -.066 -.032 .771 -.597 .217 -.240 .212 

colouration index .277 .038 .720 -.618 .390 -.271 .221 

Zr -.118 -.003 .720 .450 -.051 .142 -.033 

SRGB -.446 -.051 .682 -.539 .001 -.098 .197 

Li -.116 -.086 .072 .898 -.183 -.153 -.096 

Mg -.233 .280 -.072 .864 -.381 -.102 -.347 

S -.058 -.271 -.156 .762 -.100 .326 .134 

B .088 .458 -.184 .701 -.179 -.148 -.318 

D90 .450 -.060 .135 -.642 .369 .017 .525 

SIRM .397 .086 .254 -.169 .969 -.002 .013 

Xlf .389 .114 .215 -.149 .960 .057 -.057 

Xarm .262 .057 .148 -.145 .918 .048 -.061 

Irm -100mT .416 .029 .223 -.138 .867 .053 -.054 

HIRM .245 .165 .180 -.146 .718 -.075 .091 

Pb .482 .502 -.038 -.144 .505 -.312 -.268 

Sr -.371 -.137 .248 -.106 -.029 .840 .155 

Ca -.372 -.332 .002 -.251 -.138 .740 .352 

Al .030 -.012 -.154 -.063 -.037 -.244 .176 

SSA -.093 .309 -.086 .160 .044 -.060 -.964 

D50 .079 -.333 .171 -.296 .160 .231 .943 

D10 .020 -.345 -.025 -.089 -.172 -.032 .903 

Span .189 .328 -.138 -.178 .000 -.268 -.829 
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Figure S1: Actual and modelled sediment source contributions to the artificial mixtures. 

Actual contributions are in dark grey and modelled contributions are in light grey. 
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